
Influencing and aggregating agents’ preferences over combinatorial domains

Nicolas Maudet1, Maria Silvia Pini 2, Francesca Rossi2, K. Brent Venable2

1: LAMSADE, Univ. Paris Dauphine, France
Email: Nicolas.MAUDET@dauphine.fr

2: Department of Pure and Applied Mathematics,
University of Padova, Italy

Email: {mpini,frossi,kvenable}@math.unipd.it

Abstract

In a multi-agent context where a set of agents de-
clares their preferences over a common set of can-
didates, it is often the case that such agents inter-
act and exchange opinions before voting. In this
initial phase, agents may influence each other and
therefore modify their preferences, until hopefully
they reach a stable state. Recent work has mod-
elled the influence phenomenon in the case of vot-
ing over a single issue. Here we generalize this
model to account for preferences over combinato-
rially structured domains including several issues.
When agents express their preferences as CP-nets,
we show how to model influence functions and to
aggregate preferences by possibly interleaving vot-
ing and influence convergence.

1 Introduction
In a multi-agent context where a set of agents declares their
preferences over a common set of candidates, it is often the
case that such agents interact and exchange opinions before
voting. For example, in political elections, polls providea
representative sample of the opinion of the voters, and some
influential people may declare their vote inclination. More-
over, in social networks, people often exchange their opinions
before taking a decision.

In this initial phase, agents may influence each other and
therefore modify their preferences. For example, in political
elections, a voter may be influenced by the opinion of es-
teemed people. In a work environment, the participants to a
project meeting may have to take one or more decisions about
the project plan and may be influenced by the opinion of ex-
perts of the field.

The concept of influence has been widely studied in psy-
chology, economics, sociology, and mathematics[DeGroot,
1974; P. DeMarzo, 2003; Krause, 2000]. Recent work has
modelled the influence phenomenon in the case of taking
a decision over a single issue[Grabisch and Rusinowska,
2010]. In this influence framework, each agent has two pos-
sible actions to take and it has an inclination to choose one of
the actions. Due to influence by other agents, the decision of
the agent may be different from the original inclination. The
transformation from the agent’s inclination to its decision is

represented by an influence function. It is also interestingto
draw connection to the recent work on (some kind of) manip-
ulation in computational social choice. In so-calledbribery
problems[Faliszewskiet al., 2009], an agent has typically
a limited budget he can spend to modify the vote of other
agents. In thesafe manipulationsetting[Slinko and White,
2008], it is assumed that an influential agent can be imitated
in his vote by a proportion of followers. These are clearly
specific notions of influence, but restricted in the sense that
a single influencing agent is considered, and that the process
is simply one-shot. In many real scenarios, influence among
agents does not stop after one step but it is an iterative pro-
cess.

Here we generalize these models to account for preferences
over combinatorially structured domains including several is-
sues. In fact, often a set of agents needs to select a common
decision from a set of possible decisions, over which they
express their preferences, and such a decision set has a com-
binatorial structure, that is, it can be seen as the combination
of certain issues, where each issue has a set of possible in-
stances. Consider for example a car: usually it is not seen
as a single item, but as a combination of features, such as its
engine, its shape, its color, and its cost. Each of these features
has some possible instances, and a car is the combination of
such feature instances. If a family needs to buy a new car,
each family member may have his own opinion about cars,
and the task is to choose the car that best fits the preferences
of everybody.

Usually preferences over combinatorially structured do-
mains are expressed compactly, otherwise too much space
would be needed to rank all possible alternatives. CP-nets are
a successful framework that allows one to do this[Boutilier
et al., 2004]. They exploit the independence among some
features to give conditional preferences over small subsets of
them.

CP-nets have already been considered in a multi-agent set-
ting [Rossiet al., 2004; Lang and Xia, 2009; Purrington and
Durfee, 2007; Xiaet al., 2008]. Here we adapt such frame-
works to incorporate influences among agents. We allow in-
fluences to be over the same issue or also among different
issues. We show how to model influence functions and we ob-
serve that influence and conditional preferential dependency
in CP-nets have the same semantic model. This allows us to
naturally embed influences in a multi-agent CP-net profile.



