
Information Fusion and Social Choice

Sébastien Konieczny

CNRS - CRIL, Lens, France
konieczny@cril.fr

COST-ADT Doctoral School on computational Social Choice

1 / 43

Merging

• Contradictory pieces of information (beliefs, goals, . . .) coming from
different sources

Propositional Logic

no priority (same reliability, hierarchical importance, ...)

ϕ1 ϕ2 ϕ3
a, b→ c a, b ¬ a

4(ϕ1 t ϕ2 t ϕ3) =

b → c,b,a

2 / 43

Merging

• Contradictory pieces of information (beliefs, goals, . . .) coming from
different sources

Propositional Logic

no priority (same reliability, hierarchical importance, ...)

ϕ1 ϕ2 ϕ3
a, b→ c a, b ¬ a

4(ϕ1 t ϕ2 t ϕ3) =

b → c,b,a

2 / 43

Merging

• Contradictory pieces of information (beliefs, goals, . . .) coming from
different sources

Propositional Logic
no priority (same reliability, hierarchical importance, ...)

ϕ1 ϕ2 ϕ3
a, b→ c a, b ¬ a

4(ϕ1 t ϕ2 t ϕ3) =

b → c,b,a

2 / 43

Merging

• Contradictory pieces of information (beliefs, goals, . . .) coming from
different sources

Propositional Logic
no priority (same reliability, hierarchical importance, ...)

ϕ1 ϕ2 ϕ3
a, b→ c a, b ¬ a

4(ϕ1 t ϕ2 t ϕ3) =

b → c,b,a

2 / 43

Merging

• Contradictory pieces of information (beliefs, goals, . . .) coming from
different sources

Propositional Logic
no priority (same reliability, hierarchical importance, ...)

ϕ1 ϕ2 ϕ3
a, b→ c a, b ¬ a

4(ϕ1 t ϕ2 t ϕ3) = b → c,b

,a

2 / 43

Merging

• Contradictory pieces of information (beliefs, goals, . . .) coming from
different sources

Propositional Logic
no priority (same reliability, hierarchical importance, ...)

ϕ1 ϕ2 ϕ3
a, b→ c a, b ¬ a

4(ϕ1 t ϕ2 t ϕ3) = b → c,b,a

2 / 43

Merging

• Applications :
Distributed information systems

I Databases
I Multi-agent systems

• Propositional bases can encode different types of information :
knowledge
beliefs
goals
rules / laws
. . .

3 / 43

Plan

• Propositional Base Merging
Logical Properties

• Merging Operators
Model based operators
Formula based operators
DA2 operators
Vectors of conflicts
Defaults based operators
Similarity based operators

• Merging and . . .
. . . Belief Revision
. . . Social Choice
. . . Judgment Aggregation

• Other logical merging frameworks
• Negotiation/Conciliation

4 / 43

Definitions

• A set of formulae L build from :
A set of propositional symbols : P = a, b, c, . . .
Connectives ¬,∧,∨,→,↔.

• An interpretation (world) is a function P −→ {0,1}.
• A model of a formula is an interpretation that makes it true.
• The set of models of a formula α is denoted by mod(α).
• A formula α is consistent if mod(α) 6= ∅

• A base ϕ is a finite set of propositional formulae.
• A profile E is a multi-set of bases : E = {ϕ1, . . . , ϕn}.
•
∧

E denotes the conjunction of the bases of E.
• A profile E is consistent if and only if

∧
E is consistent.

We will note mod(E) instead of mod(
∧

E).

Equivalence between profiles :
• Let E1,E2 be two profiles. E1 and E2 are equivalent, noted E1 ↔ E2, iff

there exists a bijection f from E1 = {ϕ1
1, . . . , ϕ

1
n} to E2 = {ϕ2

1, . . . , ϕ
2
n}

such that ` f (ϕ)↔ ϕ.

5 / 43

Definitions

• A set of formulae L build from :
A set of propositional symbols : P = a, b, c, . . .
Connectives ¬,∧,∨,→,↔.

• An interpretation (world) is a function P −→ {0,1}.
• A model of a formula is an interpretation that makes it true.
• The set of models of a formula α is denoted by mod(α).
• A formula α is consistent if mod(α) 6= ∅

• A base ϕ is a finite set of propositional formulae.
• A profile E is a multi-set of bases : E = {ϕ1, . . . , ϕn}.
•
∧

E denotes the conjunction of the bases of E.
• A profile E is consistent if and only if

∧
E is consistent.

We will note mod(E) instead of mod(
∧

E).

