Consensus Formation via Preference Updating COST-ADT Doctoral School on Computational Social Choice in Estoril

Burak Can, Ton Storcken

Maastricht University

Jan 2009

• What happens in a conformist society?

- What happens in a conformist society?
- What happens in a dynamic setting of aggregation where people compromise (or conform) to achieve consensus?

- What happens in a conformist society?
- What happens in a dynamic setting of aggregation where people compromise (or conform) to achieve consensus?
- A society which changes their opinions towards the representative agent (i.e., towards the outcome of the elections).

• The main question is:

- The main question is:
- Were the elections conducted again after individuals get "closer" to the initial outcome, would the consensus still be the same representative agent?

- N is set of individuals.
- A is the set of alternatives.
- $\mathcal{L}(A)$ is the set of all possible linear orders over A.
- $\mathcal{L}(A)^N$ is the set of all possible profiles.
- $p \in \mathcal{L}(A)^N$ is a generic profile of linear orders of agents in N.
- A social welfare function/correspondence α : L(A)^N → 2^{L(A)} assigns a nonempty set of linear orderings to each profile p ∈ L(A)^N.

• Given $R, R' \in \mathcal{L}(A)$, $\delta(R, R') = \frac{|R \setminus R'| \cup |R' \setminus R|}{2}$ is the distance between R and R'.

3 🕨 🖌 3

• Assume
$$R = \frac{b}{c}$$
 ,

Image: A math a math

,

• Assume
$$R = b$$

 Make one swap of adjacent alternatives a and b,

Kemeny Distance and Updating

• Assume
$$R=~b$$
 ,

С

 Make one swap of adjacent alternatives a and b,

Kemeny Distance and Updating

• Assume
$${\it R}={\it b}$$
 ,

С

 Make one swap of adjacent alternatives a and b, • $R' = \begin{bmatrix} b \\ a \\ c \end{bmatrix}$ • So $\delta(R, R') = 1$.

Burak Can, Ton Storcken (UM)

Jan 2009 6 / 42

• Assume
$$R = \begin{matrix} a \\ b \\ c \end{matrix}$$
, $b \\ R' = a \\ a \\ c \end{matrix}$
• Make one swap of $c \\ adjacent alternatives a \\ and b, \end{matrix}$
• So $\delta(R, R') = 1$.
The maximum distance between rankings in $\mathcal{L}(A)$ is $\left(\frac{|A| \cdot |A-1|}{2}\right)$
(i.e., between $\begin{matrix} a \\ b \\ c \\ c \end{matrix}$ a $b \\ c \\ c \\ a \end{matrix}$

۲

Image: A math a math

with three alternatives

with four alternatives

R_1	R_2	R_3	R.	4 R	5	R ₆	R ₇	R_8	R_9	F	R ₁₀	R_{11}	F	R ₁₂	
а	а	Ь	a	i á	1	b	b	с	а		а	d		b	
b	b	а	c	; c	/	а	c	а	с		d	а		d	
с	d	с	b	$b \mid k$,	d	а	b	d		с	Ь		а	
d	с	d	d			с	d	d	b		b	С		с	
R ₁₃	R ₁₄	. <i>R</i>	15	R_{16}		R ₁₇	R ₁₈	R ₁₉	R_2	0	R_{2}	$ R_2 $	22	R ₂₃	R ₂₄
Ь	с		c	d		d	b	с	c		d	c	1	с	d
с	b		a	а		Ь	d	b	d		с	Ŀ)	d	с
d	a		d	с		а	с	d	a		а	0	2	b	Ь
а	d		6	Ь		с	а	а	b		b	á	9	a	a

with four alternatives

with four alternatives (Truncated Octahedron)

Burak Can, Ton Storcken (UM)

Jan 2009 10 / 42

• Extreme Updating

Image: A matrix

3

- Extreme Updating
- Shorth-path Updating

- Extreme Updating
- Shorth-path Updating
- General Updating

Types of Updating Extreme Updating

Image: Image:

< 3 > < 3 >

Types of Updating Extreme Updating

 Let the profile be $p = \left[\begin{array}{ccc} a & c & b \\ b & a & c \\ c & b & a \end{array} \right] \text{ and }$ one of the outcomes $\begin{pmatrix} a \\ b \end{pmatrix}$. • Let second agent switch to $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ which is identical to the outcome.