We then propose a way to aggregate preferences by possibly
interleaving voting and influence convergence.

2 Background
2.1 Influence functions
In [Grabisch and Rusinowska, 2010] a framework to model
influences among agents in a social network environment is
defined. Each agent has two possible actions to take and it
has an inclination to choose one of the actions. Due to influ-
ence by other agents, the decision of the agent may be dif-
ferent from its original inclination. The transformation from
the agent’s inclination to its decision is represented by anin-
fluence function. In many real scenarios, influence among
agents does not stop after one step but it is an iterative pro-
cess.

Any influence function overn agents can be modelled via
a matrix with2n rows and2n columns, where each row and
column correspond to a certain state (a vector containing the
agents’ inclinations). A 1 in the cell(S, T ) of the matrix
means that from stateS we pass to stateT via the influence
function. Alternatively, the influence function can be mod-
elled via a graph where nodes are states and arcs model state
transitions via the influence function. If we adopt the itera-
tive model of influence, we may pass from state to state until
stability holds (that is, in the graph formulation, we are ina
state represented by a node with a loop), or we may also not
converge.

Let us consider some examples of influence functions, as
defined in[Grabisch and Rusinowska, 2010]:

• The Fol influence function considers two agents, each
of which follows the inclination of the other one. This
influence function converges to stability only when the
initial inclination models consensus between the two
agents. If we start from another state, influence iteration
never stops.

• On the other hand, in theId influence function, where
each of agent follows only its own inclination, all states
are stable.

• Another example is the influence function modelling the
presence of a guru, calledGur , where one of the agents
is the guru and all other agents follow him. Such a
function has two states, which both represent consensus.
Given any initial inclination, the iteration will converge
to one of the stable states.

• A final example, that we will consider also later in the
paper, is theConf3 influence function, that models a
community with 4 people which follow a Confucian
model. The four people are a king, a man, a woman,
and a child. The man follows the king, the woman and
child follow the man, and the king is influenced by oth-
ers only if he has a positive inclination, in which case he
will follow such an inclination only if at least one of the
other people agrees with him. In[Grabisch and Rusi-
nowska, 2010] it is shown that this influence function
always converges to one of two stable states, which both
represent consensus, depending on the initial state.

2.2 CP-nets
CP-nets[Boutilier et al., 2004] are a graphical model for
compactly representing conditional and qualitative prefer-
ence relations. CP-nets are sets ofceteris paribus (cp)pref-
erence statements. For instance, the statement“I prefer red
wine to white wine if meat is served.”asserts that, given two
meals that differonly in the kind of wine servedandboth con-
taining meat, the meal with red wine is preferable to the meal
with white wine.

Formally, a CP-net has a set of featuresF = {x1, . . . , xn}
with finite domainsD(x1), . . . ,D(xn). For each featurexi,
we are given a set ofparent featuresPa(xi) that can affect
the preferences over the values ofxi. This defines adepen-
dency graphin which each nodexi hasPa(xi) as its immedi-
ate predecessors. Given this structural information, the agent
explicitly specifies her preference over the values ofxi for
each complete assignmenton Pa(xi). This preference is as-
sumed to take the form of total or partial order overD(xi).
An acyclic CP-net is one in which the dependency graph is
acyclic.

Consider a CP-net whose features areA, B, C, andD,
with binary domains containingf and f if F is the name
of the feature, and with the preference statements as follows:
a ≻ a, b ≻ b, (a∧b)∨(a∧b) : c ≻ c, (a∧b)∨(a∧b) : c ≻ c,
c : d ≻ d, c : d ≻ d. Here, statementa ≻ a represents
the unconditional preference forA = a over A = a, while
statementc : d ≻ d states thatD = d is preferred to D=d,
given thatC = c.

The semantics of CP-nets depends on the notion of a wors-
ening flip. Aworsening flipis a change in the value of a vari-
able to a less preferred value according to the cp-statement
for that variable. For example, in the CP-net above, passing
from abcd to abcd is a worsening flip sincec is better thanc
givena andb. One outcomeα is betterthan another outcome
β (writtenα ≻ β) iff there is a chain of worsening flips from
α to β. This definition induces a preorder over the outcomes,
which is a partial order if the CP-net is acyclic.

