Kemeny Ranking	Parameterized Algorithms	Results	Conclusion + References
00000	00	000000	00

Exact Rank Aggregation with Parameterized Algorithms

Robert Bredereck

Friedrich-Schiller-Universität Jena, Germany

Cost IC0602 International Doctoral School Algorithmic Decision Theory: Computational Social Choice April 12, 2010

・ 同 ト ・ ヨ ト ・ ヨ ト …

Kemeny Ranking •0000	Parameterized Algorithms	Results 0000000	Conclusion + References
Rank Aggreg	ation		

Election

Set of votes V, set of candidates C. A vote is a ranking (total order) over all candidates.

Example: $C = \{a, b, c\}$ vote 1: a > b > cvote 2: a > c > bvote 3: b > c > a

How to aggregate the votes into a "consensus ranking"?

0000	00	0000000	00
Kemeny Ranking	Parameterized Algorithms	Results	Conclusion + References

Kemeny score: KT-distance

KT-distance (between two votes v and w)

$$\mathsf{KT}\operatorname{-dist}(v,w) = \sum_{\{c,d\}\subseteq C} d_{v,w}(c,d),$$

where $d_{v,w}(c,d)$ is 0 if v and w rank c and d in the same order, 1 otherwise.

Example:

$$\begin{array}{rcl}
v_1: & a & > & b & > & c \\
v_2: & a & > & c & > & b \\
v_3: & b & > & c & > & a \\
\text{KT-dist}(v_1, v_2) & = & d_{v,w}(a,b) & + & d_{v,w}(a,c) & + & d_{v,w}(b,c) \\
& & = & 0 & + & 0 & + & 1 \\
& & = & 1 \end{array}$$

Robert Bredereck (Universität Jena)

3

(日本) (日本) (日本)

Kemeny Ranking	Parameterized Algorithms	Results 0000000	Conclusion + References
Kemeny Conse	ensus		

Kemeny score of a ranking r:

Sum of KT-distances between r and all votes

Kemeny consensus *r*_{con}:

A ranking that minimizes the Kemeny score

<i>v</i> ₁ :	a > b > c	$KT\operatorname{-dist}(r_{con}, v_1) = 0$
<i>v</i> ₂ :	a > c > b	$KT\operatorname{-dist}(r_{con}, v_2) = 1$ because of $\{b, c\}$
<i>V</i> 3:	b > c > a	$KT\operatorname{-dist}(r_{con}, v_3) = 2$ because of $\{a, b\}$ and $\{a, c\}$

 r_{con} : **a** > **b** > **c** Kemeny score: 0 + 1 + 2 = 3

Robert Bredereck (Universität Jena)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Kemeny Ranking	Parameterized Algorithms	Results 0000000	Conclusion + References
Decision proble	m		

KEMENY SCORE

Input: An election (V, C) and a positive integer k. **Question:** Is there a Kemeny consensus of (V, C) with Kemeny score at most k?

3

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

Kemeny Ranking	Parameterized Algorithms	Results 0000000	Conclusion + References
Decision proble	em		

KEMENY SCORE

Input: An election (V, C) and a positive integer k. **Question:** Is there a Kemeny consensus of (V, C) with Kemeny score at most k?

Applications:

- Ranking of web sites (meta search engine)
- Sport competitions
- Databases
- Voting systems

く 同 ト く ヨ ト く ヨ ト

Kemeny Ranking	Parameterized Algorithms	Results 0000000	Conclusion + References
Known results			

• KEMENY SCORE is NP-complete (even for 4 votes) [Bartholdi et al., SCW 1989], [Dwork et al., WWW 2001]

Algorithms:

- factor 8/5-approximation, randomized: factor 11/7 [VAN ZUYLEN AND WILLIAMSON, WAOA 2007], [AILON ET AL., JACM 2008]
- PTAS [Kenyon-Mathieu and Schudy, STOC 2007]
- Heuristics; greedy, branch and bound (experimental) [DAVENPORT AND KALAGNANAM, AAAI 2004],
 - [V. CONITZER, A. DAVENPORT, AND J. KALAGNANAM, AAAI 2006],
 - [F. Schalekamp and A. van Zuylen, ALENEX 2009]

(4 回) (4 回) (4 回) (4 回)

Kemeny Ranking

Parameterized Algorithms

Results

Conclusion + References

Parameterized Complexity

Given an NP-hard problem with input size n and a parameter kBasic idea: Confine the combinatorial explosion to k

Definition

A problem of size *n* is called **fixed-parameter tractable** with respect to a parameter *k* if it can be solved exactly in $f(k) \cdot n^{O(1)}$ time.

