A Computational Analysis of Minimal Unidirectional Covering Sets

> Dorothea Baumeister, Felix Brandt, Felix Fischer, Jan Hoffmann, and Jörg Rothe

> > Estoril, 10. April 2010

| Solution Concepts | Unidirectional Covering | Results | Summary |  |
|-------------------|-------------------------|---------|---------|--|
| Outline           |                         |         |         |  |



Onidirectional Covering





Summary

## Solution Concepts

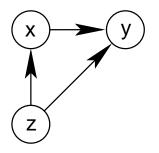
#### Binary dominance relations

Identify the "most desirable" elements in a pairwise majority relation:

- game theory
- social choice theory
- argumentation theory
- sports tournaments
- ...

Natural concept: Choose the maximal element.

| Solution Concepts | Unidirectional Covering | Results | Summary |
|-------------------|-------------------------|---------|---------|
|                   |                         |         |         |



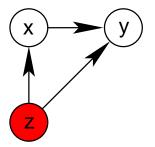
| Solution Concepts |
|-------------------|
|-------------------|

Unidirectional Covering

Results

Summar

#### Example



#### Maximal element

z is the winner.

| So | ution | Concepts |
|----|-------|----------|
|    |       |          |

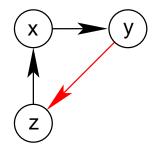
Unidirectional Covering

Results

Summary

#### Example





#### Maximal element

z is the winner.

| So | ution | Concepts |  |
|----|-------|----------|--|
|    |       |          |  |

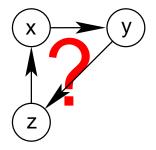
Unidirectional Covering

Results

Summary

## Example





#### Maximal element

z is the winner.

## Maximal element

There is no winner!

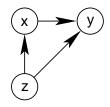
Condorcet's Paradox renders maximality useless  $\Rightarrow$  solution concepts

#### Unidirectional Covering

Let A be a finite set of alternatives,  $B \subseteq A$ ,  $\succ \subseteq A \times A$  a dominance relation, and let  $x, y \in B$ .

x upward covers y (xC<sub>u</sub>y) if x ≻ y and for all z ∈ B, z ≻ x implies z ≻ y.

 $xC_uy$ ,  $zC_ux$ , and  $zC_uy$ 

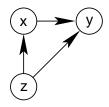


#### Unidirectional Covering

Let A be a finite set of alternatives,  $B \subseteq A$ ,  $\succ \subseteq A \times A$  a dominance relation, and let  $x, y \in B$ .

- x upward covers y  $(xC_uy)$  if  $x \succ y$  and for all  $z \in B$ ,  $z \succ x$  implies  $z \succ y$ .
- x downward covers y  $(xC_d y)$  if  $x \succ y$  and for all  $z \in B$ ,  $y \succ z$  implies  $x \succ z$ .

 $xC_{\mu}y, zC_{\mu}x, \text{ and } zC_{\mu}y$  $zC_dx$ ,  $zC_dy$ , and  $xC_dy$ 



#### Uncovered Set

Let A be a finite set of alternatives,  $B \subseteq A$ ,  $\succ \subseteq A \times A$  a dominance relation, and let C be a covering relation on A. The uncovered set of B with respect to C is:

$$UC_C(B) = \{x \in B \mid yCx \text{ for no } y \in B\}.$$

$$UC_{u}(\{x, y, z\}) = \{z\}$$
  

$$UC_{d}(\{x, y, z\}) = \{z\}$$
  
Z

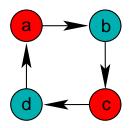
#### Minimal Covering Set

Let A be a finite set of alternatives,  $\succ \subseteq A \times A$  a dominance relation, and C a covering relation.  $B \subseteq A$  is a covering set for A under C, if:

- $UC_C(B) = B$  (internal stability), and
- for all  $x \in A B$ ,  $x \notin UC_C(B \cup \{x\})$  (external stability).

Such a B is minimal if no  $B' \subset B$  is a covering set for A under C.