Equivalence between profiles :
• Let E1,E2 be two profiles. E1 and E2 are equivalent, noted E1 ↔ E2, iff

there exists a bijection f from E1 = {ϕ1
1, . . . , ϕ

1
n} to E2 = {ϕ2

1, . . . , ϕ
2
n}

such that ` f (ϕ)↔ ϕ.
5 / 43

Merging

Profile

E = {ϕ1, . . . , ϕn}

µ

}
−→ 4µ(E)

Merged base

Integrity Constraints

6 / 43

Merging

Profile
E = {ϕ1, . . . , ϕn}

µ

}
−→ 4µ(E)

Merged base

Integrity Constraints

6 / 43

Merging

Profile
E = {ϕ1, . . . , ϕn}

µ

}
−→ 4µ(E)

Merged base

Integrity Constraints

6 / 43

Merging

Profile
E = {ϕ1, . . . , ϕn}

µ

}
−→ 4µ(E)

Merged base

Integrity Constraints

6 / 43

Merging

Profile
E = {ϕ1, . . . , ϕn}

µ

}
−→ 4µ(E)

Merged base

Integrity Constraints

6 / 43

Merging

Profile
E = {ϕ1, . . . , ϕn}

µ

}
−→ 4µ(E) Merged base

Integrity Constraints

6 / 43

Logical Characterization

4 is an Integrity Constraint merging operator (IC merging operator) if and only
if it satisfies the following properties :

(IC0) 4µ(E) ` µ
(IC1) If µ is consistent, then 4µ(E) is consistent
(IC2) If

∧
E is consistent with µ, then 4µ(E) =

∧
E ∧ µ

(IC3) If E1 ↔ E2 and µ1 ↔ µ2, then 4µ1 (E1)↔4µ2 (E2)

(IC4) If ϕ ` µ and ϕ′ ` µ, then 4µ(ϕ t ϕ′) ∧ ϕ 0 ⊥ ⇒ 4µ(ϕ t ϕ′) ∧ ϕ′ 0 ⊥
(IC5) 4µ(E1) ∧4µ(E2) ` 4µ(E1 t E2)

(IC6) If 4µ(E1) ∧4µ(E2) is consistent, then 4µ(E1 t E2) ` 4µ(E1) ∧4µ(E2)

(IC7) 4µ1 (E) ∧ µ2 ` 4µ1∧µ2 (E)

(IC8) If 4µ1 (E) ∧ µ2 is consistent, then 4µ1∧µ2 (E) ` 4µ1 (E)

7 / 43

Logical Characterization

4 is an Integrity Constraint merging operator (IC merging operator) if and only
if it satisfies the following properties :

(IC0) 4µ(E) ` µ

(IC1) If µ is consistent, then 4µ(E) is consistent
(IC2) If

∧
E is consistent with µ, then 4µ(E) =

∧
E ∧ µ

(IC3) If E1 ↔ E2 and µ1 ↔ µ2, then 4µ1 (E1)↔4µ2 (E2)

(IC4) If ϕ ` µ and ϕ′ ` µ, then 4µ(ϕ t ϕ′) ∧ ϕ 0 ⊥ ⇒ 4µ(ϕ t ϕ′) ∧ ϕ′ 0 ⊥
(IC5) 4µ(E1) ∧4µ(E2) ` 4µ(E1 t E2)

(IC6) If 4µ(E1) ∧4µ(E2) is consistent, then 4µ(E1 t E2) ` 4µ(E1) ∧4µ(E2)

(IC7) 4µ1 (E) ∧ µ2 ` 4µ1∧µ2 (E)

(IC8) If 4µ1 (E) ∧ µ2 is consistent, then 4µ1∧µ2 (E) ` 4µ1 (E)

7 / 43

Logical Characterization

4 is an Integrity Constraint merging operator (IC merging operator) if and only
if it satisfies the following properties :

(IC0) 4µ(E) ` µ
(IC1) If µ is consistent, then 4µ(E) is consistent

(IC2) If
∧

E is consistent with µ, then 4µ(E) =
∧

E ∧ µ
(IC3) If E1 ↔ E2 and µ1 ↔ µ2, then 4µ1 (E1)↔4µ2 (E2)

(IC4) If ϕ ` µ and ϕ′ ` µ, then 4µ(ϕ t ϕ′) ∧ ϕ 0 ⊥ ⇒ 4µ(ϕ t ϕ′) ∧ ϕ′ 0 ⊥
(IC5) 4µ(E1) ∧4µ(E2) ` 4µ(E1 t E2)

(IC6) If 4µ(E1) ∧4µ(E2) is consistent, then 4µ(E1 t E2) ` 4µ(E1) ∧4µ(E2)

(IC7) 4µ1 (E) ∧ µ2 ` 4µ1∧µ2 (E)

(IC8) If 4µ1 (E) ∧ µ2 is consistent, then 4µ1∧µ2 (E) ` 4µ1 (E)

7 / 43

Logical Characterization

4 is an Integrity Constraint merging operator (IC merging operator) if and only
if it satisfies the following properties :

(IC0) 4µ(E) ` µ
(IC1) If µ is consistent, then 4µ(E) is consistent
(IC2) If

∧
E is consistent with µ, then 4µ(E) =

∧
E ∧ µ

(IC3) If E1 ↔ E2 and µ1 ↔ µ2, then 4µ1 (E1)↔4µ2 (E2)

(IC4) If ϕ ` µ and ϕ′ ` µ, then 4µ(ϕ t ϕ′) ∧ ϕ 0 ⊥ ⇒ 4µ(ϕ t ϕ′) ∧ ϕ′ 0 ⊥
(IC5) 4µ(E1) ∧4µ(E2) ` 4µ(E1 t E2)

