Venetian Elections and Lot-based Voting Rules

Toby Walsh
NICTA and UNSW
Sydney, Australia
toby.walsh@nicta.com.au

Abstract

Between 1268 and 1797, the Venetian Republic
used a complicated voting system that appears de-
signed to resist manipulation. The system starts
with randomly drawing voters, followed by 8
rounds of a complicated addition and elimination of
voters before the approval voting rule is finally used
to select the winner, the new Doge. In this paper,
we study a family of voting rules inspired by this
Venetian election system, which we call lot-based
voting rules. Such rules have two steps: in the first
step, k votes are selected by a lottery, then in the
second round (the runoff), a voting rule is applied
to select the winner based on these k votes. We
study some normative properties of such lot-based
rules. We also investigate the computational com-
plexity of computing the winner with weighted and
unweighted votes, and of computing manipulations.
Finally, we propose an efficient sampling technique
for generating the & runoff voters non-uniformly.

1 Introduction

A central question in computational social choice is whether
computational complexity can protect elections from ma-
nipulation. For certain voting rules it is NP-hard for a
potential manipulator to compute a beneficial manipula-
tion.Modifications have even been proposed to tweak com-
mon voting rules to make manipulation NP-hard. [5; 10].
Such results need to be treated with caution since NP-
hardness is only a worst-case notion and “hard” instances may
be rare.See [11; 12] for recent surveys. Of course, if it is al-
ready computationally hard for a manipulator to compute the
winner, then intuitively it is likely to be computationally hard
for her to find a beneficial manipulation. In fact, computing
the winner is NP-hard for Kemeny’s, Dodgson’s and Slater’s
rule [3; 1; 2; 6].

Surprisingly, the idea of intentionally using complexity to
prevent manipulation of a voting system goes back at least
seven centuries ago. Lines argues that “The most enduring
and perhaps the most complex electoral process is quite likely
that used by the Venetian oligarchy to elect their dogi” [14].
This multi-stage voting procedure was used between 1268 and
the end of the Venetian Republic in 1797. The procedure con-

Lirong Xia
Department of Computer Science
Duke University
Durham, NC 27708, USA
Ixia@cs.duke.edu

sists of 10 rounds, with all but the last round constructing an
electoral college for the next round, and the last round actu-
ally electing the Doge, the highest official in Venice. This
procedure appears designed to resist manipulation, or at least
to offer the appearance of doing so. Wolfson argues that “ The
main idea . . . seems to have been to introduce a system of elec-
tion so complicated that all possibility of corruption should be
eliminated” [18]. On the other hand, Mowbray and Gollmann
suggest that it is “security theatre”, containing “actions which
do not increase security, but which are designed to make the
public think that the organization carrying out the actions is
taking security seriously” [15]. Nevertheless they also remark
that it “offers some resistance to corruption of voters”.

Our contributions. Venetian elections have two interest-
ing features in all but the last round: (1) voters are eliminated
randomly, and (2) the voters in the current round vote on the
voters who go forwards to the next round. In this paper, we
report some preliminary results on a family of voting rules in-
spired by the first feature of such Venetian elections, which
we call lot-based rules. It would be interesting nevertheless
to consider the second feature. Lot-based rules are composed
of two steps: in the first step, k votes are selected by a lottery,
then in the second step (the runoff), a voting rule (called the
runoff rule) is applied to select the winner based on these k
votes. We study some normative properties of the lot-based
rules. We investigate the computational complexity of com-
puting the winner of lot-based rules with weighted and un-
weighted votes, respectively, and of computing a manipula-
tion. Finally, we propose an efficient sampling technique for
generating the k runoff voters from non-uniform distributions.
Our results suggest it will be interesting to study further the
computational properties of such rules.

For lot-based rules, it is easy for the chair to compute the
winner provided computing the winner for the runoff rule is
easy. This is essentially different from Kemeny’s rule, where
computing the winner of a given profile is hard. On the other
hand, in order for a manipulator to compute a beneficial false
vote, she needs to compute the probability for a given candi-
date to win, which we will show to be computationally hard.
The winner evaluation/computation problem we focus on in
this paper is from the perspective of a manipulator.