In general, finding the optimal outcome of a CP-net is NP-
hard [Boutilier et al., 2004]. However, in acyclic CP-nets,
there is only one optimal outcome and this can be found in
linear time by sweeping through the CP-net, assigning the
most preferred values in the preference tables. For instance,
in the CP-net above, we would chooseA = a andB = b,
thenC = c, and thenD = d. In the general case the optimal
outcomes coincide with the solutions of a constraint problem
obtained replacing each cp-statement with a constraint[Braf-
man and Dimopoulos, 2004]. For example, the following cp-
statement (of the example above)(a ∧ b) ∨ (a ∧ b) : c ≻ c

would be replaced by the constraint(a ∧ b) ∨ (a ∧ b) ⇒ c.
In the context of preference aggregation, CP-nets have

been used as a compact way to represent the preferences of
each voter. In particular, in[Lang and Xia, 2009] the authors
showed that a sequential single-feature voting protocol can
find a winner object in polynomial time. Moreover, such an
approach has several other desirable properties, when the CP-
nets satisfy a certain condition on their dependencies called
O-legality. In [Lang and Xia, 2009], the CP-nets must be
acyclic, and their dependency graphs must all be compatible



with a given graph ordered according to the feature ordering
in the voting procedure. In other words, there is a linear or-
derO over the features such that for each voter the preference
over a feature is independent of features following it inO.

3 Modelling influence
The setting we consider consists of a set ofn agents express-
ing their preferences over a common set of candidates. The
candidate set has a combinatorial structure: there is a com-
mon set of features and the set of candidates is the Cartesian
product of their domains. Thus each candidate is an assign-
ment of values to all features.

For the sake of simplicity of the technical developments of
this paper, we assume features to be binary (that is, with two
values in their domain). However, the approach we propose
can be generalized to non-binary features.

Each agent expresses its preferences over the candidates
via an acyclic CP-net. Moreover, we assume that these CP-
nets are compatible: givenn CP-netsN1, . . . , Nn, they are
said to be compatible if the union of their dependency graphs,
that we callDep(N1, . . . , Nn), does not contain cycles. No-
tice that compatible CP-nets do not necessarily have the same
dependency graph.

Definition 1 Givenn agents andm binary features, a profile
is a collection ofn compatible CP-nets over them features.

We note that our notion of profile coincides with the notion
of O-legal profile in[Lang and Xia, 2009].

Given a profileP with CP-netsN1, . . . , Nn, we will
abuse the notation and often writeDep(P ) to mean
Dep(N1, . . . , Nn).

A profile models the initial inclination of all agents, that is,
their opinions over the candidates before they are influenced
by each other.

Since the set of features is the same for all agents, but each
agent may have a possibly different CP-net, to avoid con-
fusion we call variables the binary entities of each CP-net.
Thus, given a profile withm features, for each feature there
aren variables modelling such a feature, one for each CP-net.
Thus the whole profile hasm ∗ n variables.

3.1 Conditional influence
A straightforward way to include influences into profiles is
to have influence functions act on each single feature, as in
[Grabisch and Rusinowska, 2010]. That is, the preferences
of an agent over a certain feature may be influenced by the
preferences of one or more other agents over the same feature.

While influence functions in[Grabisch and Rusinowska,
2010] allow only for positive influence, we adopt a more gen-
eral notion of influence, which changes the opinion of an
agent but not necessarily making it the same as the opinion
of the influencing agents. Thus, being influenced just means
that an agent modifies his opinion w.r.t. his current inclina-
tion. For example an agent could say that ”if Bob likes white
wine, I would like to take white wine as well”, or ”if Alice
doesn’t like pasta, I would like to take pasta”.

Moreover, we allow for conditional influence that holds
only in a specific context, where the context is the assignment

of some variables. For example, an agent could say ”if we de-
cide to drink wine, I will follow Bob’s preferences, otherwise
I will follow my inclination”.

Besides this form of influence over the same feature, we
also want to allow influence to come from the preferences of
other agents over different features. For example, assume a
set of friends needs to decide whether to go out together today
or tomorrow, and if to have dinner or lunch. Then an agent
could say ”if Bob prefers to go out tomorrow, I prefer to go
for dinner”.