(IC6) If 4µ(E1) ∧4µ(E2) is consistent, then 4µ(E1 t E2) ` 4µ(E1) ∧4µ(E2)

(IC7) 4µ1 (E) ∧ µ2 ` 4µ1∧µ2 (E)

(IC8) If 4µ1 (E) ∧ µ2 is consistent, then 4µ1∧µ2 (E) ` 4µ1 (E)

7 / 43

Logical Characterization

4 is an Integrity Constraint merging operator (IC merging operator) if and only
if it satisfies the following properties :

(IC0) 4µ(E) ` µ
(IC1) If µ is consistent, then 4µ(E) is consistent
(IC2) If

∧
E is consistent with µ, then 4µ(E) =

∧
E ∧ µ

(IC3) If E1 ↔ E2 and µ1 ↔ µ2, then 4µ1 (E1)↔4µ2 (E2)

(IC4) If ϕ ` µ and ϕ′ ` µ, then 4µ(ϕ t ϕ′) ∧ ϕ 0 ⊥ ⇒ 4µ(ϕ t ϕ′) ∧ ϕ′ 0 ⊥
(IC5) 4µ(E1) ∧4µ(E2) ` 4µ(E1 t E2)

(IC6) If 4µ(E1) ∧4µ(E2) is consistent, then 4µ(E1 t E2) ` 4µ(E1) ∧4µ(E2)

(IC7) 4µ1 (E) ∧ µ2 ` 4µ1∧µ2 (E)

(IC8) If 4µ1 (E) ∧ µ2 is consistent, then 4µ1∧µ2 (E) ` 4µ1 (E)

7 / 43

Logical Characterization

4 is an Integrity Constraint merging operator (IC merging operator) if and only
if it satisfies the following properties :

(IC0) 4µ(E) ` µ
(IC1) If µ is consistent, then 4µ(E) is consistent
(IC2) If

∧
E is consistent with µ, then 4µ(E) =

∧
E ∧ µ

(IC3) If E1 ↔ E2 and µ1 ↔ µ2, then 4µ1 (E1)↔4µ2 (E2)

(IC4) If ϕ ` µ and ϕ′ ` µ, then 4µ(ϕ t ϕ′) ∧ ϕ 0 ⊥ ⇒ 4µ(ϕ t ϕ′) ∧ ϕ′ 0 ⊥

(IC5) 4µ(E1) ∧4µ(E2) ` 4µ(E1 t E2)

(IC6) If 4µ(E1) ∧4µ(E2) is consistent, then 4µ(E1 t E2) ` 4µ(E1) ∧4µ(E2)

(IC7) 4µ1 (E) ∧ µ2 ` 4µ1∧µ2 (E)

(IC8) If 4µ1 (E) ∧ µ2 is consistent, then 4µ1∧µ2 (E) ` 4µ1 (E)

7 / 43

Logical Characterization

4 is an Integrity Constraint merging operator (IC merging operator) if and only
if it satisfies the following properties :

(IC0) 4µ(E) ` µ
(IC1) If µ is consistent, then 4µ(E) is consistent
(IC2) If

∧
E is consistent with µ, then 4µ(E) =

∧
E ∧ µ

(IC3) If E1 ↔ E2 and µ1 ↔ µ2, then 4µ1 (E1)↔4µ2 (E2)

(IC4) If ϕ ` µ and ϕ′ ` µ, then 4µ(ϕ t ϕ′) ∧ ϕ 0 ⊥ ⇒ 4µ(ϕ t ϕ′) ∧ ϕ′ 0 ⊥
(IC5) 4µ(E1) ∧4µ(E2) ` 4µ(E1 t E2)

(IC6) If 4µ(E1) ∧4µ(E2) is consistent, then 4µ(E1 t E2) ` 4µ(E1) ∧4µ(E2)

(IC7) 4µ1 (E) ∧ µ2 ` 4µ1∧µ2 (E)

(IC8) If 4µ1 (E) ∧ µ2 is consistent, then 4µ1∧µ2 (E) ` 4µ1 (E)

7 / 43

Logical Characterization

4 is an Integrity Constraint merging operator (IC merging operator) if and only
if it satisfies the following properties :

(IC0) 4µ(E) ` µ
(IC1) If µ is consistent, then 4µ(E) is consistent
(IC2) If

∧
E is consistent with µ, then 4µ(E) =

∧
E ∧ µ

(IC3) If E1 ↔ E2 and µ1 ↔ µ2, then 4µ1 (E1)↔4µ2 (E2)

(IC4) If ϕ ` µ and ϕ′ ` µ, then 4µ(ϕ t ϕ′) ∧ ϕ 0 ⊥ ⇒ 4µ(ϕ t ϕ′) ∧ ϕ′ 0 ⊥
(IC5) 4µ(E1) ∧4µ(E2) ` 4µ(E1 t E2)

(IC6) If 4µ(E1) ∧4µ(E2) is consistent, then 4µ(E1 t E2) ` 4µ(E1) ∧4µ(E2)

(IC7) 4µ1 (E) ∧ µ2 ` 4µ1∧µ2 (E)

