
Compact Representation Scheme of Coalitional Games Based on Multi-terminal
Zero-suppressed Binary Decision Diagrams

Ryo Ichimura, Yuko Sakurai, Suguru Ueda, Atsushi Iwasaki, Makoto Yokoo
Kyushu University

{ichimura@agent., ysakurai@, ueda@agent., iwasaki@, yokoo@}inf.kyushu-u.ac.jp
Shin-Ichi Minato

Hokkaido University
minato@ist.hokudai.ac.jp

Abstract

Coalitional games, including Coalition Structure
Generation (CSG), have been attracting consider-
able attention from the AI research community.
Traditionally, the input of a coalitional game is a
black-box function called a characteristic function.
Previous studies have found that many problems
in coalitional games tend to be computationally in-
tractable in this black-box function representation.
Recently, several concise representation schemes
for a characteristic function have been proposed.
Among them, a synergy coalition group (SCG) has
several good characteristics, but its representation
size tends to be large compared to other representa-
tion schemes.
We propose a new concise representation scheme
for a characteristic function based on a Zero-
suppressed Binary Decision Diagram (ZDD) and
a SCG. We show our scheme (i) is fully expres-
sive, (ii) can be exponentially more concise than
the SCG representation, (iii) can solve core-related
problems in polynomial time in the number of
nodes, and (iv) can solve a CSG problem reason-
ably well by utilizing a MIP formulation. A Binary
Decision Diagram (BDD) has been used as uni-
fied infrastructure for representing/manipulating
discrete structures in such various domains in AI
as data mining and knowledge discovery. Adapt-
ing this common infrastructure brings up the op-
portunity of utilizing abundant BDD resources and
cross-fertilization with these fields.

1 Introduction
Forming effective coalitions is a major research challenge in
AI and multi-agent systems (MAS). A coalition of agents can
sometimes accomplish things that individual agents cannot or
can do things more efficiently. There are two major research
topics in coalitional games. The first involves partitioning a
set of agents into coalitions so that the sum of the rewards of
all coalitions is maximized. This is called the Coalition Struc-
ture Generation problem (CSG) [Sandholm et al., 1999]. The
second topic involves how to divide the value of the coalition

among agents. The theory of coalitional games provides a
number of solution concepts.

Previous studies have found that many problems in coali-
tional games, including CSG, tend to be computationally in-
tractable. Traditionally, the input of a coalitional game is a
black-box function called a characteristic function that takes
a coalition as an input and returns its value. Representing
an arbitrary characteristic function explicitly requires Θ(2n)
numbers, which is prohibitive for large n.

Recently, several concise representation schemes for a
characteristic function have been proposed [Conitzer and
Sandholm, 2006; Elkind et al., 2008; Ieong and Shoham,
2005; Shrot et al., 2010]. Among them, the synergy coali-
tion group (SCG) [Conitzer and Sandholm, 2006] has several
good characteristics. However, a SCG tends to require more
space than other representation schemes such as marginal
contribution networks [Ieong and Shoham, 2005].

In this paper, we propose a new concise representation
scheme for a characteristic function, based on the idea of
Binary Decision Diagram (BDD) [Akers, 1978]. A BDD
is graphical representations that can compactly represent a
boolean function. We use ae variant of BDD called a Zero-
suppressed BDD (ZDD) [Minato, 1993] that can compactly
represent a set of combinations. More specifically, we use a
Multi-Terminal ZDD (MTZDD), which can compactly rep-
resent a SCG. This representation preserves the good char-
acteristics of a SCG. The following are the features of our
scheme: (i) it is fully expressive, (ii) it can be exponen-
tially more concise than a SCG, (iii) such core-related prob-
lems as core-non-emptiness, core-membership, and finding
a minimal non-blocking payoff vector (cost of stability) can
be solved in polynomial time in the number of nodes in a
MTZDD, and (iv) although solving a CSG is NP-hard, it can
be solved reasonably well by utilizing a MIP formulation.

