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Experimental results show that the monotonicity of a quantifier (Q) affects how it is pro-
cessed [4, 7, 6]. Q′s are upward entailing (UE) if they permit inferences to supersets, i.e. from
Q A B follows Q A B’ for any B ⊆ B′ (e.g. every, at least five). If from Q A B it follows that
Q A B’ for any B′ ⊆ B, the quantifier Q is downward entailing (DE) (e.g. no, at most five).
As compared to UE Q’s, DE Q’s are more difficult to verify [4, 7] and draw inferences from
[6]. Recent attempts at deriving predictions about the processing of Q’s are built on the notion
of semantic automata [12], and have been presented e.g. in [11] and [10]. E.g., [11] improve
on results by [8] by showing not only that the computational distinction between Q’s recog-
nized by finite-automata and push-down automata is psychologically relevant, but also that
there are differences in the time required for verifying statements involving Q’s even among
the class of quantifiers recognized by finite state automata. However, since these approaches
employ essentially the same kind of semantic automata for both DE and UE Q’s, they cannot
explain why DE Q’s are more difficult to process than UE Q’s. To explain this, we formulate
a quantification theory which predicts that the (expansion) operation employed in processing
DE Q’s is more difficult than that for processing UE Q’s, because it involves (i) inferences from
negative information and (ii) polarity reversal. The predictions of our account were tested in
two experiments investigating the online comprehension and verification of simply (Exp. 1) and
doubly quantified sentences (Exp. 2) with UE vs DE Q’s.

1 An algorithmic theory of quantification

In the following, we aim to provide an algorithmic theory of meaning in the sense of [9]: The
meaning of an expression is the algorithm which computes its denotation. Here is the basic idea
of what will be worked out below. In the case of a quantificational sentence Q1 boys tickled Q2

girls, with Q1 boys scoping over Q2 girls, the interpretation consists in specifying an algorithm
which outputs whether S is true given any model, and the verification consists in applying this
algorithm to a specific model.

Given a binary relation R (e.g. tickle), we first construct a polarity relation R∗, such that
〈a, b,+〉 ∈ R∗ if 〈a, b〉 ∈ R; and 〈a, b,−〉 ∈ R∗ otherwise. We now specify an algorithm which
derives 〈Q1 boys, Q2 girls,+〉 if and only if our input sentence is true (relative to a certain
scoping). The algorithm for the verification of the doubly quantified sentence above (relative
to the subject wide scope reading) consists of the following steps:

(1) a. For every boy x who tickles some girl, determine which girls he tickles. If the
set of girls tickled by x is a witness set of Q2 girls, add the positive information
〈x,Q2 girls,+〉. Otherwise, add the negative information that 〈x,Q2 girls,−〉.

b. For every boy x who tickles no girl, add 〈x,Q2 girls,+〉 if Q2 girls has the empty
set as a witness set. Otherwise, add the negative information 〈x,Q2 girls,−〉.
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(2) a. If for some boy x we have 〈x,Q2 girls,+〉, and the set of boys y with 〈y,Q2 girls,+〉
is a witness set of Q1boys, then add 〈Q1boys, Q2girls,+〉, else 〈Q1boys, Q2girls,−〉.

b. If for every boy x we have 〈x,Q2 girls,−〉, and the empty set is a witness set of
Q1boys then add 〈Q1boys, Q2girls,+〉. Otherwise, add 〈Q1boys, Q2girls,−〉

Q1 boys tickled Q2 girls is true iff 〈Q1boys, Q2girls,+〉 can be added. Importantly, if neither
Q1 boys nor Q2 girls have the empty set as a witness set, then the general algorithm can be
simplified as follows:

(3) For every boy x who tickles some girl, determine which girls he tickles. If the set of girls
tickled by x is a witness set of Q2 girls, add the positive information 〈x,Q2 girls,+〉.

(4) If for some boy x we have 〈x,Q2 girls,+〉, and the set of boys y with 〈y,Q2 girls,+〉 is
a witness set of Q1boys then add 〈Q1boys, Q2girls,+〉.

