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Solution Conepts Unidiretional Covering Results SummarySolution ConeptsBinary dominane relationsIdentify the �most desirable� elements in a pairwise majorityrelation:game theorysoial hoie theoryargumentation theorysports tournaments...Natural onept: Choose the maximal element.
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Solution Conepts Unidiretional Covering Results SummaryExample
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zMaximal elementz is the winner.
?
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zMaximal elementThere is no winner!Condoret's Paradox renders maximality useless
⇒ solution onepts



Solution Conepts Unidiretional Covering Results SummarySolution Conept: Minimal Unidiretional Covering SetsUnidiretional CoveringLet A be a �nite set of alternatives, B ⊆ A, ≻⊆ A× A adominane relation, and let x , y ∈ B .x upward overs y (xCuy) if x ≻ y and for all z ∈ B , z ≻ ximplies z ≻ y .
xCuy , zCux , and zCuy yx
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Solution Conepts Unidiretional Covering Results SummarySolution Conept: Minimal Unidiretional Covering SetsUnovered SetLet A be a �nite set of alternatives, B ⊆ A, ≻⊆ A× A adominane relation, and let C be a overing relation on A. Theunovered set of B with respet to C is:UCC (B) = {x ∈ B | yCx for no y ∈ B}.
UCu({x , y , z}) = {z}UCd({x , y , z}) = {z} yx

z



Solution Conepts Unidiretional Covering Results SummarySolution Conept: Minimal Unidiretional Covering SetsMinimal Covering SetLet A be a �nite set of alternatives, ≻⊆ A× A a dominanerelation, and C a overing relation. B ⊆ A is a overing set for Aunder C , if:UCC (B) = B (internal stability), andfor all x ∈ A− B , x 6∈ UCC (B ∪ {x}) (external stability).Suh a B is minimal if no B ′ ⊂ B is a overing set for A under C .Minimal upward overing sets:B1 = {a, } and B2 = {b, d}Minimal downward overing set:B3 = {a, b,  , d} a

cd

b



Solution Conepts Unidiretional Covering Results SummaryMinimal Upward Covering Set MemberDe�nitionName: Minimal Upward Covering Set Member (MCu-Member).Instane: A set A of alternatives, a dominane relation ≻ on A,and a distinguished element d ∈ A.Question: Is d ontained in some minimal upward overing setfor A?A = {x , y , z}
≻ = {(z , x), (z , y), (x , y)}

(A,≻, z) ∈ MCu-Member
(A,≻, x) 6∈ MCu-Member
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Solution Conepts Unidiretional Covering Results SummaryUnidiretional Covering Set ProblemsMCu-Size: Given a set A of alternatives, a dominane relation
≻ on A, and a positive integer k , does there exist someminimal upward overing set for A ontaining at most kalternatives?MCu-Member-All: Given a set A of alternatives, a dominanerelation ≻ on A, and a distinguished element d ∈ A, is dontained in all minimal upward overing sets for A?MCu-Unique: Given a set A of alternatives and a dominanerelation ≻ on A, does there exist a unique minimal upwardovering set for A?MCu-Test: Given a set A of alternatives, a dominane relation
≻ on A, and a subset M ⊆ A, is M a minimal upward overingset for A?MCu-Find: Given a set A of alternatives and a dominanerelation ≻ on A, �nd a minimal upward overing set for A.



Solution Conepts Unidiretional Covering Results SummaryMinimality versus Minimum SizeSet-inlusion Minimality versus Minimum Cardinalityardinality: lassial problems (maximum-size independentset, minimum-size dominating set, et.)set inlusion: minimal upward overing set member.
⇒ Standard tehniques are not diretly appliable.Upward overing sets:S = {a,  , e}T = {b, d}set inlusion minimal: S and Tardinality minimal: only T

a b e

d c



Solution Conepts Unidiretional Covering Results SummaryLower BoundApproah for proving Θp2-hardness
PSfrag replaements NP-hardness oNP-hardnessDP-hardness

Θp2-hardness



Solution Conepts Unidiretional Covering Results SummaryNP-HardnessRedution from SAT to MCu-MemberThere is a satisfying assignment for ϕ
⇔there is a minimal upward overing set that ontains d .

