Minimal Retentive Sets in Tournaments - From Anywhere to TEQ -

Felix Brandt Markus Brill Felix Fischer Paul Harrenstein

Ludwig-Maximilians-Universität München

Estoril, April 12, 2010

PREFERENCE AGGREGATION IN MULTIAGENT SYSTEMS

The Trouble with Tournaments

- Tournaments are oriented complete graphs
- Many applications: social choice theory, sports tournaments, game theory, argumentation theory, webpage and journal ranking, etc.
- Question: How to select the winner(s) of a tournament in the absence of transitivity?

The Trouble with Tournaments

- Tournaments are oriented complete graphs
- Many applications: social choice theory, sports tournaments, game theory, argumentation theory, webpage and journal ranking, etc.
- Question: How to select the winner(s) of a tournament in the absence of transitivity?

Overview

- Tournament solutions
- Retentiveness and Schwartz's Tournament Equilibrium Set (TEQ)
- Properties of minimal retentive sets
- 'Approximating' TEQ
- A new tournament solution

Tournament Solutions

- A tournament T = (A, >) consists of:
 - a finite set A of alternatives
 - a complete and asymmetric relation > on A

Tournament Solutions

- A tournament T = (A, >) consists of:
 - a finite set A of alternatives
 - a complete and asymmetric relation > on A
- A tournament solution S maps each tournament $T = (A, \succ)$ to a set S(T) such that $\emptyset \neq S(T) \subseteq A$ and S(T) contains the Condorcet winner if it exists
 - S is called *proper* if a Condordet winner is always selected as only alternative

Tournament Solutions

- A tournament T = (A, >) consists of:
 - a finite set A of alternatives
 - a complete and asymmetric relation > on A
- A tournament solution S maps each tournament T = (A, >) to a set S(T) such that $\emptyset \neq S(T) \subseteq A$ and S(T) contains the Condorcet winner if it exists
 - S is called proper if a Condordet winner is always selected as only alternative
- Examples: Trivial Solution (TRIV), Top Cycle (TC), Uncovered Set, Slater Set, Copeland Set, Banks Set, Minimal Covering Set (MC), *Tournament Equilibrium Set* (*TEQ*), ...

- Weak Superset Property (WSP)
- Strong Superset Property (SSP)
- Independence of Unchosen Alternatives (IUA)

- Weak Superset Property (WSP)
- Strong Superset Property (SSP)
- Independence of Unchosen Alternatives (IUA)

- Weak Superset Property (WSP)
- Strong Superset Property (SSP)
- Independence of Unchosen Alternatives (IUA)

- Weak Superset Property (WSP)
- Strong Superset Property (SSP)
- Independence of Unchosen Alternatives (IUA)

Monotonicity (MON)

- Strong Superset Property (SSP)
- Independence of Unchosen Alternatives (IUA)

Monotonicity (MON)

- Strong Superset Property (SSP)
- Independence of Unchosen Alternatives (IUA)

Monotonicity (MON)

- Strong Superset Property (SSP)
- Independence of Unchosen Alternatives (IUA)

Monotonicity (MON)

- Strong Superset Property (SSP)
- Independence of Unchosen Alternatives (IUA)

- Weak Superset Property (WSP)
- Strong Superset Property (SSP)
- Independence of Unchosen Alternatives (IUA)

- Weak Superset Property (WSP)
- Strong Superset Property (SSP)
- Independence of Unchosen Alternatives (IUA)

- Weak Superset Property (WSP)
- Strong Superset Property (SSP)
- Independence of Unchosen Alternatives (IUA)

- Weak Superset Property (WSP)
- Strong Superset Property (SSP)
- Independence of Unchosen Alternatives (IUA)

- Weak Superset Property (WSP)
- Strong Superset Property (SSP)
- Independence of Unchosen Alternatives (IUA)

- Weak Superset Property (WSP)
- Strong Superset Property (SSP)
- Independence of Unchosen Alternatives (IUA)

- Weak Superset Property (WSP)
- Strong Superset Property (SSP)
- Independence of Unchosen Alternatives (IUA)

- Weak Superset Property (WSP)
- Strong Superset Property (SSP)
- Independence of Unchosen Alternatives (IUA)

- Monotonicity (MON)
- Weak Superset Property (WSP)
- Strong Superset Property (SSP)
- Independence of Unchosen Alternatives (IUA)