(IC8) If 4µ1 (E) ∧ µ2 is consistent, then 4µ1∧µ2 (E) ` 4µ1 (E)

7 / 43

Logical Characterization

4 is an Integrity Constraint merging operator (IC merging operator) if and only
if it satisfies the following properties :

(IC0) 4µ(E) ` µ
(IC1) If µ is consistent, then 4µ(E) is consistent
(IC2) If

∧
E is consistent with µ, then 4µ(E) =

∧
E ∧ µ

(IC3) If E1 ↔ E2 and µ1 ↔ µ2, then 4µ1 (E1)↔4µ2 (E2)

(IC4) If ϕ ` µ and ϕ′ ` µ, then 4µ(ϕ t ϕ′) ∧ ϕ 0 ⊥ ⇒ 4µ(ϕ t ϕ′) ∧ ϕ′ 0 ⊥
(IC5) 4µ(E1) ∧4µ(E2) ` 4µ(E1 t E2)

(IC6) If 4µ(E1) ∧4µ(E2) is consistent, then 4µ(E1 t E2) ` 4µ(E1) ∧4µ(E2)

(IC7) 4µ1 (E) ∧ µ2 ` 4µ1∧µ2 (E)

(IC8) If 4µ1 (E) ∧ µ2 is consistent, then 4µ1∧µ2 (E) ` 4µ1 (E)

7 / 43

Majority vs Arbitration

Ally, Brian and Charles have to decide what they will do this night. Brian and
Ally want to go to the restaurant and to the cinema. Charles does not want to
go out this night and so he does not want to go nor to the restaurant nor to the
cinema.

Majority restaurant and cinema

Ally + +
Brian + +
Charles – –

Arbitration restaurant xor cinema

Ally +
Brian +
Charles +

8 / 43

Majority vs Arbitration

Ally, Brian and Charles have to decide what they will do this night. Brian and
Ally want to go to the restaurant and to the cinema. Charles does not want to
go out this night and so he does not want to go nor to the restaurant nor to the
cinema.

Majority restaurant and cinema

Ally + +
Brian + +
Charles – –

Arbitration restaurant xor cinema

Ally +
Brian +
Charles +

8 / 43

Majority vs Arbitration

Ally, Brian and Charles have to decide what they will do this night. Brian and
Ally want to go to the restaurant and to the cinema. Charles does not want to
go out this night and so he does not want to go nor to the restaurant nor to the
cinema.

Majority restaurant and cinema

Ally + +
Brian + +
Charles – –

Arbitration restaurant xor cinema

Ally +
Brian +
Charles +

8 / 43

Majority - Arbitration

(Maj) ∃n 4µ (E1 t E2
n) ` 4µ(E2)

. An IC merging operator is a majority operator if it satisfies (Maj).

(Arb)

4µ1 (ϕ1)↔4µ2 (ϕ2)
4µ1↔¬µ2 (ϕ1 t ϕ2)↔ (µ1 ↔ ¬µ2)
µ1 0 µ2
µ2 0 µ1

⇒4µ1∨µ2 (ϕ1 t ϕ2)↔4µ1 (ϕ1)

. An IC merging operator is an arbitration operator if it satifies (Arb).

9 / 43

Majority - Arbitration

(Maj) ∃n 4µ (E1 t E2
n) ` 4µ(E2)

. An IC merging operator is a majority operator if it satisfies (Maj).

(Arb)

4µ1 (ϕ1)↔4µ2 (ϕ2)
4µ1↔¬µ2 (ϕ1 t ϕ2)↔ (µ1 ↔ ¬µ2)
µ1 0 µ2
µ2 0 µ1

⇒4µ1∨µ2 (ϕ1 t ϕ2)↔4µ1 (ϕ1)

. An IC merging operator is an arbitration operator if it satifies (Arb).

9 / 43

Syncretic Assignment

A syncretic assignment is a function mapping each profile E to a total
pre-order ≤E over interpretations such that :

1) If ω |= E and ω′ |= E, then ω 'E ω
′

2) If ω |= E and ω′ 6|= E, then ω <E ω
′

3) If E1 ≡ E2, then ≤E1 =≤E2

4) ∀ω |= ϕ1 ∃ω′ |= ϕ2 ω
′ ≤ϕ1tϕ2 ω

5) If ω ≤E1 ω
′ and ω ≤E2 ω

′, then ω ≤E1tE2 ω
′

6) If ω <E1 ω
′ and ω ≤E2 ω

′, then ω <E1tE2 ω
′

A majority syncretic assignment is a syncretic assignment which satisfies :
7) If ω <E2 ω

′, then ∃n ω <E1tE2
n ω′

A fair syncretic assignment is a syncretic assignment which satisfies :

8)
ω <ϕ1 ω

′

ω <ϕ2 ω
′′

ω′ 'ϕ1tϕ2 ω
′′

⇒ ω <ϕ1tϕ2 ω
′

10 / 43

Syncretic Assignment

A syncretic assignment is a function mapping each profile E to a total
pre-order ≤E over interpretations such that :

