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Introduction 2

We have seen what paradoxical situations could occur
Now it’s time to provide some explanation for it
Don Saari’s “Basic Geometry of Voting (1995)”

More than 50 papers and 6 books about this topic
We will focus on 3 things:

Use geometry to determine possible voting outcomes for 
scoring rules
Decompose profiles to explain paradoxes between scoring 
rules and simple majority rule
Representation polytope and some applications



Mathematical prerequisites 3

Convex sets
Linear mappings
Convexity property of linear functions

If A is a convex set in the domain and if f is a linear function, 
then the image of A is a convex set in the image space.
If f is a linear mapping with a convex domain if D is a convex 
set in the image set, then f-1(D) is convex set.

Convex hull
The convex hull of the vertices {vi}1

m is the smallest convex 
set containing all vertices.

Linear functions now map convex hulls into convex 
hulls



Saari Triangle 4

Consider any voting rule that ranks the alternatives according 
to some assignment of points to them

E.g. scoring rules such as the Borda rule or Plurality rule
We could try to see each point score for an alternative as a 
point on the axis for that alternative
What happens with 2 alternatives?
… and for 3 alternatives?

a

c

b

We get a point in 3-dimensional space



Saari Triangle 5

How can we make this look simpler?
Whatever the election tally, we could try to normalize it
E.g. plurality vector (9, 6, 5) could be normalized to 
(9/20, 6/20, 5/20)
This can be plotted in the simplex

a

c

b

1

11



Saari Triangle 6

A projection of this leads to the following triangle:

a

c

b

Which we could divide into proximity (or ranking) regions.
The closer to one of the edges the “better”
Leads to 6 ranking regions



Saari Triangle 7

Let X = {a,b,c}. There are 6 types of strict rankings:

a

c

b

Can use this to determine the outcomes. How?

However, we have a “slight” dimensionality problem when we 
increase the number of alternatives!



Scoring Rules 8

For |X| = 3 we know that the scoring vectors are:
Plurality: WPR = (1,0,0) or wPR = (1,0,0)
Antiplurality: WAP = (1,1,0) or wAP = (½,½,0)
Borda: WB = (2,1,0) or wB = (2/3,1/3, 0)

In general ws = (1-s,s,0); s є [0, ½]

a

c

b
Election outcome 
is b f a f c 

Now, use the scoring vector to get a 
vector of scores for the 
alternatives (e.g. (10,14,9)).

Normalize this vector to get a point in 
the simplex (e.g. ).



Example 9

M

B

W

Borda outcome    
is W f B f M 

Plurality outcome 
is M f W f B 



Example 10

M

B

W

APR

PR

Because of linearity the Borda 
outcome lies on the line between the 
PR and the APR outcome.

The line connecting PR with APR is the Procedure Line and 
contains all possible outcomes of scoring rules for the given 
profile.



Procedure Line 11

Using the procedure line we can see how bad it can get among different 
scoring rules.

a

c

b

We could get up 
to 7 different 
outcomes! 

Whenever PR and APR are in the same ranking region, ALL scoring rules 
give the same voting outcome!

With more alternatives we get spaces of possible scoring rule outcomes.

More alternatives lead to more problems! With 10 candidates there 
exists a profile that gives 84,830,767 different election rankings for 
different scoring rules (Saari, 1995).



Representing profiles 12

For |X|=3 we do have how many linear orders?
So we could think of our profile as a vector in 6 dimensional 
space

E.g.: p = (32,0,10,22,20,16)
So any profile is a 6-dimensional vector
Dimensions increase massively with candidates
Now Saari (1995) thinks of certain subspaces, which have a 
specific impact on certain voting rules

This should help us understand certain voting paradoxes 
and differences in voting outcomes

Saari’s profile decomposition



Profile Decomposition 13

What is the driving force behind the different outcomes? 

Or, how can we create profiles that lead to differences between 
scoring rules and majority rule?

Profile Decomposition (Saari, 1995)

What would we expect for the following combinations 
of preferences?

Those two preferences should cancel out!

But only true for majority rule and Borda rule, not for any 
other scoring rule!

REVERSAL 
PORTION



Profile Decomposition 14

Every alternative is once in each position. Should not 
influence the voting outcome.

But only true for scoring rules, not for majority rule or 
any Condorcet extension as it creates or strengthens a 
cycle!

CONDORCET 
PORTION

Every alternative is in each position twice. 

Gives indifference for ALL voting procedures!

KERNEL 
PORTION



Profile Decomposition 15

Finally there is a portion that gives the same outcome for every scoring 
rule AND majority rule!

BASIC PORTION

Example: Both, PR and APR give the same a f b f c ranking 
and hence all scoring rules give this ranking.

Also majority rule gives this ranking!

If we now add 6 Condorcet portions we get:

The scoring rule outcomes don’t change but 
we now get the majority cycle a f b f c f a.



Profile Decomposition 16

Now, add the following reversal portions:

This leads to the following new profile:

Now, the Borda ranking is still a f b f c , there is still  a majority 
cycle, but the new Plurality ranking is c f b f a. 



Profile Decomposition 17

Actually the real portions look as follows (and consider now w=(1,s,0)):

Basic Portion for “a”
For any scoring rule:

a receives 2 points

b and c receive 0 points

And SMR?

