
Possible Winners in Noisy Elections

Krzysztof Wojtas
AGH University of Science and

Technology, Kraków, Poland

Piotr Faliszewski
AGH University of Science and

Technology, Kraków, Poland

Abstract
Predicting election winners (or, election possible
winners) is an important topic in computational so-
cial choice. Very generally put, we consider the fol-
lowing setting: There is some set of candidates C
and some set of voters V (with preferences over
C). We either do not know which candidates will
take part in the election or we do not know which
voters will cast their votes. However, for each set
C ′ ⊆ C (each set V ′ ⊆ V) we know probabil-
ity PC(C

′) that exactly candidates in C ′ partici-
pate in the election (probability PV (V

′) that ex-
actly voters in V ′ cast their votes). Our goal is
to compute the probability that a given candidate
c ∈ C wins the election. In its full generality—
with unrestricted probability distributions PC and
PV —these problems can very easily become com-
putationally hard. We provide natural restrictions
on PC and PV that allow us to obtain positive re-
sults for several election systems, including plural-
ity, approval, and Condorcet’s rule. On the techni-
cal side, our problems reduce to counting solutions
to the problems of election control.

1 Introduction
Predicting election winners is always an exciting activity:
Who will be the new president? Will the company merge
with another one? Will taxes be higher or lower? Naturally,
predicting winners is a hard task, full of uncertainties. For
example, we typically are not sure which voters will eventu-
ally cast their votes and, sometimes, even the set of available
candidates may be uncertain (consider, e.g., a candidate with-
drawing due to personal reasons). Further, typically we do not
have complete knowledge regarding each voters’ preference
order.

Nonetheless, to optimize their behavior, agents involved in
an election try to somehow tackle the winner prediction prob-
lem. To model imperfect knowledge regarding voters’ pref-
erences, Konczak and Lang [2005] introduced the possible
winner problem (further studied by many other researchers;
see, e.g., [Xia and Conitzer, 2008; Betzler and Dorn, 2009;
Bachrach et al., 2010]. In this paper we focus on a differ-
ent type of uncertainty: We consider settings where the set of

participating candidates and the set of voters are uncertain.
(However, we do assume perfect knowledge regaring voters’
preferences.)

Specifically, we study the following setting. We are given
a voting rule, a set C of m candidates, and a set V of n vot-
ers (for each voter we have perfect knowledge as to how she
would vote). We consider two possible scenarios:

1. The set of candidates is fixed, but for each set of voters
V ′, V ′ ⊆ V , we have probability PV (V

′) that exactly
the voters from V ′ show up for the vote.

2. The set of voters is fixed, but for each set of candidates
C ′, C ′ ⊆ C, we have probability PC(C

′) that exactly
the candidates from C ′ participate in the election.

Our goal is to compute, for each candidate c ∈ C, the proba-
bility that c is a winner.

Naturally, our task would very quickly become computa-
tionally prohibitive (or, difficult to represent on a computer)
if we did not assume anything about PC and PV . We use
the following restrictions: First, we assume that both PC and
PV are polynomial-time computable. Second, we would like
to assume that for each subset V ′ of voters (each subset C ′
of candidates) the value PV (V

′) (the value PC(C
′)) depends

only on the cardinality of V ′ (only on the cardinality of C ′).
In other words, we have a probability distribution regarding
the number of voters (the number of candidates) participating
in the election, but each same-cardinality subset is equally
likely.

However, this second assumption is slightly too strong. Of-
ten, we may have additional knowledge regarding the nature
of possible changes in the candidate/voter set. For example,
the rules may be such that after a given point of time candi-
dates can withdraw from the election but no new candidates
can register. Similarly, we may know that some votes have
already been cast and cannot be withdrawn. Thus, we refine
our model to be the following: We start with some candidates
and voters already in the election and we ask for the proba-
bility that a given candidate wins assuming that some random
number of voters/candidates is added/deleted.

