
Monadic Quantifiers Recognized by

Deterministic Pushdown Automata

Makoto Kanazawa

National Institute of Informatics, Tokyo, Japan
kanazawa@nii.ac.jp

Abstract

I characterize the class of type 〈1〉 quantifiers (or, equivalently, type 〈1, 1〉 quantifiers
satisfying Conservativity and Extension) that are recognized by deterministic pushdown
automata in terms of the associated semilinear sets of vectors in N2. These semilinear sets
are finite unions of linear sets with at most two generators each, which are taken from a
common three-element set of the form {(k, 0), (0, l), (m,n)}. This answers a question that
was left open by Mostowski (1998). A consequence of my characterization is that the type
〈1〉 quantifiers recognized by deterministic pushdown automata are already recognized by
deterministic one-counter machines with zero tests, i.e., deterministic pushdown automata
whose stack alphabet contains just one symbol (besides the bottom-of-stack symbol).

1 Introduction

A type 〈1〉 quantifier is a class of finite first-order structures of the form (U,P ), with P ⊆ U ,
which is closed under isomorphism. (We allow U = ∅.) Some examples of type 〈1〉 quantifiers
are1

∃ = { (U,P ) | P 6= ∅ },
∀ = { (U,P ) | U = P },

Dn = { (U,P ) | n divides |P | } (n = 1, 2, . . . ),

QR = { (U,P ) | |U − P | < |P | }.
Linguistically, the interest of type 〈1〉 quantifiers mostly owes to their correspondence with a

subclass of the type 〈1, 1〉 quantifiers, which are isomorphism-closed classes of first-order struc-
tures of the form (U,P1, P2) (with P1, P2 ⊆ U). The correspondence is through the operation
of relativization:

Qrel = { (U,P1, P2) | (P1, P1 ∩ P2) ∈ Q }.
Relativizations of type 〈1〉 quantifiers are precisely those type 〈1, 1〉 quantifiers satisfying Con-
servativity and Extension (see Peters and Westerst̊ahl, 2006):

Conservativity: (U,P1, P2) ∈ Q⇐⇒ (U,P1, P1 ∩ P2) ∈ Q.
Extension: (U,P1, P2) ∈ Q⇐⇒ (P1 ∪ P2, P1, P2) ∈ Q.

Many natural language determiners apparently express type 〈1, 1〉 quantifiers satisfying Con-
servativity and Extension:

some = { (U,P1, P2) | P1 ∩ P2 6= ∅ },
every = { (U,P1, P2) | P1 ⊆ P2 },

an-even-number-of = { (U,P1, P2) | |P1 ∩ P2| is even },
more-than-half-of = { (U,P1, P2) | |P1 − P2| < |P1 ∩ P2| }.

1Here, |P | denotes the cardinality of the set P . Elsewhere, we sometimes write |w|, where w is a string, to
denote the length of w. Context should make it clear which is intended.

Proceedings of the 19th Amsterdam Colloquium 
Maria Aloni, Michael Franke & Floris Roelofsen (eds.)

139



These are relativizations of ∃,∀,D2, Q
R, respectively.

Because of the correspondence via relativization, classifications of type 〈1〉 quantifiers in
terms of their complexity translate into classifications of type 〈1, 1〉 quantifiers satisfying Con-
servativity and Extension, and vice versa. In this paper, I mostly speak of type 〈1〉 quantifiers,
but all the results equally pertain to type 〈1, 1〉 quantifiers satisfying Conservativity and Ex-
tension.

Because of isomorphism closure, each type 〈1〉 quantifier Q has two alternative presentations:
(i) a set VQ of vectors in N2, and (ii) a commutative (i.e., permutation-closed) set WQ of strings
over a two-letter alphabet, say, {a, b}:

VQ = { (|U − P |, |P |) | (U,P ) ∈ Q }, WQ = {w ∈ {a, b}∗ | #(w) ∈ VQ }.

Here, #(w) is the Parikh vector associated with w, defined by

#(w) = (#a(w),#b(w)),

where #c(w) denotes the number of occurrences of symbol c in w. Conversely, any subset of N2

(and any commutative subset of {a, b}∗) determines a type 〈1〉 quantifier (and via relativization,
a type 〈1, 1〉 quantifier satisfying Conservativity and Extension). These correspondences are
bijections.