- Monotonicity (MON)
- Weak Superset Property (WSP)
- Strong Superset Property (SSP)
- Independence of Unchosen Alternatives (IUA)

Note:

- **SSP** is equivalent to $\hat{\alpha}$ (see Felix's lecture)
- \blacksquare (SSP \wedge MON) implies WSP and IUA

Definition: *TRIV* returns the set *A* for each tournament T = (A, >)

Definition: *TRIV* returns the set *A* for each tournament T = (A, >)

Definition: *TC* returns the smallest *dominating set*, i.e. the smallest set $B \subseteq A$ with $B > A \setminus B$

· Intuition: No winner should be dominated by a loser

Definition: *TRIV* returns the set *A* for each tournament T = (A, >)

Definition: *TC* returns the smallest *dominating set*, i.e. the smallest set $B \subseteq A$ with $B > A \setminus B$

· Intuition: No winner should be dominated by a loser

Definition: *TRIV* returns the set *A* for each tournament T = (A, >)

Definition: *TC* returns the smallest *dominating set*, i.e. the smallest set $B \subseteq A$ with $B > A \setminus B$

- · Intuition: No winner should be dominated by a loser
- Define $\overline{D}(b) = \{a \in A : a > b\}$
- *TC* is the smallest set *B* satisfying $\overline{D}(b) \subseteq B$ for all $b \in B$

Definition: *TRIV* returns the set *A* for each tournament T = (A, >)

Definition: *TC* returns the smallest *dominating set*, i.e. the smallest set $B \subseteq A$ with $B > A \setminus B$

- · Intuition: No winner should be dominated by a loser
- Define $\overline{D}(b) = \{a \in A : a > b\}$
- *TC* is the smallest set *B* satisfying $\overline{D}(b) \subseteq B$ for all $b \in B$

Both TRIV and TC satisfy all four basic properties

Thomas Schwartz

Intuition:

• An alternative *a* is only "properly" dominated by a "good" alternatives

Thomas Schwartz

Intuition:

• An alternative *a* is only "properly" dominated by a "good" alternatives, i.e., alternatives selected by *S* from the dominators of a Intuition:

the dominators of a

"good" alternatives, i.e., alternatives selected by S from

· No winner should be "properly" dominated by a loser

• An alternative a is only "properly" dominated by a

Thomas Schwartz

Thomas Schwartz

Definition: *B* is *S*-retentive if $B \neq \emptyset$ and $S(\overline{D}(b)) \subseteq B$ for all $b \in B$

Thomas Schwartz

Definition: *B* is *S*-retentive if $B \neq \emptyset$ and $S(\overline{D}(b)) \subseteq B$ for all $b \in B$

Thomas Schwartz

Retentiveness

Thomas Schwartz

Definition: S returns the union of all minimal S-retentive sets

Retentiveness

Thomas Schwartz

Definition: \mathring{S} returns the union of all minimal *S*-retentive sets

• Call S unique if there always exists a unique minimal S-retentive set

Retentiveness

Thomas Schwartz

Definition: \mathring{S} returns the union of all minimal *S*-retentive sets

- Call S unique if there always exists a unique minimal S-retentive set
- Minimal S-retentive sets exist for each tournament
- *Š* is unique if and only if there do not exist two disjoint *S*-retentive sets

Proposition: $T R^{\dagger} I V = T C$

Proposition: TRIV = TC

Proof: A set is TRIV-retentive if and only if it is dominating

 $TRIV(\overline{D}(b)) = \overline{D}(b)$

• well-defined because $|\overline{D}(a)| < |A|$ for each $a \in A$

x	$\overline{D}(x)$
а	{ C }
b	{ <i>a</i> , <i>e</i> }
С	{b, d}
d	{a, b}
е	{a, c, d}

x	$\overline{D}(x)$	$TEQ(\overline{D}(x))$
а	{ C }	{ c }
b	{ <i>a</i> , <i>e</i> }	{ a }
С	{b, d}	{ b }
d	{a,b}	{ a }
е	{ <i>a</i> , <i>c</i> , <i>d</i> }	{a, c, d}

x	$\overline{D}(x)$	$TEQ(\overline{D}(x))$
а	{ C }	{ c }
b	{ <i>a</i> , <i>e</i> }	{ a }
С	{b, d}	{ b }
d	{a,b}	{ a }
е	{ <i>a</i> , <i>c</i> , <i>d</i> }	{a, c, d}

x	$\overline{D}(x)$	$TEQ(\overline{D}(x))$
а	{ <i>C</i> }	{ c }
b	{ <i>a</i> , <i>e</i> }	{ a }
С	{b, d}	{ b }
d	{a, b}	{ a }
е	{ <i>a</i> , <i>c</i> , <i>d</i> }	{ <i>a</i> , <i>c</i> , <i>d</i> }