A BDD was originally developed for VLSI logic circuit de-
sign. Recently, A BDD has been applied to various domains
in AI, including data mining and knowledge discovery . In
these domains, we need to handle logic functions or combina-
tion sets efficiently. A BDD has been used as unified infras-
tructures for representing/manipulating such discrete struc-
tures. A vast amount of algorithms, software, and tools re-
lated to a BDD already exist, e.g., an arithmetic boolean
expression manipulator based on a BDD, and a programs
for calculating combination sets based on a ZDD [Minato,

1993]. Adapting this common infrastructure for coalitional
game theory brings up the opportunity to utilize these abun-
dant resources and for cross-fertilization with other related
fields in AI.

2 Preliminaries

2.1 Coalitional Games
Let A = {1, 2, . . . , n} be the set of agents. Since we assume a
characteristic function game, the value of coalition S is given
by characteristic function v, which assigns a value to each set
of agents (coalition) S ⊆ A. We assume that each coalition’s
value is non-negative.

Coalition structure CS is a partition of A into disjoint
and exhaustive coalitions. To be more precise, CS =
{S1, S2, . . .} satisfies the following conditions: ∀i, j (i �=
j), Si ∩ Sj = ∅, ⋃Si∈CS Si = A. The value of coalition
structure CS, denoted as V (CS), is given by: V (CS) =∑

Si∈CS v(Si). Optimal coalition structure CS∗ is a coali-
tion structure that satisfies ∀CS, V (CS∗) ≥ V (CS).

We say a characteristic function is super-additive, if for any
disjoint sets Si, Sj , v(Si ∪ Sj) ≥ v(Si) + v(Sj) holds. If
the characteristic function is super-additive, solving CSG be-
comes trivial; the grand coalition is optimal. We assume a
characteristic function can be non-super-additive.

The core is a prominent solution concept focusing on sta-
bility. When a characteristic function is not necessarily super-
additive, creating a grand coalition does not make sense. As
discussed in [Aumann and Dreze, 1974], we need to con-
sider the stability of a coalition structure. The concept of the
core can be extended to the case where agents create an opti-
mal coalition structure. Assume π = (π1, . . . , πn) describes
how to divide the obtained reward among agents. We call π a
payoff vector.

Definition 1 The core is the set of all payoff vectors π that
satisfy the feasibility condition:

∑
i∈A πi = V (CS∗), and

non-blocking condition: ∀S ⊆ A,
∑

i∈S πi ≥ v(S).

If for some set of agents S, the non-blocking condition
does not hold, then the agents in S have an incentive to col-
lectively deviate from CS∗ and divide v(S) between them-
selves. As discussed in [Airiau and Sen, 2010], there are
two alternative definitions of the feasibility condition: (i)∑

i∈A πi = V (CS∗), and (ii) ∀S ∈ CS∗,
∑

i∈S πi = v(S).
If (ii) holds, then (i) holds, but not vice versa. Condition
(ii) requires that no monetary transfer (side payment) exists
across different coalitions. However, as shown in [Aumann
and Dreze, 1974], if a payoff vector satisfies both condition
(i) and the non-blocking condition, it also satisfies condition
(ii). Thus, we use condition (i) as the feasibility condition.

In general, the core can be empty. The ε-core can be
obtained by relaxing the non-blocking condition as follows:
∀S ⊆ A,

∑
i∈S πi +ε ≥ v(S). When ε is large enough, the ε-

core is guaranteed to be non-empty. The smallest non-empty
ε-core is called the least core.

Alternatively, we can relax the feasibility condition as fol-
lows:

∑
i∈A πi = V (CS∗) + Δ. This means that an external

party is willing to pay amount Δ as a subsidy to stabilize the

coalition structure. The minimal amount of Δ is called the
cost of stability [Bachrach et al., 2009].

2.2 SCG
Conitzer and Sandholm [2006] introduced a concise repre-
sentation of a characteristic function called a synergy coali-
tion group (SCG). The main idea is to explicitly represent the
value of a coalition only when some positive synergy exists.

