Minimal Retentive Sets in Tournaments

- From Anywhere to TEQ -

Felix Brandt Markus Brill Felix Fischer Paul Harrenstein
Ludwig-Maximilians-Universität München

Estoril, April 12, 2010

The Trouble with Tournaments

- Tournaments are oriented complete graphs
- Many applications: social choice theory, sports tournaments, game theory, argumentation theory, webpage and journal ranking, etc.
- Question: How to select the winner(s) of a tournament in the absence of transitivity?

The Trouble with Tournaments

- Tournaments are oriented complete graphs
- Many applications: social choice theory, sports tournaments, game theory, argumentation theory, webpage and journal ranking, etc.
- Question: How to select the winner(s) of a tournament in the absence of transitivity?

Overview

■ Tournament solutions
■ Retentiveness and Schwartz's Tournament Equilibrium Set (TEQ)
■ Properties of minimal retentive sets
■ 'Approximating' TEQ

- A new tournament solution

Tournament Solutions

- A tournament $T=(A,>)$ consists of:
- a finite set A of alternatives
- a complete and asymmetric relation $>$ on A

Tournament Solutions

- A tournament $T=(A,>)$ consists of:
- a finite set A of alternatives
- a complete and asymmetric relation $>$ on A

- A tournament solution S maps each tournament $T=(A,>)$ to a set $S(T)$ such that $\emptyset \neq S(T) \subseteq A$ and $S(T)$ contains the Condorcet winner if it exists
- S is called proper if a Condordet winner is always selected as only alternative

Tournament Solutions

- A tournament $T=(A,>)$ consists of:
- a finite set A of alternatives
- a complete and asymmetric relation $>$ on A

- A tournament solution S maps each tournament $T=(A,>)$ to a set $S(T)$ such that $\emptyset \neq S(T) \subseteq A$ and $S(T)$ contains the Condorcet winner if it exists
- S is called proper if a Condordet winner is always selected as only alternative

■ Examples: Trivial Solution (TRIV), Top Cycle (TC), Uncovered Set, Slater Set, Copeland Set, Banks Set, Minimal Covering Set (MC), Tournament Equilibrium Set (TEQ), ...

Basic Properties of Tournament Solutions

■ Monotonicity (MON)

- Weak Superset Property (WSP)

■ Strong Superset Property (SSP)

- Indenendence of Unchosen Alternatives (IUA)

Basic Properties of Tournament Solutions

■ Monotonicity (MON)

- Weak Superset Property (WSP)

■ Strong Superset Property (SSP)

- Indenendence of Unchosen Alternatives (IUA)

Basic Properties of Tournament Solutions

■ Monotonicity (MON)

- Weak Superset Property (WSP)

■ Strong Superset Property (SSP)

- Indenendence of Unchosen Alternatives (IUA)

Basic Properties of Tournament Solutions

■ Monotonicity (MON)

- Weak Superset Property (WSP)

■ Strong Superset Property (SSP)

- Indenendence of Unchosen Alternatives (IUA)

Basic Properties of Tournament Solutions

- Monotonicity (MON)

■ Weak Superset Property (WSP)

- Strong Superset Property (SSP)
- Independence of Unchosen Alternatives (IUA)

Basic Properties of Tournament Solutions

- Monotonicity (MON)

■ Weak Superset Property (WSP)
■ Strong Superset Property (SSP)

- Independence of Unchosen Alternatives (IUA)

Basic Properties of Tournament Solutions

- Monotonicity (MON)

■ Weak Superset Property (WSP)
■ Strong Superset Property (SSP)

- Independence of Unchosen Alternatives (IUA)

Basic Properties of Tournament Solutions

- Monotonicity (MON)

■ Weak Superset Property (WSP)
■ Strong Superset Property (SSP)

- Independence of Unchosen Alternatives (IUA)

Basic Properties of Tournament Solutions

■ Monotonicity (MON)
■ Weak Sunerset Pronerty (WSP)
■ Strong Superset Property (SSP)

- Independence of Unchosen Alternatives (IUA)

Basic Properties of Tournament Solutions

■ Monotonicity (MON)
■ Weak Sunerset Pronerty (WSP)
■ Strong Superset Property (SSP)

- Independence of Unchosen Alternatives (IUA)

Basic Properties of Tournament Solutions

■ Monotonicity (MON)

- Weak Sunerset Pronerty (WSP)

■ Strong Superset Property (SSP)