Related work. Lot-based rules are a type of randomized
voting rules. Gibbard [13] proved that when there are at least
3 candidates, if a randomized voting rule satisfies Pareto opti-

mality and a probabilistic version of strategy-proofness, then
it must be a probability mixture of dictatorships (called ran-
dom dictatorships). We note that any random dictatorship is
a lot-based rule, where & = 1, and the runoff rule selects the
top-ranked candidate as the winner when there is a single vote.

Conitzer and Sandholm [5] and Elkind and Lipmaa [10]
studied another type of hybrid voting systems where manip-
ulations are hard to compute. Their systems are composed
of two steps: in the first step, a (possibly randomized) voting
rule is used to rule out some candidates, and in the second step
another voting rule (not necessarily the same as the one used
in the first step) is used to select the winner from the remain-
ing candidates. We note that in the first step of their systems,
some candidates are eliminated, while in the first step of our
lot-based rules, some voters are eliminated. In that sense, lot-
based rules can also be seen as a universal tweak that adds a
pre-round that randomly eliminates some voters, to make vot-
ing rules hard to manipulate. It would therefore be interesting
to consider even more complex voting systems which do both.

2 Preliminaries

Let C = {c1,...,cm} be the set of candidates (or alterna-
tives). A linear order > on C is a transitive, antisymmetric,
and total relation on C. The set of all linear orders on C is
denoted by L(C). An n-voter profile P on C consists of n lin-
ear orders on C. Thatis, P = (V1,...,V,,), where for every
j < n,V; € L(C). The set of all n-profiles is denoted by
Frn. We let m denote the number of candidates. A (determin-
istic) voting rule r is a function that maps any profile on C to
a unique winning candidate, thatis, 7 : F1UFU... = C. A
randomized voting rule is a function that maps any profile on
C to a distribution over C, thatis, r : 71 U Fa U... = Q(C),
where Q(C) denotes the set of all probability distributions
over C. The following are some common voting rules. If
not mentioned specifically, ties are broken in the fixed order
Cl>Co > > Cnpy.

e (Positional) scoring rules: Given a scoring vector S,, =
(8m(1),...,8m(m)) of m integers, for any vote V € L(C)
and any ¢ € C, let §,,(V,¢) = 5,,(j), where j is the rank
of ¢cin V. For any profile P = (V1,...,V,), let §,(P,¢c) =
> i—18m(Vj,c). The rule will select ¢ € C so that 5, (P, ¢)
is maximized. We assume scores are integers and decreasing.
Example of positional scoring rules are majority, for which
m = 2 and the scoring vector is (1,0); Borda, for which the
scoring vectoris (m —1,m —2,...,0).

e Approval: Each voter submits a set of candidates (that is,
the candidates that are “approved” by the voter). The win-
ner is the candidate approved by the largest number of voters.
Every voter can approve any number of candidates.

e Voting trees: A voting tree is a binary tree with m leaves,
where each leaf is associated with an candidate. In each
round, there is a pairwise election between an candidate c;
and its sibling c;: if the majority of voters prefer c; to c;, then
c; is eliminated, and ¢; is associated with the parent of these
two nodes. The candidate that is associated with the root of
the tree (i.e. wins all its rounds) is the winner. The rule that
uses a balanced voting tree is also known as cup.

3 Electing the Doge

The electorate (which consisted of around the 1000 or so male
members of the Maggior Consiglio aged 30 or over) were first
reduced by a lottery to an electoral college of 30 voters. This
college was then reduced again by a lottery to 9 voters.! These
9 then elected a college of 40 voters chosen from any of the
electorate, all of whom had to receive 7 out of 9 approval
votes. These 40 were then reduced by a lottery to an electoral
college of 12 voters. These 12 then elected a college of 25
voters, all of whom had to receive 9 out of 12 approval votes.
These 25 were then reduced by a lottery to an electoral college
of 9 voters. These 9 then elected a college of 45 voters, all of
whom had to receive 9 out of 12 approval votes. These 45
were then reduced by a lottery to an electoral college of 11
voters. These 11 then elected a college of 41 voters, all of
whom had to receive 9 out of 11 approval votes. In the tenth
and final round, the electoral college of 41 voters elected the
Doge, who was required to receive 25 or more approval votes
from the 41 voters.