Van Benthem (1986) studied the relationship among the three presentations of quantifiers,
proving, among other things, that WQ is accepted by a nondeterministic pushdown automaton
(PDA) if and only if VQ is a semilinear subset of N2. Since one of the motivations for using
automata to classify quantifiers was to bring a procedural perspective to natural language
semantics, it makes sense, as noted by van Benthem (1986), to investigate the effect of imposing
determinism on automata, since nondeterministic automata do not correspond to well-defined
algorithms (on a sequential model of computation).2 It is known that deterministic PDAs
accept a proper subclass of the context-free languages, known as the deterministic context-
free languages (DCFL), which is closed under complementation, but not union. It is certainly
interesting to obtain a van Benthem-style characterization of type 〈1〉 quantifiers Q such that
WQ is recognized by a deterministic PDA, in terms of the associated set VQ of vectors in N2.

A partial result in this direction was obtained by Mostowski (1998), who gave a characteri-
zation of the class of quantifiers that are accepted by deterministic PDAs by empty stack using
a restricted class of semilinear sets which he called almost linear.3 This result does not cover
all quantifiers that are accepted by deterministic PDAs by final state (and arbitrary stack),
including such mundane quantifiers as QR (more-than-half-of-all-things).

I this paper, I give a complete characterization of the semilinear sets of vectors in N2 that
correspond to type 〈1〉 quantifiers recognized by deterministic PDAs (by final state and arbi-
trary stack). These semilinear sets are finite unions of linear sets with at most two generators
each, which are taken from a common three-element set of the form {(k, 0), (0, l), (m,n)}. One

2It would be unrealistic to assume that the human cognitive process of evaluating quantified sentences
under normal circumstances even remotely resembles computation on finite or pushdown automata, whose
access to the input (the string representation of the described situation) is limited to one-time, one-way scan.
Nevertheless, these automata can make finer distinctions than standard models of computation that are used to
define computational complexity classes, and are sometimes useful to classify problems that are already of very
low computational complexity. For experimental studies of the difficulty of evaluating sentences with different
quantifiers, see Szymanik and Zajenkowski 2011, Zajenkowski and Szymanik 2013, and references cited therein.

3Mostowski’s definition of acceptance by empty stack is not altogether clear, and seems to be different from
the standard one given in Section 2.2 below. Presumably, he works with a model that allows both pushing onto
empty stack and testing stack for emptiness. At any rate, not all DCFLs are accepted by empty stack under
Mostowski’s model, even when restricted to commutative languages over {a, b}, as Mostowski notes.

Proceedings of the 19th Amsterdam Colloquium 
Maria Aloni, Michael Franke & Floris Roelofsen (eds.)

140



consequence of this characterization is that a type 〈1〉 quantifier Q is recognized by a determin-
istic PDA if and only if WQ is real-time recognizable by a (deterministic) one-counter machine
(Fischer et al., 1968).

2 Preliminaries

2.1 Semilinear Sets

A subset of Nn is linear if it is of the form

L(~v0; {~v1, . . . , ~vr}) = {~v0 + k1~v1 + · · ·+ kr~vr | ki ∈ N (1 ≤ i ≤ r) }, (†)

where ~v0, ~v1, . . . , ~vr are elements of Nn. The vectors ~v1, . . . , ~vr are called the generators of this
set, and the vector ~v0 is called its offset.4

A semilinear set is a finite union of linear sets. It is well known (Ginsburg and Spanier,
1966) that the semilinear subsets of Nn are precisely those definable by formulas of Presburger
arithmetic, the first-order language with addition as its only function symbol. It is known that
every semilinear set S ⊆ N2 can be expressed as a finite union of linear sets S1 ∪ · · · ∪ Sq each
of which has at most two generators (Abe, 1995).

Let Σ = {a1, . . . , an}. If L ⊆ Σ∗, then the Parikh image of L is #(L) = {#(w) | w ∈
L }, where #(w) = (#a1(w), . . . ,#an(w)). Parikh’s theorem (Parikh, 1966) states that every
context-free language has a semilinear Parikh image.