Formally, it turns out that our winner prediction setting re-
duces to the counting variants of election control problems;
computational study of election control problems was ini-
tiated by Bartholdi, Tovey, and Trick [1992] and was con-
tinued by Hemaspaandra, Hemaspaandra, and Rothe [2007],

Meir et al. [2008], Erdélyi, Nowak, and Rothe [2009], Fal-
iszewski, Hemaspaandra, and Hemaspaandra [2011], and oth-
ers (see the survey of Faliszewski, Hemaspaadra, and Hemas-
paandra, al. [2010]). However, to the best of our knowl-
edge, this is the first paper to study counting variants of elec-
tion control. (However, we should mention that Bachrach et
al. [2010] consider counting variants of possible-winner prob-
lems. Nonetheless, their model and motivation are different
from ours; they assume the set of voters is fixed, but the vot-
ers are unsure as to how to vote. We assume the voters are
certain about their votes, but unsure about participation in
the election. The resulting technical problem is very differ-
ent. Somewhere in the middle between these two approaches
is the model of [Hazon et al., 2008], where each voter has a
probability distribution among several possible votes.)

Our results are very preliminary. Following Hemaspaan-
dra, Hemaspaandra, and Rothe [2007], we focus on three,
quite different in spirit, voting rules: plurality, Condorcet’s
rule, and approval voting. Our results show that counting
variants of constructive control by adding/deleting candi-
dates/voters for these voting rules are polynomial-time solv-
able whenever the decision variants are. This means that
for the respective cases our winner prediction problems are
polynomial-time solvable.

The paper is organized as follows. In Section 2 we formally
define elections, the voting rules that we study, and provide
brief background on complexity theory (focusing on counting
problems). In Section 3 we formally define counting variants
of election control problems and link them to the winner pre-
diction scenarios that motivate our work. Section 4 contains
our technical results. We conclude in Section 5.

2 Preliminaries
Elections and Voting Systems. An election E is a pair
(C, V) such that C is a finite set of candidates and V is a finite
collection of voters. We typically use m to denote the num-
ber of candidates and n to denote the number of voters. Each
voter has a preference order in which he or she ranks candi-
dates from the most desirable one to the most despised one.
For example, if C = {a, b, c} and a voter likes b most and a
least, then this voter would have preference order b > c > a.
(However, under approval voting, instead of ranking the can-
didates each voter simply indicates which candidates he or
she approves of.)

A voting system is a rule which specifies how election win-
ners are determined. We allow an election to have more than
one winner, or even to not have winners at all. This is natural
as votes may provide inadequate information for a voting sys-
tem to always pick a single winner (e.q., due to symmetry or
due to the fact that a voting rule is so restrictive as to require
some sort of a consensus for a decision to be made). In real-
life elections there are elaborate rules for dealing with such
situations. Here we disregard tie-breaking rules by focusing
on the so-called unique winner model (see the next section).
However, we point the reader to [Obraztsova et al., 2011] for
a discussion regarding the influence of tie-breaking for the
case of election manipulation problem.

Let E = (C, V) be an election. For each candidate c ∈ C,

we define c’s plurality score scorepE(c) to be the number of
voters in V that rank c first. Candidates with highest plural-
ity scores are plurality winners. Under approval voting, the
score of candidate c ∈ C, scoreaE(c), is the number of voters
that approve of c. Again, candidates with highest scores are
winners.

Another, perhaps more involved, election system is Con-
dorcet’s rule, in which a candidate c ∈ C is a winner if and
only if for each c′ ∈ C \{c}, more than half of the voters pre-
fer c to c′. There can be at most one winner under Condorcet’s
rule and he or she is called the Condorcet winner. We write
NE(c, c

′) to denote the number of voters in V that prefer c to
c′; c is a Condorcet winner exactly if NE(c, c

′) > NE(c
′, c)

for each c′ ∈ C \ {c}.
Computational Complexity. We assume that the reader is
familiar with the basic notions of complexity theory, includ-
ing such notions as NP and NP-completeness. Let us, how-
ever, briefly review notions regarding the complexity theory
of counting problems. Let A be some computational problem
where, for each instance I , we ask if there exists some math-
ematical object satisfying a given condition. In the counting
variant of A, denoted #A, we ask how many such mathemat-
ical objects exist. For example, consider the following defini-
tion.
Definition 1. An instance of X3C is a pair (B,S), where B =
{b1, . . . , b3k} and S = {S1, . . . , Sn} is a family of 3-element
subsets of B. In X3C we ask if it is possible to find exactly k
sets in S whose union is exactly B. In #X3C we ask how many
k-element subsets of S have B as their union.