- Independence of Unchosen Alternatives (IUA)

Basic Properties of Tournament Solutions

■ Monotonicity (MON)
■ Weak Sunerset Pronerty (WSP)
■ Strong Superset Property (SSP)

- Independence of Unchosen Alternatives (IUA)

Basic Properties of Tournament Solutions

- Monotonicity (MON)
- Weak Superset Property (WSP)
- Strong Superset Property (SSP)

■ Independence of Unchosen Alternatives (IUA)

Basic Properties of Tournament Solutions

- Monotonicity (MON)
- Weak Superset Property (WSP)
- Strong Superset Property (SSP)

■ Independence of Unchosen Alternatives (IUA)

Basic Properties of Tournament Solutions

- Monotonicity (MON)
- Weak Superset Property (WSP)
- Strong Superset Property (SSP)

■ Independence of Unchosen Alternatives (IUA)

Basic Properties of Tournament Solutions

- Monotonicity (MON)
- Weak Superset Property (WSP)
- Strong Superset Property (SSP)

■ Independence of Unchosen Alternatives (IUA)

Basic Properties of Tournament Solutions

■ Monotonicity (MON)
■ Weak Superset Property (WSP)
■ Strong Superset Property (SSP)
■ Independence of Unchosen Alternatives (IUA)

Basic Properties of Tournament Solutions

■ Monotonicity (MON)
■ Weak Superset Property (WSP)
■ Strong Superset Property (SSP)
■ Independence of Unchosen Alternatives (IUA)

Note:

■ SSP is equivalent to $\hat{\alpha}$ (see Felix's lecture)

- (SSP \wedge MON) implies WSP and IUA

Examples

Definition: TRIV returns the set A for each tournament $T=(A,>)$

Examples

Definition: TRIV returns the set A for each tournament $T=(A,>)$
Definition: TC returns the smallest dominating set, i.e. the smallest set $B \subseteq A$ with $B>A \backslash B$

- Intuition: No winner should be dominated by a loser

Examples

Definition: TRIV returns the set A for each tournament $T=(A,>)$
Definition: $\quad T C$ returns the smallest dominating set, i.e. the smallest set $B \subseteq A$ with $B>A \backslash B$

- Intuition: No winner should be dominated by a loser

Examples

Definition: TRIV returns the set A for each tournament $T=(A,>)$
Definition: $\quad T C$ returns the smallest dominating set, i.e. the smallest set $B \subseteq A$ with $B>A \backslash B$

- Intuition: No winner should be dominated by a loser
- Define $\bar{D}(b)=\{a \in A: a>b\}$
- TC is the smallest set B satisfying $\bar{D}(b) \subseteq B$ for all $b \in B$

Examples

Definition: TRIV returns the set A for each tournament $T=(A,>)$
Definition: TC returns the smallest dominating set, i.e. the smallest set $B \subseteq A$ with $B>A \backslash B$

- Intuition: No winner should be dominated by a loser
- Define $\bar{D}(b)=\{a \in A: a>b\}$
- $T C$ is the smallest set B satisfying $\bar{D}(b) \subseteq B$ for all $b \in B$

Both TRIV and TC satisfy all four basic properties

Retentiveness

Intuition:

- An alternative a is only "properly" dominated by a "good" alternatives

Thomas Schwartz

Retentiveness

Intuition:

- An alternative a is only "properly" dominated by a "good" alternatives, i.e., alternatives selected by S from the dominators of a

Thomas Schwartz

Retentiveness

Intuition:

- An alternative a is only "properly" dominated by a "good" alternatives, i.e., alternatives selected by S from the dominators of a
- No winner should be "properly" dominated by a loser

Thomas Schwartz

Retentiveness

Definition: B is S-retentive if $B \neq \emptyset$ and $S(\bar{D}(b)) \subseteq B$ for all $b \in B$

Thomas Schwartz

Retentiveness

Definition: B is S-retentive if $B \neq \emptyset$ and $S(\bar{D}(b)) \subseteq B$ for all $b \in B$

Thomas Schwartz

Retentiveness

Definition: B is S-retentive if $B \neq \emptyset$ and $S(\bar{D}(b)) \subseteq B$ for all $b \in B$

Thomas Schwartz

Retentiveness

Definition: B is S-retentive if $B \neq \emptyset$ and $S(\bar{D}(b)) \subseteq B$ for all $b \in B$