Definition 2 An SCG consists of a set of pairs of the form:
(S, v(S)). For any coalition S, the value of the characteristic
function is: v(S) = maxpS{∑Si∈pS

v(Si)}, where pS is a partition of S; all Sis are
disjoint and

⋃
Si∈pS

Si = S, and for all the Si, (Si, v(Si)) ∈
SCG. To avoid senseless cases without feasible partitions,
we require that ({a}, 0) ∈ SCG whenever {a} does not re-
ceive a value elsewhere in SCG.

If the value of coalition S is not given explicitly in SCG,
it is calculated from the possible partitions of S. Using this
original definition, we can represent only super-additive char-
acteristic functions. To allow for characteristic functions
that are not super-additive, we add the following require-
ment on the partition pS: ∀p′S ⊆ pS , where |p′

S | ≥ 2,
(
⋃

Si∈p′
S

Si, v(
⋃

Si∈p′
S

Si)) is not an element of SCG.
This additional condition requires that if the value of a

coalition is explicitly given in SCG, then we cannot further
divide it into smaller subcoalitions to calculate values. In this
way, we can represent negative synergies.

2.3 BDD and ZDD
A BDD represents boolean functions as a rooted, directed
acyclic graph of internal nodes and two 0/1-terminal nodes.
Each internal node represents a variable and has two outgo-
ing edges: a high-edge and a low-edge. The high-/low-edge
means that the value of the variable is true/false. A path from
the root node to the 1-terminal node represents that the cor-
responding value assignment to the path makes the boolean
function true. A ZDD is a variant of BDD that can efficiently
represent a set of combination. The high-/low-edge means
the presence/absence of an element in a combination. In a
ZDD, a path from the root node to the 1-terminal node rep-
resents that the corresponding value assignment to the path is
included in the set.

Consider boolean function ((x1x̄2x3) ∨ (x̄1x2x̄3)), which
can be equivalently represented by using a set of combina-
tions ({{1, 3}, {2}}). Figure 1 shows the BDD/ZDD repre-
sentation for this function/set of combinations. In a tree, a
node with xi represents i. A ZDD is more concise than a
BDD. If a variable never appears within any elements in a
set of combinations, a node that represents the variable is re-
moved from the ZDD. If the sum of elements contained in all
combinations in a set is k, the number of nodes in a ZDD is
at most O(k).

Quite recently, two different BDD-based representation
schemes for a characteristic function have been developed in-
dependently from our work [Aadithya et al., 2011; Bergham-
mer and Bolus, 2010]. While Berghammer and Bolus [2010]
deals with simple games, Aadithya et al. [2011] considers

10

0 11

2 2

3 3

(a) BDD

10

0 1

2

1

3

(b) ZDD

Figure 1: Examples of a BDD and a ZDD

general games. Both of schemes try to represent a character-
istic function directly, while our scheme represents SCGs.

3 New Concise Representation Scheme

We propose our new representation scheme for a character-
istic function based on a SCG and a ZDD. Although a ZDD
can only represent whether a combination exists in a set, a
SCG is not just a set of coalitions, because each coalition S
in a SCG is associated with its value v(S). Thus, we use a
multi-terminal ZDD (MTZDD) representation.

3.1 MTZDD representation based on SCG

A MTZDD G is defined by (V, T, H, L), where V is a set of
internal (non-terminal) nodes, T is a set of terminal nodes, H
is a set of high-edges, and L is a set of low-edges. Each
internal node u ∈ V is associated with one agent, which
we denote as agent(u). u has exactly two outgoing edges,
h(u) = (u, u′) and l(u) = (u, u′′), where h(u) ∈ H and
l(u) ∈ L. Each terminal node t ∈ T is associated with a
non-negative value, which we denote as r(t). Root node u 0

has no incoming edges. For each node u ∈ V \ {u0} ∪ T , at
least one incoming edge exists. We denote the parents of u as
Pa(u), Pa(u) = {u′ | (u′, u) ∈ H ∪ L}.