Types of Updating Extreme Updating

• Let the profile be $p = \left[\begin{array}{ccc} a & c & b \\ b & a & c \\ c & b & a \end{array} \right] \text{ and }$ one of the outcomes $\begin{pmatrix} a \\ b \end{pmatrix}$. Let second agent switch to $\begin{pmatrix} a \\ b \end{pmatrix}$ which is identical to the outcome.

• Then the updated profile is $q = \begin{bmatrix} a & a & b \\ b & b & c \\ c & c & a \end{bmatrix}$.

Illustrations Extreme Updating

Illustrations Extreme Updating

Burak Can, Ton Storcken (UM)

Jan 2009 14 / 42

Types of Updating Shorth-path Updating

```
• Let the profile be

p = \begin{bmatrix} a & c & b \\ b & a & c \\ c & b & a \end{bmatrix} and

one of the outcomes

\begin{pmatrix} a \\ b \\ c \end{pmatrix}.
```

Image: Image:

- - E + - E +

Types of Updating Shorth-path Updating

 Let the profile be $p = \begin{vmatrix} a & c & b \\ b & a & c \\ c & b & a \end{vmatrix}$ and one of the outcomes $\begin{pmatrix} b \end{pmatrix}$. • Let second agent switch to $\begin{pmatrix} a \\ c \\ L \end{pmatrix}$ which is closer to the outcome on a short-path from p(2) to the outcome.

Types of Updating Shorth-path Updating

 Let the profile be $p = \begin{vmatrix} a & c & b \\ b & a & c \\ c & b & a \end{vmatrix}$ and one of the outcomes $\begin{pmatrix} b \end{pmatrix}$. Let second agent switch to $\begin{pmatrix} a \\ c \\ L \end{pmatrix}$ which is closer to the outcome on a short-path from p(2) to the outcome.

• Then the updated profile is $q = \begin{bmatrix} a & a & b \\ b & c & c \\ c & b & a \end{bmatrix}$.

Illustrations Short-path Updating

Illustrations Short-path Updating

Types of Updating General Updating

< 3 > < 3 >

< m

Types of Updating General Updating

• Let the profile be $p = \left[\begin{array}{ccc} a & c & b \\ b & a & c \\ c & b & a \end{array} \right] \text{ and }$ one of the outcomes $\begin{pmatrix} a \\ b \end{pmatrix}$. • Let second agent switch to $\begin{pmatrix} b \\ a \\ c \end{pmatrix}$ which is closer to the outcome.

3 🕨 🖌 3

Types of Updating General Updating

• Let the profile be $p = \left[\begin{array}{ccc} a & c & b \\ b & a & c \\ c & b & a \end{array} \right] \text{ and }$ one of the outcomes $\begin{pmatrix} a \\ b \end{pmatrix}$. Let second agent switch to $\begin{pmatrix} b \\ a \\ c \end{pmatrix}$ which is closer to the outcome.

• Then the updated profile is $q = \begin{bmatrix} a & b & b \\ b & a & c \\ c & c & a \end{bmatrix}$.

< 3 > < 3 >

Illustrations General Updating

Illustrations General Updating

• Note that extreme updating is a special case of short-path updating.
- Note that extreme updating is a special case of short-path updating.
- Note that short-path updating is a special case of general updating.

• Given any $p \in \mathcal{L}(A)^N$, R is a *Kemeny ranking* if and only if for all $R' \in \mathcal{L}(A)$, $\sum_{i \in N} \delta(p(i), R) \leq \sum_{i \in N} \delta(p(i), R')$.

- Given any $p \in \mathcal{L}(A)^N$, R is a *Kemeny ranking* if and only if for all $R' \in \mathcal{L}(A)$, $\sum_{i \in N} \delta(p(i), R) \leq \sum_{i \in N} \delta(p(i), R')$.
- The Kemeny Young method chooses all Kemeny rankings of a profile.

- Given any $p \in \mathcal{L}(A)^N$, R is a *Kemeny ranking* if and only if for all $R' \in \mathcal{L}(A)$, $\sum_{i \in N} \delta(p(i), R) \leq \sum_{i \in N} \delta(p(i), R')$.
- The Kemeny Young method chooses all Kemeny rankings of a profile.
- The method chooses the rankings, whose sum of distances from each agent is minimum.