This itself is still a simplified description of the process.
For example, the process of enlarging the electoral college by
vote was itself complicated. Consider the third round of the
election where the electoral college is enlarged from 9 mem-
bers to 40. The first 4 of the 9 college members selected by
the lottery in the second round each nominated 5 people (who
each had to receive 7 out of 9 approval votes) whilst the last 5
of the 9 college members selected by the lottery in the second
round each nominated 4 people (who also each had to receive
7 out of 9 approval votes). This gives a total of 40 nominated
members in the electoral college for the fourth round. Simi-
larly, in the fifth, seventh and ninth rounds when the electoral
college was enlarged, each member of the college nominated
in turn a small number of new members. As a second example
of the additional complexity, only one person from each fam-
ily was allowed to be selected by a lottery. All relatives of a
person selected by a lottery were removed from the rest of that
round. As a third example, none of the members of the elec-
toral colleges of size 9, 11 or 12 were allowed to be members
of the final electoral college of size 41. As a fourth example
of the additional complexity, the vote in the final round was
not a simple approval vote. In addition to their approval votes,
each member of this final electoral college also nominated one
candidate. These nominated candidates were considered in a
random order, and the first candidate who was secured 25 ap-
proval votes was elected the Doge.

The voting procedure also changed in several ways over the
centuries. For example, the penultimate round originally had
an electoral college of 40 voters. However, after a tied vote in
1229, this was increased to 41 to reduce the chance of a tie.
As a second example, as explained earlier, the final vote was
originally sequential. However, at some later point, voting
moved to simultaneous voting.

'Tt has been suggested that two rounds (instead of one) are used
to reduce the electoral college of 9 votes largely for procedural ease.
That is, it was difficult to reduce the size of election college to 9 with
a single lottery.

It was not specified what happens if none of the voters receive 7
approval votes.

4 Lot-based voting rules

Elections involving lotteries are not restricted to Venice.
Many other Italian cities have used such elections as well.
Lotteries were also used in the election of the Archbishop of
Novgorod, one of the oldest offices in the Russian Orthodox
Church. Indeed the use of lotteries in elections can be traced
back to at least before the birth of Christ with elections in the
city-state of Athens. One of the arguments advanced for using
lotteries is their fairness and resistance to manipulation [8].
We consider therefore a family of lot-based voting rules
that are guaranteed always to elect a winner. These rules are
closely related to the procedure used to elect the Doge.

Definition 1. Let X denote a voting rule (deterministic or
randomized). We define a randomized voting rule LotThenX
as follows. Let k be a fixed number that is smaller than the
number of voters. The winner is selected in two steps: in the
first step, k voters are selected uniformly at random, then, in
the second step, the winner is chosen by the voting rule X
from the votes of the k voters selected in the first step.

For instance, LotThenApproval is an instance of this rule in
which the set of voters is first reduced by a lottery, and then
a winner is chosen by approval voting. Lot-based rules are in
practical use. For example, the Chair of the Internet Engineer-
ing Task Force is selected by a randomly chosen nominating
committee of 10 persons who vote (using an unspecified rule)
for the new Chair.

We emphasize that in the first step of lot-based rules, some
voters are eliminated, while in the first step of voting systems
studied by Conitzer and Sandholm [5] and Elkind and Lip-
maa [10], some candidates are eliminated.

We first consider the axiomatic properties possessed by lot-
based voting rules. As the rules are non-deterministic, we
need probabilistic versions of the usual axiomatic properties
defined as follows.?

Definition 2. A randomized voting rule r satisfies

e anonymity, if for any profile P = (V1,...,V,,), any per-
mutation 7 over {1,...,n}, and any candidate ¢, we have
r(P)(c) = r(Vz@),--- Vam))(c), where r(P)(c) is the
probability of ¢ in the distribution r(P).

e neutrality, if for any profile P, any permutation M over C,
and any candidates ¢, we have r(P)(c) = r(M(P))(M(c)).

e unanimity, if for any profile P where all voters rank c in
their top positions, we have r(P)(c) = 1.

e weak monotonicity, if for any candidate ¢ and any pair
of profiles P and P’, where P’ is obtained from P by rais-
ing ¢ in some votes without changing the orders of the other
candidates, we have r(P)(c) < r(P’)(c).

e strong monotonicity, if for any candidate ¢ and any pair
of profiles P = (V4,...,V,,) and P' = (V{,..., V), such
that for every j < n and every d € C, ¢ v, d=c v/ d,
we have r(P)(c) < r(P')(e).

e Condorcet consistency, if whenever there exists a candi-
date who beats all the other candidates in their pairwise elec-
tions, this candidate wins the election with probability 1.