Thomas Schwartz

Definition: So returns the union of all minimal S-retentive sets

Retentiveness

Definition: B is S-retentive if $B \neq \emptyset$ and $S(\bar{D}(b)) \subseteq B$ for all $b \in B$

Thomas Schwartz

Definition: So returns the union of all minimal S-retentive sets

- Call S̊ unique if there always exists a unique minimal S-retentive set

Retentiveness

Definition: B is S-retentive if $B \neq \emptyset$ and $S(\bar{D}(b)) \subseteq B$ for all $b \in B$

Thomas Schwartz

Definition: So returns the union of all minimal S-retentive sets

- Call S̊ unique if there always exists a unique minimal S-retentive set
- Minimal S-retentive sets exist for each tournament
- S̊ is unique if and only if there do not exist two disjoint S-retentive sets

Example

Proposition: \quad TRIV $=T C$

Example

Proposition: TRIV $=T C$

Proof: A set is TRIV-retentive if and only if it is dominating

$$
\operatorname{TRIV}(\bar{D}(b))=\bar{D}(b)
$$

The Tournament Equilibrium Set

The tournament equilibrium set (TEQ) is defined recursively as $T E Q=T E ீ Q$

The Tournament Equilibrium Set

The tournament equilibrium set (TEQ) is defined recursively as $T E Q=T E ̊ Q$

- well-defined because $|\bar{D}(a)|<|A|$ for each $a \in A$

Example

x	$\bar{D}(x)$
a	$\{c\}$
b	$\{a, e\}$
c	$\{b, d\}$
d	$\{a, b\}$
e	$\{a, c, d\}$

Example

x	$\bar{D}(x)$	$\operatorname{TEQ}(\bar{D}(x))$
a	$\{c\}$	$\{c\}$
b	$\{a, e\}$	$\{a\}$
c	$\{b, d\}$	$\{b\}$
d	$\{a, b\}$	$\{a\}$
e	$\{a, c, d\}$	$\{a, c, d\}$

Example

x	$\bar{D}(x)$	$\operatorname{TEQ}(\bar{D}(x))$
a	$\{c\}$	$\{c\}$
b	$\{a, e\}$	$\{a\}$
c	$\{b, d\}$	$\{b\}$
d	$\{a, b\}$	$\{a\}$
e	$\{a, c, d\}$	$\{a, c, d\}$

Example

x	$\bar{D}(x)$	$\operatorname{TEQ}(\bar{D}(x))$
a	$\{c\}$	$\{c\}$
b	$\{a, e\}$	$\{a\}$
c	$\{b, d\}$	$\{b\}$
d	$\{a, b\}$	$\{a\}$
e	$\{a, c, d\}$	$\{a, c, d\}$

TEQ-retentive sets: $\quad\{a, b, c, d, e\},\{a, b, c, d\},\{a, b, c\}$

Example

x	$\bar{D}(x)$	$\operatorname{TEQ}(\bar{D}(x))$
a	$\{c\}$	$\{c\}$
b	$\{a, e\}$	$\{a\}$
c	$\{b, d\}$	$\{b\}$
d	$\{a, b\}$	$\{a\}$
e	$\{a, c, d\}$	$\{a, c, d\}$

TEQ-retentive sets: $\quad\{a, b, c, d, e\},\{a, b, c, d\},\{a, b, c\}$
$T E Q(T)=\{a, b, c\}$

The Tournament Equilibrium Set

The tournament equilibrium set (TEQ) is defined recursively as $T E Q=T E ̊ Q$

- well-defined because $|\bar{D}(a)|<|A|$ for each $a \in A$

The Tournament Equilibrium Set

The tournament equilibrium set (TEQ) is defined recursively as $T E Q=T E ̊ Q$

- well-defined because $|\bar{D}(a)|<|A|$ for each $a \in A$

Schwartz's Conjecture: TEQ is unique, i.e., each tournament admits a unique minimal TEQ-retentive set.

The Tournament Equilibrium Set

The tournament equilibrium set (TEQ) is defined recursively as $T E Q=T E ̊ Q$

- well-defined because $|\bar{D}(a)|<|A|$ for each $a \in A$

Schwartz's Conjecture: TEQ is unique, i.e., each tournament admits a unique minimal TEQ-retentive set.

Theorem (Laffond et al., 1993, Houy, 2009): TEQ is unique if and only if TEQ satisfies any of MON, WSP, SSP, and IUA.

