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The Trouble with Tournaments

Tournaments are oriented complete graphs

Many applications: social choice theory, sports tournaments, game theory,
argumentation theory, webpage and journal ranking, etc.

Question: How to select the winner(s) of a tournament in the absence of
transitivity?

b c

a

d e

2 / 17



The Trouble with Tournaments

Tournaments are oriented complete graphs

Many applications: social choice theory, sports tournaments, game theory,
argumentation theory, webpage and journal ranking, etc.

Question: How to select the winner(s) of a tournament in the absence of
transitivity?

b c

a

d e

2 / 17



Overview

Tournament solutions

Retentiveness and Schwartz’s Tournament Equilibrium Set (TEQ)

Properties of minimal retentive sets

‘Approximating’ TEQ

A new tournament solution

3 / 17



Tournament Solutions

A tournament T = (A ,�) consists of:

• a finite set A of alternatives

• a complete and asymmetric relation � on A

b c

a

d e

A tournament solution S maps each tournament T = (A ,�) to a set S(T)
such that ∅ , S(T) ⊆ A and S(T) contains the Condorcet winner if it exists

• S is called proper if a Condordet winner is always selected as only alternative

Examples: Trivial Solution (TRIV), Top Cycle (TC), Uncovered Set, Slater
Set, Copeland Set, Banks Set, Minimal Covering Set (MC), Tournament
Equilibrium Set (TEQ), . . .
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Basic Properties of Tournament Solutions

Monotonicity (MON)

Weak Superset Property (WSP)

Strong Superset Property (SSP)

Independence of Unchosen Alternatives
(IUA)

Note:

SSP is equivalent to α̂ (see Felix’s lecture)

(SSP ∧MON) implies WSP and IUA

a

b
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Examples

Definition: TRIV returns the set A for each tournament T = (A ,�)

Definition: TC returns the smallest dominating set, i.e. the smallest set B ⊆ A
with B � A \ B
• Intuition: No winner should be dominated by a loser

• Define D(b) = {a ∈ A : a � b}

• TC is the smallest set B satisfying D(b) ⊆ B for all b ∈ B

Both TRIV and TC satisfy all four basic properties

B

A \ B b

B

D(b)
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Retentiveness

Intuition:

• An alternative a is only “properly” dominated by a
“good” alternatives

, i.e., alternatives selected by S from
the dominators of a

• No winner should be “properly” dominated by a loser

Thomas Schwartz
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Retentiveness

Definition: B is S-retentive if B , ∅ and S(D(b)) ⊆ B for
all b ∈ B
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Definition: S̊ returns the union of all minimal S-retentive sets

• Call S̊ unique if there always exists a unique minimal S-retentive set

• Minimal S-retentive sets exist for each tournament

• S̊ is unique if and only if there do not exist two disjoint S-retentive sets
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Example

Proposition: ˚TRIV = TC

Proof: A set is TRIV -retentive if and only if it is dominating

b

B

TRIV(D(b)) = D(b)D(b)
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The Tournament Equilibrium Set

The tournament equilibrium set (TEQ) is defined recursively as TEQ = ˚TEQ

• well-defined because |D(a)| < |A | for each a ∈ A

Schwartz’s Conjecture: TEQ is unique, i.e., each tournament admits a unique
minimal TEQ-retentive set.

Theorem (Laffond et al., 1993, Houy, 2009): TEQ is unique if and only if TEQ
satisfies any of MON, WSP, SSP, and IUA.
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Example

b c

a

d e

x D(x)

TEQ(D(x))

a {c}

{c}

b {a, e}

{a}

c {b , d}

{b}

d {a, b}

{a}

e {a, c, d}

{a, c, d}

TEQ-retentive sets: {a, b , c, d, e} , {a, b , c, d} , {a, b , c}

TEQ(T) = {a, b , c}
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Inheritance of Basic Properties

Recall: S̊ returns the union of all minimal S-retentive sets

Theorem: If S̊ satisfies MON, WSP, SSP, or IUA, so does S.

Theorem: If S satisfies (MON ∧ SSP), WSP, SSP, or IUA, so does S̊

if S̊ is unique.
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Convergence

Define S(0) = S and S(k+1) = S̊(k). Thus, we obtain sequences like:

TRIV ,TC , T̊C ,TC(2),TC(3), . . .

MC , M̊C ,MC(2),MC(3),MC(4), . . .

Definition: S converges to S ′ if for each T there is some kT ∈ N such that

S(kT )(T) = S(n)(T) = S ′(T) for all n ≥ kT

Theorem: Every tournament solution converges to TEQ .

Proof: S(n−1)(T) = TEQ(T) for all tournaments T of order ≤ n
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Reaching the Limit

Theorem: If S , TEQ , then S(k) , TEQ for all k ≥ 0.

bi

ai

S(T)

TEQ(T)
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‘Approximating’ TEQ

Theorem (Brandt et al. 2008): Computing TEQ is NP-hard.

Theorem: S̊ is efficiently computable if and only if S is.

S, S̊, S(2), S(3), . . .TEQ

We would like to have ‘nice’ convergence...

Theorem: If S̊ ⊆ S, TEQ ⊆ S and TEQ is unique, then TEQ ⊆ S(k+1) ⊆ S(k) for
all k ≥ 0.

In particular,
TRIV ⊇ TC ⊇ T̊C ⊇ TC(2)

⊇ · · · ⊇ TEQ .

Thus, TEQ can be ‘approximated’ by an anytime algorithm.

As uniqueness of TC(k) implies uniqueness of TC(k−1), we have an infinite
sequence of increasingly difficult conjectures.
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The Minimal Top Cycle Retentive Set

TRIV ,TC , T̊C ,TC(2),TC(3), . . .TEQ

Theorem: T̊C is unique.

Consequence:

T̊C satisfies MON, SSP, WSP, and IUA

T̊C lies between TC and TEQ

T̊C is efficiently computable b1

b0 c0

c1

...

c2i

c2i+1

...
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Conclusion

Retentiveness as an operation on tournament solutions

Inheritance of basic properties by minimal retentive sets

Convergence and ‘approximating’ TEQ

T̊C first new concept in sequence with desirable properties

Future work: Prove (or disprove) uniqueness of TC(2), M̊C , . . . ,TEQ

Thank you!
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