1) If ω |= E and ω′ |= E, then ω 'E ω
′

2) If ω |= E and ω′ 6|= E, then ω <E ω
′

3) If E1 ≡ E2, then ≤E1 =≤E2

4) ∀ω |= ϕ1 ∃ω′ |= ϕ2 ω
′ ≤ϕ1tϕ2 ω

5) If ω ≤E1 ω
′ and ω ≤E2 ω

′, then ω ≤E1tE2 ω
′

6) If ω <E1 ω
′ and ω ≤E2 ω

′, then ω <E1tE2 ω
′

A majority syncretic assignment is a syncretic assignment which satisfies :
7) If ω <E2 ω

′, then ∃n ω <E1tE2
n ω′

A fair syncretic assignment is a syncretic assignment which satisfies :

8)
ω <ϕ1 ω

′

ω <ϕ2 ω
′′

ω′ 'ϕ1tϕ2 ω
′′

⇒ ω <ϕ1tϕ2 ω
′

10 / 43

Syncretic Assignment

A syncretic assignment is a function mapping each profile E to a total
pre-order ≤E over interpretations such that :

1) If ω |= E and ω′ |= E, then ω 'E ω
′

2) If ω |= E and ω′ 6|= E, then ω <E ω
′

3) If E1 ≡ E2, then ≤E1 =≤E2

4) ∀ω |= ϕ1 ∃ω′ |= ϕ2 ω
′ ≤ϕ1tϕ2 ω

5) If ω ≤E1 ω
′ and ω ≤E2 ω

′, then ω ≤E1tE2 ω
′

6) If ω <E1 ω
′ and ω ≤E2 ω

′, then ω <E1tE2 ω
′

A majority syncretic assignment is a syncretic assignment which satisfies :
7) If ω <E2 ω

′, then ∃n ω <E1tE2
n ω′

A fair syncretic assignment is a syncretic assignment which satisfies :

8)
ω <ϕ1 ω

′

ω <ϕ2 ω
′′

ω′ 'ϕ1tϕ2 ω
′′

⇒ ω <ϕ1tϕ2 ω
′

10 / 43

Arbitration

ϕ1 ϕ2

sY
sDsR

sR sD
sY

s sY R

ϕ1 t ϕ2

sD

11 / 43

Arbitration

ϕ1 ϕ2

sY

sDsR

sR sD
sY

s sY R

ϕ1 t ϕ2

sD

11 / 43

Arbitration

ϕ1 ϕ2

sY
sD

sR

sR sD
sY

s sY R

ϕ1 t ϕ2

sD

11 / 43

Arbitration

ϕ1 ϕ2

sY
sDsR

sR sD
sY

s sY R

ϕ1 t ϕ2

sD

11 / 43

Arbitration

ϕ1 ϕ2

sY
sDsR

sR

sD
sY

s sY R

ϕ1 t ϕ2

sD

11 / 43

Arbitration

ϕ1 ϕ2

sY
sDsR

sR sD

sY

s sY R

ϕ1 t ϕ2

sD

11 / 43

Arbitration

ϕ1 ϕ2

sY
sDsR

sR sD
sY

s sY R

ϕ1 t ϕ2

sD

11 / 43

Arbitration

ϕ1 ϕ2

sY
sDsR

sR sD
sY

s sY R

ϕ1 t ϕ2

sD

11 / 43

Arbitration

ϕ1 ϕ2

sY
sDsR

sR sD
sY

s sY R

ϕ1 t ϕ2

sD

11 / 43

Representation Theorem

Theorem An operator is an IC merging operator if and only if there exists a
syncretic assignment that maps each profile E to a total pre-order ≤E such
that

mod(4µ(E))) = min(mod(µ),≤E).

12 / 43

Representation Theorem

Theorem An operator is an IC merging operator (respectively IC majority
merging operator or IC arbitration operator) if and only if there exists a
syncretic assignment (respectively majority syncretic assignment or fair
syncretic assignment) that maps each profile E to a total pre-order ≤E such
that

mod(4µ(E))) = min(mod(µ),≤E).

12 / 43

Model-Based Merging

Idea : Select the interpretations that are the most plausible for a given profile.

ω ≤dx
E ω′ iff dx (ω,E) ≤ dx (ω′,E)

dx can be computed using : • a distance between interpretations d
• an aggregation function f

• Distance between interpretations
d(ω, ω′) = d(ω′, ω)
d(ω, ω′) = 0 iff ω = ω′

• Distance between an interpretation and a base
d(ω, ϕ) = minω′|=ϕ d(ω, ω′)

• Distance between an interpretation and a profile
dd,f (ω,E) = f (d(ω, ϕ1), . . . d(ω, ϕn))

13 / 43

Model-Based Merging

Idea : Select the interpretations that are the most plausible for a given profile.

ω ≤dx
E ω′ iff dx (ω,E) ≤ dx (ω′,E)

dx can be computed using : • a distance between interpretations d
• an aggregation function f

• Distance between interpretations
d(ω, ω′) = d(ω′, ω)
d(ω, ω′) = 0 iff ω = ω′

• Distance between an interpretation and a base
d(ω, ϕ) = minω′|=ϕ d(ω, ω′)

• Distance between an interpretation and a profile
dd,f (ω,E) = f (d(ω, ϕ1), . . . d(ω, ϕn))

13 / 43

Model-Based Merging

Idea : Select the interpretations that are the most plausible for a given profile.