Inheritance of Basic Properties

Recall: Sं returns the union of all minimal S-retentive sets

Inheritance of Basic Properties

Recall: S returns the union of all minimal S-retentive sets
Theorem: If S̊ satisfies MON, WSP, SSP, or IUA, so does S.

Inheritance of Basic Properties

Recall: S returns the union of all minimal S-retentive sets

Theorem: If S̊ satisfies MON, WSP, SSP, or IUA, so does S.
Theorem: If S satisfies (MON \wedge SSP), WSP, SSP, or IUA, so does S S

Inheritance of Basic Properties

Recall: S returns the union of all minimal S-retentive sets
Theorem: If S̊ satisfies MON, WSP, SSP, or IUA, so does S.
Theorem: If S satisfies (MON \wedge SSP), WSP, SSP, or IUA, so does S, if S is unique.

Convergence

Define $S^{(0)}=S$ and $S^{(k+1)}=S^{(k)}$. Thus, we obtain sequences like:

$$
\begin{gathered}
\text { TRIV, } T C,{ }^{\circ} C, T C^{(2)}, T C^{(3)}, \ldots \\
M C, M C, M C^{(2)}, M C^{(3)}, M C^{(4)}, \ldots
\end{gathered}
$$

Convergence

Define $S^{(0)}=S$ and $S^{(k+1)}=\check{S}^{(k)}$. Thus, we obtain sequences like:

$$
\begin{gathered}
T R I V, T C, T+C^{C}, T C^{(2)}, T C^{(3)}, \ldots \\
M C, M \subset, M C^{(2)}, M C^{(3)}, M C^{(4)}, \ldots
\end{gathered}
$$

Definition: S converges to S^{\prime} if for each T there is some $k_{T} \in \mathbb{N}$ such that

$$
S^{\left(k_{T}\right)}(T)=S^{(n)}(T)=S^{\prime}(T) \quad \text { for all } n \geq k_{T}
$$

Convergence

Define $S^{(0)}=S$ and $S^{(k+1)}=\check{S}^{(k)}$. Thus, we obtain sequences like:

$$
\begin{gathered}
\text { TRIV, } T C,{ }^{\circ} C, T C^{(2)}, T C^{(3)}, \ldots \\
M C, M C, M C^{(2)}, M C^{(3)}, M C^{(4)}, \ldots
\end{gathered}
$$

Definition: S converges to S^{\prime} if for each T there is some $k_{T} \in \mathbb{N}$ such that

$$
S^{\left(k_{T}\right)}(T)=S^{(n)}(T)=S^{\prime}(T) \quad \text { for all } n \geq k_{T}
$$

Theorem: Every tournament solution converges to TEQ.

Convergence

Define $S^{(0)}=S$ and $S^{(k+1)}=\check{S}^{(k)}$. Thus, we obtain sequences like:

$$
\begin{gathered}
\text { TRIV, } T C,{ }^{\circ} C, T C^{(2)}, T C^{(3)}, \ldots \\
M C, M \circ, M C^{(2)}, M C^{(3)}, M C^{(4)}, \ldots
\end{gathered}
$$

Definition: S converges to S^{\prime} if for each T there is some $k_{T} \in \mathbb{N}$ such that

$$
S^{\left(k_{T}\right)}(T)=S^{(n)}(T)=S^{\prime}(T) \quad \text { for all } n \geq k_{T}
$$

Theorem: Every tournament solution converges to TEQ.
Proof: $\quad S^{(n-1)}(T)=T E Q(T)$ for all tournaments T of order $\leq n$

Reaching the Limit

Theorem: If $S \neq T E Q$, then $S^{(k)} \neq T E Q$ for all $k \geq 0$.

Reaching the Limit

Theorem: If $S \neq T E Q$, then $S^{(k)} \neq T E Q$ for all $k \geq 0$.

Reaching the Limit

Theorem: If $S \neq T E Q$, then $S^{(k)} \neq T E Q$ for all $k \geq 0$.

Reaching the Limit

Theorem: If $S \neq T E Q$, then $S^{(k)} \neq T E Q$ for all $k \geq 0$.

Reaching the Limit

Theorem: If $S \neq T E Q$, then $S^{(k)} \neq T E Q$ for all $k \geq 0$.

‘Approximating' TEQ

Theorem (Brandt et al. 2008): Computing TEQ is NP-hard.