2.2 Pushdown Automata

We adopt a fairly standard definition of the pushdown automaton given by Hopcroft and Ullman
(1979). A pushdown automaton (PDA) is a system M = (Q,Σ,Γ, δ, q0, Z0, F ), where Q is a
finite set of states, Σ is finite set called the input alphabet, Γ is a finite set called the stack
alphabet, q0 ∈ Q is the initial state, Z0 ∈ Γ is the start symbol, F ⊆ Q is the set of final states,
and δ is a mapping from Q × (Σ ∪ {ε}) × Γ to finite subsets of Q × Γ∗.5 A configuration of
M is a triple (q, w, γ) ∈ Q×Σ∗ × Γ∗. An initial configuration is (q0, w, Z0), and the transition
relation `M between configurations is defined by

`M = { ((q, aw, Zα), (p, w, βα)) | (p, β) ∈ δ(q, a, Z) },

where a ranges over Σ ∪ {ε}. We write `∗M for the reflexive transitive closure of `M . We say
that M accepts a language L ⊆ Σ∗ by final state when

L = {w ∈ Σ∗ | (q0, w, Z0) `∗M (p, ε, γ) for some p ∈ F and γ ∈ Γ∗ }.

The PDA M accepts L by empty stack if

L = {w ∈ Σ∗ | (q0, w, Z0) `∗M (p, ε, ε) for some p ∈ Q }.

A PDA M is deterministic if every configuration allows transition to at most one con-
figuration. Formally, M = (Q,Σ,Γ, δ, q0, Z0, F ) is deterministic if (i) δ(q, ε, Z) 6= ∅ implies
δ(q, a, Z) = ∅ for all a ∈ Σ; and (ii) δ(q, a, Z) contains at most one element for all a ∈ Σ∪ {ε}.

4Note that the generators and the offset of a linear set depend on its representation in the form of (†).
5We write ε for the empty string and A∗ for the set of strings over the alphabet A.

Proceedings of the 19th Amsterdam Colloquium 
Maria Aloni, Michael Franke & Floris Roelofsen (eds.)

141



A language is a deterministic context-free language (DCFL) if some deterministic PDA accepts
it by final state.

With nondeterministic PDAs, acceptance by empty stack is equivalent to acceptance by final
state. This equivalence does not hold for deterministic PDAs, however. If some deterministic
PDA accepts L by empty stack, then there is a deterministic PDA that accepts L by final state,
but the converse does not hold. Since no transition to a new configuration is possible once
the stack becomes empty, determinism means that whenever a string w is accepted by empty
stack, no string of the form wv with v 6= ε can be so accepted. Thus, any language L that some
deterministic PDA accepts by empty stack is prefix-free in the sense that no proper prefix of
an element of L belongs to L.6

It is known that infinite loops and blocking can be eliminated from deterministic PDAs,
which makes it possible to use computation on a deterministic PDA as a recognition algorithm
for the language it accepts (either by final state or by empty stack).7 For this reason, when a
deterministic PDA M accepts a language L by final state, we say that M recognizes L. (When
the acceptance is by empty stack, we say “recognizes by empty stack”.)

3 Main Result

We say that a deterministic PDA M recognizes a type 〈1〉 quantifier Q if M recognizes WQ.

Theorem 1. A type 〈1〉 quantifier Q is recognized by a deterministic PDA if and only if there
exist natural numbers k, l,m, n such that VQ is a finite union of linear sets each of which has
one of the following as its set of generators:

∅, {(k, 0)}, {(0, l)}, {(m,n)}, {(k, 0), (m,n)}, {(0, l), (m,n)}.

Example 2. Examples of quantifiers that satisfy the condition in Theorem 1 are

• more than two thirds, with the associated set of vectors L((0, 1); {(0, 1), (1, 2)});
• there are an odd number more P s than non-P s (i.e., the P s outnumber the non-P s by an

odd number), with the associated set of vectors L((0, 1); {(0, 2), (1, 1)});
• either there are three more than twice as many P s as non-P s or there are less than

twice as many P s as non-P s, with the associated set of vectors L((0, 3); {(1, 2)}) ∪
L((1, 0); {(1, 0), (1, 2)}) ∪ L((1, 1); {(1, 0), (1, 2)}).

In contrast, a semilinear quantifier like more than one third but less than two thirds, whose
associated set of vectors L((1, 1); {(2, 1), (1, 2)}) ∪ L((2, 2); {(2, 1), (1, 2)}) involves two non-
trivial ratios, is excluded by the theorem.