In other words, if neither quantifier is an empty-set quantifier, the negative information can
safely be ignored in every model, and the algorithm can be restricted to positive information.
We will refer to this simplified procedure as simple expansion (s-exp). If one (or both) quan-
tifiers are empty-set quantifiers, and the antecedent of (2b) holds, then negative information
becomes relevant, since step (2b) allows the addition of positive information based on negative
information, and therefore the more complex algorithm (c-exp) is required. The differenti-
ation between s-exp and c-exp sets our theory apart from existing algorithmic proposals of
quantification, as for instance [10]’s automata theory building on [12].

2 Quantification theory

First, we assume that simple NL determiners denote unary functions from restrictor sets to
pairs consisting of the restrictor set itself and a set of subsets of the restrictor set, called the
set of witness sets, i.e. as functions q : P(E) 7→ P(E)× P(P(E)).

Definition 1 (w-function, w-quantifier, witness sets): Let q be a function from the set
P(E) of subsets of the domain of entities E into P(E) × P(P(E)). Then q is called a w-
function1 if for any A ⊆ E there is a W ⊆ P(A), such that q(A) = 〈A,W 〉. If q is a w-function
and A ⊆ E, then q(A) = 〈A,W 〉 is called a w-quantifier, and W the set of witness sets of q at
A. If a w-quantifier q(A) = 〈A,W 〉 is such that ∅ ∈W , it is called an empty-set quantifier.

To illustrate, for any subset A of the domain of individuals E, we have:

(5) [[some]](A) = 〈A, {X : X ⊆ A ∧ |X| ≥ 1}〉
[[most]](A) = 〈A, {X : X ⊆ A ∧ |A ∩X| > |A−X|}〉

Note that these w-quantifiers naturally correspond to the standard generalized quantifier deno-
tations:

(6) [[some]]E(A) = {B : B ⊆ E ∧ |A ∩B| ≥ 1}
[[most]]E(A) = {B : B ⊆ E ∧ |A ∩ (A ∩B)| > |A− (A ∩B)|}

Importantly, note that for most type 〈1, 1〉 quantifiers there is no corresponding w-quantifier:

(7) EQUIE(A) = {B : B ⊆ E ∧ |A| = |B|}〉
TOTALE(A) = {B : B ⊆ E ∧ E = A}〉

1Mnemonic for witness-set function.
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In fact, a type 〈1, 1〉 quantifier Q has a corresponding w-quantifier if and only if Q satisfies both
conservativity (cons) and extension (ext).2

In order to explicitly encode positive and negative information we define the polarity relation
P ∗ of an n-ary predicate: if 〈a, b〉 ∈ P then 〈a, b,+〉 ∈ P ∗, and if 〈a, b〉 /∈ P then 〈a, b,−〉 ∈ P ∗.
Definition 2 (n-ary predicate, polarity relation): A subset P of (E ∪P(E)×P(P(E)))n,
with n ≥ 1, is called an n-ary predicate. For any n-ary predicate P and πi(σ) the i-th el-
ement of an n-ary tuple σ (for any 1 ≤ i ≤ n), let P ∗ = {〈π1(σ), . . . , πn(σ),+〉 : σ ∈
P} ∪ {〈π1(σ), . . . , πn(σ),−〉 : σ /∈ P} be the polarity relation of P .

To illustrate, if E = {a, b, c}, A = {a, b}, and P = {〈a, a〉, 〈a, b〉, 〈c, c〉} is a binary predicate,
then P ∗ = {〈a, a,+〉, 〈a, b,+〉, 〈c, c,+〉}∪{〈a, c,−〉, 〈b, a,−〉, 〈b, b,−〉, 〈b, c,−〉, 〈c, a,−〉, 〈c, b,−〉}
is polarity relation of P .

Next, we define the set of i-fillers [σ]P
∗

i of a tuple σ ∈ P ∗ as the set of elements in the i-th
position of an i-variant τ ∈ P ∗ of σ (τ is an i-variant of σ iff τ and σ differ at most at the i-th
position).

Definition 3 (i-fillers):Let P ∗ be the polarity relation of some n-ary predicate P and let σ ∼i τ
hold iff σ and τ differ at most at the i-th element. For every σ ∈ P ∗ and any integer 1 ≤ i ≤ n,

let [σ]P
∗

i = {πi(τ) : τ ∈ P ∗ ∧ τ ∼i σ} be the i-fillers of σ in P ∗. Let [σ]P
∗,A

i = [σ]P
∗

i ∩A be the
set of those i-fillers of σ in P ∗ which are also in the set A (called restrictor set).

