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Abstract

We join the goals of two giant and related fields of
research in group decision-making whose connec-
tion has historically been underdeveloped: fair di-
vision, and efficient mechanism design with mon-
etary payments. To do this we assume a context
where utility is quasilinear and thus transferable
across agents. We generalize the traditional binary
criteria of envy-freeness, proportionality, and effi-
ciency to measures of degree that range between 0
and 1. We observe the impossibility of achieving
optimal social welfare with strategic agentsin allo-
cation of divisible or indivisible goods. We then set
asthe goal astrategyproof mechanism that achieves
high welfare, low envy, and low disproportionality.
We demonstrate that for the canonical fair division
settings the VCG mechanism is typically not a sat-
isfactory candidate, but the redistribution mecha-
nism of [Bailey, 1997; Cavallo, 2006] is.

1 Introduction

The starting point in designing or evaluating any prospective
group decision-making procedureis the question: what goals
do we want to achieve? The answer of course will depend on
the setting and who you ask. If individuals are selfish, then
each will answer “maximize the value | get from the proce-
dure’. But thisis usually a non-starter because, very often,
what is optimal for one individua will be suboptimal for an-
other. A goal that has a much more plausible chance of being
endorsed by individuals in a group, selfish though they may
be, isto achieve some notion of fairness. In settings that have
a certain symmetric separability in the description of each
outcome, we can consider notions such as envy and propor-
tionality. Would any agent prefer the outcome obtained by
another agent? Does each agent get at |least a certain propor-
tion of the value they would obtain if they could make the
decision themselves, as a dictator?

These are exactly the fairness goals that have been taken
up and formally studied by researchers in mathematics, eco-
nomics, political science, and, most recently, computer sci-
ence. The prototypical decision setting addressed in such
work is that of fair division, where either a divisible good

must be split up—typically analogized as a cake to be cut—
or a set of indivisible goods is to be allocated amongst a set
of stakeholders.

Perhaps the most basic and well-known example of a fair
division procedureis the “you cut | choose” method for two
agents. one agent determines a bisection (cuts the cake), and
the other decideswho gets which piece. Thissimple approach
achievesthe desirable properties of envy-freenessand propor-
tionality: neither agent would prefer to swap pieces with the
other, and both agents—in their own estimation—obtain at
least half of the cake. Indeed, if we make no further assump-
tions about the agentsit is difficult to see any way of improv-
ing on this approach. Yet, from a broader perspective we can
seethat acrucial aspect of the problem has been ignored: how
much does each agent like cake? What if one of the agents
enjoyment (call her Alice) is only marginally improved from
obtaining anything more than a small sliver, while the other
(call him Bob) obtains only marginally increasing enjoyment
until he obtainsa very large portion? In such a situation, intu-
itively wefeel it would be morejust to “tip the scale” in favor
of Bob, since his gain could be enormous while Alice's loss
would be negligible for a skewed division.

We can formalize thisintuition as a concern for social wel-
fare. However, as intuitively basic as the concept is, the way
we've described the setting so far does not allow us to con-
sider it—thereis aproblem of comparing one agent’s welfare
to another's.r When Bob claims to have lower value for the
same size piece of cake as Alice, how do we interpret that?
The comparison becomes possible if we assume a quasilinear
structure to agent utilities, as an agent’s value for an alloca-
tion can then be interpreted as their “willingness to pay” for
it. We can then also bring to bear the powerful tool of mone-
tary payments: besides receiving a piece of cake, each agent
can either be given money or have money taken away. The
social welfare can then neatly and legitimately be defined as
the sum of the agent utilities.

As we will see, even granting this quasilinear context, in
genera there will exist no mechanism that perfectly satisfies
al three of our criteria: efficiency (i.e., full social welfare, de-
fined as the social utility of the alocation that maximizes the

1And so the best we could aim for is a Pareto optimal alloca-
tion where no agent could benefit from a change that doesn’t cause
another to lose.



sum of agent values), envy-freeness, and proportionality. In
fact, there can be no mechanism that yieldsfull social welfare
alone, because any unsubsidized efficient allocation requires
the agents to make payments outside of the group. At the
same time, although previous work in cake-cutting demon-
strates the existence of perfectly envy-free and proportional
allocations for arbitrary size groups [Neyman, 1946], feasi-
ble methods for determining such allocations are currently
known only for groups of size less than 5. But the fact that
proceduresthat perfectly satisfy our criteriadon’t exist is lit-
tle reason to abandon hope. Instead, in this paper we pur-
sue methods that, in expectation, obtain “good” performance
along each metric—high social welfare, low envy, and low
disproportionality for each agent.