ω ≤dx
E ω′ iff dx (ω,E) ≤ dx (ω′,E)

dx can be computed using : • a distance between interpretations d
• an aggregation function f

• Distance between interpretations
d(ω, ω′) = d(ω′, ω)
d(ω, ω′) = 0 iff ω = ω′

• Distance between an interpretation and a base
d(ω, ϕ) = minω′|=ϕ d(ω, ω′)

• Distance between an interpretation and a profile
dd,f (ω,E) = f (d(ω, ϕ1), . . . d(ω, ϕn))

13 / 43

Model-Based Merging

Idea : Select the interpretations that are the most plausible for a given profile.

ω ≤dx
E ω′ iff dx (ω,E) ≤ dx (ω′,E)

dx can be computed using : • a distance between interpretations d
• an aggregation function f

• Distance between interpretations
d(ω, ω′) = d(ω′, ω)
d(ω, ω′) = 0 iff ω = ω′

• Distance between an interpretation and a base
d(ω, ϕ) = minω′|=ϕ d(ω, ω′)

• Distance between an interpretation and a profile
dd,f (ω,E) = f (d(ω, ϕ1), . . . d(ω, ϕn))

13 / 43

Model-Based Merging

Idea : Select the interpretations that are the most plausible for a given profile.

ω ≤dx
E ω′ iff dx (ω,E) ≤ dx (ω′,E)

dx can be computed using : • a distance between interpretations d
• an aggregation function f

• Distance between interpretations
d(ω, ω′) = d(ω′, ω)
d(ω, ω′) = 0 iff ω = ω′

• Distance between an interpretation and a base
d(ω, ϕ) = minω′|=ϕ d(ω, ω′)

• Distance between an interpretation and a profile
dd,f (ω,E) = f (d(ω, ϕ1), . . . d(ω, ϕn))

13 / 43

Model-Based Merging

Idea : Select the interpretations that are the most plausible for a given profile.

ω ≤dx
E ω′ iff dx (ω,E) ≤ dx (ω′,E)

dx can be computed using : • a distance between interpretations d
• an aggregation function f

• Distance between interpretations
d(ω, ω′) = d(ω′, ω)
d(ω, ω′) = 0 iff ω = ω′

• Distance between an interpretation and a base
d(ω, ϕ) = minω′|=ϕ d(ω, ω′)

• Distance between an interpretation and a profile
dd,f (ω,E) = f (d(ω, ϕ1), . . . d(ω, ϕn))

13 / 43

Model-Based Merging

• Examples of aggregation function :
max, leximax , Σ, Σn, leximin, . . .

• Let d be any distance between interpretations.
4d,max operators satisfy (IC0-IC5), (IC7), (IC8) and (Arb).
4d,GMIN operators are IC merging operators.
4d,GMAX operators are arbitration operators.
4d,Σ and 4d,Σn

operators are majority operators.

14 / 43

Model-Based Merging

• Examples of aggregation function :
max, leximax , Σ, Σn, leximin, . . .

• Let d be any distance between interpretations.
4d,max operators satisfy (IC0-IC5), (IC7), (IC8) and (Arb).
4d,GMIN operators are IC merging operators.
4d,GMAX operators are arbitration operators.
4d,Σ and 4d,Σn

operators are majority operators.

14 / 43

Model-Based Merging

An aggregation function f is a function that associates a positive number to
any tuple of positive numbers such that :
• If x ≤ y , then f (x1, . . . , x , . . . , xn) ≤ f (x1, . . . , y , . . . , xn) (monotony)
• f (x1, . . . , xn) = 0 if and only if x1 = . . . = xn = 0 (minimality)
• f (x) = x (identity)

Theorem Let d be a distance between interpretation and f be an aggregation
function, then the operateur 4d,f satisfies properties (IC0), (IC1), (IC2), (IC7)
et (IC8).

Theorem The operateur 4d,f satisfies properties (IC0-IC8) if and only if f
satisfies :
• For any permutation σ, f (x1, . . . , xn) = f (σ(x1, . . . , xn)) (symmetry)
• If f (x1, . . . , xn) ≤ f (y1, . . . , yn), then f (x1, . . . , xn, z) ≤ f (y1, . . . , yn, z)

(composition)
• If f (x1, . . . , xn, z) ≤ f (y1, . . . , yn, z), then f (x1, . . . , xn) ≤ f (y1, . . . , yn)

(decomposition)

15 / 43

Model-Based Merging

An aggregation function f is a function that associates a positive number to
any tuple of positive numbers such that :
• If x ≤ y , then f (x1, . . . , x , . . . , xn) ≤ f (x1, . . . , y , . . . , xn) (monotony)
• f (x1, . . . , xn) = 0 if and only if x1 = . . . = xn = 0 (minimality)
• f (x) = x (identity)

Theorem Let d be a distance between interpretation and f be an aggregation
function, then the operateur 4d,f satisfies properties (IC0), (IC1), (IC2), (IC7)
et (IC8).