In [Grabisch and Rusinowska, 2010] an influence function
is a set of statements, or equivalently a matrix or a graph, say-
ing how agents are influenced by each other. We will model
each influence function via one or more conditional influence
statements.

Definition 2 A conditional influence statement (ci-
statement) on variableX has the form

X1 = v1, . . . ,Xk = vk :: o(X)

whereo(X) is an ordering over the values of variableX.
VariablesX1, . . . Xk are the influencing variables and vari-
ableX is the influenced variable.

A ci-statementX1 = v1, . . . ,Xk = vk :: o(X) models
the influence on variableX of an assignment to the set of in-
fluencing variablesX1, . . . ,Xk. A ci-table is a collection of
ci-statements with the same influencing and influenced vari-
ables, and containing at most one ci-statement for each as-
signment of the influencing variables.

As in CP-nets dependencies are graphically denoted by hy-
perarcs, we also use hyperarcs to graphically denote ci-tables.
Such hyperarcs go from the influencing variables to the influ-
enced variable. To distinguish them from the dependencies,
we call them ci-arcs.

Definition 3 An i-profile is a triple(P,O, S), where

• P is a profile,

• O is an ordering over them features of the profile, and

• S is a set of ci-tables.

Moreover:

• The ordering O of the features must be such that
Dep(P ) has only arcs from earlier variables to later
variables. This ordering partitions the set of variables
into m levels. Variables in the same level correspond to
the same feature.

• The ci-tables of an i-profile must be such that each vari-
able can be influenced by variables in her level or in
earlier levels, but not in the same ci-statement.

Notice that, because of the restriction we impose on ci-
tables, ci-arcs in an i-profile can create cycles only within
variables of the same level.

Example 1 Consider the i-profile of Figure 1. There are
three agents and thus we have three CP-nets. In this example
the three CP-nets have the same dependency structure (thus
they are obviously compatible). There are two binary fea-
tures: X and Y , with values, respectively,x and x̄, and y



and ȳ. The orderingO is X ≻ Y . Thus the i-profile has
six variables denoted byX1, X2, X3, Y1, Y2, andY3. Each
variableXi (resp.,Yi), with i ∈ {1, 2, 3}, has two values de-
noted byxi andx̄i (resp.,yi andȳi). Notice that valuesxi for
the variablesXi correspond to valuex for X, and similarly
for Y . The variablesXi belong to the first level while the
variablesYi belong to the second level. Cp-dependencies are
denoted by solid-line arrows and ci-statements are denoted
by dotted-line arrows. As it can be seen, agent 3 is influenced
(positively) on featureX by agent 2.

x2::x3>x3

Y1 Y2 Y3

X1 X2

x2:y2>y2

x2:y2>y2

x2>x2 x3>x3

x3:y3>y3

x3:y3>y3

x1>x1

x1:y1>y1

x1:y1>y1

X3

x2::x3>x3

Figure 1: Example of an i-profile.

3.2 Modelling influence functions
Consider theConf3 influence function. There is a binary is-
sue to be decided upon, and four people that express their
opinions: a king, a man, a woman, and a child. The man fol-
lows the king, the woman and child follow the man, and the
king is influenced by others only if he has a positive inclina-
tion, in which case he will follow such an inclination only if
at at least one the other people agrees with him. As shown
in [Grabisch and Rusinowska, 2010], this influence function
converges to one of two stable states, which both represent
consensus, depending on the initial state.

To model this function, we may use a single binary feature
X and 4 binary variablesXk, Xm, Xw, andXc. Each vari-
ableXi, with i ∈ {k,m,w, c}, has two values denoted byxi

andx̄i.
The ci-tables representing the influences are:

King Man
x̄k −−− :: x̄k ≻ xk xk :: xm ≻ x̄m

xkx̄mx̄wx̄c :: x̄k ≻ xk x̄k :: x̄m ≻ xm

xkxm −− :: xk ≻ x̄k

xk − xw− :: xk ≻ x̄k

xk −−xc :: xk ≻ x̄k

Woman Child
xm :: xw ≻ x̄w xm :: xc ≻ x̄c

x̄m :: x̄w ≻ xw x̄m :: x̄c ≻ xc

A general mapping from any influence function to a set of
ci-statements can easily be defined. In general, this mapping
will produce between1 andn × 2n ci-statements if we have
n agents. In the above example we have exploited the fact
that the influence function has a compact formulation in terms

of as many influence statements as the number of people in-
volved, and thus we have obtained a much smaller number of
ci-statements.