1.1 Related work

We build on two significant bodies of literature: the fair divi-
sion literature which typically assumes little to nothing about
the nature of agent utility functions, and the mechanism de-
sign literature which, with few exceptions, has at its founda-
tion the assumption of transferable, quasilinear utility.

Work in fair division, at least in a modern research con-
text, seemsto have been initiated by Steinhaus [1948] and Ba-
nach & Knaster (whom Steinhaus credits as discovering one
of the foundational constructive approaches), who addressed
the question of proportionality for groups of size greater than
two. More recently Brams has been a key figure, providing,
with coauthors, aseries of proceduresfor obtaining envy-free
allocationsfor 3 or 4 playersthat involve alimited number of
“cuts’ to the cake (see the text [Brams and Taylor, 1996)).

Also recently, the question of truthfulness has been intro-
duced in this context—can an agent gain from misrepresent-
ing his preferences about pieces of cake? Brams et al. [2006]
consider a very limited kind of truthfulness, requiring for
each agent only that there exist a case (i.e., preferences of
other agents) where lying would not be beneficial. Chen et
al. [2010] consider amuch stronger and more compelling no-
tion, the standard concept of strategyproofness from the so-
cia choice literature, wherein lying can never be beneficia
regardless of the behavior of others; they propose a procedure
that is strategyproof and proportional for restricted classes
of value functions; Mossel and Tamuz [2010] address essen-
tially the same problem.

Fairness has al so been studied in a context of alocating in-
divisible goods (the “ assignment problem”); the canonical ex-
ampleis “room assignment, rent division”, where a group of
housemates must divvy up the roomsin the house and decide
what share of the rent is paid by whom. Brams and Kilgour
[2001], Haake et al. [2002], and Abdulkadiroglu et al. [2004]
all introduce efficient procedures that (in some cases) aso
achieve envy-freeness, however all simply assume truthful
participation and break down in a context of strategic agents.
This is perhaps unsurprising, as Alkan et al. [1991] earlier
showed that there exists no envy-free and strategyproof mech-
anism (that is, without allowing for “extra’ payments that
diminish social welfare). In a similar spirit to the evalua-
tion methodology we propose in the current paper, Lipton et
al. [2004] consider measures of envy, and seek allocation pro-
ceduresthat are approximately envy-free.

Mechanism design (initiated Hurwicz [1960]) introduces
payments as a way to obtain good outcomes in equilib-
rium when agents are self-interested and strategic. The
hallmark positive result is the class of Groves mechanisms,
wherein each agent reports a value function over outcomes,
the socialy optimal one is chosen, and each agent is paid
the reported value of the others minus a constant. Green
and Laffont [1977] and Holmstrom [1979] showed that this
class exactly characterizes the efficient and strategyproof
mechanisms for most practical problem domains. In set-
tings where no outcome yields anyone negative value, the
Vickrey—Clarke-Groves (VCG) mechanism [Vickrey, 1961;
Clarke, 1971; Groves, 1973]—an instance of the Grovesclass
where agents make payments commensurate with the nega
tive externality they impose on others—additionally has the
properties of ex post individual rationality and no-deficit: no
agent is ever worse off from participating and aggregate pay-
ment to the agentsis never positive.

Despite these attributes, in a group decision-making prob-
lem where the goal is welfare of the group, the VCG mecha-
nism is unsatisfactory because it generates high revenue, pay-
ments that must be transferred outside the group and thus
detract from social welfare. Redistribution mechanisms, in-
troduced by Bailey [1997] and Cavallo [2006],? address this
issue by returning large portions of VCG revenue back to the
agents in away that does not violate strategyproofness. Sub-
sequently Guo and Conitzer [2007] and Moulin [2009] pro-
vided amechanism for the specia case of multi-unit auctions
that maximizes the wor st-case social welfare in that context.

Studies of the fairness properties of strategyproof mecha
nisms has mainly been confined to VCG. Exceptions are [Pa-
pai, 2003], which characterizesthe set of all envy-free Groves
mechanisms (i.e., al strategyproof, efficient, and envy-free
mechanisms); and [Moulin, 2010], which examines an effi-
ciency/fairness tradeoff in single-item allocation. In the as-
signment problem setting, Leonard [1983] showed that VCG
is envy-free; Cohen et al. [2010] recently extended this result
to ageneralization of the assignment problem where individ-
uals have additive value for obtaining more than one good.