What do negative voters mean? We need them to create an orthogonal 
coordinate system, to separate their effects from other effects.

Basic Portion for “b”



Profile Decomposition 18

a-reversal portion

For any scoring rule:

a receives 2-4s points

b and c receive 2s-1 points

And SMR?
b-reversal portion

ALL possible differences in 3-alternatives elections are caused by 
reversal portions (Saari, 1999)



Profile Decomposition 19

Condorcet portion

For any scoring rule:

a,b,c receive 0 points

For |X|=3 we have now all our coordinate directions, i.e. our 4 
portions span the six-dimensional profile space.
These profile coordinates account for every problem that 
might occur.
Any other configuration of profiles that impacts on election 
outcomes must be a combination of these.
However, other profile coordinate systems are possible.

So any profile can be represented by those portions
E.g.: p = 3Ba + 2Bb - 5Ra + 1Rb – 3C + 14K    



Representing profiles 20

Let us think more about pairwise voting now
Start with a profile

E.g.: p = (32,0,10,22,20,16)
And we could normalize it to (.32,0,.1,.22,.2,.16) by dividing 
through |N|
With pairwise votes this maps into a 3 dimensional space

One dimension for each pair
Use the majority margins: kxy =|{iєN:xRiy}|-|{iєN:yRix}| 
and normalize them



Pairwise voting 21

Consider set of 
alternatives: X = {a,b,c}

Family of pairwise 
comparisons: {afb, bfc, cfa}

afb

bfc

cfa
Any preference (outcome) 
can be represented by a 
point in this 3-dimensional 
space.



Representation cube

c
b
a

Family of pairwise 
comparisons: {afb, bfc, cfa}(-1,1,1) (1,1,1)

(-1,-1,1)
(1,-1,1)

(-1,1,-1)

cfa

bfc

Vectors representing 
cyclic voters are:

(1,1,1) and (-1,-1,-1)
(1,1,-1)

afb(1,-1,-1)(-1,-1,-1)



Representation cube

(-1,-1,-1) (1,-1,-1)

(-1,-1,1)
(1,-1,1)

(-1,1,-1) (1,1,-1)

(-1,1,1) (1,1,1)

Majority subcube for 
vertex (-1,-1,1)

c
b
a cfa

bfc

afb

Its Euclidean distance 
from the vertex 
determines the 
majority outcome.

Hence we have 8 subcubes
Two of them lead to 
cycling SMR outcome

Can use this 
representation cube to 
prove Sen’s theorem. 
How?



Representation cube

Family of pairwise 
valuations: {afb, bfc, cfa}(-1,1,1) (1,1,1)

(-1,-1,1)
(1,-1,1)

(-1,1,-1)

Vectors representing 
cyclic voters are:

(1,1,1) and (-1,-1,-1)
(1,1,-1)

(1,-1,-1)(-1,-1,-1)

Representation polytope being 
the convex hull of all feasible 
vertices, which are all unanimity 
profiles.

Those are all the points a profile 
can be mapped into by SMR.

cfa

bfc

afb



Representation cube 25

(-1,1,1) (1,1,1)

(-1,-1,1)
(1,-1,1)

(-1,1,-1)

(-1,-1,-1) (1,-1,-1)

cfa

bfc

(1,1,-1)

afb

As SMR outcome is the vertex closest to the point that the 
profile maps into, we see that it cuts through the two 
subcubes of cyclic outcomes



Reduced profiles 26

Can also reduce the profile to see more clearly when 
problems occur with SMR

eliminate reversal portions

p = (10,12,3,8,6,5) can be reduced to what?
Do we get problems? Check the cube!



Representation cube 27

(-1,1,1) (1,1,1)

And for p = (10,3,6,9,7,3)?
Problems!

(-1,-1,-1) (1,-1,-1)

(1,-1,1)

(-1,1,-1)

cfa

bfc

(-1,-1,1)

(1,1,-1)

afb



Profile Decomposition 28

We can see the problems in the following triangle

(1,-1,1)

Irrational 
Area

(1,1,-1) (-1,1,1)

In principle we can now create domain restrictions in the form of 
single-peakedness condition by Black to make sure that no profile can 
be plotted in any of those irrational areas.



Domain restrictions 29

What does single-peakedness mean?
Certain combinations of individual proferences are note 
allowed.
What does this imply for our cube?

(1,-1,1)

(-1,1,-1)

(-1,1,1) (1,1,1)
cfa

bfc

(1,1,-1)

afb(1,-1,-1)(-1,-1,-1)



Distance Based Rules 30

Besides domain restrictions, there is an alternative way to guarantee 
collective rationality, via distance-based rules (Kemeny, 1959).

Determine the social outcome as the ranking that minimizes the 
distance to the individual rankings.



Distance Based Rules 31

(1,1,-1) (-1,1,1)

(1,-1,1)

Geometrically, this means dividing the yellow triangle into three areas 
based on their distance to the vertices.

This guarantees a consistent social outcome and is equivalent to
switching the pair of alternatives which is closest to the 50-50 
threshold (see Merlin and Saari, 2000).



Conclusion 32

Geometry as a tool to understand voting results and 
differences in outcomes
Saari triangles
Profile decomposition
Representation cubes
Also useful for other aggregation frameworks such as in 
judgment aggregation
Other geometric approaches possible (e.g. Zwicker, 2008)
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