Voting systems

Multiple parties, different preferences \rightarrow joint decision

- Political elections
- Group decisions: which restaurant/holiday destination/…
- Decisions about grants, job applicants
- Multi agent systems
- Aggregating results from several search engines
- Deciding which job to run first on a machine
Setting

An election consists of
- a set of candidates: ★, ★, ★, ★
- a set of votes (preference lists/rankings over candidates)

Voter 1 : ★ > ★ > ★ > ★
Voter 2 : ★ > ★ > ★ > ★
Voter 3 : ★ > ★ > ★ > ★
Voter 4 : ★ > ★ > ★ > ★
Voter 5 : ★ > ★ > ★ > ★

Problem 1: determine winner
Problem 2: determine consensus ranking

Efficient algorithms needed!
An election consists of

- a set of candidates: ★, ★, ★, ★
- a set of votes (preference lists/rankings over candidates)

Voter 1 : ★ > ★ > ★ > ★
Voter 2 : ★ > ★ > ★ > ★
Voter 3 : ★ > ★ > ★ > ★
Voter 4 : ★ > ★ > ★ > ★
Voter 5 : ★ > ★ > ★ > ★

Problem 1: determine winner

Problem 2: determine consensus ranking

→ different voting rules

Efficient algorithms needed!

But for some voting rules, solving these problems is computationally hard. (Example: Kemeny ranking)
Dealing with computational hardness

Non-optimal/non-exact solution
- Approximation
- Heuristics
- Randomized algorithms

Optimal/exact solution
- Multivariate algorithmics
Dealing with computational hardness

<table>
<thead>
<tr>
<th>Non-optimal/non-exact solution</th>
<th>Optimal/exact solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximation</td>
<td>Multivariate algorithmics</td>
</tr>
<tr>
<td>Heuristics</td>
<td></td>
</tr>
<tr>
<td>Randomized algorithms</td>
<td></td>
</tr>
</tbody>
</table>
NP-hard problems: exponential running time.
NP-hard problems: exponential running time. But in some cases: The combinatorial explosion can be confined to a certain part of the input (parameter, k)
NP-hard problems: exponential running time. But in some cases: The combinatorial explosion can be confined to a certain part of the input (parameter, k)

If the value of the parameter is small in certain settings: fast and optimal/exact solution possible!
Tasks part I

Task I

In hard cases: Investigate computational complexity of winner determination from a multivariate algorithmic point of view.

Natural parameters in voting problems:

- number of candidates
- number of voters
- amount of variation in voters’ rankings
- distance of consensus ranking to voters’ preference rankings

Example: Kemeny ranking becomes tractable if the number of candidates is small.
Tasks part II: The evil side

(Evil) ways to obtain preferred outcome of an election:

- Strategic voting
- Bribing
- Introducing/Deleting candidates or voters (control)
- Lobbying

Here: computational hardness constitutes a desired property!
Tasks part II: The evil side

- Strategic voting (manipulation)
- Bribing
- Introducing/Deleting candidates or voters (control)
- Lobbying

Good news

For most voting rules, the above problems are computationally hard.
Tasks part II: The evil side

- Strategic voting (manipulation)
- Bribing
- Introducing/Deleting candidates or voters (control)
- Lobbying

Good news

For most voting rules, the above problems are computationally hard.

Bad news

This doesn't mean that we are safe — it is still possible that they become tractable if certain parameters are small!
(E.g.: All of the above are tractable if the number of candidates is small)
Tasks part II: The evil side

- Strategic voting (manipulation)
- Bribing
- Introducing/Deleting candidates or voters (control)
- Lobbying

Good news
For most voting rules, the above problems are computationally hard.

Bad news
This doesn’t mean that we are safe — it is still possible that they become tractable if certain parameters are small!
(E.g.: All of the above are tractable if the number of candidates is small)

Task II
Investigate the computational complexity of the above problems from a multivariate algorithmic point of view.
Voting systems

Two interesting kind of problems:

1. Winner determination/consensus ranking
 → efficient algorithms wanted

2. Manipulative actions:
 strategic voting, bribing, control, lobbying, . . .
 → computational hardness wanted

Better insights and more fine-grained view by
multivariate algorithmics