Finaly, like the current paper, [Porter et al., 2004] also
straddles the fair division and mechanism design literatures,
there seeking to equitably allocate costly tasks throughout a
population (see also [Moulin, 2010]). Interestingly, for the
case of single-item alocation the mechanism earlier intro-
duced in [Bailey, 1997] and later generalized in [Cavallo,
2006] is proposed.

1.2 Summary of contributions

Our first step in this paper will be to generalize the no-
tions of efficiency (welfare), envy-freeness, and proportion-
aity from the strict “yes or no” conception to degrees. So,
for instance, given a probability distribution over types a
mechanism may yield social welfare that is close to opti-

2Bailey was the first, to my knowledge, to derive aredistribution
mechanism; his approach applies to single-item auctions as well as
some other settings. The mechanism of Cavallo [2006] coincides
with Bailey’s in those cases but is applicable to al decision scenar-
ios, including important allocation domains to which Bailey’sis not.



mal, be close to envy-free, and close to proportional for ev-
ery agent in expectation. Next we will motivate our relax-
ation of a hard efficiency constraint by observing that no effi-
cient mechanisms exist for canonical fair division settings,
independent of fairness criteria.  Finaly we will demon-
strate that the redistribution mechanism of [Bailey, 1997;
Cavallo, 2006] performs exceedingly well on al three metrics
in cake-cutting and assignment problems; thisisin opposition
to the simpler VCG mechanism, which, generally speaking,
performs well on envy but not well with respect to welfare
and proportionality.

1.3 Preliminaries

Thereisaset of agents I = {1,...,n} and a compact set
of outcomes A (potentialy infinite), whereeach a € A isan
n-tuple (a1, aq,...,a,) representing an alocation for each
agenti € I.Thereisatypespace © which representsthe set of
possible valuationsfor allocations. Thejoint typespaceis©”,
andforany 0 = (64,...,60,) € ©" anda = (ai,...,a,) €
A, each agent i’s value is v;(6;, a;). A mechanismisatuple
(f,T) where f : ®™ — A isachoice function and T' =
(Th,...,T,) defines a transfer function T; : ©” — % for
each agent ¢ € I. In a mechanism agents report types, and
then allocations and transfer payments are made according
to f and T, respectively. We use notation f;(#) to denote
a; for the outcome a chosen by f given type profile 8 (i.e.,
f0) = a = (f1(0),...,f(0)) = (a1,...,ay,) for some
a € A). We assume, for each i € I, that 7 is self-interested
and acts to maximize a quasilinear utility function v ;. Given
mechanism (f,T'), true joint type 6, and reported type 0, i
then obtains utility: v; (6;, f;(6)) + Ti(6).We will specifically
consider two classes of decision problems: cake-cutting and
assignment.

Cake-cutting: There is a single infinitely divisible good
to be alocated. The good may be heterogeneous, so values
may depend not just on “how much” but also “which part”
of the cakeis received. Though our formal approach is com-
pletely general, in the eval uation section we will consider the
following special classes of valuation functions:

e Linear satiation: valueis homogeneousover all sections
of the cake, and increases linearly with quantity, at slope
determined by the agent’s type, until plateauing at 1. If
agent i with type 6, receives % of the cake, he obtains
value: v;(0;, ) = min{1, z6;}. This captures different
“satiation rates’.

e Exponential: value is homogeneous over all sections of
the cake; if alocated =% of the cake, an agent ¢ with
type 6; obtainsvalue v; (6;,z) = 1 — e~ %%,

e Piecewise constant: if K isthe set of “kinds” of cake,
each agent 'S type has a component ¢; ; for every dis-
tinct kind k € K. If, foreach k € K, agenti isa-
located x,,% of the cake of kind k, he obtains value:
ZkGK Tk Hi,k-

Assignment: There are n agents and a heterogenous set of

m items. Each agent’s type determines a value for each item,
and each agent can be allocated no more than oneitem. 3

3Equivalently one can imagine that each agent’s value for a bun-
dleisrestricted to equal the max of itsvalues for any single itemin

2 Fairnessmetricswhen utility istransferable
We generalize the either/or notions of efficiency, envy-
freeness, and proportionality to “rates’ that can be computed
for any probleminstance (defined by ajoint typed). Through-
out the paper we assume a context of strategyproofness—
we will only discuss the rates with respect to strategyproof
mechanisms—so the measures are computed with respect to
the truthful outcome.

