The Approximability of Dodgson Elections

Nikos Karanikolas

University of Patras

Based on joint work with Ioannis Caragiannis, Jason A. Covey, Michal Feldman, Christopher M. Homan, Christos Kaklamanis, Ariel D. Procaccia, Jeffrey S. Rosenschein

Voting rules

• Input: Agents' preferences (preference profile)

• Output: Winner(s) of the election or a ranking of the alternatives

Condorcet criterion

- Alternative x beats y in a pairwise election if the majority of agents prefers x to y
- Alternative x is a Condorcet winner if x beats any other alternative in a pairwise election
- Condorcet paradox: A Condorcet winner may not exist
- Choose an alternative as close as possible to a Condorcet winner according to some proximity measure
 - Dodgson's rule

Condorcet paradox

- a beats b
- b beats c
- c beats a

Dodgson's method

- Dodgson score of x:
 - the minimum number of exchanges between adjacent alternatives needed to make x a Condorcet winner
- Dodgson ranking:
 - the alternatives are ranked in non-decreasing order of their Dodgson score
- Dodgson winner:
 - an alternative with the minimum Dodgson score

An example of Dodgson

Related combinatorial problems

- Dodgson score:
 - Given a preference profile, a particular alternative x, and an integer K, is the Dodgson score of x at most K?
 - NP-complete : Bartholdi, Tovey, and Trick (Social Choice & Welfare, 1989)
- Dodgson winner:
 - Given a preference profile and a particular alternative x, is x a Dodgson winner?
 - NP-hard: Bartholdi, Tovey, and Trick (Social Choice & Welfare, 1989) and Hemaspaandra, Hemaspaandra, and Rothe (J. ACM, 1997)
- Dodgson ranking:
 - Given a preference profile, compute a Dodgson ranking

Approximation algorithms

- Can we approximate the Dodgson score and ranking?
- i.e., is there an algorithm which, on input a preference profile and a particular alternative x, computes a score which is at most a multiplicative factor away the Dodgson score of x?
- A ρ -approximation algorithm guarantees that Dodgson score of x \leq score returned by the algorithm for x $\leq \rho$ times Dodgson score of x
- An approximation algorithm naturally defines an alternative voting rule

Our results

- Approximation of Dodgson's rule
 - Greedy algorithm
 - An algorithm based on linear programming
- Inapproximability results for the Dodgson ranking and Dodgson score

The greedy algorithm

- Input:
 - A preference profile and a specific alternative x
- Notions:
 - def(x,c) = number of additional agents that must rank
 x above c in order for x to beat c in a pairwise election
 - -c is alive iff def(x,c)>0, otherwise dead
 - Cost-effectiveness of pushing alternative x upwards at the preference of an agent = ratio between the number of alive alternatives overtaken by x over number of positions pushed
- Greedy algorithm: While there are alive alternatives, perform the most cost-effective push

The greedy algorithm: an example

Greedy algorithm performance

- **Theorem :** The greedy algorithm has approximation ratio at most H_{m-1}
- The proof uses the equivalent ILP for the computation of Dodgson score and its LP relaxation as analysis tools

ILP for Dodgson score

- Variables y_{ij}:
 - 1 if agent i pushes x j positions, 0 otherwise
- Constants a_{ij}^{c} :
 - 1 if pushing x j positions in agent i gives x an additional vote against c, 0 otherwise

$$\begin{array}{ll} \text{minimize} & \sum_{i,j} j \cdot y_{ij} \\ \text{subject to}: & \sum_{j} y_{ij} = 1 & \forall i \\ & \sum_{i,j} a_{ij}^c \cdot y_{ij} \geq \text{def}(x,c) & \forall c \neq x \\ & & y_{ij} \in \{0,1\} & \forall i, j \end{array}$$

LP relaxation for Dodgson score

- Variables y_{ij} are fractional
- Constants a_{ij}^{c} :
 - 1 if pushing x j positions in agent i gives x an additional vote against c, 0 otherwise

$$\begin{array}{ll} \text{minimize} & \sum_{i,j} j \cdot y_{ij} \\ \text{subject to}: & \sum_{j} y_{ij} = 1 & \forall i \\ & \sum_{i,j} a_{ij}^c \cdot y_{ij} \geq \text{def}(x,c) & \forall c \neq x \\ & 0 \leq y_{ij} \leq 1 & \forall i, j \end{array}$$

Greedy algorithm performance

- **Theorem:** The greedy algorithm has approximation ratio at most H_{m-1}
- The proof uses the equivalent ILP for the computation of Dodgson score and its LP relaxation as analysis tools
 - We know that $LP \leq ILP = Dodgson score$
 - We use a technique known as dual fitting to show that the score computed by the algorithm is upper bounded by the solution of LP times H_{m-1}
 - This means that the greedy algorithm approximates the Dodgson score within H_{m-1}

An LP-based algorithm

- Solve the LP and multiply its solution by H_{m-1}
- **Theorem:** The LP-based algorithm computes an H_{m-1} – approximation of the Dodgson score
- Why?
 - We know that LP \leq Dodgson score \leq LP H_{m-1}
 - Hence, Dodgson score \leq LP $H_{m-1} \leq$ Dodgson score times H_{m-1}

Inapproximability of Dodgson's ranking

- **Theorem:** It is NP-hard to decide whether a given alternative is a Dodgson winner or in the last $6\sqrt{m}$ positions in the Dodgson ranking
 - The proof uses a reduction from vertex cover in 3-regular graphs
- Complexity-theoretic explanation of sharp discrepancies observed in the Social Choice literature when comparing Dodgson voting rule to other (polynomial-time computable) voting rules (e.g., Copeland or Borda)
 - Klamer (Math. Social Sciences, 2004)
 - Ratliff (Economic Theory, 2002)

Inapproximability of Dodgson's score

- Theorem: No polynomial-time algorithm can approximate the Dodgson score of a particular alternative within (1/2-ε) lnm unless problems in NP have superpolynomial-time algorithms
 - The proof uses a reduction from Set Cover

A socially desirable property

- A voting rule is weakly monotonic if pushing an alternative upwards in the preferences of some agents cannot worsen its score
- Greedy is not weakly monotonic
- The LP-based algorithm is weakly monotonic

More socially desirable approximations for Dodgson

• In the forthcoming paper:

– Caragiannis, Kaklamanis, K, & Procaccia (EC 10)

Thank you!