For example, if P ∗ = {〈a, a,+〉, 〈a, b,+〉, 〈b, a,−〉, 〈b, b,+〉}, then [〈a, a,+〉]P∗

1 = {a}, [〈a, a,+〉]P∗

2

= {a, b} and [〈b, a,−〉]P∗

1 = {b}, [〈b, a,−〉]P∗

2 = {a}. Finally, we formulate two expansion oper-
ations which, when applied to a quantifier q(A) and a polarity relation P ∗, add those tuples
representing negative or positive information involving q(A) at position i in P ∗.

Definition 4 (simple and complex i-expansion): Let q : P(E) 7→ P(E) × P(P(E)) be
a function such that q(A) = 〈A,W 〉, where W ⊆ P(A), and P be an n-ary predicate over E
(n ≥ 1). For any σ ∈ P ∗ and any 1 ≤ i ≤ n, let σ[i/x] be the result of replacing the i-th element
of σ by x. Then the simple expansion of P ∗ by q(A) at position i, written as s-expi(q(A), P ∗)
is the smallest set Q such that P ∗ ⊆ Q and clause 1 holds. The complex expansion of P ∗ by
q(A) at position i, written as c-expi(q(A), P ∗) is the smallest set Q such that P ∗ ⊆ Q and
clauses 1-4 below hold:

1. σ+ ∈ P ∗ ∧ [σ+]P
∗,A

i ∈W → σ+[i/q(A)] ∈ Q (positive � positive)

2. σ+ ∈ P ∗ ∧ [σ+]P
∗,A

i /∈W → σ−[i/q(A)] ∈ Q (positive � negative)

3. σ− ∈ P ∗ ∧ [σ−]P
∗,A

i = A ∧ ∅ ∈W → σ+[i/q(A)] ∈ Q (negative � positive)

4. σ− ∈ P ∗ ∧ [σ−]P
∗,A

i = A ∧ ∅ /∈W → σ−[i/q(A)] ∈ Q (negative � negative)

To illustrate, consider the evaluation of Every boy (Q1) tickled exactly three girls (Q2) by means
of s-exp in a model with B = {b1, b2}, G = {g1, g2, g3, g4} and T = {〈b1, g1〉, 〈b1, g2〉, 〈b1, g3〉,
〈b2, g1〉, 〈b2, g2〉, 〈b2, g3〉, 〈g1, g2〉, 〈g1, g3〉, 〈g1, g4〉, }. By the first clause of s-exp2 we can add
〈b1, [[Q2]],+〉, 〈b2, [[Q2]],+〉 and 〈g1, [[Q2]],+〉, and by clause 1 of s-exp1 we add 〈[[Q1]], [[Q2]],+〉,
since {b1, b2, g1}∩B is a witness set of [[every boy]]. The subject-wide-scope reading ofQ1 V Q2 is
true in M iff 〈[[Q1]], [[Q2]],+〉 ∈ c-exp1([[Q1]], c-exp2([[Q2]], [[V ]]∗)). Clearly, if 〈[[Q1]], [[Q2]],+〉 ∈
s-exp1([[Q1]], s-exp2([[Q2]], [[V ]]∗)), then 〈[[Q1]], [[Q2]],+〉 ∈ c-exp1([[Q1]], c-exp2([[Q2]], [[V ]]∗)).
Importantly, the truth evaluation of this sentence in a model requires neither inferences based

2A quantifier Q satisfies cons iff for all domains E and for all A,B ⊆ E, it holds that QE(A,B) iff QE(A,A∩
B), and ext iff iff for all domains E and all A,B ⊆ E, it holds that QE(A,B) iff QA(A,B).
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on negative information nor polarity reversal. On the other hand, whether Less than two boys
(Q1) tickled exactly three girls (Q2) can be shown to be true by s-exp depends on the situa-
tion. If B = {b1, b2}, G = {g1, g2, g3, g4} and T = {〈b1, g1〉, 〈b1, g2〉, 〈b1, g3〉, then 〈b1, [[Q2]],+〉
is added by s-exp2, and by s-exp1 we add 〈[[Q1]], [[Q2]],+〉, since {b1} is a witness set of less
than two boys. But in the situation where B = {b1, b2}, G = {g1, g2, g3, g4} and T = {〈g1, g2〉}
c-exp is required: By clause 4 of c-exp2 we add the negative information that 〈b1, [[Q2]],−〉
and 〈b2, [[Q2]],−〉, and by clause 3 of c-exp1 we add the positive information 〈[[Q1]], [[Q2]],+〉
based on the negative information added before (polarity reversal). An important consequence
of this theory is the following proposition:

Proposition 1: Let q1(A1) = 〈A1,W1〉 and q2(A2) = 〈A2,W2〉 be w-quantifiers with ∅ /∈
W1 and ∅ /∈ W2, and let P ∗ be the polarity relation of some predicate P ⊆ En.3 Then
〈q1(A1), q2(A2),+〉 ∈ s-exp1(q1(A1), s-exp2(q2(A2), P ∗)) if and only if 〈q1(A1), q2(A2),+〉 ∈
c-exp1(q1(A1), c-exp2(q2(A2), P ∗)).

That is, if a quantified statement contains no empty-set quantifiers, then 〈q1(A1), q2(A2),+〉
can be added by s-exp if and only if it can be added by c-exp – in other words, the evaluation
of such a statement’s truth requires only inferences of positive information from positive in-
formation. If, on the other hand, a quantified statement does contain an empty-set quantifier,
then it cannot be evaluated for truth by s-exp in every model, as shown above.

Based on our theory we derive the following predictions about the processing of quantified
sentences. Prediction 1: Given that negation and polarity reversal increase processing diffi-
culty [2], we predict first that quantified statements which have to be evaluated by c-exp are
more difficult to process than statements which can be evaluated by s-exp. Non-empty-set
quantifiers (e.g. UE quantifiers like at least/more than n or every4 ) can be evaluated by s-exp
in all models/situations. On the other hand, the evaluation of empty-set quantifiers (all DE
quantifiers, among others) depends on the model: in some models s-exp suffices, in others c-
exp is necessary. We predict increased processing difficulty whenever s-exp does not suffice. In
particular, processing difficulty should be increased if a rule has to be applied that involves po-
larity reversal (clauses 2 and 3) or is based on negative information (clauses 3 and 4). The most
difficult cases should be applications of clause 3 because this clause involves polarity reversal
and inference from negative information. Prediction 2: If the comprehension of a quantified
sentence involves the specification of the simplest algorithm for checking this sentence in any
model, we predict not only differences in ease of verification but also differences in ease of com-
prehension: sentences involving no empty-set Q should be read faster than sentences involving
empty set Q’s, because the former requires the specification of an algorithm involving s-exp,
whereas the latter involves the complex expansion c-exp.

3 Experiments

Experiment 1: 72 German participants read simply quantified intransitive sentences of the
type Q dots are blue manipulating Q : (a) mindestens ein. . . (at least one, non-empty-set), (b)
höchstens ein. . . (at most one, empty-set) and (c) weniger als zwei (less than two, empty-set).
After reading the sentence, a picture was presented that showed either zero objects (0-model),
one object (1-model), or three objects (3-model) of the relevant color among other objects of a
different color.

3Note that this proposition also holds for empty predicates.
4Assuming existential import every can also be considered a non-empty-set quantifier since it presupposes a

non-empty restriction [3]. Note that without this presupposition the empty set is a witness set of every(A) in
case A is empty.
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All objects (total number between 4 to 7 varying across items) in the display were elements
of the restrictor set. 27 items were constructed in a 3× 3 within design and distributed to nine
lists using a latin square. The descriptive statistics are presented in Table 1.

error rates judgment times
0-model 1-model 3-model 0-model 1-model 3-model

at least one 0% 0% 4.9% 1511ms 1300ms 1453ms
fewer than two 10.3% 2.0% 0% 2076ms 1744ms 1755ms
at most one 22.5% 1.0% 1.0% 1939ms 1385ms 1478ms

Table 1: Mean judgments and judgment times in Exp. 1.