The proof of the theorem in one direction relies on the following corollary of the pumping
lemma for DCFLs:

Lemma 3 (Harrison 1978). Let L ⊆ Σ∗ be a DCFL. There exists a positive integer p satisfying
the following property: for every w ∈ L with |w| ≥ p, there exist x1, x2, x3, x4, x5 such that

(i) w = x1x2x3x4x5;

6The languages that some deterministic PDA accepts by empty stack coincide with the languages generated
by LR(0) grammars (see Hopcroft and Ullman, 1979). Mostowski (1998), who gave a characterization of type
〈1〉 quantifiers recognized by deterministic PDAs by empty stack, seems to have a different conception of PDA,
since he allows transition from a configuration with empty stack. See footnote 3.

7This also implies that the class of DCFLs is closed under complementation.

Proceedings of the 19th Amsterdam Colloquium 
Maria Aloni, Michael Franke & Floris Roelofsen (eds.)

142



(ii) x2x4 6= ε;

(iii) for every z ∈ Σ∗ and n ∈ N, x1x2x3x4z ∈ L if and only if x1x
n
2x3x

n
4 z ∈ L.

Another simple but useful lemma is the following:

Lemma 4. Suppose that a semilinear set S ⊆ N2 is bounded in the first component, i.e., there
is a p such that S ⊆ [0, p]×N. Then there is an l such that S is a finite union of linear sets each
of which has ∅ or {(0, l)} as its set of generators. (Analogously for the second component.)

To prove the “only if” direction of Theorem 1, suppose that WQ is recognized by a deter-
ministic PDA. By Parikh’s theorem, VQ is semilinear. If WQ is finite, then VQ is a finite union
of singletons, which are linear sets with ∅ as the set of generators. If WQ is infinite, then
there must be w = x1x2x3x4x5 ∈ WQ that satisfy the conditions (i)–(iii) of Lemma 3. Let
~u0 = #(x1x3) and ~u1 = #(x2x4). Define8

V0 = {~v ∈ VQ | ~u0 6≤ ~v }, V1 = {~v ∈ VQ | ~u0 < ~v, ~u0 + ~u1 6≤ ~v }.

Since the semilinear sets are closed under intersection, it is not difficult to see using Lemma 4
that there are k, l ≥ 1 such that V0 and V1 are both finite unions of linear sets whose set of
generators is one of ∅, {(k, 0)}, and {(0, l)}.

Now we claim
VQ − V0 =

⋃
{L(~t, {~u1}) | ~t ∈ V1 }. (‡)

V0 V1

O

~u0
~u1

~u1

~u1

~u1

~u1

~u1

~u1

To see the ⊆ direction of (‡), suppose ~v ∈ VQ and ~u0 ≤ ~v.
Then there must be an n ≥ 0 and ~t ∈ N2 such that ~u0 ≤ ~t,
~u0+~u1 6≤ ~t, and ~v = ~t+n·~u1. Since ~u0 ≤ ~t, there is a z ∈ {a, b}∗
such that ~t = #(x1x3z). Since ~v = #(x1x

n
2x3x

n
4 z), we get

x1x
n
2x3x

n
4 z ∈WQ, which implies x1x3z ∈WQ, by Lemma 3. So

~t ∈ V1 and ~v ∈ L(~t, {~u1}).
To see the ⊇ direction of (‡), let ~t ∈ V1. Then there is a

z ∈ {a, b}∗ such that ~t = #(x1x3z). Since ~t ∈ V1, x1x3z ∈WQ,
and this implies x1x

n
2x3x

2
4z for all n ≥ 0, by Lemma 3. So

~t+ n · ~u1 ∈ VQ for all n ≥ 0, i.e., L(~t, {~u1}) ⊆ VQ. Since ~t 6∈ V0,
it is clear that L(~t, {~u1}) ⊆ VQ − V0.

Let (m,n) = ~u1. Now we can show that VQ − V0 is a
finite union of linear sets whose set of generators is one of {(m,n)}, {(k, 0), (m,n)}, and
{(0, l), (m,n)}. Suppose V1 = L(~t1, G1) ∪ · · · ∪ L(~tq, Gq), where each Gi is one of ∅, {(k, 0)},
and {(0, l)}. Then VQ − V0 = L(~t1, G

′
1) ∪ · · · ∪ L(~tq, G

′
q), where G′i = Gi ∪ {(m,n)}. Clearly,

G′i is among {(m,n)}, {(k, 0), (m,n)}, {(0, l), (m,n)}. Since V0 is a finite union of linear sets
whose set of generators is one of ∅, {(k, 0)}, and {(0, l)}, we have shown that VQ is as specified
in Theorem 1.