Parameters: # votes, # candidates, average KT-distance,

Robert Bredereck (Universität Jena)

Exact Rank Aggregation with Parameterized Algorithms

Kemeny Ranking	Parameterized Algorithms	Results 0000000	Conclusion + References
Data reduction	rule		

You can see data reduction rules as preprocessing step to solve a problem:

Basic idea

A data reduction rule shrinks an instance of a problem to an "equivalent" instance by cutting away easy parts of the original instance.

We focus on **polynomial-time** data reduction rules for **Kemeny Score**.

・ 同 ト ・ 三 ト ・ 三 ト

00000	OO	000000	00
Simple reductio	n rules		

Condorcet property: (weak) A candidate *c* beating every other candidate at least than half of the votes, that is,

 $c \geq_{1/2} c'$ for every candidate $c' \neq c$,

takes the first position in at least one Kemeny consensus.

Reduction Rule

If there is (weak) Condorcet winner in an election provided by a $\rm KEMENY$ SCORE instance, then delete this candidate.

- 4 同 ト 4 ヨ ト - 4 ヨ ト - -

00000	OO	000000	00
Simple reductio	n rules		

Condorcet property: (weak) A candidate *c* beating every other candidate at least than half of the votes, that is,

 $c \geq_{1/2} c'$ for every candidate c'
eq c,

takes the first position in at least one Kemeny consensus.

Reduction Rule

If there is (weak) Condorcet winner in an election provided by a $\rm KEMENY$ SCORE instance, then delete this candidate.

Reduction Rule

If there is a subset $C' \subset C$ of candidates with $c' \geq_{1/2} c$ for every $c' \in C'$ and every $c \in C \setminus C'$, then replace the original instance by the two subinstances "induced" by C' and $C \setminus C'$.

Note: A subset C' can be found in polynomial time.

Kemeny Ranking	Parameterized Algorithms	Results	Conclusion + References
00000	00	000000	00

Back to our initial example

Kemeny Ranking	Parameterized Algorithms	Results	Conclusion + References
00000		000000	00
D			

Back to our initial example

 $v_1: a > b > c$ $v_2: a > c > b$ $v_3: b > c > a$

The candidate *a* is a condorcet winner. The set $\{b, c\}$ is a condorcet looser set.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シック

 Kemeny Ranking
 Parameterized Algorithms
 Results
 Conclusion + References

 00000
 00
 00
 00
 00

Reduction rules using "dirty candidates"

A candidate c is **non-dirty** if for every other candidate c' either $c' \ge_{3/4} c$ or $c \ge_{3/4} c'$. Otherwise c is **dirty**.

Lemma

For a non-dirty candidate c and candidate $c' \in C \setminus \{c\}$: If $c \ge_{3/4} c'$, then $c > \cdots > c'$ in every Kemeny consensus. If $c' \ge_{3/4} c$, then $c' > \cdots > c$ in every Kemeny consensus.

Reduction Rule

If there is a non-dirty candidate, then delete it and partition the instance into two subinstances accordingly.

・ロト ・ 四ト ・ ヨト ・

 Kemeny Ranking
 Parameterized Algorithms
 Results
 Conclusion + References

 00000
 00
 00
 00
 00

Reduction rules using "dirty candidates"

A candidate c is **non-dirty** if for every other candidate c' either $c' \ge_{3/4} c$ or $c \ge_{3/4} c'$. Otherwise c is **dirty**.

Lemma

For a non-dirty candidate c and candidate $c' \in C \setminus \{c\}$: If $c \ge_{3/4} c'$, then $c > \cdots > c'$ in every Kemeny consensus. If $c' \ge_{3/4} c$, then $c' > \cdots > c$ in every Kemeny consensus.

Reduction Rule

If there is a non-dirty candidate, then delete it and partition the instance into two subinstances accordingly.

Further rule: an "extended" reduction rule based on "sets of non-dirty candidates" ...

イロト 不得下 イヨト イヨト

Kemeny Ranking	Parameterized Algorithms	Results 000●000	Conclusion + References
Reduction rule	s using "dirty car	ndidates"	

 $\begin{array}{ll} a_1 > a_2 > a_3 > c > b_1 > b_2 & a_i \ge_{3/4} c \text{ and } c \ge_{3/4} b_i \\ a_3 > a_2 > c > a_1 > b_2 > b_1 & \Rightarrow \\ a_1 > c > a_2 > b_2 > b_1 > a_3 & \text{in every Kemeny consensus:} \\ a_2 > a_3 > a_1 > b_1 > b_2 > c & \{a_1, a_2, a_3\} > c > \{b_1, b_2\} \end{array}$

A candidate c is **non-dirty** if for every other candidate c' either $c' \ge_{3/4} c$ or $c \ge_{3/4} c'$. Otherwise c is **dirty**.