Definition 1 (Welfarerate). Theratio of the aggregate social
welfare to the agents including payments, to the social value
of the efficient allocation without payments. |.e., for mecha-
nism (f,T) andjoint typed € O©™:

>icr(wi(bs, fi(9)) + Ti(0))
Zie[ Ui(oiv fz* (9))

For a no-deficit mechanism (one in which aggregate pay-
ments never exceed 0), the welfare rate is bounded above by
1. A mechanism that achieves full social welfare is one with
awelfarerate of 1foral 6 € ©™.

We now generalize the notions of envy-freeness and pro-
portionality to “envy rate” and “disproportionality rate” rep-
resenting the average extent throughout the population to
which, respectively, an agent prefers the outcome for another
agent, and an agent fails to obtain a“fair share” 1/n fraction
of the utility he could obtain as a dictator. Both measures
range between 0 and 1. In the spirit of fairness, the measures
give equal weight to each agent’s envy or disproportionality,
in the sense that, e.g., the disproportionality measure for an
agent who obtainsonly = < % of his maximum possible util-
ity u is the same whether « is minuscule or enormous.

)

Definition 2 (Envy rate). Let u,,., denotethe utility an agent
would have experienced if he received, maximizing over all
agents j, j's allocation and j's payment. The envy rate
equals, averaging over all agents, the difference between
Umae and the agent’s utility, divided by w ,,,4.. |.€., for mech-
anism (f,T) and joint typed € O™:

1 3 max;jer{v; (0, £;(0)) + T;(0)} — {vi(0:, £:(0)) + T;(6)}
n <= max;er{v;(0s, f;(0)) +T;(0)}

)

The envy rate never goes below 0 since each agent’s actual
alocation is included in the maximization. Envy-freenessis
equivalent to the requirement that the envy rate be O for every
problem instance.

Definition 3 (Disproportionality rate). Averaging over all
agents, the maximum of 0 and 1/n minus the ratio of an
agent’s allocation value plus payment to the value the agent
would experience from obtaining his optimal allocation and
no payment, divided by 1/n. 1.e,, for mechanism (f,T") and
jointtyped € ©™:

ES o, (- MLOL O 1y
v a€A

the bundle, in which case an efficient allocation would not allocate
multiple items to one agent.



The disproportionality rate is fixed to never be below O for
any agent so that it penalizes the failure to meet traditional
proportionality but does not reward a mechanism for going
“above and beyond” proportionality for some agents; thisis
in the spirit of fairness. Traditional proportionality is equiv-
alent to the requirement that the disproportionality rate be 0
for every problem instance.

3 Ontheimpossibility of full social welfare

In this section we consider the question of whether, even dis-
regarding envy and proportionality considerations, a worst-
case welfarerate of 1 (“full social welfare”) can be achieved.
In a setting where subsidies are not available, this is equiv-
alent to the question of whether implementing a dominant
strategy efficient choice function with a mechanism that is
strongly budget-balanced (0 revenue, 0 deficit) is possible.
To answer the question we must specify something about
the problem setting, i.e., the typespace. Green and Laffont
[1979] showed that for unrestricted val ues settings, no mech-
anism achieves full social welfare in dominant strategies. In
the case of multi-unit auctions,® we can also deduce that no
strategyproof mechanism achieves full social welfare by the
results of Guo and Conitzer [2007] and Moulin [2009]: they
(independently) derived the mechanism for that setting that
has the worst-case welfare rate when values are positive but
otherwise unrestricted, and that rate is lower than 1.

In an extended version of this paper we complement those
results with a proof technique that allows us to consider ar-
bitrary restricted settings, and apply a sufficient condition for
the non-existence of mechanismsthat achieve full social wel-
fare. This theorem and proofs are omitted here due to space
constraints. The result establishes that in any anonymous,®
dominant strategy efficient, and strongly budget-balanced
mechanism, for any two possible types, 6’ in the typespace,
letting SW}, be the social welfare that results when k agents
have type # and n — k agents have type 6’, a specific linear
combination of SWy, SWy,...,SW, must equal 0. Thisis
only a necessary condition for the possibility of full welfare
and far from a sufficient one, yet alone it is an extremely re-
strictive condition and can be applied to very directly show
that full social welfareisimpossible in settings including as-
signment and cake-cutting, even with highly restricted values.

