Towards a Dichotomy for the Possible Winner Problem in Elections Based on Scoring Rules

Britta Dorn ${ }^{1}$

joint work with
Nadja Betzler ${ }^{2}$
${ }^{1}$ Eberhard-Karls-Universität Tübingen, Germany
${ }^{2}$ Friedrich-Schiller-Universität Jena, Germany
International Doctoral School on Computational Social Choice, Estoril, April 2010

Motivation

Typical voting scenario for joint decision making:
Voters give preferences over a set of candidates as linear orders.
Example: candidates: $C=\{a, b, c, d\}$

| profile: | vote $1: \mathrm{a}>\mathrm{b}>\mathrm{c}>\mathrm{d}$ |
| ---: | :--- | :--- |
| | vote 2: $\mathrm{a}>\mathrm{d}>\mathrm{c}>\mathrm{b}$ |
| | vote $3: \mathrm{b}>\mathrm{d}>\mathrm{c}>\mathrm{a}$ |

Aggregate preferences according to a voting rule
Kind of voting rules considered in this work: Scoring rules

Scoring rules

Preferences as linear orders, scoring rules. Reminder:
Examples:

- plurality: $(1,0, \ldots, 0)$
- 2-approval: $(1,1,0, \ldots, 0)$
- veto: $(1, \ldots, 1,0)$
- Borda: $(m-1, m-2, \ldots, 0)(m=$ number of candidates $)$
- Formula 1 scoring: $(25,18,15,12,10,8,6,4,2,1,0, \ldots, 0)$

Scoring rules

m candidates: scoring vector $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ with
$\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{m}$ and $\alpha_{m}=0$

Scoring rule

provides a scoring vector for every number of candidates.

- non-trivial: $\alpha_{1} \neq 0$
- pure: the scoring vector for i candidates can be obtained from the scoring vector for $i-1$ candidates by inserting an additional score value at an arbitrary position

Example:
3 candidates: $\quad(6,3,0)$
4 candidates: pure: $(6,3,3,0),(6,5,3,0),(8,6,3,0), \ldots$
not pure: $(6,6,0,0),(6,3,2,1), \ldots$

Partial information

Recall: In the typical model, votes need to be presented as linear orders.

Realistic settings: voters may only provide partial information.
For example:

- not all voters have given their preferences yet
- new candidates are introduced
- a voter cannot compare several candidates because of lack of information/because he doesn't want to

How to deal with partial information?

We consider the question if a distinguished candidate can still win.

Partial vote

A partial vote is a transitive and antisymmetric relation.
Example: $C=\{a, b, c, d\}$ partial vote: $a \succ b \succ c, a \succ d$

possible extensions:
(1) $a>d>b>c$
(2) $a>b>d>c$
(3) $a>b>c>d$

An extension of a profile of partial votes extends every partial vote.

Computational Problem

Possible Winner

Input: A voting rule r, a set of candidates C, a profile of partial votes, and a distinguished candidate c.
Question: Is there an extension profile where c wins according to r ?

Known results for scoring rules

Two studied scenarios for Possible Winner:
(1) weighted voters:

NP-completeness for all scoring rules except plurality (holds even for a constant number of candidates)
(follows by dichotomy for the special case of Manipulation [Hemaspaandra and Hemaspaandra, JCSS 2007])
(2) unweighted voters:
a) constant number of candidates: always polynomial time [Conitzer, Sandholm, and Lang, JACM 2007]
b) unbounded number of candidates:

Known results for scoring rules

- unweighted voters
b) unbounded number of candidates:
- NP-complete for scoring rules that fulfill the following:
[Xia and Conitzer, AAAI 2008]
there is a position b with

$$
\alpha_{b}-\alpha_{b+1}=\alpha_{b+1}-\alpha_{b+2}=\alpha_{b+2}-\alpha_{b+3}
$$

and

$$
\alpha_{b+3}>\alpha_{b+4}
$$

Examples: $(\ldots, 6,5,4,3,0, \ldots),(\ldots, 17,14,11,8,7, \ldots)$

- Parameterized complexity study for some scoring rules:
[Betzler, Hemmann, and Niedermeier, IJCAI 2009]
k-approval is NP-hard for two partial votes when k is part of the input

Main Theorem

Theorem

For non-trivial pure scoring rules, Possible Winner is

- polynomial-time solvable for plurality and veto,
- open for $(2,1, \ldots, 1,0)$, and
- NP-complete for all other cases.