3The definitions for the axiomatic properties for approval are
omitted due to the space constraints.

When the voting rule is deterministic (i.e. the unique win-
ner wins with probability 1), all these axioms reduce to their
counterparts for deterministic rules. The next theorem shows
that LotThenX preserves some of these axioms from X.

Theorem 1. [f the voting rule X satisfies anonymity/ neutral-
ity/ (strong or weak) monotonicity/ unanimity, then for every
k, LotThenX also satisfies anonymity/ neutrality/ (strong or
weak) monotonicity/ unanimity.

The proof is quite straightforward, and therefore is omitted
due to space constraints. However, there are other properties
that can be lost like, for instance, Condorcet consistency.

Theorem 2. LotThenX may not be Condorcet consistent even
when X is.
Proof: Suppose n = 2k+1, k-+1 voters vote in one order and
the remaining k voters vote in the reverse order. The lottery
may select only the votes of the minority, which means that
the Condorcet winner does not win with probability 1. a
We note that when n = k, LotThenX becomes exactly X.
Therefore, if X does not satisfy an axiomatic property, neither
does LotThenX.

Theorem 3. If LotThenX satisfies an axiomatic property for
every k, then X also satisfies the same axiomatic property.

5 Computing the winner

Lot-based voting rules are non-deterministic. Hence, even if
we know all the votes, we can only give a probability that a
certain candidate wins. Following [7], given a probability p
in [0, 1], we define EVALUATION as the decision problem of
deciding whether a given candidate can win with a probabil-
ity strictly larger than p. In this section, we show that lot-
based voting rules provide some resistance to strategic behav-
ior by making it computationally hard even to evaluate who
may have won. In particular, we show that there exist deter-
ministic voting rules for which computing the winner is in P,
but EVALUATION of the corresponding lot-based voting rule
is NP-hard. As is common in computational social choice,
we consider both weighted voted with a small number of can-
didates, and unweighted votes with an unbounded number of
candidates. Of course even if EVALUATION is hard, the ma-
nipulator may still be able to compute her optimal strategy in
polynomial time. This issue will be discussed in Section 6.

5.1 Weighted votes

Theorem 4. EVALUATION for LotThenCup is NP-hard when
votes are weighted and there are three or more candidates.
Proof: We give a reduction from a special SUBSET-SUM
problem. In such a SUBSET-SUM problem, we are given 2k’
integers S = {wy, ..., wsy } and another integer W. We are
asked whether there exists S C S such that |S| = &’ and
the integers in S sum up to W. We consider the cup rule (bal-
anced voting tree) where ties are broken in lexicographical or-
der. We only show the proof for three candidates; other cases
can be proved similarly. For any SUBSET-SUM instance, we
construct an EVALUATION for LotThenCup instance as fol-
lows.

Candidates: C = {a, b, c}. The cup rule has a play b and the
winner of this play c. Let k = k' + 1.

Profile: For each ¢ < 2k’, we have a vote ¢ = a > b of
weight w;. In addition, we have one vote b - a > c of weight
W . We consider the problem of evaluating whether candidate
a can win with some probability strictly greater than zero.

If the lottery does not pick any b > a > ¢, then ¢ wins for
sure. If the lottery picks the vote b > a > c, then there are
three cases to consider. In the first case, the sum of the weights
of the other k&’ votes is strictly less than W. Then, b beats a
in the first round, so a does not win. In the second case, the
sum of the weights of the other k¥’ votes is strictly more than
W . Then, a beats b in the first round, but then loses to ¢ in the
second round, so a does not win. In the third case, the sum of
weights of the other & votes is exactly W. Then, a wins both
rounds due to tie-breaking. Hence a wins if and only the sum
of the weights of the remaining &’ votes is exactly W. Thus
the probability that a wins is greater than zero if and only if
there is a subset of k" integers with sum W. a

Theorem 5. There is a polynomial-time Turing reduction
from SUBSET-SUM to EVALUATION for LotThenApproval
with weighted votes and two candidates® .