Given an influence functionf , we will call ci(f) the ci-
statements modellingf .

3.3 Ci- or cp-statements?
It is interesting to notice that ci-statements can be interpreted
as cp-statements. In fact, if we see the statementsci(f) as cp-
statements, their optimal outcomes coincide with the stable
states of the influence functionf .

As it is known[Brafman and Dimopoulos, 2004], the op-
timal outcomes of a set of cp-statements are the solutions of
a set of constraints, where each constraint correspond to one
of the cp-statements. Following this approach, the constraints
corresponding to the statements above are:

• for the king:
x̄k −−− ⇒ x̄k

xkx̄mx̄wx̄c ⇒ x̄k

xkxm −− ⇒ xk

xk − xw− ⇒ xk

xk −−xc ⇒ xk

• for the man:
xk ⇒ xm

x̄k ⇒ x̄m

• for the woman:
xm ⇒ xw

x̄m ⇒ x̄w

• for the child:
xm ⇒ xc

x̄m ⇒ x̄c

The only two solutions of this set of constraints are:
(xk, xm, xw, xc) and(x̄k, x̄m, x̄w, x̄c), which are exactly the
two stable states of theConf3 influence function.

Theorem 1 Given an influence functionf , consider the cp-
statements corresponding the ci-statementsci(f). Then the
optimal outcomes ofci(f) coincide with the stable states of
f .

In other words, influences and cp-dependencies are not dif-
ferent in their semantics. This is very useful, since it allows
for a very simple integration of ci- and cp-statements in the
same profile. However, we need to give them a different syn-
tax since we must distinguish between the initial inclination
of the agents, given by the cp-statements, and the influences,
given by the ci-statements. In fact, influences modify the ini-
tial inclination by overriding the preferences, but the opposite
does not hold. So it would be a mistake to just treat the ci-
statements as additional cp-statements in the profile.

4 Aggregating influenced preferences
We will now propose a way to aggregate the preferences con-
tained in an i-profile, while taking into account the influence
functions. The main idea is to use a sequential approach
where at each step we consider one of features, in the ordering
stated by the i-profile. The method we propose includes three
main phases: influence iteration within one level, propagation



from one level to the next one, and preference aggregation. At
the end, a winner candidate will be selected, that is, a value
for each feature.

In the following subsections, we will describe each of these
phases and how they can be combined.

4.1 Influence iteration

For each feature, we consider the influences among differ-
ent variables modelling this feature and thus belonging to the
same level. What we need to do is to find, if it exists, the sta-
ble state of such influences corresponding to the initial incli-
nation of the agents. Such inclination is given by the cp-tables
of these variables in the profile.

Consider the hypergraph corresponding to the ci-
statements over variables representing the same feature. We
consider this hypergraph to be cyclic if there are cycles of
length at least 2. In fact, a cycle of length 1 models the fact
that a variable is influenced by other variables and also by its
current inclination.

Notice that, when we are at the first level, the variables are
all independent in terms of cp-dependencies, so each agent
has an inclination over the values of his variable which does
not depend on any other variable.

To find stability or to find out that there is no stable state,
we employ an iterative algorithm (see Algorithm 1 below).
This algorithm starts with the assignments of all variables
given by their initial inclination, which can be seen in their
cp-statements, and moves to another assignments′ by setting
the value of each variable to its most preferred value given
the values ins of its influencing variables (this is achieved
by function ci-flip in Algorithm 1). It then iterates this step
until either it reaches a fixpoint or it sees an assignment twice.
In the first case, the fixpoint gives us a stable state and the
variables are fixed to such values. In the second case, it stops
and reports a non-convergent influence for the variables of the
considered level.