Path p from root node u0 to terminal node t is
represented by a sequence of edges on path p =
((u0, u1), (u1, u2), . . . , (uk, t)). For p, we denote S(p) =
{agent(ui) | h(ui) ∈ p}, because S(p) denotes a coalition
represented by path p. Also, we denote the value of path p
as r(p), which equals r(t): v(S(p)) = r(t). In a MTZDD, a
particular ordering among agents is preserved. In path p from
root node u0 to terminal node t, agents associated with nodes
in p appear in the same order. More specifically, if node u
appears before node u′ in p, then agent(u) �= agent(u′).
Also, there exists no path p′, in which node u appears be-
fore node u′, where agent(u) = agent(u′). For each agent
i ∈ A, nodes(i) denotes a set of nodes that are associated
with agent i, i.e., nodes(i) = {u | u ∈ V ∧ agent(u) = i}.

Example 1 Let there be four agents: 1, 2, 3, and 4. Let
SCG = { ({1}, 1), ({2}, 1), ({3}, 1), ({4}, 0), ({1, 2}, 5),
({1, 4}, 5), ({2, 4}, 5), ({3, 4}, 5), ({1, 2, 3}, 7)}. This
MTZDD representation is described in Figure 2. For ex-
ample, the rightmost path of the tree represents a coalition
{1, 2, 3} and its value 7.

1

22

10

3

5 7

4
3

Figure 2: MTZDD represen-
tation in Example 1

1

22
3

10

3
4

5

7

5
4

5
66

4
3

4
5

6
7

8

Figure 3: MTZDD represen-
tation in Theorem 2

3.2 Conciseness of MTZDD Representation

Theorem 1 MTZDD can represent any characteristic func-
tion represented in a SCG using at most O(n|SCG|) nodes,
where n is the number of agents and |SCG| is the number of
elements in a SCG.

Proof In a MTZDD, for each agent i, |nodes(i)| is at most
|SCG| because |nodes(i)| represents the number of differ-
ent contexts that result in different outcomes. This number is
bounded by the number of different combinations of agents,
which appear before i in the ordering among agents. Clearly,
this number is at most |SCG|. Thus, the number of non-
terminal nodes, i.e.,

∑
i∈A |nodes(i)|, is at most n|SCG|.

Also, the number of terminal nodes is at most |SCG| + 1. As
a result, the total number of nodes is O(n|SCG|). �

Theorem 2 A MTZDD representation is exponentially more
concise than a SCG for certain games.

Proof Consider a coalitional game with 2m agents, where
the value of characteristic function v(S) is 1 if |S| ≥ m, and
0 otherwise. A SCG must include each coalition with size
m. The number of such coalitions is given as

(
2m
m

)
, which is

O(2n) using Stirling’s approximation.
On the other hand, we can create a MTZDD that counts

the number of agents in a coalition and returns 1 when the
number reaches m. Such MTZDD requires m(m + 1) nodes,
i.e., O(n2). �

As shown in the proof of Theorem 2, when some agents are
symmetric, the MTZDD representation can be much more
concise than a SCG. Figure 3 shows a MTZDD when we set
m = 4. The number of nodes is 20, but a SCG requires 70
coalitions.

Instead of representing a SCG with a MTZDD, we can
directly represent a characteristic function using a MTBDD
(such an approach is considered in [Aadithya et al., 2011;
Berghammer and Bolus, 2010]). In a MTBDD, an agent
that does not appear in a path is considered irrelevant; if
v(S∪{i}) = v(S), we only need to describe S in a MTBDD1.
Thus, we can reduce the representation size to a certain extent
by using a MTBDD. However, this MTBDD representation
for a characteristic function is not as concise as the MTZDD
representation. The following theorem holds.

1Note that such an irrelevant agent is not included in a SCG.

Theorem 3 A MTZDD representation of a SCG is always as
concise as a MTBDD representation of a characteristic func-
tion. Also, it is exponentially more concise than a MTBDD
representation for certain games.

Proof The worst case occurs when a SCG contains all pos-
sible coalitions. In this case, the representation sizes of the
MTZDD and MTBDD are the same.