The class of counting variants of NP-problems is called #P.
To reduce counting problems to each other, we use the notion
of a parsimonious reduction.
Definition 2. Let #A and #B be two counting problems.
We say that #A parsimoniously reduces to #B if there exists
a polynomial-time computable function f such that for each
instance I of #A the following two conditions hold:

1. f(I) is an instance of #B, and

2. I has exactly as many solutions as f(I).

We say that a problem is #P-parsimonious-complete if
it belongs to #P and every #P-problem parsimoniously re-
duces to it. For example, #X3C is #P-parsimonious-complete.
Throughout this paper we will write #P-complete to mean #P-
parsimonious-complete. We should mention, however, that
different authors sometimes use different reduction types to
define #P-completeness. For example, Valiant [1979] used
Turing reductions, Zankó [1991] used many-one reductions,
and Krentel [1988] used metric reductions.

The class of functions computable in polynomial time is
called FP. Thus, if a given counting problem can be solved in
polynomial time then we will write that it is in FP.

3 Counting Variants of Control Problems
Let us now formally define the counting variants of the elec-
tion control problems. We are interested in four types of con-
trol: control by adding candidates (AC), control by deleting
candidates (DC), control by adding voters (AV), and control

by deleting voters (DV). For each of the problems we con-
sider its constructive variant (CC) and its destructive variant
(DC). We now formally define the counting variant of con-
structive control by adding voters and then explain informally
how the counting variants of other control problems are de-
fined. As is typical for computational study of control prob-
lems, we assume the unique-winner model.

Definition 3. Let R be a voting system. In the counting vari-
ant of constructive control by adding voters problem for R
(R-#CCAV) we are given a set of candidates C, a set of reg-
istered voters V , a set of unregistered voters W , a designated
candidate p ∈ C, and a natural number k. We ask how many
sets W ′, W ′ ⊆W , are there such that p is the unique winner
of R-election (C, V ∪W ′), where |W ′| ≤ k.

Constructive control by deleting voters (#CCDV) is de-
fined analogously, but we do not have W in the input and
we ask how many sets V ′, V ′ ⊆ V , are there such that p is
the unique R-winner of (C, V \ V ′) and V ′ ≤ k.

In the constructive control by adding candidates (#CCAC)
and the constructive control by deleting candidates (#CCDC)
problems the set of voters is fixed but we can vary the set of
candidates. In #CCAC we are given an additional set A of un-
registered candidates and we ask for how many sets A′ ⊆ A
of size up to k it holds that p is the unique winner of election
(C ∪ A′, V) (naturally, we assume that the voters have pref-
erences over all candidates in C ∪A). In #CCDC we ask how
many subsets C ′ of C are there of size up to k such that p is
the unique winner of election (C \ C ′, V).1

Destructive variants of our problems are defined analo-
gously, except that we ask for the number of settings where
the designated candidate—who in this case is called the de-
spised candidate—is not the unique winner of the election.

Counting variants of control problems are interesting in
their own right, but we focus on them because they allow us
to model winner prediction problems for settings where the
structure of the election is uncertain. We now describe one
example scenario, pertaining to #CCAV; the reader can imag-
ine analogous settings for the remaining types of control.

Let us assume that set C of candidates participating in the
election is fixed (for example, because the election rules force
all candidates to register well in advance). We know that some
set V of voters will certainly vote (for example, because they
have already voted and this information is public2). The set
of voters who have not decided to vote yet is W . From some
source (e.g., from prior experience) we have some probability
distribution P on the number of voters from W that will par-
ticipate in the election (from our perspective, each equal-sized
subset of voters from W is equally likely; different-sized sets
may, of course, have different probabilities of participating in
the election).