TEQ-retentive sets: $\{a, b, c, d, e\}$, $\{a, b, c, d\}$, $\{a, b, c\}$

x	$\overline{D}(x)$	$TEQ(\overline{D}(x))$
а	{ <i>C</i> }	{ c }
b	{ <i>a</i> , <i>e</i> }	{ a }
С	{b, d}	{ b }
d	{a, b}	{ a }
е	{a, c, d}	{ <i>a</i> , <i>c</i> , <i>d</i> }

TEQ-retentive sets: {*a*, *b*, *c*, *d*, *e*}, {*a*, *b*, *c*, *d*}, {*a*, *b*, *c*}

$$TEQ(T) = \{a, b, c\}$$

• well-defined because $|\overline{D}(a)| < |A|$ for each $a \in A$

• well-defined because $|\overline{D}(a)| < |A|$ for each $a \in A$

Schwartz's Conjecture: *TEQ* is unique, i.e., each tournament admits a unique minimal *TEQ*-retentive set.

• well-defined because $|\overline{D}(a)| < |A|$ for each $a \in A$

Schwartz's Conjecture: *TEQ* is unique, i.e., each tournament admits a unique minimal *TEQ*-retentive set.

Theorem (Laffond et al., 1993, Houy, 2009): *TEQ* is unique if and only if *TEQ* satisfies any of MON, WSP, SSP, and IUA.

Theorem: If \mathring{S} satisfies MON, WSP, SSP, or IUA, so does *S*.

Theorem: If \mathring{S} satisfies MON, WSP, SSP, or IUA, so does S.

Theorem: If S satisfies (MON \land SSP), WSP, SSP, or IUA, so does \mathring{S}

Theorem: If \mathring{S} satisfies MON, WSP, SSP, or IUA, so does S.

Theorem: If S satisfies (MON \land SSP), WSP, SSP, or IUA, so does \mathring{S} *if* \mathring{S} *is unique.*

Define $S^{(0)} = S$ and $S^{(k+1)} = \mathring{S}^{(k)}$. Thus, we obtain sequences like:

 $TRIV, TC, TC, TC^{(2)}, TC^{(3)}, \dots$ $MC, MC, MC^{(2)}, MC^{(3)}, MC^{(4)}, \dots$

Define $S^{(0)} = S$ and $S^{(k+1)} = \mathring{S}^{(k)}$. Thus, we obtain sequences like:

 $TRIV, TC, TC, TC^{(2)}, TC^{(3)}, \dots$ $MC, MC, MC^{(2)}, MC^{(3)}, MC^{(4)}, \dots$

Definition: *S* converges to *S'* if for each *T* there is some $k_T \in \mathbb{N}$ such that $S^{(k_T)}(T) = S^{(n)}(T) = S'(T) \text{ for all } n \ge k_T$

Define $S^{(0)} = S$ and $S^{(k+1)} = \mathring{S}^{(k)}$. Thus, we obtain sequences like:

 $TRIV, TC, TC, TC^{(2)}, TC^{(3)}, \dots$ $MC, MC, MC^{(2)}, MC^{(3)}, MC^{(4)}, \dots$

Definition: *S* converges to *S'* if for each *T* there is some $k_T \in \mathbb{N}$ such that $S^{(k_T)}(T) = S^{(n)}(T) = S'(T) \text{ for all } n \ge k_T$

Theorem: Every tournament solution converges to *TEQ*.

Define $S^{(0)} = S$ and $S^{(k+1)} = \mathring{S}^{(k)}$. Thus, we obtain sequences like:

 $TRIV, TC, TC, TC^{(2)}, TC^{(3)}, \dots$ $MC, MC, MC^{(2)}, MC^{(3)}, MC^{(4)}, \dots$

Definition: *S* converges to *S'* if for each *T* there is some $k_T \in \mathbb{N}$ such that $S^{(k_T)}(T) = S^{(n)}(T) = S'(T) \text{ for all } n \ge k_T$

Theorem: Every tournament solution converges to *TEQ*. Proof: $S^{(n-1)}(T) = TEQ(T)$ for all tournaments *T* of order $\leq n$

Theorem (Brandt et al. 2008): Computing *TEQ* is NP-hard.

