Towards a Dichotomy for the POSSIBLE WINNER Problem in Elections Based on Scoring Rules

Britta Dorn¹

 $_{\rm joint\ work\ with}$ Nadja Betzler^2

¹Eberhard-Karls-Universität Tübingen, Germany ²Friedrich-Schiller-Universität Jena, Germany

International Doctoral School on Computational Social Choice, Estoril, April 2010 Typical voting scenario for joint decision making:

Voters give preferences over a set of candidates as linear orders.

Example: candidates: $C = \{a, b, c, d\}$

orofile:	vote 1:	а	>	b	>	С	>	d
	vote 2:	а	>	d	>	с	>	b
	vote 3:	b	>	d	>	с	>	а

Aggregate preferences according to a voting rule

Kind of voting rules considered in this work: Scoring rules

Scoring rules

Preferences as linear orders, scoring rules. Reminder: Examples:

- plurality: (1,0,...,0)
- 2-approval: $(1, 1, 0, \dots, 0)$
- veto: $(1, \ldots, 1, 0)$
- Borda: (m-1, m-2, ..., 0) (m =number of candidates)
- Formula 1 scoring: $(25, 18, 15, 12, 10, 8, 6, 4, 2, 1, 0, \dots, 0)$

3

イロト イポト イヨト イヨト

Introduction	Results	Conclusion
0000000	000	00
Scoring rules		

m candidates: scoring vector $(\alpha_1, \alpha_2, ..., \alpha_m)$ with $\alpha_1 \ge \alpha_2 \ge \cdots \ge \alpha_m$ and $\alpha_m = 0$

Scoring rule

provides a scoring vector for every number of candidates.

- non-trivial: $\alpha_1 \neq 0$
- pure: the scoring vector for i candidates can be obtained from the scoring vector for i 1 candidates by inserting an additional score value at an arbitrary position

Example:

- 3 candidates: (6, 3, 0)
- 4 candidates: pure: (6, 3, 3, 0), (6, 5, 3, 0), (8, 6, 3, 0), ... not pure: (6, 6, 0, 0), (6, 3, 2, 1), ...

Recall: In the typical model, votes need to be presented as linear orders.

Realistic settings: voters may only provide partial information. For example:

- not all voters have given their preferences yet
- new candidates are introduced
- a voter cannot compare several candidates because of lack of information/because he doesn't want to

How to deal with partial information?

We consider the question if a distinguished candidate can still win.

Introduction	Results	Conclusion
00000000	000	00
Partial vote		

A partial vote is a transitive and antisymmetric relation.

Example: $C = \{a, b, c, d\}$ partial vote: $a \succ b \succ c, a \succ d$

イロト イポト イヨト イヨト

possible extensions:

$$a > b > c > d$$

An extension of a profile of partial votes extends every partial vote.

Results

Computational Problem

Possible Winner

Input: A voting rule r, a set of candidates C, a profile of partial votes, and a distinguished candidate c.

Question: Is there an extension profile where *c* wins according to *r*?

э

Known results for scoring rules

Two studied scenarios for **POSSIBLE WINNER**:

weighted voters:

NP-completeness for all scoring rules except plurality (holds even for a constant number of candidates) (follows by dichotomy for the special case of MANIPULATION [HEMASPAANDRA AND HEMASPAANDRA, JCSS 2007])

Our unweighted voters:

a) constant number of candidates: always polynomial time [CONITZER, SANDHOLM, AND LANG, JACM 2007]

b) unbounded number of candidates:

Known recults for scoring	rulac	
0000000	000	00
ntroduction	Results	Conclusion

Known results for scoring rules

unweighted voters

b) unbounded number of candidates:

• NP-complete for scoring rules that fulfill the following: [XIA AND CONITZER, AAAI 2008] there is a position *b* with

$$\alpha_b - \alpha_{b+1} = \alpha_{b+1} - \alpha_{b+2} = \alpha_{b+2} - \alpha_{b+3}$$

and

$$\alpha_{b+3} > \alpha_{b+4}$$

Examples: $(\ldots, 6, 5, 4, 3, 0, \ldots)$, $(\ldots, 17, 14, 11, 8, 7, \ldots)$