The analysis of error rates revealed that, except for the two empty-set quantifiers with 0-models,
all of the conditions had error rates well below 5%. The 0-models led to 10.3% errors for less
than and to even 22.6% errors for at most5. In a logit mixed effects model analysis, the observed
differences led to a significant quantifier × model interaction (z = 2.42). The increased error
rates for empty-set Q’s when the predicate is empty are fully expected since this case requires
the application of the most difficult clause of c-exp, namely clause 3, which involves polarity
reversal and inference from negative information. If the predicate is not empty, then there is
an a ∈ E with 〈a,+〉 ∈ P ∗, so clause 1 or 2 can be applied. The verification times6 also showed
a significant interaction between quantifier and model (ANOVAs: p1 < .01; p2 < .05) which
lends further support to our theory (prediction 1). Thus, the evaluation of 0-models proves to
be a source of quantificational complexity in empty-set quantifiers even in simply quantified
intransitive sentences.

0 boys tickled Q2 girls 1 boy tickled Q2 girls 3 boys tickled Q2 girls

more than 3

less than 3

Figure 1: Sample models in Exp. 2 for Q1 boys tickled more than/less than three girls. Note:
diagrams corresponding to 0- and 3-models had to be swapped for Q2=more than and Q2=fewer
than, but the set of diagrams was kept constant across sentence conditions.

Experiment 2: 72 participants read German sentences of the form Q1 boys tickled Q2 girls
which have independently been shown to exhibit surface scope only [cf. 1]. Q1 was either
one of the Aristotelian quantifiers jeder (each, non-empty-set) and kein (no, empty-set) or
one of the superlative quantifiers mindestens ein (at least one, non-empty-set) and höchstens

5Being well aware of the fact that these “errors” may be (at least partly) caused by pragmatic factors.
6All judgment times and reading times in Exp. 1/2 were corrected for outliers by excluding RTs from the

analysis that were below 100ms or above a participant’s mean RT plus 2.5sd’s.
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(a) mean reading times of the critical re-
gion

(b) mean judgment times

(c) mean judgments

Figure 2: Results of Experiment 2. es = empty-set Q; non-es = non-empty-set Q.

ein (at most one, empty-set). Q2 was either mehr als zwei/drei (more than two/three, non-
empty-set) or weniger als zwei/drei (less than two/three, empty-set). (8) is a sample sentence,
asterisks indicate segmentation for self-paced reading. The underlined noun phrase of the
second quantifier marks the critical region since this is the earliest point at which a verification
algorithm can be fully specified.

(8) Mindestens
At least

ein
one

*
*

Junge
boy

*
*

kitzelte
tickled

*
*

mehr
more

*
*

als
than

drei
three

*
*

Mädchen.
girls.

Participants read these sentences in a self-paced reading experiment with moving window
presentation. After each sentence, a set diagram appeared on the screen of the types shown in
Figure 1 and they had to provide a truth value judgment. As in Exp. 1 there were three types of
diagrams: 0-, 1- and 3-set diagrams which showed a) no, b) one or c) three boys tickling Q2 girls,
respectively. Accordingly, the experiment employed a factorial 2 (empty-set Q1 vs. non-empty-
set Q1) ×2 (type of Q1: Aristotelian vs. superlative) ×2 (empty-set Q2 vs. non-empty-set Q2))
×3 (diagram) within design. Diagrams were constructed in such a way that across sentence
conditions always the same set of pictures was used for the 0- vs 1- vs 3-set diagram. Since 0-
and 3-models had to be swapped for empty-set vs. non-empty-set-Q2s, judgment times had to
be collapsed over diagram types to allow for comparison. 72 experimental items plus 78 fillers
were constructed and distributed to 24 lists in a latin square. Across the experiment, 50% of
the sentences were true. Sentence-picture-pairs were presented in randomized order.
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each↑ each↓ at least↑ at least↓ no↑ no↓ at most↑ at most↓
0 1(1/1/1) 4(2/2/2) 1(1,1,1) 4(2/2/2) 3(2/2/2) 3(2/2/2) 3(2/2/2) 3(2/2/2)
1 1(1/1/1) 2(1/2/2) 1(1,1,1) 1(1/2/2) 2(1/2/2) 2(1/2/2) 1(1/2/2) 1(1/2/2)
3 1(1/1/1) 1(1/1/1) 1(1,1,1) 1(1/1/1) 2(1/1/1) 2(1/1/1) 2(1/1/1) 2(1/1/1)

Table 2: Clauses of c-exp that had to be applied in Exp. 2. The arrows indicate whether Q2

was an empty-set quantifier (↓) or not (↑). The clauses for c-exp2 are given in parentheses
after the clause numbers for c-exp1. Conditions in boldface indicate quantifier combinations
that can be evaluated by s-exp in any model. 0 = 0-model, 1 = 1-model and 3 = 3-model.