Algorithm 1 : Influence iteration algorithm

s = (s1, . . . , sn) // the initial inclination
s′ = s
repeat

s = s′

for i=1 to n do
s′

i
= ci-flip(s, i)

until s = s′ or s′ already seen;
if s = s′ then

return s
else

return ”No convergence”

Notice that, if the ci-statements do not generate cycles, sta-
bility is always reached, since the structure is assimilable to
an acyclic CP-net, which always has exactly one optimal out-
come, thus by Theorem 1 the influence statements have ex-
actly one stable state corresponding to the initial inclination.

4.2 Propagation
Once the variables of a certain level have been fixed to some
values, by the influence iteration procedure outlined above,
we can propagate to the next level this information by con-
sidering the ci- and cp-statements that go from the current
level to the next one. Propagation through a ci- or cp-table is
achieved by eliminating the conditional statements that refer
to conditions not satisfied by the chosen assignment of the in-
fluencing or parent variables. The resulting table has exactly
one value ordering, giving us the inclination of that variable.

Since influence overrides preference, we first look at the
ci-tables and set the inclination of the influenced variables
according to such tables. For the variables whose inclination
has not been determined after this step, their inclination will
be determined by their cp-tables.

After this, we are ready to handle the next level as we did
for the first one, since all of its variables are now subject only
to influence functions.

4.3 Preference aggregation
In the previous section we have described how to reach stabil-
ity within one level and how to propagate the decision taken
at one level to the next one. It remains to decide when to per-
form preference aggregation in order to obtain a winner from
the profile.

If the influence statements within each level model an in-
fluence function which always converges to a consensus state,
as it is the case for theGur or theConf3 functions, then ag-
gregation is redundant, since all variables at the same level
have the same value. Thus the most preferred outcome is the
same for all agents, and this will be declared the winner (with
any unanimous voting rule).

However, at each level we obtain a possibly different value
for the variables modelling the same feature. Now we can
either aggregate at each level, and then propagate the result
to the next level, or we can aggregate only at the end of the
procedure, when each agent will have a most preferred can-
didate.

If we decide to aggregate at each level, we will choose by
majority (since variables are binary) which value to give to
all variables of the considered level. Then we propagate such
a choice to the next level and start again with an influence
iteration. We call LA this method (forLevel Aggregation).

Otherwise, we can leave the variable values in each level
as they are after the influence iteration and proceed with the
interleaving of propagation and convergence, until all levels
have been handled. At this point, we have a most preferred
candidate for each agent, and we can obtain a winning can-
didate by any voting rule that needs the top choices, such as
plurality. We call FA this method (forFinal Aggregation).

The two approaches yield different results as shown by the
following example.

Example 2 Let us consider the i-profile of Figure 1. After the
influence iteration step at level 1 (that is, on featureX), the
preference of agent 3 isx3 ≻ x̄3, while the preferences of the
other agents are unchanged.

Assume to adopt method LA. Then we now aggregate the
votes overX by majority. This results inX = x winning and



thus the variables of the first level are set to the following val-
ues: X1 = x1, X2 = x2, andX3 = x3. We then propagate
such assignments to the next level and we get the following
assignment for the variables corresponding to theY feature:
Y1 = y1, Y2 = y2, andY3 = ȳ3. We now aggregate the votes
over Y by majority, and the winning assignment isY = y.
Thus the overall winner of the procedure is〈X = x, Y = y〉.

Instead, if we follow the FA procedure, the assignments for
X that are propagated are those after the influence iteration,
that is, X1 = x̄1, X2 = x2, and X3 = x3. This gives,
through propagation, the following values for the variables
corresponding toY : Y1 = ȳ1, Y2 = y2, and Y3 = ȳ3.
Thus we have the following three top candidates for the three
agents:C1 = (X = x̄, Y = ȳ), C2 = (X = x, Y = y), and
C3 = (X = x, Y = ȳ). Now we aggregate, for example by
using plurality, with a tie-breaking rule where precedenceis
given by a lexicographical ordering wherēx ≻ x and ȳ ≻ y.
According to this rule, the winner is(X = x̄, Y = ȳ).