Minimal upward covering sets:  $B_1 = \{a, c\}$  and  $B_2 = \{b, d\}$ Minimal downward covering set:  $B_3 = \{a, b, c, d\}$ 



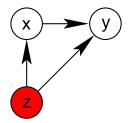
# Minimal Upward Covering Set Member

#### Definition

**Name:** Minimal Upward Covering Set Member ( $MC_u$ -Member). **Instance:** A set A of alternatives, a dominance relation  $\succ$  on A, and a distinguished element  $d \in A$ . **Question:** Is d contained in some minimal upward covering set for A?

$$A = \{x, y, z\} \\ \succ = \{(z, x), (z, y), (x, y)\}$$

$$(A, \succ, z) \in MC_u$$
-Member  
 $(A, \succ, x) \notin MC_u$ -Member



## Unidirectional Covering Set Problems

- MC<sub>u</sub>-Size: Given a set A of alternatives, a dominance relation > on A, and a positive integer k, does there exist some minimal upward covering set for A containing at most k alternatives?
- MC<sub>u</sub>-Member-All: Given a set A of alternatives, a dominance relation ≻ on A, and a distinguished element d ∈ A, is d contained in all minimal upward covering sets for A?
- MC<sub>u</sub>-Unique: Given a set A of alternatives and a dominance relation ≻ on A, does there exist a unique minimal upward covering set for A?
- MC<sub>u</sub>-Find: Given a set A of alternatives and a dominance relation ≻ on A, find a minimal upward covering set for A.

# Minimality versus Minimum Size

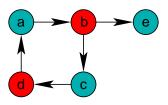
#### Set-inclusion Minimality versus Minimum Cardinality

- cardinality: classical problems (maximum-size independent set, minimum-size dominating set, etc.)
- set inclusion: minimal upward covering set member.
- $\Rightarrow$  Standard techniques are not directly applicable.

Upward covering sets:

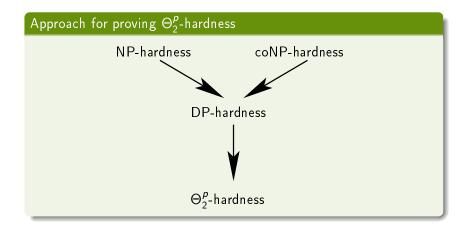
$$S = \{a, c, e\}$$
$$T = \{b, d\}$$

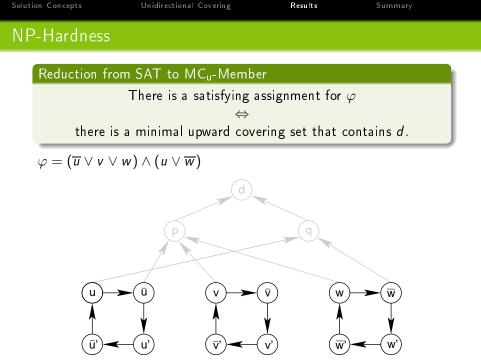
set inclusion minimal: S and T cardinality minimal: only T