Recently,the case $(2,1, \ldots, 1,0)$ has been shown to be NP-complete as well! [Baumeister, Rothe, 2010]

Examples for new results:

- 2-approval: $(1,1,0, \ldots)$
- voting systems in which one can specify a small group of favorites and a small group of disliked candidates, like $(2,2,2,1, \ldots, 1,0,0)$ or $(3,1, \ldots, 1,0)$

Plurality

Example: $C=\{a, b, c, d\}$, distinguished candidate c

$$
\begin{aligned}
& v_{1}: a \succ c \succ d, b \succ c \\
& v_{2}: c \succ a \succ b \\
& v_{3}: a \succ d \succ b \\
& v_{4}: a \succ b \succ c \\
& v_{5}: a \succ c, b \succ d
\end{aligned}
$$

Plurality

Example: $C=\{a, b, c, d\}$, distinguished candidate c

$$
\begin{array}{ll}
v_{1}: a \succ c \succ d, b \succ c & \\
v_{2}: c \succ a \succ b & \Rightarrow c>a>b>d \\
v_{3}: a \succ d \succ b & \Rightarrow c>a>d>b
\end{array}
$$

$$
v_{4}: a \succ b \succ c
$$

$$
v_{5}: a \succ c, b \succ d
$$

Step I: Maximize score of c

Plurality

Example: $C=\{a, b, c, d\}$, distinguished candidate c

$$
\begin{array}{ll}
v_{1}: a \succ c \succ d, b \succ c & \\
v_{2}: c \succ a \succ b & \Rightarrow c>a>b>d \\
v_{3}: a \succ d \succ b & \Rightarrow c>a>d>b
\end{array}
$$

$$
v_{4}: a \succ b \succ c
$$

$$
v_{5}: a \succ c, b \succ d
$$

Step I: Maximize score of c Step II: Network flow

Plurality

Example: $C=\{a, b, c, d\}$, distinguished candidate c

$$
\begin{aligned}
& v_{1}: a \succ c \succ d, b \succ c \quad \Rightarrow a>b>c>d \\
& v_{2}: c \succ a \succ b \quad \Rightarrow c>a>b>d \\
& v_{3}: a \succ d \succ b \quad \Rightarrow c>a>d>b \\
& v_{4}: a \succ b \succ c \quad \Rightarrow d>a>b>c \\
& v_{5}: a \succ c, b \succ d \quad \Rightarrow b>a>c>d
\end{aligned}
$$

Step I: Maximize score of c Step II: Network flow

What about non-pure scoring rules?

Theorem

For non-trivial pure scoring rules, Possible Winner is

- polynomial-time solvable for plurality and veto,
- open for $(2,1, \ldots, 1,0)$, and
- NP-complete for all other cases.

Problem: scoring rules which have "easy" scoring vectors for nearly all number of candidates and still "hard" scoring vectors for some unbounded numbers of candidates

Property of pure scoring rules: can never go back to an easy vector Examples: $(1,0,0),(1,1,0,0) \rightarrow \operatorname{not}(1,0,0,0,0)$ or $(1,1,1,1,0)$ $(1,1,1,0),(2,1,1,1,0), \ldots$

Open questions

- How to compare candidates in partial votes?

Counting version: In how many extensions does a distinguished candidate win?

- NP-complete problems: Find approximation/exact exponential algorithm
- Parameter number of candidates: combinatorial algorithm?