Theorem 1. For the assignment problem with any number
of goods, if the agent value spaces are symmetric, smoothly
connected, and include values 0 and « for each item, for some
x > 0, there exists no anonymous, dominant strategy efficient,
and strongly budget-balanced mechanism.

Theorem 2. For cake-cutting, if the typespace is symmetric,
smoothly connected and admits linear satiation values with

4The more basic idea of extending proportionality to a transfer-
able utility context isnot new; see, e.g., [Cramton et al., 1987].

>The multi-unit auction setting is different from the assignment
problem in that the goods are identical and so the problem can be
described as simply choosing “who to serve” with an item.

®Anonymity requires that the expected utility obtained by two
agents with the same type is the same, which is natural in the spirit
of fairness.

typesintherange [0, n— 1] (wheren isthe number of agents),
there exists no anonymous, dominant strategy efficient, and
strongly budget-balanced mechanism.

4 Theredistribution mechanism

While full socia welfare may be impossible, this of course
does not preclude the existence of solutions that obtain very
good social welfare, i.e., achieve a high welfare rate in ex-
pectation. The most well-known general socia choice mech-
anismis VCG; but though VCG aways achieves an outcome
in dominant strategies that maximizes the sum of agent val-
ues, it requires that much of this value be transferred away
from the group (high “revenue’). In fact, amongst all mech-
anisms that choose outcomes that maximize aggregate value,
VCG requires the maximum transfer of that value outside of
the group (see Theorem 2.10 of [Cavallo, 2008]).

In settings that are extremely lacking of structure, such as
settings where each agent’s value function over outcomes is
completely unrestricted, no improvement over VCG is possi-
ble. However, in practically all alocation settings values have
significant structure—for instance, in single-item allocation
an agent obtains 0 value for any outcomein which he does not
receive the item. Exploiting this structure to improve social
welfare is the ideaintroduced, for restricted settings, by Bai-
ley [1997], and for general settings, by Cavallo [2006].” The
general redistribution mechanism (RM) proposedin [Cavallo,
2006] is as follows: implement VCG, then pay each agent i a
quantity equal to 1/n times the minimum VCG revenue that
would result independent of the agent’s mode of participa-
tion. Inthe versions of the cake-cutting and assignment prob-
lems we examine here, the redistribution payment reducesto
1/n times the revenue that would result if the agent were not
present.

To illustrate the mechanism, consider the 3-agent (i, 7, k),
3-item (A, B, () assignment problem depicted in Table 1,
which one can think of as room assignment, rent division for
the purpose of narrative.

(% | Uj | Vg
A | 500 | 600 | 800
B | 900 | 1000 | 900
C | 600 | 900 | 600

Table 1: 3-agent, 3-item assignment problem example.

The optimal allocation is A to agent &, B to 4, and C to
j. Omitting the details of computation, under VCG i pays
$100, and neither j or k pay anything. Under RM i pays
$66.67, and j and k are each paid $33.33. On this instance
the welfare rate under VCG is 2230 and under RM it is 1.
The envy and disproportionality rates for both mechanisms
are0 here. If thiswere aroom assignment, rent division prob-
lem where the rent for the house is $1500, starting with the
equal-share payments of $500 each to ensure no-deficit, under
VCG agent i ends up paying $600 and the other two agents

"Unlike Cavallo’s proposal, Bailey’s mechanism is not feasible
for cake-cutting unless we assume the type “ no value for any amount
of cake” isincluded in the typespace.



pay $500 each—the surplus $100 must be transferred outside
of the group (e.g., to a charity that no agent obtains utility
from giving to). Under RM i pays $566.67, and the other two
agents each pay $466.67. In this fortuitous example there is
no surplus; in general there may be a surplus, but under RM
it is never greater (and istypically far less) than under VCG.
We will seein the next section that in both cake-cutting and
assignment, VCG does well with respect to minimizing envy,
but very poorly with respect to welfare and, typically, propor-
tionality. RM typically doeswell in al three metrics. Though
in some cases VCG achieves a lower envy rate, it is aways
dominated by RM in terms of welfare and proportionality.

Theorem 3. On any problem instance, in any domain, RM
has a weakly higher welfare rate and weakly lower dispro-
portionality rate than VCG.

In the case of assignment with a single good, it is particu-
larly easy to comparethe traditional binary fairness properties
of VCG (which reduces to a Vickrey auction) and RM. RM
reduces to the following simple form: the high bidder is al-
located the good and pays the second highest bid, and every
agent is paid 1/n times the second highest bid amongst the
other agents.