Then, we show the case where the MTZDD representation
is exponentially more concise. Consider a coalitional game
with agents 1, 2, . . . , n, where v({i}) = 2i, and v(S) =∑

i∈S v({i}). v(S) can take any integer value from 1 to
2n+1−1. Thus, the number of terminal nodes in the MTBDD
becomes O(2n). On the other hand, the number of elements
in a SCG is n, the number of internal nodes in the MTZDD is
n, and the number of terminal nodes is n + 1. Thus, the total
number of nodes is O(n). �

3.3 Procedure of constructing a MTZDD
representation

Let us consider how a person, who has knowledge of a coali-
tional game, can describe our MTZDD representation. We as-
sume the person is aware of symmetry among agents. Then,
the person first describe several partial MTZDDs consider-
ing the symmetry among agents. For example, if a person
is describing the characteristic function used in the proof
of Theorem 2, we can assume she describes multiple par-
tial MTZDDs, each of which corresponds to coalitions of k
agents (where k varies from m to 2m). Note that each par-
tial MTZDD can correspond to multiple (possibly exponen-
tially many) items in a SCG. Then, these partial MTZDDs
are integrated into a single MTZDD by applying a Union op-
eration [Minato, 1993] and reduction rules described in Sec-
tion 2.3.

4 Coalition Structure Generation
We propose a new mixed integer programming formulation
for solving a CSG problem in the MTZDD representation.
In our MTZDD representation, a path from the root node to
a terminal node represents a coalition that is included in a
SCG. We define a condition where a set of paths, i.e., a set of
coalitions, is compatible.

Definition 3 Two paths, p and p′, are compatible if S(p) ∩
S(p′) = ∅. Also, set of paths P is compatible if ∀p, p′ ∈ P ,
where p �= p′, p, and p′ are compatible.

Finding optimal coalition structure CS ∗ is equivalent to
finding set of paths P ∗, which is compatible, and

∑
p∈P∗ r(p)

is maximized. We show that P ∗ is NP-complete and inap-
proximable.

Theorem 4 When the characteristic function is represented
as a MTZDD, finding an optimal coalition structure is NP-
hard. Moreover, unless P = NP, there exists no polynomial-
time O(|SCG|1−ε) approximation algorithm for any ε > 0.

Proof The maximum independent set problem is to choose
V ′ ⊆ V for a graph G = (V, E) such that no edge exists
between vertices in V ′, and |V ′| is maximized under this con-
straint. It is NP-hard, and unless P = NP , there exists no

h(g5)

h(g4)

h(g2)

h(g1)

t3t2t1

1

22

10

3

5 7

4
3

g6g4,g5g1,g2,g3

h(g3)

h(g6)

Figure 4: GS in Example 2

1

22

10 5 7

4
33

Figure 5: P ∗ in Example 2

polynomial-time O(|V |1−ε) approximation algorithm for any
ε > 0 [Håstad, 1999]. We reduce an arbitrary maximum in-
dependent set instance to a CSG problem instance as follows.
For each e ∈ E, let there be agent ae. For each v ∈ V , we
create an element of SCG, where the coalition is {ae | e � v}
and its value is 1. Thus, two coalitions have a common ele-
ment only if they correspond to neighboring vertices. Coali-
tion structures correspond exactly to independent sets of ver-
tices. Furthermore, we transform this SCG representation to
a MTZDD representation in polynomial time [Minato, 1993].
As a result, the number of internal nodes in a MTZDD is at
least |E| and at most 2|E|, since an agent appears in exactly
two coalitions. �

Ohta et al. [2009] developed a MIP formulation for a CSG
problem when a characteristic function is represented by a
SCG. If we enumerate paths, we can use their results. How-
ever, the number of paths can be exponential to the number
of nodes in a MTZDD. Thus, we need to find P ∗ without
explicitly enumerating all possible paths. We first identify
the maximal number of paths within P ∗, which leads to one
terminal node r(t), using a concept called minimal required
high-edge set that is concisely described minimal set.

Definition 4 For each terminal node t ∈ T , where r(t) > 0,
E ⊆ H is a required high-edge set if for all paths p, where t is
p’s terminal node, there exists h ∈ E such that h is included
in p. E is a minimal set, if E is a required high-edge set, and
there exists no proper subset of E that is a required high-edge
set.