- Given any $p \in \mathcal{L}(A)^N$, R is a *Kemeny ranking* if and only if for all $R' \in \mathcal{L}(A)$, $\sum_{i \in N} \delta(p(i), R) \leq \sum_{i \in N} \delta(p(i), R')$.
- The Kemeny Young method chooses all Kemeny rankings of a profile.
- The method chooses the rankings, whose sum of distances from each agent is minimum.
- The top alternative in a Kemeny ranking is called *Kemeny winner* and the bottom alternative is called *Kemeny loser*.

• What happens when people's opinion gets even closer to the outcome?

- What happens when people's opinion gets even closer to the outcome?
- Is the initial outcome still elected as a Kemeny ranking?

 Consider the example below where |N| = 7 and A = {a₁, a₂, a₃, a₄}. Let the profile p be as follows: Consider the example below where |N| = 7 and A = {a₁, a₂, a₃, a₄}. Let the profile p be as follows:

	$v(R_1)=2$	$v(R_2) = 1$	$v(R_3) = 1$	$v(R_4) = 1$	$v(R_5) = 1$	$v(R_6) = 1$		R _k
_	a1	a1	a2	a3	a4	a4		a ₁
	a2	ag	a4	a4	a2	ag	\rightarrow	a 2
	ag	a ₂	ag	a2	a1	a1		a3
	a ₄	a ₄	a1	a1	a ₃	a2		a ₄

 Consider the example below where |N| = 7 and A = {a₁, a₂, a₃, a₄}. Let the profile p be as follows:

	$\underline{v(R_1)=2}$	$v(R_2) = 1$	$v(R_3) = 1$	$v(R_4) = 1$	$v(R_5) = 1$	$v(R_{6}) = 1$		R_k
•	a ₁	a ₁	a2	a3	a ₄	a4		a ₁
	a2	ag	a4	a4	a2	a3	\rightarrow	a2
	a3	a ₂	ag	a2	a ₁	a1		ag
	a ₄	a ₄	a1	a1	a3	a2		a ₄

• Agent who has ranking R₄, updates and we have

▲ ■ ● ○ ○ ○
Jan 2009 25 / 42

個 と く ヨ と く ヨ と …

•	$v(R_1') = 2$	$v(R_2') = 1$	$v(R'_3) = 1$	$v(R'_4) = 1$	$v(R_5') = 1$	$v(R_6') = 1$		R'_k
	a1	a1	a2	a1	a ₄	a ₄		a_1
	a2	a3	a ₄	a2	a2	a3	\rightarrow	a2
	a3	a2	a3	a4	a1	a1		a4
	a4	a4	a ₁	a3	a3	a ₂		ag

• Agents who have ranking R'_1 , update and we have

Burak Can, Ton Storcken (UM)

Jan 2009 25 / 42

・何ト ・ヨト ・ヨト

	$v(R_1'')=2$	$v(R_2'') = 1$	$v(R_3'') = 1$	$v(R_4'')=1$	$v(R_5'') = 1$	$v(R_6'') = 1$		R_k''
٩	a1	a1	a2	a1	a4	a4		a_1
	a ₄	a2	a4	a2	a2	a3	\rightarrow	<i>a</i> 4
	a ₂	a3	az	a4	a ₁	a ₁		a2
	a ₃	a4	a ₁	ag	a3	a ₂		a3

• Agent who has ranking R_5'' , updates and we have

∃ > <</p>

э

< 4 ► >

	$v(\tilde{R}_1) = 2$	$v(\tilde{R}_2) = 1$	$v(\tilde{R}_3) = 1$	$v(\tilde{R}_4) = 1$	$v(\tilde{R}_5) = 1$	$v(\tilde{R}_6) = 1$		\tilde{R}_k
_	a1	a1	a ₂	a1	a ₄	a4		a4
9	a4	a ₂	a ₄	a ₂	a ₁	ag	\rightarrow	a_1
	a ₂	ag	ag	a ₄	a ₂	a ₁		a ₂
	ag	a ₄	a ₁	a3	a ₃	a2		a3

• Note that initial Kemeny-loser in profile *p* is now the Kemeny winner.

• On the class of general updating, the Kemeny-Young method fails to preserve the outcome.