For the “if” direction of Theorem 1, assume that VQ is as specified in the theorem. We can
construct a deterministic PDA recognizing WQ as follows. We use part of the finite control
as buffers to store bounded numbers of as and bs, where the bound for the a-buffer is the
maximal a-component (i.e., first component) of the offsets plus m, and likewise for the b-buffer.
When scanning an a when the a-buffer is full, we push an a onto the stack, and likewise when
scanning a b when the b-buffer is full. When both buffers become full, we take out m as and n bs
from their respective buffer, and move the symbols on the stack to the appropriate buffer until

8The inequality ≤ between vectors in N2 is defined by: (x, y) ≤ (x′, y′) iff x ≤ x′ and y ≤ y′. The strict
inequality (x, y) < (x′, y′) holds iff (x, y) ≤ (x′, y′) and (x, y) 6= (x′, y′).

Proceedings of the 19th Amsterdam Colloquium 
Maria Aloni, Michael Franke & Floris Roelofsen (eds.)

143



the buffer becomes full or the stack becomes empty (using bottom-of-stack symbol to test for
emptiness), whichever comes first. We also count the number of as (or bs) on the stack modulo
k (or l) and keep this information in the finite control. Given this much information in the
finite control, inspection of a bounded portion of the stack near the top suffices to determine
whether the part of the input scanned so far is in WQ.

This deterministic PDA always keeps its stack uniform—the stack always contains just one
kind of symbol (besides the bottom-of-stack symbol). Using a flag in the finite control to
indicate which symbol is in the stack, we can easily turn it into a one-counter machine (1-CM)
(Fischer et al., 1968), which is like a deterministic PDA but has a counter instead of a pushdown
stack, which can hold any natural number and can be tested for zero.

Let us see the working of our 1-CM in more detail. If either m = 0 or n = 0, it is easy
to see that WQ is regular, so we may assume m > 0 and n > 0. Since a regular set can be
recognized using just the finite control, we may also discard linear sets of the form L(~u,∅),
L(~u, {(k, 0)}), or L(~u, {(0, l)}), which correspond to regular subsets of WQ. Writing L(O;G)
for

⋃
{L(~u;G) | u ∈ O }, we assume

VQ = L(O1; {(m,n)}) ∪ L(O2; {(k, 0), (m,n)}) ∪ L(O3; {(0, l), (m,n)}),

where O1, O2, O3 are finite subsets of N2. Let9

max offset a = max{x | (x, y) ∈ O1 ∪O2 ∪O3 },
max offset b = max{ y | (x, y) ∈ O1 ∪O2 ∪O3 },

C = max(n · bmax offset a/mc,m · bmax offset b/nc).

Our 1-CM is an implementation of the following pseudocode:

a buffer ← 0; b buffer ← 0; count ← 0; rem ← 0; counted ← a
loop

accept ← CheckForAcceptance()
if EndOfInput() then

return accept
else

c← GetNextSymbol()
if c = a then

if a buffer = max offset a + m then
counted ← a; count ← count + 1; rem ← (rem + 1) mod k

else
a buffer ← a buffer + 1

end if
end if
if c = b then

if b buffer = max offset b + n then
counted ← b; count ← count + 1; rem ← (rem + 1) mod l

else
b buffer ← b buffer + 1

end if
end if
if (a buffer , b buffer) = (max offset a + m,max offset b + n) then

(a buffer , b buffer)← (a buffer , b buffer)− (m,n)
if counted = a then

9If x is a real number, bxc is the integer part of x.

Proceedings of the 19th Amsterdam Colloquium 
Maria Aloni, Michael Franke & Floris Roelofsen (eds.)