Lemma

For a non-dirty candidate c and candidate $c' \in C \setminus \{c\}$: If $c \ge_{3/4} c'$, then $c > \cdots > c'$ in every Kemeny consensus. If $c' \ge_{3/4} c$, then $c' > \cdots > c$ in every Kemeny consensus.

Reduction Rule

If there is a non-dirty candidate, then delete it and partition the instance into two subinstances accordingly.

イロト 不得下 イヨト イヨト

3

00000	00	0000000	00
Kemeny Ranking	Parameterized Algorithms	Results	Conclusion + References

Average KT-distance as parameter for Kemeny Score

Parameter: average KT-distance between the input votes

$$d := \frac{2}{n(n-1)} \cdot \sum_{\{u,v\} \subseteq V} \mathsf{KT}\operatorname{-dist}(u,v).$$

Known fixed-parameter tractability results:

- dynamic programming with running time $O(16^d \cdot \text{poly}(n))$ [Betzler, Fellows, Guo, Niedermeier, and Rosamond, AAMAS 2009]
- branching algorithm with running time $O(5.83^d \cdot \text{poly}(n))$ [SIMJOUR, IWPEC 2009]

イロト 不得下 イヨト イヨト 二日

Kemeny Ranking	Parameterized Algorithms	Results	Conclusion + References
00000	00	0000000	00

Average KT-distance as parameter for Kemeny Score

Theorem

A KEMENY SCORE instance with average KT-distance d can be reduced in polynomial time to an "equivalent" instance with less than $11 \cdot d$ candidates.

・ 同 ト ・ 三 ト ・ 三 ト

Kemeny Ranking	Parameterized Algorithms	Results	Conclusion + References
00000	00	0000000	00

Average KT-distance as parameter for Kemeny Score

Theorem

A KEMENY SCORE instance with average KT-distance d can be reduced in polynomial time to an "equivalent" instance with less than $11 \cdot d$ candidates.

Idea of proof:

- Recall: Reduction rule which deletes all non-dirty candidates
- Every dirty candidate must be involved in at least one candidate pair that is not ordered according to the "
 ⁽¹⁾_{3/4}-majority"
- For an instance with *n* votes, every such pair contributes with at least $n/4 \cdot 3n/4$ to the average KT-distance.

Kemeny Ranking	Parameterized Algorithms	Results 000000	Conclusion + References

Experimental results: Meta search engines

Four votes: Google, Lycos, MSN Live Search, and Yahoo!

top 1000 hits each, candidates that appear in all four rankings

search term	#cand.	time [s]	structure of reduced instance solved/unsolved		
affirmative action	127	0.41	[27]	> 41 >	[59]
alcoholism	115	0.21	[115]		
architecture	122	0.47	[36]	> 12 > [30] > 17 >	[27]
blues	112	0.16	[74]	> 9 >	[29]
cheese	142	0.39	[94]	> 6 >	[42]
classical guitar	115	1.12	[6]	> 7 > [50] > 35 >	[17]
Death Valley	110	0.25	[15]	> 7 > [30] > 8 >	[50]
field hockey	102	0.21	[37]	> 26 > [20] > 4 >	[15]
gardening	106	0.19	[54]	> 20 > [2] > 9 > [8] > 4 >	[9]
HIV	115	0.26	[62]	> 5 > [7] > 20 >	[21]
lyme disease	153	2.61	[25]	> 97 >	[31]
mutual funds	128	3.33	[9]	> 45 > [9] > 5 > [1] > 49 >	[10]
rock climbing	102	0.12	[102]		
Shakespeare	163	0.68	[100]	> 10 > [25] > 6 >	[22]
telecommuting	131	2.28	[9]	> 109 >	[13]

Robert Bredereck (Universität Jena)

(4月) (日本)

- A - E - N

Kemeny Ranking	Parameterized Algorithms	Results 0000000	Conclusion + References
Conclusion			

In practice:

Data reduction should be applied whenever possible. There are many real-world instances that are only (exactly) solvable with data reduction rules.

In theory:

Parameterized algorithmics offer a framework to analyze the effectiveness of data reduction rules.

Still open:

- more (structural) parameters
- bound also number of votes
- more data reduction rules

Kemeny Ranking	Parameterized Algorithms	Results 0000000	Conclusion + References
Literature			

Talk is based on

• Exact Rank Aggregation Based on Effective Data Reduction

[N. Betzler, R. Bredereck, and R. Niedermeier, manuscript]

General literature on parameterized algorithms

- R. G. Downey and M. R. Fellows, Parameterized Complexity, Springer, 1999
- R. Niedermeier, Invitation to Fixed-Parameter Algorithms, Oxford University Press, 2006

- 4 同 ト 4 ヨ ト - 4 ヨ ト - -