We analyzed reading times as well as verification latencies by computing repeated measures
ANOVAs. Error rates of the subsequent verification stage were analyzed in a logit mixed
effects model. The full set of results is presented in Figure 2. Up to the critical noun phrase the
only significant effect was the main effect of empty set Q2 (p1/2 < .01) at regions fewer/more
and than n. Unsurprisingly, fewer than n took longer to read than more than n. Effects due
to the semantic properties of the first quantifier only emerged at the critical noun phrase of
the second quantifier phrase. Conditions with two non-empty-set quantifiers were read faster
than the conditions involving empty-set quantifiers (ANOVAs: empty set Q1 × empty set Q2,
p1 < .05; p2 = .09) in line with our second prediction that an algorithm based on s-exp is
inherently less complex than an algorithm based on c-exp.

Both empty-set subject and empty-set object quantifiers led to a slowdown of judgment
times as reflected by significant main effects of empty set Q1 (p1/2 < .01) and empty set Q2

(p1/2 < .01) but no reliable interaction. Note that this is slightly different from what we would
expect on the basis of prediction 1. According to our theory, one empty-set quantifier may
already suffice to trigger c-exp. Table 2 summarizes which clauses had to be applied in each
of the 24 conditions. As can be seen from the table, we would have expected an interaction
between witness sets Q1 and empty set Q2 because for an empty-set Q1 the same clauses were
required for empty-set and non-empty-set Q2. To test whether this unexpected difference was
reliable we computed ANOVAs for the subset of conditions with an empty-set Q1. This analysis
revealed a main effect of empty set Q2 (p1/2 < 0.1). Thus, the judgment times provide partial
evidence against our theory. As it seems, the combination of two empty-set quantifiers adds
processing difficulty beyond what would be expected on the basis of the complexity of the
proposed verification algorithms.

Consistent with recent proposals from the semantic literature (e.g., [5]) superlative quanti-
fiers were more difficult to process than Aristotelian quantifiers consistently across the reading
and verification stages (main effects of type of Q1, all p1/2 < .01) suggesting that they are inher-
ently more complex. In fact, complexity due to the type of Q1 and empty set Q1/Q2 added up.
This was indicated by extraordinarily high error rates of sentences with a superlative empty-set
Q1. Accordingly, a logit mixed effects model analysis of the superlative conditions revealed a
reliable two-way interaction between empty set Q1 and diagram type (z = 8.98). As in Exp. 1,
errors were limited to those models which required the evaluation of a empty-set quantifier with
an empty predicate, further confirming prediction 1. This time, polarity reversal led to perfor-
mance even below chance level, in particular in sentences with the two empty-set quantifiers at
most and less than (χ2(1) = 5.06; p < .05).

The results of Exp. 2 are for the most part consistent with our quantification theory. The
observed pattern of reading times supports the distinction between s-exp and c-exp and the
verification data lend support to the predicted difficulty of empty-set quantifiers when having
to evaluate a situation in which the scope of the subject quantifier phrase consists of the empty
set. Only the judgment times are not fully compatible with our theory.
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4 Conclusions

We have presented an algorithmic theory of quantifier interpretation which predicts that the
operation employed in processing empty-set quantifiers is more difficult than that for processing
non-empty-set quantifiers. This prediction was mainly confirmed in two experiments that in-
vestigated the online comprehension and verification of simply and doubly quantified sentences.

In order to further disentangle complexity effects that are due to the presence of empty-set
quantifiers from complexity effects due to the monotonicity of the quantifiers, we plan to extend
this line of research and investigate whether non-monotonic Q’s which are not empty-set Q’s
(e.g. exactly one boy or exactly three boys) are easier to process than non-monotonic empty-set
Q’s (e.g. no boy or exactly three boys), a prediction which - to our knowledge - is unique to the
present account.
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