- On the class of general updating, the Kemeny-Young method fails to preserve the outcome.
- We analyse which rules can preserve the outcome, under which type of updating.

Update proofness (A new monotonicity concept)

• Extreme-update proofness: A rule φ is extreme update proof if for all R in $\varphi(p)$ and all preference profiles q we have that $R \in \varphi(q)$ whenever

p(i) = q(i) or q(i) = R for all i in N.

Update proofness (A new monotonicity concept)

• Extreme-update proofness: A rule φ is extreme update proof if for all R in $\varphi(p)$ and all preference profiles q we have that $R \in \varphi(q)$ whenever

$$p(i) = q(i)$$
 or $q(i) = R$ for all i in N .

 Short-path update proofness: A rule φ is short path update proof if for all R in φ(p) and all preference profiles q we have that R ∈ φ(q) whenever

 $p(i) \cap R \subseteq q(i) \subseteq p(i) \cup R$ for all *i* in *N*.

Update proofness (A new monotonicity concept)

• Extreme-update proofness: A rule φ is extreme update proof if for all R in $\varphi(p)$ and all preference profiles q we have that $R \in \varphi(q)$ whenever

$$p(i) = q(i)$$
 or $q(i) = R$ for all i in N .

Short-path update proofness: A rule φ is short path update proof if for all R in φ(p) and all preference profiles q we have that R ∈ φ(q) whenever

$$p(i) \cap R \subseteq q(i) \subseteq p(i) \cup R$$
 for all i in N .

• General update proofness: A rule φ is general update proof if for all R in $\varphi(p)$ and all preference profiles q we have that $R \in \varphi(q)$ whenever

$$\delta(q(i), R) \leq \delta(p(i), R)$$
 for all *i* in *N*.

For any number of agents and any number of alternatives, Scoring rules are not extreme-update proof.

• Hence, scoring rules are also not short-path update proof.

• Pairwise methods

Pairwise methods

• Convex images property

Pairwise methods

• Convex images property

• Condorcet property

Pairwise methods

• Convex images property

Condorcet property

• Neutrality

Among Pairwise Condorcet methods that satisfy neutrality and convex images property, no extreme-update proof rule exists.

Among Pairwise Condorcet methods that satisfy neutrality and convex images property, no extreme-update proof rule exists.

• The proof of the lemma covers all cases except for the cases n = 2 and n = 4.

The Kemeny-Young method is short-path update proof.

• Hence, the method is also extreme update proof.

Let p and q be profiles in L^N . Let $R \in \varphi_K(p)$. For all $i \in N$ let $R \cap p(i) \subseteq q(i)$. Then $\varphi_K(q) \subseteq \varphi_K(p)$. (i.e. when q is a short-path update of p towards R.)

Characterization of Kemeny Young Method

• Pareto Optimality

- Pareto Optimality
- Consistency

- Pareto Optimality
- Consistency
- Neutrality

- Pareto Optimality
- Consistency
- Neutrality
- Short-path update proofness (Pairwise Monotonicity)

Theorem

A rule is Pareto optimal, Consistent, Neutral and Monotone if and only if it is the Kemeny-Young Method • So conformism may lead to changes in the society's representative agent.
- So conformism may lead to changes in the society's representative agent.
- Even if conformism is extreme (in extreme update sense), many rules fail to keep the representative agent unchanged.

- So conformism may lead to changes in the society's representative agent.
- Even if conformism is extreme (in extreme update sense), many rules fail to keep the representative agent unchanged.
- Things can get very unpredictable as seen in the example in the beginning, where the worst alternative eventually becomes a best alternative as the society changes.

• Which rules are short-path update proof?

- Which rules are short-path update proof?
- So far only Kemeny-Young method.

- Which rules are short-path update proof?
- So far only Kemeny-Young method.
- How about other metric-distances?

- Which rules are short-path update proof?
- So far only Kemeny-Young method.
- How about other metric-distances?
- How about other lattice structures on preferences?

Thank you!

-

メロト メロト メヨト メ

Anonymity, neutrality, Pareto-optimality, convexity, cancellation and monotonicity are not consistent.

Anonymity, neutrality, Pareto-optimality, convexity, consistency and monotonicity are not consistent.

Anonymity, neutrality, Pareto-optimality, convexity, replication invariance and strong monotonicity if and only if Oligarchical Pareto correspondence.