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Two Goals

1 Formalize and automatically verify / prove the
Kannai-Peleg Theorem V

2 Generalize and extend the developed framework
for an automated and exhaustive theorem search for
Ranking Sets of Objects (V)
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Outline
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Setting and Notation for Ranking Sets of Objects

Question / concern: Given a an ordering of objects, is there a “compatible” ranking of
all non-empty sets of objects?

Notation

A finite set of objects (or elements) X (with cardinality |X| = n)

A linear order ≥̇ on X
reflexive, complete, transitive, antisymmetric
e.g., x1 >̇ x2 >̇ x3 >̇ . . . >̇ xn

The set X of all non-empty subsets of X (i.e., X := 2X \ {∅})
A weak order � on X

reflexive, complete, transitive
e.g., A � B ∼ C � D . . .

Example (A first easy “compatibility” requirement)

A weak order � on X satisfies the principle of extension if the following axiom holds:

(EXT) x >̇ y ⇒ {x} � {y} for all x, y ∈ X.
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Some (Reasonable) Principles for a “Compatible” Weak Ordering
Causing an Impossibility: The Kannai-Peleg Theorem

Definition (The Gärdenfors Principle (also called dominance))

(GF1) ((∀a ∈ A)x >̇ a)⇒ A ∪ {x} � A for all x ∈ X and A ∈ X ,

(GF2) ((∀a ∈ A)x <̇ a)⇒ A ∪ {x} ≺ A for all x ∈ X and A ∈ X .

Adding an element that is strictly better/worse (>̇) than all the elements in a given
set to that set produces a strictly better/worse set,

Definition (The principle of independence)

(IND) A � B ⇒ A ∪ {x} � B ∪ {x} for all A,B ∈ X and x ∈ X \ (A ∪B).

If a set is strictly better than another one, then adding the same alternative to two
sets does not reverse this strict order.

Theorem (Kannai, Peleg, 1984)

Let X be a linearly ordered set with |X| ≥ 6. Then there exists no weak order � on X
satisfying the Gärdenfors Principle (GF) and independence (IND).
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Lin and Tang Use Induction to Prove Impossibility Theorems

Main idea?

1 Reduce to small base case using an inductive proof (manually)

2 Verify base case on a computer (SAT solver)

Successful?

Four famous impossibility results (Arrow, Muller-Satterthwaite,
Gibbard-Satterthwaite, Sen) verified by Lin and Tang

Extension to Ranking of Sets of Objects and, specifically, the Kannai-Peleg
Theorem
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Inductive Approach also Successful for Kannai-Peleg Theorem

Lemma

If X is a linearly ordered set with n+ 1 elements (n ∈ N) and there is a corresponding
weak order � on X that satisfies the Gärdenfors Principle (GF) and independence
(IND), then we can find another linearly ordered set Y with n elements only, as well as
a corresponding weak order on Y := 2Y \ {∅} satisfying the same axioms (GF) and
(IND).

Reading this contrapositively yields:

Corollary

If, for any linearly ordered set Y with n elements, there exists no weak order on
Y = 2Y \ {∅} satisfying the Gärdenfors Principle (GF) and independence (IND), then
also for any linearly ordered set X with |X| = n+ 1 there is no weak order on
X = 2X \ {∅} that satisfies these axioms.

=⇒ Reduces the theorem to the base case with n = 6 elements, which is then
checked on a computer.