In other words, for each i, 0 ≤ i ≤ |W |, let P (i) be the
probability that i voters from W join the election (and assume

1Formally, we forbid C′ from containing p. In the constructive
setting this follows from the definition but in the destructive one we
have to assume it separately.

2Naturally, in typical political elections such information would
not be public and we would have to rely on polls. However, in mul-
tiagent systems there can be cases where votes are public.

Problem Plurality Approval Condorcet
#CCAC #P-com – –
#DCAC #P-com FP FP
#CCDC #P-com FP FP
#DCDC #P-com – –
#CCAV FP #P-com #P-com
#DCAV FP ? ?
#CCDV FP #P-com #P-com
#DCDV FP ? ?

Table 1: The complexity of counting variants of control prob-
lems. A dash in an entry means that the given system is im-
mune to the type of control in question (i.e., it is impossi-
ble to achieve the desired effect by the action this control
problem allows; technically this means the answer to the
counting question is always 0). Immunity results were es-
tablished by Bartholdi, Tovey, and Trick [1989] for the con-
structive cases and by Hemaspaandra, Hemaspaandra, and
Rothe [2007] for the destructive cases. For the cases of
#DCAV and #DCDV under approval voting and under Con-
dorcet voting, we were able to show #P-metric-completeness
but not #P-parsimonious-completeness.

that we have an easy way of computing this value) and let
Q(i) be the probability that a designated candidate p wins
under the condition that exactly i voters from W participate
(assuming that each i-element subset of W is equally likely).
Then, the probability that p wins is simply given by:

P (0)Q(0) + P (1)Q(1) + · · ·P (|W |)Q(|W |).
To compute Q(i), we have to compute for how many sets W ,
of size exactly i, candidate p wins, and divide it by

(|W |
i

)
.

To compute for how many sets of size exactly i candidate p
wins, we solve the corresponding #CCAV problem for adding
at most i voters from W , then for adding at most i− 1 voters
from W , and then we subtract the results.

4 Results
In this section we present our complexity results regard-
ing counting variants of election control problems, focus-
ing on positive, algorithmic results. We present a summary
of our results in Table 1. In all constructive cases where
a decision variant of a given problem is polynomial-time
solvable, so is the counting variant. In all cases where a
decision variant of a given problem is NP-complete, the
counting variant is #P-complete. We do not present our #P-
completeness proofs/theorems as they are mostly easy ex-
tensions of the constructions already present in the litera-
ture. Our #P-completeness results follow by reductions from
#X3C.

4.1 Plurality Voting
Under plurality voting, counting variants of both control by
adding voters and control by deleting voters are in FP. In both
cases our algorithms are based on dynamic programming. We
believe that our approach can be used for several other voting
systems.3

3Most glaring example of such a rule would be veto. For ex-
ample, under veto adding voters is essentially the same as deleting

Theorem 4. Plurality-#CCAV is in FP.

Proof. Let I = (C, V,W, p, k) be an input instance of
Plurality-#CCAV, where C = {p, c1, . . . , cm−1} is the can-
didate set, V is the set of registered voters, W is the set of
unregistered voters, p is the designated candidate, and k is
the upper bound on the number of voters that can be added.
We now describe a polynomial-time algorithm that computes
the number of solutions for I .

Let Ap be the set of voters from W that rank p first. Sim-
ilarly, for each ci ∈ C, let Aci be the set of voters from W
that rank ci first. We also define count(C, V,W, p, k, j) to be
the number of sets W ′ ⊆W −Ap such that:

1. |W ′| ≤ k − j, and

2. in election (C, V ∪W ′) each candidate ci ∈ C, 1 ≤ i ≤
m− 1, has score at most scorep(C,V)(p) + j − 1.

The pseudocode for our algorithm is given below.