Theorem The operateur 4d,f satisfies properties (IC0-IC8) if and only if f
satisfies :
• For any permutation σ, f (x1, . . . , xn) = f (σ(x1, . . . , xn)) (symmetry)
• If f (x1, . . . , xn) ≤ f (y1, . . . , yn), then f (x1, . . . , xn, z) ≤ f (y1, . . . , yn, z)

(composition)
• If f (x1, . . . , xn, z) ≤ f (y1, . . . , yn, z), then f (x1, . . . , xn) ≤ f (y1, . . . , yn)

(decomposition)

15 / 43

Model-Based Merging

An aggregation function f is a function that associates a positive number to
any tuple of positive numbers such that :
• If x ≤ y , then f (x1, . . . , x , . . . , xn) ≤ f (x1, . . . , y , . . . , xn) (monotony)
• f (x1, . . . , xn) = 0 if and only if x1 = . . . = xn = 0 (minimality)
• f (x) = x (identity)

Theorem Let d be a distance between interpretation and f be an aggregation
function, then the operateur 4d,f satisfies properties (IC0), (IC1), (IC2), (IC7)
et (IC8).

Theorem The operateur 4d,f satisfies properties (IC0-IC8) if and only if f
satisfies :
• For any permutation σ, f (x1, . . . , xn) = f (σ(x1, . . . , xn)) (symmetry)
• If f (x1, . . . , xn) ≤ f (y1, . . . , yn), then f (x1, . . . , xn, z) ≤ f (y1, . . . , yn, z)

(composition)
• If f (x1, . . . , xn, z) ≤ f (y1, . . . , yn, z), then f (x1, . . . , xn) ≤ f (y1, . . . , yn)

(decomposition)

15 / 43

Example

µ = ((S ∧ T) ∨ (S ∧ P) ∨ (T ∧ P))→ I

ϕ1 = ϕ2 = S ∧ T ∧ P
ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I
ϕ4 = T ∧ P ∧ ¬I

mod(ϕ1) = {(1,1,1,1), (1,1,1,0)}
mod(ϕ3) = {(0,0,0,0)}
mod(ϕ4) = {(1,1,1,0), (0,1,1,0)}

ϕ1 ϕ2 ϕ3 ϕ4 ddH ,Max ddH ,Σ ddH ,Σ2 ddH ,GMax
(0,0,0,0) 3 3 0 2 3 8 22 (3,3,2,0)
(0,0,0,1) 3 3 1 3 3 10 28 (3,3,3,1)
(0,0,1,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,0,1,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,0,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,1,0,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,1,1) 1 1 3 1 3 6 12 (3,1,1,1)
(1,0,0,0) 2 2 1 2 2 7 13 (2,2,2,1)
(1,0,0,1) 2 2 2 3 3 9 21 (3,2,2,2)
(1,0,1,1) 1 1 3 2 2 7 15 (3,2,1,1)
(1,1,0,1) 1 1 3 2 3 7 15 (3,2,1,1)
(1,1,1,1) 0 0 4 1 4 5 17 (4,1,0,0)

16 / 43

Example

µ = ((S ∧ T) ∨ (S ∧ P) ∨ (T ∧ P))→ I

ϕ1 = ϕ2 = S ∧ T ∧ P
ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I
ϕ4 = T ∧ P ∧ ¬I

mod(ϕ1) = {(1,1,1,1), (1,1,1,0)}
mod(ϕ3) = {(0,0,0,0)}
mod(ϕ4) = {(1,1,1,0), (0,1,1,0)}

ϕ1 ϕ2 ϕ3 ϕ4 ddH ,Max ddH ,Σ ddH ,Σ2 ddH ,GMax
(0,0,0,0) 3 3 0 2 3 8 22 (3,3,2,0)
(0,0,0,1) 3 3 1 3 3 10 28 (3,3,3,1)
(0,0,1,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,0,1,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,0,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,1,0,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,1,1) 1 1 3 1 3 6 12 (3,1,1,1)
(1,0,0,0) 2 2 1 2 2 7 13 (2,2,2,1)
(1,0,0,1) 2 2 2 3 3 9 21 (3,2,2,2)
(1,0,1,1) 1 1 3 2 2 7 15 (3,2,1,1)
(1,1,0,1) 1 1 3 2 3 7 15 (3,2,1,1)
(1,1,1,1) 0 0 4 1 4 5 17 (4,1,0,0)

16 / 43

Example

µ = ((S ∧ T) ∨ (S ∧ P) ∨ (T ∧ P))→ I

ϕ1 = ϕ2 = S ∧ T ∧ P
ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I
ϕ4 = T ∧ P ∧ ¬I

mod(ϕ1) = {(1,1,1,1), (1,1,1,0)}
mod(ϕ3) = {(0,0,0,0)}
mod(ϕ4) = {(1,1,1,0), (0,1,1,0)}