There can be multiple minimal sets. We can find one min-
imal set using backtrack search starting from the terminal
node. The complexity of this procedure is O(|V |). We denote
one minimal set of t as min(t). It is clear that the number of
paths within P ∗, which leads to terminal node r(t), is at most
|min(t)|.

A MIP formulation of finding P ∗ is defined as follows.
We define some terms and notations. For each terminal node
t, where r(t) > 0, we create one goal for each element in
min(t) and denote the set of goals created from t as goals(t).
For each goal g ∈ goals(t), we denote the corresponding
element in min(t) as h(g) and the value of g as r(g), which
equals r(t). Let GS =

⋃
t∈T |r(t)>0 goals(t). For each g ∈

GS, x(g) is a 0/1 decision variable that denotes whether g
is active (x(g) = 1 means g is active). For each goal g ∈
GS and for each edge (u, u′), x(g, (u, u′)) is a 0/1 decision
variable that denotes that the edge (u, u ′) is used for goal g.

Definition 5 The problem of finding P ∗ can be modeled as
follows.

max
∑

g∈GS x(g) · r(g)
s.t. ∀g ∈ GS, x(g) = x(g, h(g)), — (i)

∀t ∈ T , where r(t) > 0, ∀g ∈ goals(t),
x(g) =

∑
u∈Pa(t) x(g, (u, t)), — (ii)

∀u ∈ V \ {u0}, ∀g ∈ GS,
x(g, h(u)) + x(g, l(u))
=

∑
u′∈Pa(u) x(g, (u′, u)),— (iii)

∀i ∈ A,
∑

u∈nodes(i)

∑
g∈GS x(g, h(u)) ≤ 1, — (iv)

x(·), x(·, ·) ∈ {0, 1}.

Constraint (i) ensures that if goal g is selected, its required
high-edge must be selected. Constraint (ii) ensures if one of
its goal g is selected for terminal node t, then an edge must ex-
ist that is included in a path for g. Constraint (iii) ensures that
for each non-terminal, non-root node, correct paths are cre-
ated (the numbers of inputs and outputs must be the same).
Constraint (iv) ensures that one agent can be included in at
most one path. In this MIP formulation, the number of con-
straints is linear to the number of nodes in a MTZDD.

Example 2 We consider a MIP problem of a MTZDD repre-
sentation in Example 1.

First, we create a minimal set for a non-zero-terminal
node. As shown in Figure 4, we denote each non-zero ter-
minal node as t1, t2, and t3 from the left. No high-edge
directly points to t1, but using backtracking search, we find
three high-edges labeled h(g1), h(g2), and h(g3) as elements
of min(t1). t2 has both incoming high-edge and low-edge,
and so we obtain min(t2) = {h(g4), h(g5)}. t3 only has
an incoming high-edge, i.e., min(t3) = {h(g6)}. Thus, we
obtain {g1, . . . , g6} as GS.

Next, we solve a MIP defined by Definition 5 and obtain
optimal set of paths P ∗ that consists of two paths that repre-
sent coalitions {1, 2} and {3, 4} (Figure 5). The value of P ∗
is calculated as 10.

5 Core-related Problems
5.1 Core-Non-Emptiness
By assuming that the value of an optimal coalition structure
V (CS∗) is given, checking the core-non-emptiness for CS ∗
can be done in a polynomial time in the number of nodes in a
MTZDD. We represent the payoff of an agent as the distance
of its high edge. For terminal node t, its shortest distance to
the root node represents the minimal total reward of coalition
S, where v(S) = r(t). The non-blocking condition requires
that, for each terminal node t, its shortest distance to the root
node is at least r(t). Let dis(u) represent the shortest distance
from root node u0 to node u.

Definition 6 The following LP formulation gives an element
in the ε-core:

min ε
s.t. dis(u0) = 0,∑

i∈A πi = V (CS∗),
∀u ∈ V \ {u0} ∪ T , ∀u′ ∈ Pa(u),

dis(u) ≤ dis(u′) + πagent(u′)— if (u′, u) ∈ H ,

dis(u) ≤ dis(u′) — otherwise,
∀t ∈ T , dis(t) + ε ≥ r(t).