144



while count > 0 ∧ a buffer < max offset a + m do
count ← count − 1; rem ← (rem − 1) mod k; a buffer ← a buffer + 1

end while
end if
if counted = b then

while count > 0 ∧ b buffer < max offset b + n do
count ← count − 1; rem ← (rem − 1) mod l; b buffer ← b buffer + 1

end while
end if

end if
end if

end loop

procedure CheckForAcceptance()
if count ≤ C then

if (counted = a ∧ (a buffer + count, b buffer) ∈ VQ) ∨ (counted = b ∧ (a buffer , b buffer +
count) ∈ VQ) then

return true
end if

else
for all (x, y) ∈ O2 do

if (x, y) ≤ (a buffer , b buffer) then
(x1, y1)← (a buffer − x, b buffer − y)
if counted = a ∧ y1 ≡ 0 (mod n) ∧ x1 −m · (y1/n) + rem ≡ 0 (mod k) then

return true
end if

end if
end for
for all (x, y) ∈ O3 do

if (x, y) ≤ (a buffer , b buffer) then
(x1, y1)← (a buffer − x, b buffer − y)
if counted = b ∧ x1 ≡ 0 (mod m) ∧ y1 − n · (x1/m) + rem ≡ 0 (mod l) then

return true
end if

end if
end for

end if
return false

end procedure

The length of any legal sequence of ε-transitions of this 1-CM is bounded by a constant.
Using the compression technique of Fischer et al. (1968, proof of Theorem 1.1), we can eliminate
ε-transitions from the machine to make it operate in real time (Fischer et al., 1968).

Corollary 5. A type 〈1〉 quantifier is recognized by a deterministic PDA if and only if it is
real-time recognized by a (deterministic) 1-CM.

4 Conclusion

I have characterized the type 〈1〉 quantifiers recognized by deterministic PDAs in terms of the
associated semilinear sets of vectors and showed that exactly the same type 〈1〉 quantifiers

Proceedings of the 19th Amsterdam Colloquium 
Maria Aloni, Michael Franke & Floris Roelofsen (eds.)

145



are recognized by (deterministic) 1-CMs (in real time). Let me make a few more related
observations.

A theorem of Fischer et al. (1968, Theorem 2.2) says that a language of the form {w ∈ Σ∗ |
#(w) ∈ S } is a finite Boolean combination of languages real-time recognizable by 1-CMs if and
only if S is semilinear. So we have

Corollary 6. A type 〈1〉 quantifier is recognized by a nondeterministic PDA if and only if it
is a finite Boolean combination of type 〈1〉 quantifiers recognized by deterministic PDAs.

It is relatively straightforward to show that whenever S ⊆ N2 is semilinear, {w ∈ {a, b}∗ |
#(w) ∈ S } is accepted by a nondeterministic one-counter machine, which gives us

Proposition 7. A type 〈1〉 quantifier is accepted by a nondeterministic PDA if and only if it
is accepted by a nondeterministic one-counter machine.

By a similar pumping argument, we can also give a simple characterization of the semilinear
sets associated with type 〈1〉 quantifiers recognized by finite automata:

Proposition 8. A type 〈1〉 quantifier Q is recognized by a finite automaton if and only if there
exist natural numbers k, l such that VQ is a finite union of linear sets each of which has one of
the following as its set of generators:

∅, {(k, 0)}, {(0, l)}, {(k, 0), (0, l)}.

References

Naoki Abe. Characterizing PAC-learnability of semilinear sets. Informaiton and Computation,
116:81–102, 1995.

Patrick C. Fischer, Albert R. Meyer, and Arnold L. Rosenberg. Counter machines and counter
languages. Mathematical Systems Theory, 2:265–283, 1968.

Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas, and languages.
Pacific Journal of Mathematics, 16:285–296, 1966.

Michael A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, Reading, MA,
1978.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading, MA., 1979.

Marcin Mostowski. Computational semantics for monadic quantifiers. Journal of Applied Non-
Classical Logics, 8:107–201, 1998.

Rohit J. Parikh. On context-free languages. Journal of the ACM, 13:570–581, 1966.

Stanley Peters and Dag Westerst̊ahl. Quantifiers in Language and Logic. Oxford University
Press, Oxford, 2006.

Jakub Szymanik and Marcin Zajenkowski. Contribution of working memory in parity and
proportional judgments. Belgian Journal of Linguistics, 25:176–194, 2011.

Johan van Benthem. Essays in Logical Semantics. Reidel, Dordrecht, 1986.

Marcin Zajenkowski and Jakub Szymanik. MOST intelligent pepole are accurate and SOME fast
people are intelligent. Intelligence, working memory, and semantic processing of quantifiers
from a computational perspective. Intelligence, 41:456–466, 2013.

Proceedings of the 19th Amsterdam Colloquium 
Maria Aloni, Michael Franke & Floris Roelofsen (eds.)

146