PLURALITY-#CCAV(C, V,W, p, k)

1 if p is the unique winner of (C, V)
2 then k0 := 0
3 else k0 := max

ci∈C
(scorep(C,V)(ci)− scorep(C,V)(p) + 1),

4 result := 0
5 for j := k0 to min(|Ap|, k)
6 do result := result +

(|Ap|
j

)
· count(C, V,W, p, k, j)

7 return result

At the beginning, the algorithm computes k0, the minimum
number of voters from Ap that need to be added to V to en-
sure that p has plurality score higher than any other candidate
(provided no other voters are added). Clearly, if p already is
the unique winner of (C, V) then k0 is 0, and otherwise k0
is maxci∈C(score

p
(C,V)(ci) − scorep(C,V)(p) + 1). After we

compute k0, for each j, k0 ≤ j ≤ min(k, |Ap|), we com-
pute the number of sets W ′, W ′ ⊆ W , such that W ′ con-
tains exactly j voters from Ap, at most k − j voters from
W − Ap, and p is the unique winner of (C, V ∪ W ′). It
is easy to verify that for a given j, there is exactly h(j) =(|Ap|

j

)
· count(C, V,W, p, k, j) such sets. Our algorithm re-

turns
∑min(k,|Ap|)

j=k0
h(j). The reader can easily verify that

this indeed is the correct answer. To complete the proof it
suffices to show a polynomial-time algorithm for computing
count(C, V,W, p, k, j).

Let us fix j, k0 ≤ j ≤ min(k, |Ap|) and show how to com-
pute count(C, V,W, p, k, j). Our goal is to count the num-
ber of ways in which we can add at most k − j voters from
W − Ap so that no candidate ci ∈ C has score higher than
scorep(C,V)(p) + j − 1. For each candidate ci ∈ C, we can
add at most

li = min
(
|Aci |, j + scorep(C,V)(p)− scorep(C,V)(ci)− 1

)
,

voters from Aci ; otherwise ci’s score would exceed
scorep(C,V)(p) + j − 1.

voters under plurality.

For each i, 1 ≤ i ≤ m−1, and each t, 0 ≤ t ≤ k−j, let at,i
be the number of sets W ′ ⊆ Ac1∪Ac2∪· · ·∪Aci that contain
exactly t voters and such that each candidate c1, c2, . . . , ci has
score at most scorep(C,V)(p) + j − 1 in the election (C, V ∪
W ′). Naturally, count(C, V,W, p, k, j) =

∑k−j
t=0 at,m−1. It

is easy to check that at,i satisfies the following recursion:

at,i =



∑min(li,t)
s=0

(|Aci
|

s

)
at−s,i−1, if t > 0, i > 1,

1, if t = 0, i > 1,(|A1|
t

)
, if t ≤ |Ac1 |, i = 1,

0, if t > |Ac1 |, i = 1.

Thus, for each t, i we can compute at,i using standard dy-
namic programming techniques in polynomial time. Thus,
count(C, V,W, p, k, j) also is polynomial-time computable.
This completes the proof.

Using this algorithm, we can easily derive one for the de-
structive setting.

Theorem 5. Plurality-#DCAV is in FP.

Proof. Let I = (C, V,W, p, k) be an instance of plurality-
#CCAV. There are exactly

∑k
i=0

(|W |
i

)
sets W ′ such that

W ′ ⊆ W and |W ′| ≤ k. Of these, there are exactly
PLURALITY-#CCAV(C, V,W, p, k) sets of voters whose in-
clusion in the election ensures that p is the unique winner.
Thus, there are exactly

k∑
i=0

(
|W |
i

)
− PLURALITY-#CCAV(C, V,W, p, k)

subsets of W of cardinality at most k whose inclusion in the
election ensures that p is not the unique winner. Clearly, we
can compute this value in polynomial time.

Given the results for control by adding voters, it is not sur-
prising that similar results hold for the case of deleting voters.

Theorem 6. Plurality-#CCDV is in FP.

Proof. Let I = (C, V, p, k) be an instance of plurality-
#CCDV, where C = {p, c1, . . . , cm−1} is the set of candi-
dates, V is the set of voters, p is the designated candidate,
and k is the upper bound on the number of voters that can be
deleted. We will now give a polynomial-time algorithm that
computes the number of solutions for I .