Theorem 5 By using a MTZDD representation, determining
whether the core is non-empty can be done in polynomial time
in the number of nodes in a MTZDD, assuming that the value
of an optimal coalition structure V (CS∗) is given.

Proof To examine whether the core is non-empty, it is suf-
ficient to check whether a solution of the above LP problem
is 0 or less. The LP can be solved in polynomial time in the
number of its constraints, which is given as 2|V | + |T |. �

5.2 Core-Membership
For given payoff vector π, we need to examine whether π is in
the core. Assuming the value of an optimal coalition V (CS ∗)
is given, checking the feasibility condition is easy. For each
terminal node t ∈ T , where r(t) > 0, similar to checking the
core-non-emptiness, the non-blocking condition holds if the
shortest path dis(t) from the root node to terminal node t is
the value of path r(t) or more.

Theorem 6 By using a MTZDD representation, determining
whether a payoff vector π is in the core can be done in O(|V |)
time, assuming the value of an optimal coalition structure
V (CS∗) is given.

Proof A MTZDD is a single-source directed acyclic graph
(DAG). Thus, for each terminal node, we can find the dis-
tance from the root node using the DAG-shortest paths algo-
rithm, which requires O(|V |+ |H |+ |L|) time. In a MTZDD,
since each internal node has one high-edge and one low-
edge, |V | = |H | = |L| holds. It requires O(|V |) time. �

5.3 The Cost of Stability
Definition 7 The following LP formulation gives the cost of
stability Δ:

min Δ,
s.t. dis(u0) = 0,∑

i∈A πi = V (CS∗) + Δ,
∀u ∈ V \ {u0} ∪ T , ∀u′ ∈ Pa(u),

dis(u) ≤ dis(u′) + πagent(u′)— if (u′, u) ∈ H ,
dis(u) ≤ dis(u′) — otherwise,

∀t ∈ T , dis(t) ≥ r(t).

Theorem 7 By using a MTZDD representation, the cost of
stability can be obtained in polynomial time in the number
of nodes in a MTZDD, assuming that the value of optimal
coalition structure V (CS∗) is given.

Proof The cost of stability can be obtained by solving the
above LP formulation. The LP can be solved in polynomial
time in the number of its constraints, i.e., 2|V | + |T |. �

6 Experimental Evaluations
In order to show that our proposed CSG algorithm is rea-
sonably efficient and scalable, we experimentally evaluate its
performance, in comparison with the MIP formulation using
a SCG representation [Ohta et al., 2009]. The simulations
were run on a Xeon E5540 processor with 24-GB RAM. The
test machine ran Windows Vista Business x64 Edition SP2.
We used CPLEX 12.1, a general-purpose MIP package.

10-1
100
101
102
103
104
105
106

 10 20 30 40 50 60 70 80 90 100

tim
e

[m
s]

number of agents

MTZDD
SCG

Figure 6: Computation time

We generated problem instances with 5 different groups of
symmetric agents. First, we created a set of abstract rules.
Each rule specifies the required number of agents in each
group, which is generated using a decay distribution as fol-
lows. Initially, the required number of agents in each group
is set to zero. First, we randomly chose one group and in-
cremented the required number of agents in it by one. Then,
we repeatedly chose a group randomly and incremented its
required number of agents with probability α until a group is
not chosen or the required number of agents exceeds the limit
(α = 0.55) . For each rule, we randomly chose an integer
value from [1, 10] as the value of the coalition. The number
of abstract rules is set equal to the number of agents. Then, we
translated these abstract rules into a MTZDD representation.
The MIP formulation using a SCG representation is also gen-
erated from these abstract rules. Figure 6 shows the median
computation times for solving the generated 50 instances.