Theorem 4. In any single-item allocation problem instance,
RM vyields an outcome that is envy-free and proportional for
at least n — 2 agents. VCG yields an outcomethat is envy-free
for all agents but proportional for a maximum of 1 agent that
has non-zero value for the item.

5 Evaluation

In this section we evaluate VCG and RM aong the metrics
of welfare, envy, and disproportionality rates introduced in
Section 2. We do an average case analysis, measuring the ex-
pected value of each rate given a probability distribution over
agent values.® In cake-cutting,® we examine values drawn
from the linear satiation class (with typespace [0, n]), the ex-
ponential class (with typespace [0, 9]), and the piecewise con-
stant class (with 3 kinds of cake'® and value space [0, 1] for
each kind). The results are given in Table 2. We report re-
sultsfor atype distribution that is uniform over the typespace
(we also considered Gaussian type distributions, but the re-
sults were very similar and are thus omitted); in the case of
piecewise constant val ues the typespace is multidimensional,
and we considered values that are uniformly distributed and
independent across different kinds of cake. In all three cases
V CG performs poorly with respect to welfare and proportion-
ality, but has a low envy rate. RM performs well along all
three measures, notably with welfare going to 1 and envy and
disproportionality to 0 as the population size grows.

8Expected values were computed by a Monte Carlo sampling
method, with each data point averaged over 2000-10000 (depend-
ing on the setting) randomly drawn joint type instances.

®When tilities are a concave function of quantity allocated (as
we consider here), optimal alocations can be computed with a
greedy algorithm that allocates each incremental crumb to the agent
whose marginal utility per crumb is currently highest.

Oyv/ariants with more or less kinds (heterogeneity) of cake were
considered; results were very similar.

metric | n | VCG | RM VCG | RM VCG | RM
3 | 0.566 | 0.728 0.719 | 0.825 0.333 | 0.778
WR 5 | 0.505 | 0.852 0.569 | 0.898 0.200 | 0.920
10 | 0.459 | 0.936 0.417 | 0.956 0.100 | 0.980
15 | 0.442 | 0.959 0.347 | 0.974 0.067 | 0.991
3 | 0032 | 0.116 0.041 | 0.041 0 0.011
ER 5 | 0.029 | 0.076 0.021 | 0.012 0 0.011
10 | 0.018 | 0.026 0.006 | 0.002 0 0.007
15 | 0.015 | 0.013 0.003 | 0.001 0 0.004
3 | 0361 | 0171 0.126 | 0.041 0.532 | 0.050
DR 5 | 0.376 | 0.027 0.224 | 0.000 0.693 | 0.002
10 | 0.373 | 0.000 0.355 | 0.000 0.835 | 0.000
15 | 0.375 | 0.000 0.431 | 0.000 0.887 | 0.000
@ (b) (©

Table 2: Cake-cutting. Expected welfare (WR), envy (ER),
and disproportionality (DR) rates under VCG and RM in
three cake-cutting settings: (@) homogeneous, with values
that rise linearly in quantity with slope equal to the agent’s
type, until reaching 1; (b) homogeneous, with values that
equal 1 — e~*% for an agent with type #; that receives % of
the cake; and (c) heterogeneous, with valueslinear in quantity
of each kind of cake, with distinct slope for each kind.

In the assignment problem, each agent’stypeisrepresented
as avector of m values, one for each item. In our evaluation
we take values drawn independently and uniformly over [0, 1]
for each item. We examined the following cases, with n the
number of agents. n items;, n — 1 items; and n — 2 items.
The results are depicted in Table 3. Somewhat surprisingly,
in the classical linear assignment problem (n agents, n items;
Table 3 (8)) we find that VCG is a serviceable solution, ob-
taining a reasonably high welfare rate, zero envy, and a low
disproportionality rate. Moving to RM improves the welfare
rate at the cost of amarginal increase in the envy rate. In the
caseof n—1 items(Table 3 (b)), neither VCG nor RM achieve
near-optimal performance: although RM’swelfarerateissig-
nificantly better than VCG's, both are poor. When there are
n — 2 goods (Table 3 (c)), VCG is poor while RM shines.