Straightforward check of all possible orderings would do

But there are approximately 1.5254 · 1097 such orderings

=⇒ Need some clever way of checking the base case
=⇒ Lin’s and Tang’s idea: propositional logic & SAT solver
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SAT Solver zChaff Used in Our Implementation

A SAT (∼= satisfiability) solver is a program, which can check whether a formula
ϕ in propositional logic has a satisfying assignment

We used zChaff1 which does this job for formulas in conjunctive normal form
(CNF)

A propositional formula is in CNF if it is a conjunction of clauses, where a clause is a
disjunction of literals (variables or their negations)
For instance (p1 ∨ ¬p2 ∨ p3) ∧ (¬p1 ∨ p3) ∧ (¬p2 ∨ p3 ∨ ¬p4) is in CNF

NP-complete problem, hence no nice upper bound on running time; but evolved
and widely used heuristic algorithm

1SAT Research Group, Princeton University
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Formalization of the Base Case (1/2)

Three steps

1 Identify underlying axioms

2 Formulate them in propositional logic (and transform the formulas to
CNF)

3 Let SAT solver do the work

Lemma (base case)

Let X be a linearly ordered set with |X| = 6. Then there exists no weak order � on X
satisfying the Gärdenfors Principle (GF) and independence (IND).

=⇒ Axioms: (GF1), (GF2), (IND), (LIN), (WEAK)

Problem: Axioms intuitively formulated in second-order logic (∀A ∈ X . . . )

Solution: Make use of finiteness of instances
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Formalization of the Base Case (2/2)

Lemma (base case)

Let X be a linearly ordered set with |X| = 6. Then there exists no weak order � on X satisfying the Gärdenfors
Principle (GF) and independence (IND).

Propositional variables lx,y for all pairs (x, y) ∈ X2 with intended meaning
“x is ranked at least as high as y by the linear order ≥̇” (or short: x ≥̇ y)

Propositional variables wA,B for all pairs (A,B) ∈ X 2 with intended meaning
“A is ranked at least as high as B by the weak order �” (or short: A � B)

Axiom of independence as example for conversion:

(IND) (∀A,B ∈ X )(∀x ∈ X \ (A ∪B)) [A � B → A ∪ {x} � B ∪ {x}]
≡

∧
A,B∈X

∧
x∈X

x/∈(A∪B)

[
(wA,B ∧ ¬wB,A)→ wA∪{x},B∪{x}

]
≡

∧
A,B∈X

∧
x∈X

x/∈(A∪B)

[
¬wA,B ∨ wB,A ∨ wA∪{x},B∪{x}

]
Computer-aided instantiation of all axioms yields single, long formula
(total: 4,005 variables, 252,681 clauses)

But SAT solver returns result in about 5 seconds!

Finishes the proof of the Kannai-Peleg Theorem
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Automated and Exhaustive Theorem Search
Possible Because of General Inductive Step

Conjecture (General inductive step)

Formulas (or: axioms) of a certain logical form are preserved in substructures (with
respect to Ranking Sets of Objects)

=⇒ Advantage: only base cases to check (can be done fast)

Results so far:

21 Axioms from literature, checked all subsets of axioms
Up to domain size 8: limit of SAT solver (2GB memory)
Approximately 16 million instances

Found 173 (minimal) impossibilities (in about 6 hours running time)
Some trivial (e.g., strict or extended independence instead of independence)
Some new (e.g., correction of possibility & sizes 5, 7)
Reproved a few by hand (knowing what to do makes it easy)

Conjectures about general possibilities / characterizations
Possibility for a large domain hints at general possibility
“Compatible” weak order can be extracted from satisfying assignment (output from
SAT solver)
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Conclusion and Discussion

Mathematical framework for Ranking Sets of Objects

General proof idea of using induction and computer-aided base case verification

(developed by Lin and Tang)

Formalization of Kannai-Peleg Theorem (about nonexistence of certain
compatible orderings)

In propositional logic thanks to finiteness and computer-aided instantiation technique

Satisfiability checking using zChaff (fast: ∼ 5sec)

Automated proving of first-order formalization not successful so far

Framework can be used for:

Formalization and automatic verification of known impossibility results

Discovery of new (or variants of known) impossibility results

Started by Lin and Tang in their paper: relaxed some of Arrow’s conditions

Exhaustive theorem search for Ranking Sets of Objects

Other axioms / areas?
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