When n ≤ 30, a SCG representation is more efficient
than a MTZDD representation for finding an optimal coali-
tion structure, while a MTZDD representation eventually out-
performs the SCG for n > 30. When the number of coalitions
in a SCG is relatively small, the MIP formulation of a SCG
representation is simple and CPLEX can reduce the search
space efficiently. However, the number of coalitions in a SCG
grows exponentially based on the increase of the number of
agents/rules. For n ≥ 40, generating problem instances be-
comes impossible due to insufficient memory. On the other
hand, the number of nodes in a MTZDD grows linearly based
on the increase of the number of agents/rules. As a result, the
computation time for a MTZDD representation grows more
slowly compared to the SCG.

7 Conclusion
We developed a new representation scheme by integrating a
ZDD data structure and an existing compact representation
scheme called SCG. A ZDD is an efficient data structures ap-
plied in various domains in AI. We showed that our MTZDD
representation scheme (i) is fully expressive, (ii) can be ex-
ponentially more concise than SCG representation, (iii) can
solve core-related problems in polynomial time in the num-
ber of nodes, and (iv) can solve a CSG problem reasonably
well by utilizing a MIP formulation.

Future work includes overcoming the complexity of solv-
ing other problems including the Shapley value in coalitional
games. We will also consider applying BDD/ZDD-based
graphical representation for characteristic functions in non-
transferable utility coalitional games.

References
[Aadithya et al., 2011] K. Aadithya, T. Michalak, and N. R.

Jennings. Representation of Coalitional Games with Alge-
braic Decision Diagrams. In AAMAS, pages 1121–1122,
2011.

[Airiau and Sen, 2010] S. Airiau and S. Sen. On the stability
of an optimal coalition structure. In ECAI, pages 203–208,
2010.

[Akers, 1978] S. B. Akers. Binary decision diagrams. IEEE
Transactions on Computers, C-27(6):509–516, 1978.

[Aumann and Dreze, 1974] R. J. Aumann and J. H. Dreze.
Cooperative games with coalition structures. International
Journal of Game Theory, 3:217–237, 1974.

[Bacchus and Grove, 1995] B. Bacchus and A. Grove.
Graphical models for preference and utility. In UAI, pages
3–10, 1995.

[Bachrach et al., 2009] Y. Bachrach, R. Meir, M. Zucker-
man, J. Rothe, and J. S. Rosenschein. The Cost of Stability
and Its Application to Weighted Voting Games. In SAGT,
pages 122–134, 2009.

[Berghammer and Bolus, 2010] R. Berghammer and S. Bo-
lus. Problem Solving on Simple Games via BDDs. In
COMSOC, 2010.

[Conitzer and Sandholm, 2006] V. Conitzer and T. Sand-
holm. Complexity of constructing solutions in the core
based on synergies among coalitions. Artificial Intelli-
gence, 170(6):607–619, 2006.

[Elkind et al., 2008] E. Elkind, L. A. Goldberg, P. W. Gold-
berg, and M. Wooldridge. A tractable and expressive class
of marginal contribution nets and its applications. In AA-
MAS, pages 1007–1014, 2008.

[Håstad, 1999] J. Håstad. Clique is hard to approximate
within n1−ε. Acta Mathematica, 182:105–142, 1999.

[Ieong and Shoham, 2005] S. Ieong and Y. Shoham.
Marginal contribution nets: a compact representation
scheme for coalitional games. In EC, pages 193–202,
2005.

[Minato, 1993] S. Minato. Zero-suppressed BDDs for set
manipulation in combinatorial problems. In Proc. of the
30th Design Automation Conference (DAC), pages 272–
277, 1993.

[Ohta et al., 2009] N. Ohta, V. Conitzer, R. Ichimura,
Y. Sakurai, A. Iwasaki, and M. Yokoo. Coalition structure
generation utilizing compact characteristic function repre-
sentations. In CP, pages 623–638, 2009.

[Sandholm et al., 1999] T. Sandholm, K. Larson, M. Ander-
sson, O. Shehory, and F. Tohmé. Coalition structure gen-
eration with worst case guarantees. Artificial Intelligence,
111(1-2):209–238, 1999.

[Shrot et al., 2010] T. Shrot, Y. Aumann, and S. Kraus. On
agent types in coalition formation problems. In AAMAS,
pages 757–764, 2010.