Proof sketch: Given any SUBSET-SUM instance
{wy,...,worr} and W, we construct the following two
types of EVALUATION for LotThenApproval instances: the
profiles in both of them are the same, but the tie-breaking
mechanisms are different. For each 7 < 2k’, there is a voter
with weight w; who approves candidate a. In addition, there
is voter with weight W who approves b. Let P denote the
profile and & = k' + 1. For any p € [0,1], we let A(p)
(respectively, B(p)) denote the EVALUATION instance where
ties are broken in favor of a (respectively, b), and we are
asked whether the probability that a (respectively, b) wins
for P is strictly larger than p. Then, we use binary search

to search for an integer i such that i € [0, (**!) — (kz,il)]

and the answers to both A (1 -k) and B (z,jﬂ
(k41) (k/4+1)

are “yes”. If such an ¢ can be found, then the SUBSET-SUM

instance is a “yes” instance; otherwise it is a “no” instance. O
It follows that if EVALUATION for LotThenApproval with

weighted votes and two candidates is in P, then P=NP.

5.2 Unweighted votes

Theorem 6. With unweighted votes and an unbounded num-
ber of candidates, EVALUATION for LotThenBorda is NP-
hard.

Proof: We prove the NP-hardness by a reduction from the
EXACT 3-COVER (X3C) problem. In an X3C instance, we
are given a set V = {vy,...,v3,} of 3¢ elements and S =
{S51,...,S5;} such that for every ¢ < ¢,.5; CV and |S;| = 3.
We are asked whether there exists a subset J C {1,...,t}
such that |J| = g and |J;.; S; = V.

For any X3C instance V = {v1,...,v3,} and S =
{S1,...,St}, we construct an EVALUATION instance for Lot-
ThenBorda as follows.

Candidates: C = {c} UV U D, where D = {dy,...,d3p}.
Letk =gandp=0.

“The proof can be easily extended to any LotThenX where X is
the same as the majority rule when there are only two candidates.

Profile: For each j < ¢, weletV; = [(S\ S;) » ¢ > D >
S;]. The profile is P = (V1,...,4).

Suppose the EVALUATION instance has a solution. Then,
there exists a sub-profile P’ of P such that |P’| = ¢ and
Borda(P') = c. Let P' = (V;,,...,V;,). We claim that
J = {i1,...,i4} constitutes a solution to the X3C instance.
Suppose there exists a candidate v €)V that is not covered by
any S; where j € J. Then, v is ranked above c in each vote
in P’, which contradicts the assumption that ¢ is the Borda
winner.

Conversely, let J = {i1,...,%,} be a solution to the X3C
instance. Let P' = (V;,,...,V;,). It follows that for each
v € V), the Borda score of ¢ minus the Borda score of v is at
least 3¢ —(3¢—3) xq > 0. Foreach d € D, cis ranked above
d in each vote in P’. Therefore, c is the Borda winner, which
means that the EVALUATION instance is an “yes” instance. O

Theorem 7. With unweighted votes and an unbounded num-
ber of candidates, computing the probability for a given can-
didate to win under LotThenBorda is #P-complete.

Proof: We prove the theorem by a reduction from the
#PERFECT-MATCHING problem. Given three sets X =
{z1,...,2:}, Y ={y1,...,yt},and E C X X Y, a perfect
matching is a set J C E such that |J| = ¢, and all elements
in X and Y are covered by J. In a #PERFECT-MATCHING
instance, we are asked to compute the number of all perfect
matchings. Given any #PERFECT-MATCHING instance X, Y,
and E, we construct the following instance of computing the
winning probability of a given candidate for LotThenBorda.
Candidates: C = {c,b} U X UY U A, where A =
{a1,...,a2:}. Let k = 2t. Suppose ties are broken in the
following order: X > Y > c¢ > Others. We are asked to
compute the probability that ¢ wins.

Profile: For each edge (z;,y;) € E, we first define a vote
W;; =[X > a; = ¢ >Y > b > Others|, where elements
within Y, X, A; and B; are ranked in ascending order of their
subscripts. Then, we obtain V; ; from W ; by exchanging the
positions of the following two pairs of candidates: (1) x; and
a;; (2) y; and b. Let Py ={V, ; : V(z;,y;) € E}.

For each j < ¢, we define a vote U; = [rev(Y) > ¢ >
a4+, > rev(X) > Others], where rev(.X) is the linear order
where the candidates in X are ranked in descending order of
their subscripts. Let Py = {Uy,...,U;}. Let the profile be
P =Py UPy.