ϕ = (u ∨ v ∨ w) ∧ (u ∨ w )
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Solution Conepts Unidiretional Covering Results SummaryExample: NP-HardnessRedution from SAT to MCu-MemberThere is a satisfying assignment for ϕ
⇔there is a minimal upward overing set that ontains d .

ϕ = (u ∨ v ∨ w) ∧ (u ∨ w ), satisfying assignment: u = v = w = 1
u u
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Solution Conepts Unidiretional Covering Results SummaryoNP-HardnessThe lass oNPClass of sets whose omplements are in NP.Redution from SAT to the omplement of MCu-MemberThere is a satisfying assignment for ψ
⇔there is no minimal upward overing set that ontains e.Additionally: e is ontained in all minimal upward overing sets ifand only if there is no satisfying assignment for ψ.
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ψ = (a ∨ b) ∧ (b ∨ )
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Solution Conepts Unidiretional Covering Results SummaryExample: oNP-Hardness
ψ = (a ∨ b) ∧ (b ∨ ), satisfying assignment: a = b =  = 1
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Solution Conepts Unidiretional Covering Results SummaryDP-HardnessThe lass DPThe lass of di�erenes of two NP sets: DP = {A−B |A,B ∈ NP}.NP ∪ oNP ⊆ DP.Wagner's Lemma for DP-HardnessLet A be some NP-omplete problem, let B be an arbitrary problem.If there exists a polynomial-time omputable funtion f suh that,for all strings x1, x2 satsifying that if x2 ∈ A then x1 ∈ A, it holds:
(x1 ∈ A and x2 6∈ A) ⇔ f (x1, x2) ∈ B ,then B is DP-hard.ConstrutionThere is a satisfying assignment for ϕ, and none for ψ

⇔there is a minimal upward overing set that ontains d .



Solution Conepts Unidiretional Covering Results SummaryProof Sketh: DP-HardnessCombination of the previously presented NP and oNP redutions.
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NP coNP
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Θ

p2-HardnessThe lass Θp2
Θp2 (also known as PNP|| ) is the lass of problems solvable by apolynomial-time algorithm having parallel aess to an NP orale.NP ∪ oNP ⊆ DP ⊆ Θp2 .Wagner's Lemma for Θp2-HardnessLet A be some NP-omplete problem, and let B be an arbitraryproblem. If there exists a polynomial-time omputable funtion fsuh that, for all m ≥ 1 and all strings x1, x2, . . . , x2m satisfyingthat if xj ∈ A then xj−1 ∈ A, 1 < j ≤ 2m, it holds that

||{i | xi ∈ A}|| is odd ⇔ f (x1, x2, . . . , x2m) ∈ B ,then B is Θp2-hard.



Solution Conepts Unidiretional Covering Results SummaryProof Sketh: Θ
p2-HardnessConatenation of the onstrution used to show DP-hardness.

satisfiable formulas not satisfiable formulas

NP coNP NP coNP NP coNP
constr. constr. constr. constr. constr. constr.

d d d

a’ a’ a’ a’ a’ a’

There is some odd i suh that ϕi ∈ SAT and ϕi+1 6∈ SAT
⇔there is a minimal upward overing set that ontains d .



Solution Conepts Unidiretional Covering Results SummarySummary of Results
Problem MCu , MCd MSCu MSCdSize NP-omplete NP-omplete NP-ompleteMember Θ

p2-hard, in Σ
p2 Θ

p2-omplete oNP-hard, in Θ
p2Member-All oNP-omplete Θ

p2-omplete oNP-hard, in Θ
p2Unique oNP-hard, in Σ

p2 oNP-hard, in Θ
p2 oNP-hard, in Θ

p2Test oNP-omplete oNP-omplete oNP-ompleteFind not in polynomial time unless P = NP



Solution Conepts Unidiretional Covering Results Summary
Thank you for your attention!The Complexity of Computing Minimal UnidiretionalCovering Sets, D. Baumeister, F. Brandt, F. Fisher, J. Ho�mann,and J. Rothe, to appear in the Proeedings of CIAC 2010.
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