## Lower Bound





| Solution Concepts |
|-------------------|
|-------------------|

Summary

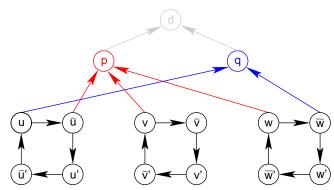
## Example: NP-Hardness

#### Reduction from SAT to $MC_u$ -Member

#### There is a satisfying assignment for $\varphi$

# there is a minimal upward covering set that contains d.

 $\varphi = (\overline{u} \lor v \lor w) \land (u \lor \overline{w})$ 



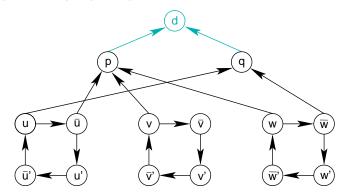
## Example: NP-Hardness

#### Reduction from SAT to $\mathsf{MC}_{u}\text{-}\mathsf{Member}$

#### There is a satisfying assignment for $\varphi$

# there is a minimal upward covering set that contains d.

$$\varphi = (\overline{u} \lor v \lor w) \land (u \lor \overline{w})$$



Summary

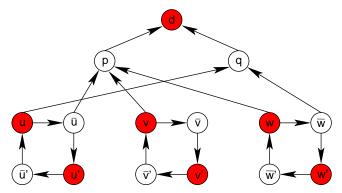
# Example: NP-Hardness

### Reduction from SAT to MC<sub>u</sub>-Member

# There is a satisfying assignment for $\varphi$ $\Leftrightarrow$

#### there is a minimal upward covering set that contains d.

 $\varphi = (\overline{u} \lor v \lor w) \land (u \lor \overline{w})$ , satisfying assignment: u = v = w = 1



## coNP-Hardness

#### The class coNP

Class of sets whose complements are in NP.

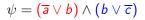
#### Reduction from SAT to the complement of MC<sub>u</sub>-Member

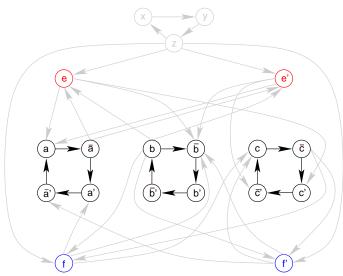
There is a satisfying assignment for  $\psi$   $\Leftrightarrow$  there is no minimal upward covering set that contains e.

Additionally: e is contained in all minimal upward covering sets if and only if there is no satisfying assignment for  $\psi.$ 

Summary

## Example: coNP-Ha<u>rdness</u>

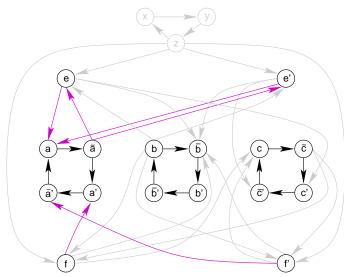




Summary

## Example: coNP-Hardness

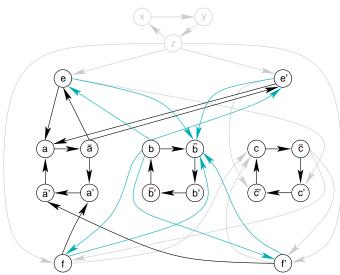
$$\psi = (\overline{a} \lor b) \land (b \lor \overline{c})$$



Summary

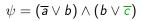
## Example: coNP-Ha<u>rdness</u>

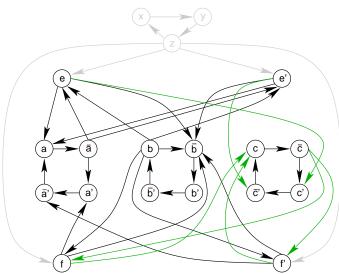




Summary

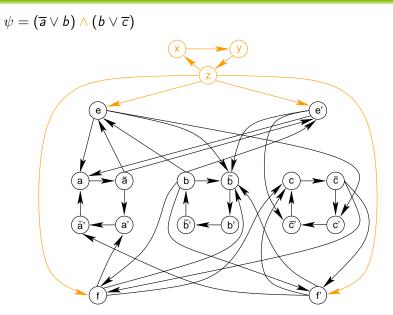
## Example: coNP-Hardness





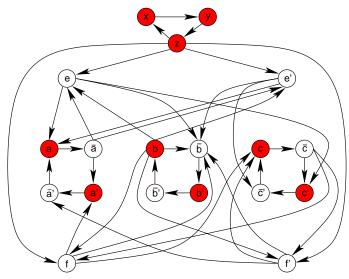
Summary

## Example: coNP-Hardness



## Example: coNP-Hardness

 $\psi = (\overline{a} \lor b) \land (b \lor \overline{c})$ , satisfying assignment: a = b = c = 1



Summary

## **DP-Hardness**

#### The class DP

The class of differences of two NP sets:  $DP = \{A - B \mid A, B \in NP\}$ . NP  $\cup$  coNP  $\subseteq$  DP.