'Approximating' TEQ

Theorem (Brandt et al. 2008): Computing TEQ is NP-hard.
Theorem: S° is efficiently computable if and only if S is.

$$
S, \stackrel{\circ}{S}, S^{(2)}, S^{(3)}, \ldots \text { TEQ }
$$

'Approximating' TEQ

Theorem (Brandt et al. 2008): Computing TEQ is NP-hard.
Theorem: S° is efficiently computable if and only if S is.

$$
S, \stackrel{\circ}{S}, S^{(2)}, S^{(3)}, \ldots \text { TEQ }
$$

We would like to have 'nice' convergence...

‘Approximating' TEQ

Theorem (Brandt et al. 2008): Computing TEQ is NP-hard.
Theorem: S° is efficiently computable if and only if S is.

$$
S, \stackrel{\circ}{S}, S^{(2)}, S^{(3)}, \ldots \text { TEQ }
$$

We would like to have 'nice' convergence...
Theorem: If $\mathcal{S} \subseteq S, T E Q \subseteq S$ and $T E Q$ is unique, then $T E Q \subseteq S^{(k+1)} \subseteq S^{(k)}$ for all $k \geq 0$.

‘Approximating' TEQ

Theorem (Brandt et al. 2008): Computing TEQ is NP-hard.
Theorem: S̊ is efficiently computable if and only if S is.

$$
S, \stackrel{\circ}{S}, S^{(2)}, S^{(3)}, \ldots \text { TEQ }
$$

We would like to have 'nice' convergence...
Theorem: If $\mathcal{S} \subseteq S, T E Q \subseteq S$ and $T E Q$ is unique, then $T E Q \subseteq S^{(k+1)} \subseteq S^{(k)}$ for all $k \geq 0$.
In particular,

$$
T R I V \supseteq T C \supseteq T \circ C \supseteq T C^{(2)} \supseteq \cdots \supseteq T E Q .
$$

Thus, TEQ can be 'approximated' by an anytime algorithm.

‘Approximating' TEQ

Theorem (Brandt et al. 2008): Computing TEQ is NP-hard.
Theorem: S° is efficiently computable if and only if S is.

$$
S, \grave{S}_{S}, S^{(2)}, S^{(3)}, \ldots \text { TEQ }
$$

We would like to have 'nice' convergence...
Theorem: If $\mathcal{S} \subseteq S, T E Q \subseteq S$ and $T E Q$ is unique, then $T E Q \subseteq S^{(k+1)} \subseteq S^{(k)}$ for all $k \geq 0$.
In particular,

$$
T R I V \supseteq T C \supseteq T \circ C \supseteq T C^{(2)} \supseteq \cdots \supseteq T E Q .
$$

Thus, TEQ can be 'approximated' by an anytime algorithm.
As uniqueness of $T C^{(k)}$ implies uniqueness of $T C^{(k-1)}$, we have an infinite sequence of increasingly difficult conjectures.

The Minimal Top Cycle Retentive Set

TRIV $, T C, T^{\circ} C, T C^{(2)}, T C^{(3)}, \ldots$ TEQ

The Minimal Top Cycle Retentive Set

TRIV, TC, $T^{\circ} C, T C^{(2)}, T C^{(3)}, \ldots T E Q$

Theorem: $T^{\circ} C$ is unique.

The Minimal Top Cycle Retentive Set

TRIV, TC, $T^{\circ} C, T C^{(2)}, T C^{(3)}, \ldots$ TEQ

Theorem: TiC is unique.

Consequence:

- TiC satisfies MON, SSP, WSP, and IUA
- $T^{\circ} \mathrm{C}$ lies between $T C$ and $T E Q$
- TiC is efficiently computable

Conclusion

- Retentiveness as an operation on tournament solutions

■ Inheritance of basic properties by minimal retentive sets
■ Convergence and 'approximating' TEQ

- ${ }^{\circ} \mathrm{C}$ first new concept in sequence with desirable properties
- Future work: Prove (or disprove) uniqueness of $T C^{(2)}, M \subset, \ldots, T E Q$

Conclusion

- Retentiveness as an operation on tournament solutions
- Inheritance of basic properties by minimal retentive sets

■ Convergence and 'approximating' TEQ

- $T^{\circ} \mathrm{C}$ first new concept in sequence with desirable properties
- Future work: Prove (or disprove) uniqueness of $T C^{(2)}, M C, \ldots, T E Q$

Thank you!