Let Ap be the subset of V containing those voters that rank
p first. Similarly, for each ci ∈ C, let Aci be the subset of
voters that rank ci first. For each integer j, 0 ≤ j ≤ k, we
define count(C, V, p, k, j) to be the number of subsets V ′ of
V −Ap such that:

1. |V ′| ≤ k − j, and

2. in election (C, V −V ′) each candidate ci ∈ C has score
at most scorep(C,V)(p)− j − 1.

The algorithm given below returns the number of solutions
for I .

PLURALITY-#CCDV(C, V, p, k)

1 result := 0
2 for j := 0 to min(|Ap|, k)
3 do result := result +

(|Ap|
j

)
· count(C, V, p, k, j)

4 return result

In each iteration of the main loop we consider deleting ex-
actly j voters from Ap (there are

(|Ap|
j

)
ways to pick these j

voters) . Assuming we remove from V exactly j members
of Ap, we must also remove some number of voters from
V − A0, to make sure that p is the unique winner of the re-
sulting election. The number of ways in which this can be
achieved is count(C, V, p, k, j). It is easy to verify that in-
deed our algorithm works correctly. It remains to show how
to compute count(C, V, p, k, j).

Let us fix some value j, 0 ≤ j ≤ min(k, |Ap|). We will
show how to compute count(C, V, p, k, j). For each ci ∈ C,
we define:

li = max
(
0, j + scorep(C,V)(ci)− scorep(C,V)(p) + 1

)
.

Intuitively, li is the minimal number of voters from Aci that
need to be removed from the election for p to have score
higher than ci (assuming j voters from Ap have been already
removed from the election).

For each i, 1 ≤ i ≤ m − 1, and each t, 0 ≤ t ≤ k − j,
let at,i be the number of sets V ′ ⊆ Ac1 ∪ Ac2 ∪ · · · ∪ Aci
such that |V ′| = t and each candidate c1, . . . , ci has score at
most scorep(C,V)(p)− j−1 in election (C, V −V ′). It is easy

to see that count(C, V, p, k, j) =
∑k−j

t=0 at,m−1. Further, the
following recursive relation holds:

at,i =


∑min(|Aci

|,t)
s=li

(|Aci
|

s

)
at−s,i−1, if t ≥ li, i > 1,

0, if t < li,(|A1|
t

)
, if t ≥ l1, i = 1.

Thus, for each t, i we can compute at,i in polynomial time
using dynamic programming. As a result, we can compute
count(C, V, p, k, j) and the proof is complete.

4.2 Approval Voting and Condorcet Voting
Let us now consider approval voting and Condorcet voting.
While these two systems are very different in many respects,
their behavior with respect to election control is very similar.
Specifically, for both systems #CCAV and #CCDV are #P-
complete, for both systems it is impossible to make some can-
didate a winner by adding candidates, and for both systems it
is impossible to prevent someone from winning by deleting
candidates. Yet, for both systems #DCAC and #CCDC are in
FP via almost identical algorithms.
Theorem 7. Both approval-#DCAC and Condorcet-#DCAC
are in FP.

Proof. We first consider the case of approval voting. Let
I = (C,A, V, p, k) be an instance of approval-#DCAC,
where C = {p, c1, . . . , cm−1} is the set of registered candi-
dates, A = {a1, . . . , am′} is the set of additional candidates,
V is the set of voters (with approval vectors over C ∪ A),

p is the designated candidate, and k is the upper bound on
the number of candidates that we can add. We will give a
polynomial-time algorithm that counts the number of up-to-
k-element subsets A′ of A such that p is not the unique winner
of election (C ∪A′, V).

Let A0 be the set of candidates in A that are approved by at
least as many voters as p is. To ensure that p is not the unique
winner of the election (assuming p is the unique winner prior
to adding any candidates), it suffices to include at least one
candidate from A0. Thus, we have the following algorithm.