Let P’ be a sub-profile of P such that |P'| = k = 2t.
We first claim that if Borda(P’) = ¢, then Py C P’. For the
sake of contradiction, suppose Py NP' = {V;, j.,..., Vi, }s
where [> t. Because |X| = ¢, there exists ¢ < ¢ such that ¢
is included in the multiset {i1,...,4;} at least two times. For
any candidate ¢, let s(P, ¢’) denote the Borda score of ¢’ in
P. Tt follows that s(P,z;) > s(P,c), which contradicts the
assumption that c is the Borda winner.

Next, we prove that for any P’ = Py U{V;, j,,..., Vi, 5, }
such that Borda(P’) = ¢, J = {(zi,,Yj,),- -+, (@i, Y5,) } is
a perfect matching. Suppose J is not a perfect matching. If
x € X (respectively, y € Y)is not covered by .J, then we have
s(P,z) = s(P,c) (respectively, s(P,y) = s(P,c)), which
means that c is not the Borda winner due to tie-breaking. This
contradicts the assumption. We note that different P’ cor-
respond to different perfect matchings. Similarly, any per-

fect matching corresponds to a different profile P’ such that
|P'| = 2t and Borda(P’) = c. We note that the probabil-

ity that ¢ wins is the number of such P’ divided by (*%F!).
Therefore, computing the probability for ¢ to win is #P-hard.
It is easy to check that computing the probability for ¢ to win
is in #P. |

6 Manipulation

Suppose there are a group of k£ manipulators, who know the
vote of the non-manipulators. There are at least three different
dimensions to an analysis of manipulation in lot-based voting
rules. The first two dimensions are standard, and the third
dimension is specific for the lot-based rules.

The first dimension: weighted or unweighted votes.

The second dimension: constructive or destructive. Given
a positive number p, in constructive manipulations, the manip-
ulators seek to cast votes to make a given candidate win with
probability at least p; in destructive manipulations, the manip-
ulators seek to cast votes to make a given candidate lose with
probability at least p.

The third dimension: fixed or adaptive. The manipulation
is fixed, if all agents must declare a fixed preference ordering
in advance of the lottery. In particular, the manipulators are
not allowed to change their votes after lots are drawn. The ma-
nipulation is adaptive, if the manipulators observe the drawing
of lotteries and can change their votes in light of which agents
remain in the electoral college after the lottery. An adaptive
manipulation is then described in terms of a strategy.

In this paper, we consider the manipulation problem where
we are also given a positive number p < 1 and we are asked
whether the manipulators can make a favored candidate ¢ win
with probability strictly larger than p. We stress that we are
not asked how to compute the optimal strategy for the ma-
nipulators. These manipulation problems are closely related.
For example, if fixed manipulation is possible for some p then
adaptive manipulation is also possible for at least the same
p. The same strategic vote will ensure this. However, the
problems have different computational complexities. Whilst
fixed manipulation is in NP, it is not immediately obvious that
adaptive manipulation is even in PSPACE. In general, adap-
tive manipulations seem to be harder to compute than fixed
manipulations. However, surprisingly, there are (somewhat
artificial) lot-based voting rules where adaptive manipulation
is easy to compute but fixed manipulation is intractable.

Theorem 8. When the number of candidates is unbounded,
there exists an instance of LotThenX for which unweighted
adaptive constructive manipulation is polynomial for any size
of coalition, but unweighted fixed constructive manipulation
is NP-hard for even a single manipulator.

Proof sketch: We will use the 1-in-3-HittingSet (denoted by
1-IN-3HS) problem in this proof, which is known to be NP-
complete [17]. In a 1-IN-3HS instance, we are given a set of
Boolean variables V = {x1,...,X,}, and a set of ¢ positive
clauses S = {S1,...,S5:}, where for each j < ¢, S; C V
and |S;| < 3, that is, S; contains at most 3 positive literals.
We are asked whether there exists a valuation for V such that
for every j < t, exactly one of the positive literals in S; is
satisfied.