#### Wagner's Lemma for DP-Hardness

Let A be some NP-complete problem, let B be an arbitrary problem. If there exists a polynomial-time computable function f such that, for all strings  $x_1, x_2$  satisfying that if  $x_2 \in A$  then  $x_1 \in A$ , it holds:  $(x_1 \in A \text{ and } x_2 \notin A) \Leftrightarrow f(x_1, x_2) \in B$ , then B is DD hard

then *B* is DP-hard.

#### Construction

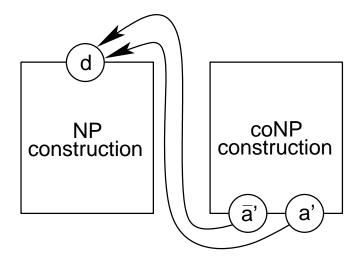
There is a satisfying assignment for  $\varphi,$  and none for  $\psi$ 

 $\Leftrightarrow$ 

there is a minimal upward covering set that contains d.

## Proof Sketch: DP-Hardness

Combination of the previously presented NP and coNP reductions.



| Solution Concepts          | Unidirectional C | Covering | Results | Summary |
|----------------------------|------------------|----------|---------|---------|
| $\Theta_{a}^{p}$ -Hardness |                  |          |         |         |

### The class $\Theta_2^p$

 $\Theta_2^p$  (also known as  $\mathsf{P}_{||}^{\mathsf{NP}}$ ) is the class of problems solvable by a polynomial-time algorithm having parallel access to an NP oracle.  $\mathsf{NP} \cup \mathsf{coNP} \subseteq \mathsf{DP} \subseteq \Theta_2^p$ .

#### Wagner's Lemma for $\Theta_2^p$ -Hardness

Let A be some NP-complete problem, and let B be an arbitrary problem. If there exists a polynomial-time computable function f such that, for all  $m \ge 1$  and all strings  $x_1, x_2, \ldots, x_{2m}$  satisfying that if  $x_j \in A$  then  $x_{j-1} \in A$ ,  $1 < j \le 2m$ , it holds that

$$||\{i \mid x_i \in A\}||$$
 is odd  $\Leftrightarrow f(x_1, x_2, \dots, x_{2m}) \in B$ ,

then B is  $\Theta_2^p$ -hard.

Summar

# Proof Sketch: $\Theta_2^p$ -Hardness

Concatenation of the construction used to show DP-hardness.



There is some odd *i* such that  $\varphi_i \in SAT$  and  $\varphi_{i+1} \notin SAT$  $\Leftrightarrow$  there is a minimal upward covering set that contains *d*.

Summary

### Summary of Results

| Problem    | $MC_u, MC_d$ $MSC_u$ $MSC_d$                                                     |                        |                            |  |
|------------|----------------------------------------------------------------------------------|------------------------|----------------------------|--|
| Size       | NP-complete                                                                      | NP-complete            | NP-complete                |  |
| Member     | $\Theta_2^p$ -hard, in $\Sigma_2^p$                                              | $\Theta_2^p$ -complete | coNP-hard, in $\Theta_2^p$ |  |
| Member-All | coNP-complete                                                                    | $\Theta_2^p$ -complete | coNP-hard, in $\Theta_2^p$ |  |
| Unique     | coNP-hard, in $\Sigma_2^p$ coNP-hard, in $\Theta_2^p$ coNP-hard, in $\Theta_2^p$ |                        |                            |  |
| Test       | coNP-complete                                                                    | coNP-complete          | coNP-complete              |  |
| Find       | not in polynomial time unless $P=NP$                                             |                        |                            |  |

# Thank you for your attention!

The Complexity of Computing Minimal Unidirectional Covering Sets, D. Baumeister, F. Brandt, F. Fischer, J. Hoffmann, and J. Rothe, to appear in the Proceedings of CIAC 2010.