Finally we consider the case of assignment with one good,
i.e., single-item alocation. In this case alone, thereis another
strategyproof mechanism in the literature to which we can
compare VCG and RM: the worst-case optimal mechanism
proposed by Guo and Conitzer [2007] and Moulin [2009]
(we'll cal it GCM). The mechanism has no concise form,
and isinstead specified by a system of equationsthat depends
on the number of agents, so we refer the reader to the source
papers for its description. Asillustrated in Table 4, both RM
and GCM perform superbly with respect to welfare and pro-
portionality; VCG's welfare and disproportionality rates are
abysmal, but it achieves no-envy, as in al assignment prob-
lems. The differencesin performance between RM and GCM
onwelfare and disproportionality are negligible, but RM’s ex-
pected envy rateis only about 1/3 of GCM'’s.

6 Conclusion

In many group decision-making settings approaches that ex-
cel at meeting welfare or fairness criteria, but not both, will
be unsatisfactory; broader eval uation metricsand different so-



metric | n | VCG | RM VCG | RM VCG | RM
3 | 0.882 | 0.907 0.457 | 0.528 0.337 | 0.781
WR 5 | 0.864 | 0.915 0.372 | 0.491 0.281 | 0.833
10 | 0.878 | 0.94 0.269 | 0.389 0.2 | 0.901
15 | 0.895 | 0.955 0211 | 0.318 0.16 | 0.932
3 0 0.02 0 0.233 0 0.195

ER 5 0 0.021 0 0.171 0 0.1
10 0 0.013 0 0.109 0 0.044
15 0 0.009 0 0.082 0 0.026
3 | 0.015 | 0.013 0.463 | 0.391 0.765 | 0.202
DR 5 | 0.001 | 0.001 0.31 | 0.183 0.532 | 0.007
10 | 0.000 | 0.000 0.162 | 0.041 0.301 | 0.000
15 | 0.000 | 0.000 0.111 | 0.012 0.208 | 0.000

@ (b) (0

Table 3: Assignment. Welfare (WR), envy (ER), and dispro-
portionality (DR) ratesunder VCG and RM in the assignment
problem with n agents and different numbers of items: (a) n
items; (b) n — 1 items; and (c) n — 2 items.

metric n | VCG | RM | GCM
3 | 0334|0774 | 0.774

wefare 5 | 0.196 | 0.921 | 0.893
10| 01 0.98 | 0.991

15| 0.067 | 0991 | ~1.0

3 0 0.199 | 0.199

envy 5 0 0.056 | 0.126
10 0 0.012 | 0.037

15 0 0.005 | 0.015

3 | 0.764 | 0.207 | 0.207
disproportionality 5 | 0.867 | 0.057 | 0.069
10 | 0.935 | 0.012 | 0.011

15 | 0.957 | 0.005 | 0.005

Table 4: Single-item. Welfare, envy, and disproportionality
rates under VCG, RM, and GCM in single-item assignment.

[utions are called for. When utility is quasilinear in money,
mechanisms using payments can be considered, alowing us
to elicit truthful participation, formulate meaningful mea-
sures of both welfare and fairness, and even “redistribute”
utility. If agents are strategic it is impossible to achieve full
social welfare (efficient allocation with no aggregate pay-
ments outside the group), but the redistribution mechanism—
pre-existing in the literature—comes close in the canonical
fair division settings, particularly for larger groups of agents.
At the same time, the redi stribution mechanism approximates
the traditional fairness criteria of envy-freeness and propor-
tionality. This makes it a compelling solution for division of
goodswhen utility istransferableand the objectiveisfairness,
welfare, or achieving both simultaneously.

References

[Abdulkadiroglu et al., 2004] Atila Abdulkadiroglu, Tayfun Snmez, and M. Utku nver.
Room assignment-rent division: A market approach. Social Choice and Welfare,
22(3):515-530, 2004.

[Alkan et al., 1991] Ahmet Alkan, Gabrielle Demange, and David Gale. Fair alloca
tion of indivisible goods and criteria of justice. Econometrica, 59(4):1023-1039,
1991.

[Bailey, 1997] Martin J. Bailey. The demand revealing process. To distribute the sur-
plus. Public Choice, 91:107-126, 1997.

[Brams and Kilgour, 2001] Steven J. Brams and D. M. Kilgour. Competitive fair divi-
sion. Journal of Political Economy, 109:418-443, 2001.

[Brams and Taylor, 1996] Steven J. Brams and Alan D. Taylor. Fair Division: From
Cake-Cutting to Dispute Resolution. Cambridge University Press, UK, 1996.

[Bramset al., 2006] Steven J. Brams, Michael A. Jones, and Christian Klamler. Better
ways to cut acake. Notices of the AMS, 53(11):1314-1321, 2006.