We consider a lottery that picks two votes at random and the
following rule X on two votes: the rule always selects either
cy or co. If one vote has ¢; on top, the other vote has co on
top, and the vote with c¢; on top encodes a 1-IN-3HS satisfying
assignment to the positive clause encoded by the vote with ¢
on top, then the winner is cs. In any other situations, ¢; wins.
To encode a truth assignment within a vote, we let m = 2[+-2,
and for each ¢ < [, cg;41 is ranked above co; 9 if and only if
X, is true; to encode a positive clause within a vote, for each
1 < 1, cgi41 1s ranked above cg;4 o if and only if X is in the
clause.

Adaptive manipulation is now polynomial to compute
since, for any lot containing a manipulator, we can easily
compute whether the manipulators can make cs (c1) win, and
for any lot not containing a manipulator, we can also easily
compute the winner. Thus, we can easily compute the maxi-
mum probability with which c5 (¢1) can be made to win (and
a manipulation that will achieve any probability up to this
maximum). On the other hand, consider a fixed manipula-
tion problem with a single manipulator in which the votes of
the non-manipulators rank cy on top, and their votes encode
the ¢ = n — 1 positive clauses in a 1-IN-3HS instance. The
only chance that c can be made to win is when the manipu-
lator is drawn in the random lot and votes with a “satisfying
assignment”. The probability that the random lot contains the

manipulator is % Hence, computing a fixed constructive ma-

nipulation for ¢, and p = 2 — ﬁ is equivalent to finding a

2
1-IN-3HS satisfying assignment to all ¢ clauses. O

7 Sampling the runoff voters non-uniformly
So far we have not discussed in details how to select the runoff
voters. Of course if we only need to select k voters uniformly
at random, then we can perform a naive k-round sampling: in
each round, a voter is drawn uniformly at random from the
remaining voters, and is then removed from the list. How-
ever, it is not clear how to generate k£ voters with some non-
uniform distribution. For example, different voters in a profile
may have different voting power [16], and we may therefore
want to generate the voters in the runoff according to this vot-
ing power. More precisely, we want to compute a probability
distribution over all sets of k£ voters, and each time we ran-
domly draw a set (of k voters) according to this distribution to
meet some constraints. Let M denote the set of all n x k
0-1 matrices, in each of which the sum of each row is no
more than 1 and the sum of each column is exactly 1. That
is, M = {(agy) : auj € {0,1},Vi < n, > auy <1
andVj <k, a(; ;) = 1}. Each matrix in M represents a
set of k voters. Formally, we define the sampling problem as
follows.

Definition 3. In a LOTSAMPLING problem , we are given
a natural number n (the number of initial voters), a natu-
ral number k (the number of runoff voters), and a vector of
positive real numbers (p1, ..., py) such that for any j < n,
0<p; <land ngn p; = k. We are asked to compute a
sampling technique that chooses k voters each time, and for
every j < m, the probability that vote j is chosen is p;.

To solve the LOTSAMPLING problem, we first solve the
following equations.

Vi<n, ¥ wugy =p and Vji<k Y zay=1 (1)
7 i

We note that)., p; = k. For such equations, a solution
where Ty = 0 for all i < n,j < k always exists. To see
this, we construct the solution by a greedy algorithm. The
algorithm tries to settle the values row after row, and in each
row, it tries to place as much “mass” as possible to the leftmost
variable, as long as it does not violate the column constraints.
Algorithm 1 does this.

Proposition 1. Algorithm 1 returns a solution to Equa-
tions (1). Moreover, the number of non-zero entries in (z; ;))
is no more than n + k.

Let (x(; j)) denote the outcome of Algorithm 1. Since the
number of non-zero entries in (z(; ;) is no more than n + k,
we can apply any polynomial-time algorithm that implements
the Birkhoff-von Neumann theorem [4]° to obtain a probabil-
ity distribution over the matrices in M such that (1) the ex-
pectation is (x(; ;)), and (2) the support of the distribution has
no more than n + k elements. That is, even though | M| is ex-
ponential, we only need to sample over a polynomial number
of elements in M. Therefore, we have the following theorem.

Theorem 9. The LOTSAMPLING problem always has a solu-
tion that runs in polynomial-time.

Algorithm 1: SolveEquation
Input: (p1,...,p,), where 3, p; = kand Vj <n,
0<p; <1.
Output: A solution to Equations (1).