 Parameterized complexity study for some scoring rules: [Betzler, Hemmann, and Niedermeier, IJCAI 2009]
k-approval is NP-hard for two partial votes when k is part of the input

イロト イ理ト イヨト イヨト

Main Theorem

Theorem

For non-trivial pure scoring rules, POSSIBLE WINNER is

- polynomial-time solvable for plurality and veto,
- open for $(2, 1, \ldots, 1, 0)$, and
- NP-complete for all other cases.

Recently,the case (2, 1, ..., 1, 0) has been shown to be NP-complete as well! [BAUMEISTER, ROTHE, 2010]

Examples for new results:

- 2-approval: (1,1,0,...)
- voting systems in which one can specify a small group of favorites and a small group of disliked candidates, like (2,2,2,1,...,1,0,0) or (3,1,...,1,0)

Introduction	Results	Conclusion
oooooooo	o●o	00
Plurality		

Example: $C = \{a, b, c, d\}$, distinguished candidate c $v_1 : a \succ c \succ d, b \succ c$ $v_2 : c \succ a \succ b$ $v_3 : a \succ d \succ b$ $v_4 : a \succ b \succ c$ $v_5 : a \succ c, b \succ d$

3

イロン イ理シ イヨン ・ ヨン・

Inti 00	oduction 000000	Results 0●0	Conclusion
Ρ	lurality		
	Example: $C = \{a, b, c, d\}$, dist	inguished candidate <i>c</i>	

 $v_{1}: a \succ c \succ d, b \succ c$ $v_{2}: c \succ a \succ b \qquad \Rightarrow c > a > b > d$ $v_{3}: a \succ d \succ b \qquad \Rightarrow c > a > d > b$ $v_{4}: a \succ b \succ c$ $v_{5}: a \succ c, b \succ d$

Step I: Maximize score of c

3

イロト イポト イヨト イヨト

Introduction 00000000	Results 00●	Conclusion 00
Plurality		
Example: $C = \{a, b, c, c\}$	d}, distinguished candidate c	
$v_1: a \succ c \succ d, b \succ c$	$\Rightarrow a > b > c > d$	
$v_2: c \succ a \succ b$	$\Rightarrow c > a > b > d$	
$v_3: a \succ d \succ b$	$\Rightarrow c > a > d > b$	
$v_4: a \succ b \succ c$	$\Rightarrow d > a > b > c$	
$v_5: a \succ c, b \succ d$	$\Rightarrow b > a > c > d$	
Step I: Maximize score	of c	
Step II: Network flow	1 1 1 1 1 1 1 1 1 1	e(c) - 1
source 📢	1 4 1 score(c)-1	target
	1 1 d scor	e(c) - 1

 V_5

・ロト・(局)・(目)・(目)・(日)・(の)

What about non-pure scoring rules?

Theorem

For non-trivial pure scoring rules, POSSIBLE WINNER is

- polynomial-time solvable for plurality and veto,
- open for (2, 1, ..., 1, 0), and
- NP-complete for all other cases.

Problem: scoring rules which have "easy" scoring vectors for nearly all number of candidates and still "hard" scoring vectors for some unbounded numbers of candidates

Property of pure scoring rules: can never go back to an easy vector Examples: (1,0,0), $(1,1,0,0) \rightarrow$ not (1,0,0,0,0) or (1,1,1,1,0), (1,1,1,0), (2,1,1,1,0), ...

イロン イ団と イヨン ト

Open questions

- How to compare candidates in partial votes? Counting version: In how many extensions does a distinguished candidate win?
- NP-complete problems: Find approximation/exact exponential algorithm
- Parameter number of candidates: combinatorial algorithm?

· · · · · · · · ·