[Cavallo, 2006] Ruggiero Cavallo. Optimal decision-making with minimal waste:
Strategyproof redistribution of VCG payments. In Proceedings of the 5th Inter-
national Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 06),
pages 882-889, 2006.

[Cavallo, 2008] Ruggiero Cavallo. Social Welfare Maximization in Dynamic Strategic
Decision Problems. Ph.D. Thesis, Harvard University, 2008.

[Chenetal., 2010] Yiling Chen, John Lai, David C. Parkes, and Ariel D. Procaccia
Truth, justice, and cake cutting. In Proceedings of the 24th Annual Conference on
Artificial Intelligence (AAAI-10), pages 56-61, 2010.

[Clarke, 1971] Edward Clarke. Multipart pricing of public goods. Public Choice,
8:19-33, 1971.

[Cohenetal., 2010] Edith Cohen, Michal Feldman, Amos Fiat, Haim Kaplan, and
Svetlana Olonetsky. Truth and envy in capacitated allocation games. unpublished,
2010.

[Cramton et al., 1987] P. Cramton, R. Gibbons, and P. Klemperer. Dissolving a part-
nership efficiently. Econometrica, 55(3):615-632, 1987.

[Green and Laffont, 1977] Jerry Green and Jean-Jacques Laffont. Characterization of
satisfactory mechanisms for the revelation of preferences for public goods. Econo-
metrica, 45:427-438, 1977.

[Green and Laffont, 1979] Jerry R. Green and Jean-Jacques L affont. Incentivesin pub-
lic decision-making. North Holland, New York, 1979.

[Groves, 1973] Theodore Groves. Incentives in teams. Econometrica, 41:617-631,
1973.

[Guo and Conitzer, 2007] Mingyu Guo and Vincent Conitzer. Worst-case optimal re-
distribution of VCG payments. In Proceedings of the 8th ACM Conference on Elec-
tronic Commerce (EC-07), San Diego, CA, USA, pages 30-39, 2007.

[Haake et al., 2002] Claus-Jochen Haake, Matthias G. Raith, and Francis Edward Su.
Bidding for envy-freeness: A procedura approach to n-player fair-division prob-
lems. Social Choice and Welfare, 19(4):723-749, 2002.

[Holmstrom, 1979] Bengt Holmstrom. Groves scheme on restricted domains. Econo-
metrica, 47(5):1137-1144, 1979.

[Hurwicz, 1960] Leonid Hurwicz. Optimality and informational efficiency in resource
allocation processes. In Karlin Arrow and Suppes, editors, Mathematical Methods
in the Social Sciences. Stanford University Press, 1960.

[Leonard, 1983] Herman B. Leonard. Elicitation of honest preferences for the as-
signment of individuals to positions. Journal of Political Economy, 91(3):461-479,
1983.

[Lipton et al., 2004] Richard Lipton, Evangelos Markakis, Elchanan Mossdl, and
Amin Saberi. On approximately fair allocations of indivisible goods. In Proceedings
of the 5th ACM conference on Electronic commerce (EC-04), 2004.

[Mossel and Tamuz, 2010] Elchanan Mossel and Omer Tamuz. Truthful fair division.
In Proceedings of the 3rd International Symposium on Algorithmic Game Theory
(SAGT-10), pages 288299, 2010.

[Moulin, 2009] Hervé Moulin. Almost budget-balanced VCG mechanisms to assign
multiple objects. Journal of Economic Theory, 144:96-119, 2009.

[Moulin, 2010] Hervé Moulin. Auctioning or assigning an object: some remarkable
V CG mechanisms. Social Choice and Welfare, 34:193-216, 2010.

[Neyman, 1946] J. Neyman. Un theoréme d’ existence. Centre Recherche Academie
de Science Paris 222, pages 843-845, 1946.

[Papai, 2003] S. Papai. Groves sealed bid auctions of heterogenous objects with fair
prices. Social Choice and Welfare, 20(3):371-386, 2003.

[Porter et al., 2004] R. Porter, Y. Shoham, and M. Tennenholtz. Fair imposition. Jour-
nal of Economic Theory, 118(2):209-228, Oct 2004.

[Steinhaus, 1948] H. Steinhaus. The problem of fair division. Econometrica, 16:101—
104, 1948.

[Vickrey, 1961] William Vickrey. Counterspeculations, auctions, and competitive
sedled tenders. Journal of Finance, 16:8-37, 1961.