Notice that the choice of the ordering does not matter,
since, if we consider an i-profile(P,O, S), any other i-profile
(P,O′, S) will produce the same final result. In fact, different
orderings of an i-profile with the same profile and the same
ci-statements will order differently variables that are indepen-
dent both in terms of preferences and influence functions.

However, as seen in the example above, in general the two
procedures LA and FA return different winners. Moreover,
some agents may be better off with one of the two procedures,
while others may be better off with the other one. This is the
case of agent 1, that gets its top candidate to win with FA,
while it would get a worse candidate with LA. The opposite
situation holds for agent 2.

5 Conclusions and future work
In this paper we have assumed that agents express their pref-
erences via CP-nets. We also plan to consider settings where
other formalisms for compact preference representation are
used, such as soft constraints.

We plan to study the normative properties of procedures
LA and FA, as well as to asses their behavior via experimental
tests.

In [Grabisch and Rusinowska, 2010] there are also influ-
ence functions where influence is followed with a certain
probability, otherwise the agent follows its inclination.We
plan to study how to generalize our framework to allow for
such influence functions.

In [M. Grabisch, 2003] influence is over the top choice
among a set of possible actions, not just two. We plan to
formalize the extension of our approach to this case. We also
plan to allow for influences over the ordering of the actions,
rather than just over the top element of such an ordering.

References
[Boutilier et al., 2004] Craig Boutilier, Ronen I. Brafman,

Carmel Domshlak, Holger H. Hoos, and David Poole. CP-
nets: A tool for representing and reasoning with condi-
tional ceteris paribus preference statements.J. Artif. Intell.
Res. (JAIR), 21:135–191, 2004.

[Brafman and Dimopoulos, 2004] R.I. Brafman and Y. Di-
mopoulos. Extended semantics and optimization al-
gorithms for cp-networks. Computational Intelligence,
20(2):218–245, 2004.

[DeGroot, 1974] M.H. DeGroot. Reaching a consensus.
Journal of the American Statistical Association, 69:118–
121, 1974.

[Faliszewskiet al., 2009] Piotr Faliszewski, Edith Hemas-
paandra, and Lane A. Hemaspaandra. How hard is bribery
in elections? J. Artif. Intell. Res. (JAIR), 35:485–532,
2009.

[Grabisch and Rusinowska, 2010] Michel Grabisch and Ag-
nieszka Rusinowska. Iterating influence between play-
ers in a social network. Documents de travail du centre
d’economie de la sorbonne, Universit Panthon-Sorbonne
(Paris 1), Centre d’Economie de la Sorbonne, 2010.

[Krause, 2000] U. Krause. A discrete nonlinear and nonau-
tonomous model of consensus formation.Communica-
tions in Difference Equations, 2000.

[Lang and Xia, 2009] Jerome Lang and Lirong Xia. Sequen-
tial composition of voting rules in multi-issue domains.
Mathematical social sciences, 57:304–324, 2009.

[M. Grabisch, 2003] A. Rusinowska M. Grabisch. A model
of influence wuth an ordered set of possible actions.The-
ory and Decisions, 69(4):635–656, 2003.

[P. DeMarzo, 2003] D. Vayanos P. DeMarzo. Persuasion
bias, social influence, and unidimensional opinions.Quar-
terly Journal of Economics, 118:909–968, 2003.

[Purrington and Durfee, 2007] K. Purrington and E. H. Dur-
fee. Making social choices from individuals’ cp-nets. In
AAMAS, page 179. IFAAMAS, 2007.

[Rossiet al., 2004] F. Rossi, K.B. Venable, and T. Walsh.
mcp nets: Representing and reasoning with preferences of
multiple agents. InProceedings of the Nineteenth National
Conference on Artificial Intelligence (AAAI 2004), pages
729–734, 2004.

[Slinko and White, 2008] Arkadii Slinko and Shaun White.
Is it ever safe to vote strategically? Department of mathe-
matics - research reports-563, 2008.

[Xia et al., 2008] L. Xia, V. Conitzer, and J. Lang. Voting on
multiattribute domains with cyclic preferential dependen-
cies. InAAAI, pages 202–207. AAAI Press, 2008.