APPROVAL-#DCAC(C,A, V, p, k)

1 if p is not the unique winner of (C, V)

2 then return
∑k

i=0

(|A|
i

)
3 Let A0 be the set of candidates ai ∈ A,

s.t. scorea(C∪A,V)(ai) ≥ scorea(C∪A,V)(p).
4 result := 0
5 for j := 1 to k

6 do result := result +
∑min(|A0|,j)

i=1

(|A0|
i

)(|A−A0|
j−i

)
7 return result

The loop from line 5, for every j, counts the number of
ways in which we can choose exactly j candidates from A;
it can be done by first picking i of the candidates in A0 (who
beat p), and then j − i of the candidates in A−A0. It is clear
that the algorithm is correct and runs in polynomial time.

Let us now move on to the case of Condorcet voting. It is
easy to see that the same algorithm works correctly, provided
that we make two changes: (a) in the first two lines, instead
of testing if p is an approval winner we need to test if p is a
Condorcet winner, and (b) we redefine the set A0 to be the set
of candidates ai ∈ A such that NC∪A(p, ai) ≤ NC∪A(ai, p).
To see that these two changes suffice, it is enough to note that
to ensure that p is not a Condorcet winner of the election we
have to have that either p already is not a Condorcet winner
(and then we can freely add any number of candidates), or we
have to add at least one candidate from A0.

Theorem 8. Both approval-#CCDC and Condorcet-#CCDC
are in FP.

Proof. Let us handle the case of approval voting first. Let
I = (C, V, p, k) be an instance of approval-#CCDC. The
only way to ensure that p ∈ C is the unique winner is to re-
move all candidates c ∈ C − {p} such that scorea(C,V)(c) ≥
scorea(C,V)(p). Such candidates can be found immediately.
Let’s assume that there are k0 such candidates. After remov-
ing all of them, we can also remove k − k0 or less of any
remaining candidates other than p. Based on this observation
we provide the following simple algorithm.

APPROVAL-#CCDC(C, V, p, k)

1 Let k0 be the number of candidates c ∈ C − {p},
s.t. scorea(C,V)(c) ≥ score(C,V)(p).

2 return
∑k−k0

i=0

(|C|−k0−1
i

)
Clearly, the algorithm is correct and runs in polynomial-time.

For the case of Condorcet voting, it suffices to note that if p
is to be a winner, we have to delete all candidates c ∈ C−{p}
such that NC,V (p, c) ≤ NC,V (c, p). Thus, provided that we
let k0 be the number of candidates c ∈ C − {p} such that
NC,V (p, c) ≤ NC,V (c, p), the same algorithm as for the case
of approval voting works for Condorcet voting.

5 Conclusions and Future Work
We have considered a natural model of predicting election
winners in settings where there is uncertainty regarding the
structure of the election (that is, regarding the exact set of
candidates and the exact collection of voters participating in
the election). We have shown that our model corresponds to
the counting variants of election control problems (specifi-
cally, we have focused on election control by adding/deleting
candidates and voters).

Following the paper of Hemaspaandra, Hemaspaandra, and
Rothe [2007], we have considered three voting rules: plu-
rality, approval, and Condorcet voting. It turned out that the
complexity of counting the number of solutions for construc-
tive control problems under these systems is analogous to the
complexity of verifying if any solution exists. That is, when-
ever the decision variant of the constructive problem is in P,
the counting variant is in FP; whenever the decision variant is
NP-complete, the counting variant is #P-complete. While the
latter is not too surprising, sometimes easy decision problems
correspond to hard counting problems, and thus the former is
less trivial. However, perhaps this behavior is due to the sim-
plicity of the election systems we have considered. Thus, the
most natural research direction currently is to study counting
variants of control under further election systems.

Currently, we are working on results for simplified vari-
ant of Dodgson and for maximin. The former is interesting
because it is used to efficiently approximate the Dodgson
rule [Caragiannis et al., 2010]. The latter is interesting be-
cause it is known that several constructive control problems
are easy for it [Faliszewski et al., 2011]. A more involved re-
search direction is to consider more involved probability dis-
tributions of candidates/voters that join/leave the election.
Acknowledgements. We are very grateful to WSCAI refer-
ees for helpful, thorough reports.