Theorem (Brandt et al. 2008): Computing TEQ is NP-hard.

Theorem: \mathring{S} is *efficiently computable* if and only if *S* is.

 $S, \, \mathring{S}, \, S^{(2)}, \, S^{(3)}, \, \dots \, TEQ$

Theorem (Brandt et al. 2008): Computing TEQ is NP-hard.

Theorem: \mathring{S} is *efficiently computable* if and only if S is.

 $S, S, S^{(2)}, S^{(3)}, \dots TEQ$

We would like to have 'nice' convergence...

Theorem (Brandt et al. 2008): Computing *TEQ* is NP-hard.

Theorem: \mathring{S} is *efficiently computable* if and only if *S* is.

 $S, \, \mathring{S}, \, S^{(2)}, \, S^{(3)}, \, \dots \, TEQ$

We would like to have 'nice' convergence...

Theorem: If $\mathring{S} \subseteq S$, $TEQ \subseteq S$ and TEQ is unique, then $TEQ \subseteq S^{(k+1)} \subseteq S^{(k)}$ for all $k \ge 0$.

Theorem (Brandt et al. 2008): Computing *TEQ* is NP-hard.

Theorem: \mathring{S} is *efficiently computable* if and only if *S* is.

 $S, S, S^{(2)}, S^{(3)}, \dots TEQ$

We would like to have 'nice' convergence...

Theorem: If $\mathring{S} \subseteq S$, $TEQ \subseteq S$ and TEQ is unique, then $TEQ \subseteq S^{(k+1)} \subseteq S^{(k)}$ for all $k \ge 0$.

In particular,

$$\mathsf{TRIV} \supseteq \mathsf{TC} \supseteq \mathsf{TC} \supseteq \mathsf{TC}^{(2)} \supseteq \cdots \supseteq \mathsf{TEQ}.$$

Thus, TEQ can be 'approximated' by an anytime algorithm.

Theorem (Brandt et al. 2008): Computing *TEQ* is NP-hard.

Theorem: \mathring{S} is *efficiently computable* if and only if *S* is.

 $S, S, S^{(2)}, S^{(3)}, \dots TEQ$

We would like to have 'nice' convergence...

Theorem: If $\mathring{S} \subseteq S$, $TEQ \subseteq S$ and TEQ is unique, then $TEQ \subseteq S^{(k+1)} \subseteq S^{(k)}$ for all $k \ge 0$.

In particular,

$$\mathsf{TRIV} \supseteq \mathsf{TC} \supseteq \mathring{\mathsf{TC}} \supseteq \mathsf{TC}^{(2)} \supseteq \cdots \supseteq \mathsf{TEQ}.$$

Thus, TEQ can be 'approximated' by an anytime algorithm.

As uniqueness of $TC^{(k)}$ implies uniqueness of $TC^{(k-1)}$, we have an infinite sequence of increasingly difficult *conjectures*.

The Minimal Top Cycle Retentive Set

 $\textit{TRIV}, \textit{TC}, \textit{TC}, \textit{TC}^{(2)}, \textit{TC}^{(3)}, \dots \textit{TEQ}$

The Minimal Top Cycle Retentive Set

 $TRIV, TC, TC, TC^{(2)}, TC^{(3)}, \dots TEQ$

Theorem: ${TC}$ is unique.

The Minimal Top Cycle Retentive Set

 $TRIV, TC, TC, TC^{(2)}, TC^{(3)}, \dots TEQ$

Theorem: TC is unique.

Consequence:

- TC satisfies MON, SSP, WSP, and IUA
- *TC* lies between *TC* and *TEQ*
- ${TC}$ is efficiently computable

Conclusion

- Retentiveness as an operation on tournament solutions
- Inheritance of basic properties by minimal retentive sets
- Convergence and 'approximating' TEQ
- **\vec{TC} first new concept in sequence with desirable properties**
- Future work: Prove (or disprove) uniqueness of $TC^{(2)}$, MC,..., TEQ

Conclusion

- Retentiveness as an operation on tournament solutions
- Inheritance of basic properties by minimal retentive sets
- Convergence and 'approximating' TEQ
- **\vec{TC} first new concept in sequence with desirable properties**
- Future work: Prove (or disprove) uniqueness of $TC^{(2)}$, MC,..., TEQ

Thank you!