1 Let Jf(i’j) = 0, J = 1.;
2 forl =1tondo
3 if Zi<l Z(i,g) DI < 1 then
4 ‘ Let T,J) = Pi-
5 end
6 else
7 Let .r(l’J) =1- Zi<l J,‘(i“]),
T(,J+1) = DL — T@,0) and J = J + 1.
8 end
9 end

10 return (z; ;).

8 Future work

Lot-based voting seems worth further attention. There are
many directions for future work in addition to the many ques-
tions already raised in this note. For instance, we could con-
sider the computational complexity of EVALUATION for other
lot-based voting rules. We could also consider the control of
lot-based voting by the chair. In addition to the usual forms
of control like addition of candidates or of voters, we have
another interesting type of control where the chair chooses
the outcome of the lottery. Such control is closely related to
control by deletion of voters. Other types of control include
choosing the size of the lottery and choosing the voting rule

>For example, the Dulmage-Halperin algorithm [9].

used after the lottery. Another interesting direction would be
to consider the computation of possible and necessary win-
ners under lot-based voting. Finally, it would be interesting to
consider formal properties of the Doge rule.

Acknowledgements

Toby Walsh is supported by the Australian Department of
Broadband, Communications and the Digital Economy, the
ARC, and the Asian Office of Aerospace Research and De-
velopment (AOARD-104123). Lirong Xia acknowledges a
James B. Duke Fellowship and Vincent Conitzer’s NSF CA-
REER 0953756 and 11S-0812113, and an Alfred P. Sloan fel-
lowship for support.

References

[11 Nir Ailon, Moses Charikar, and Alantha Newman. Aggre-
gating inconsistent information: Ranking and clustering. In
Proc. STOC, pages 684—693, 2005.

[2] Noga Alon. Ranking tournaments. SIAM Journal of Discrete
Mathematics, 20:137-142, 2006.

[3] John Bartholdi, III, Craig Tovey, and Michael Trick. Voting
schemes for which it can be difficult to tell who won the elec-
tion. Social Choice and Welfare, 6:157-165, 1989.

[4] Garrett Birkhoff. Tres observaciones sobre el algebra lineal.
Univ. Nac. Tucumn Rev, Ser. A, no. 5, pages 147-151, 1946.

[5] Vincent Conitzer and Tuomas Sandholm. Universal voting
protocol tweaks to make manipulation hard. In Proc. IJCAI,
pages 781-788, 2003.

[6] Vincent Conitzer and Tuomas Sandholm. Computing the opti-
mal strategy to commit to. In Proc. EC, pages §2-90, 2006.

[7] Vincent Conitzer, Tuomas Sandholm, and Jérome Lang. When
are elections with few candidates hard to manipulate? JACM,
54(3):1-33, 2007.

[8] Oliver Dowlen. Sorting out sortition: A perspective on the ran-
dom selection of political officers. Political Studies, 57:298—
315, 2009.

[9] L. Dulmage and I. Halperin. On a theorem of Frobenius-Konig
and J. von Neumann’s game of hide and seek. Trans. Roy. Soc.
Canada II1, 49:23-29, 1955.

[10] Edith Elkind and Helger Lipmaa. Hybrid voting protocols and
hardness of manipulation. In Proc. ISAAC, 2005.

[11] Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemas-
paandra. Using complexity to protect elections. Commun.
ACM, 53:74-82, 2010.

[12] Piotr Faliszewski and Ariel D. Procaccia. Al’s war on manip-
ulation: Are we winning? Al Magazine, 31(4):53-64, 2010.

[13] Allan Gibbard. Manipulation of schemes that mix voting with
chance. Econometrica, 45:665-681, 1977.

[14] Marji Lines. Approval voting and strategy analysis: A Vene-
tian example. Theory and Decision, 20:155-172, 1986.

[15] Miranda Mowbray and Dieter Gollmann. Electing the doge of
venice: Analysis of a 13th century protocol. In Proc. IEEE
CSF, pages 295-310, 2007.

[16] David M. Pennock and Lirong Xia. Voting power, hierarchi-
cal pivotal sets, and random dictatorships. To be presented at
WSCAI 2011.

[17] Thomas J. Schaefer. The complexity of satisfiability problems.
In Proc. STOC, pages 216-226, 1978.

[18] Arthur M. Wolfson. The ballot and other forms of voting in the
italian communes. The American Historical Review, 5(1):1—
21, 1899.