References
[Bachrach et al., 2010] Y. Bachrach, N. Betzler, and P. Fal-

iszewski. Probabilistic possible winner determination. In
Proceedings of AAAI 2010, pages 697–702, July 2010.

[Bartholdi et al., 1989] J. Bartholdi, III, C. Tovey, and
M. Trick. Voting schemes for which it can be difficult
to tell who won the election. Social Choice and Welfare,
6(2):157–165, 1989.

[Bartholdi et al., 1992] J. Bartholdi, III, C. Tovey, and
M. Trick. How hard is it to control an election? Math-
ematical and Computer Modeling, 16(8/9):27–40, 1992.

[Betzler and Dorn, 2009] N. Betzler and B. Dorn. Towards a
dichotomy of finding possible winners in elections based
on scoring rules. In Proceedings of MFCS 2009, pages
124–136, August 2009.

[Caragiannis et al., 2010] I. Caragiannis, C. Kaklamanis,
N. Karanikolas, and A. Procaccia. Socially desirable ap-
proximations for Dodgson’s voting rule. In Proceedings of
EC 2010, pages 253–262, June 2010.

[Erdélyi et al., 2009] G. Erdélyi, M. Nowak, and J. Rothe.
Sincere-strategy preference-based approval voting fully
resists constructive control and broadly resists destructive
control. Mathematical Logic Quarterly, 55(4):425–443,
2009.

[Faliszewski et al., 2010] P. Faliszewski, E. Hemaspaandra,
and L. Hemaspaandra. Using complexity to protect elec-
tions. Communications of the ACM, 53(11):74–82, 2010.

[Faliszewski et al., 2011] P. Faliszewski, E. Hemaspaandra,
and L. Hemaspaandra. Multimode attacks on elections.
Journal of Artificial Intelligence Research, 40:305–351,
2011.

[Hazon et al., 2008] N. Hazon, Y. Aumann, S. Kraus, and
M. Wooldridge. Evaluation of election outcomes under
uncertainty. In Proceedings of the 7th International Con-
ference on Autonomous Agents and Multiagent Systems,
pages 959–966, May 2008.

[Hemaspaandra et al., 1997] E. Hemaspaandra, L. Hemas-
paandra, and J. Rothe. Exact analysis of Dodgson elec-
tions: Lewis Carroll’s 1876 voting system is complete for
parallel access to NP. Journal of the ACM, 44(6):806–825,
1997.

[Hemaspaandra et al., 2007] E. Hemaspaandra, L. Hemas-
paandra, and J. Rothe. Anyone but him: The complexity
of precluding an alternative. Artificial Intelligence, 171(5–
6):255–285, 2007.

[Konczak and Lang, 2005] K. Konczak and J. Lang. Voting
procedures with incomplete preferences. In Proceedins of
the Multidisciplinary IJCAI-05 Worshop on Advances in
Preference Handling, pages 124–129, July/August 2005.

[Krentel, 1988] M. Krentel. The complexity of optimiza-
tion problems. Journal of Computer and System Sciences,
36(3):490–509, 1988.

[Meir et al., 2008] R. Meir, A. Procaccia, J. Rosenschein,
and A. Zohar. The complexity of strategic behavior in
multi-winner elections. Journal of Artificial Intelligence
Research, 33:149–178, 2008.

[Obraztsova et al., 2011] S. Obraztsova, E. Elkind, and
N. Hazon. Ties matter: Complexity of voting manipula-
tion revisited. In Proceedings of AAMAS 2011, 2011. To
appear.

[Valiant, 1979] L. Valiant. The complexity of computing the
permanent. Theoretical Computer Science, 8(2):189–201,
1979.

[Xia and Conitzer, 2008] L. Xia and V. Conitzer. Determin-
ing possible and necessary winners under common voting
rules given partial orders. In Proceedings of AAAI 2008,
pages 196–201, July 2008.

[Zankó, 1991] V. Zankó. #P-completeness via many-one re-
ductions. International Journal of Foundations of Com-
puter Science, 2(1):76–82, 1991.