ϕ1 ϕ2 ϕ3 ϕ4 ddH ,Max ddH ,Σ ddH ,Σ2 ddH ,GMax
(0,0,0,0) 3 3 0 2

3 8 22 (3,3,2,0)
(0,0,0,1) 3 3 1 3 3 10 28 (3,3,3,1)
(0,0,1,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,0,1,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,0,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,1,0,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,1,1) 1 1 3 1 3 6 12 (3,1,1,1)
(1,0,0,0) 2 2 1 2 2 7 13 (2,2,2,1)
(1,0,0,1) 2 2 2 3 3 9 21 (3,2,2,2)
(1,0,1,1) 1 1 3 2 2 7 15 (3,2,1,1)
(1,1,0,1) 1 1 3 2 3 7 15 (3,2,1,1)
(1,1,1,1) 0 0 4 1 4 5 17 (4,1,0,0)

16 / 43

Example

µ = ((S ∧ T) ∨ (S ∧ P) ∨ (T ∧ P))→ I

ϕ1 = ϕ2 = S ∧ T ∧ P
ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I
ϕ4 = T ∧ P ∧ ¬I

mod(ϕ1) = {(1,1,1,1), (1,1,1,0)}
mod(ϕ3) = {(0,0,0,0)}
mod(ϕ4) = {(1,1,1,0), (0,1,1,0)}

ϕ1 ϕ2 ϕ3 ϕ4 ddH ,Max ddH ,Σ ddH ,Σ2 ddH ,GMax
(0,0,0,0) 3 3 0 2 3

8 22 (3,3,2,0)
(0,0,0,1) 3 3 1 3 3 10 28 (3,3,3,1)
(0,0,1,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,0,1,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,0,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,1,0,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,1,1) 1 1 3 1 3 6 12 (3,1,1,1)
(1,0,0,0) 2 2 1 2 2 7 13 (2,2,2,1)
(1,0,0,1) 2 2 2 3 3 9 21 (3,2,2,2)
(1,0,1,1) 1 1 3 2 2 7 15 (3,2,1,1)
(1,1,0,1) 1 1 3 2 3 7 15 (3,2,1,1)
(1,1,1,1) 0 0 4 1 4 5 17 (4,1,0,0)

16 / 43

Example

µ = ((S ∧ T) ∨ (S ∧ P) ∨ (T ∧ P))→ I

ϕ1 = ϕ2 = S ∧ T ∧ P
ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I
ϕ4 = T ∧ P ∧ ¬I

mod(ϕ1) = {(1,1,1,1), (1,1,1,0)}
mod(ϕ3) = {(0,0,0,0)}
mod(ϕ4) = {(1,1,1,0), (0,1,1,0)}

ϕ1 ϕ2 ϕ3 ϕ4 ddH ,Max ddH ,Σ ddH ,Σ2 ddH ,GMax
(0,0,0,0) 3 3 0 2 3 8

22 (3,3,2,0)
(0,0,0,1) 3 3 1 3 3 10 28 (3,3,3,1)
(0,0,1,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,0,1,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,0,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,1,0,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,1,1) 1 1 3 1 3 6 12 (3,1,1,1)
(1,0,0,0) 2 2 1 2 2 7 13 (2,2,2,1)
(1,0,0,1) 2 2 2 3 3 9 21 (3,2,2,2)
(1,0,1,1) 1 1 3 2 2 7 15 (3,2,1,1)
(1,1,0,1) 1 1 3 2 3 7 15 (3,2,1,1)
(1,1,1,1) 0 0 4 1 4 5 17 (4,1,0,0)

16 / 43

Example

µ = ((S ∧ T) ∨ (S ∧ P) ∨ (T ∧ P))→ I

ϕ1 = ϕ2 = S ∧ T ∧ P
ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I
ϕ4 = T ∧ P ∧ ¬I

mod(ϕ1) = {(1,1,1,1), (1,1,1,0)}
mod(ϕ3) = {(0,0,0,0)}
mod(ϕ4) = {(1,1,1,0), (0,1,1,0)}

ϕ1 ϕ2 ϕ3 ϕ4 ddH ,Max ddH ,Σ ddH ,Σ2 ddH ,GMax
(0,0,0,0) 3 3 0 2 3 8 22

(3,3,2,0)
(0,0,0,1) 3 3 1 3 3 10 28 (3,3,3,1)
(0,0,1,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,0,1,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,0,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,1,0,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,1,1) 1 1 3 1 3 6 12 (3,1,1,1)
(1,0,0,0) 2 2 1 2 2 7 13 (2,2,2,1)
(1,0,0,1) 2 2 2 3 3 9 21 (3,2,2,2)
(1,0,1,1) 1 1 3 2 2 7 15 (3,2,1,1)
(1,1,0,1) 1 1 3 2 3 7 15 (3,2,1,1)
(1,1,1,1) 0 0 4 1 4 5 17 (4,1,0,0)

16 / 43

Example

µ = ((S ∧ T) ∨ (S ∧ P) ∨ (T ∧ P))→ I

ϕ1 = ϕ2 = S ∧ T ∧ P
ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I
ϕ4 = T ∧ P ∧ ¬I

mod(ϕ1) = {(1,1,1,1), (1,1,1,0)}
mod(ϕ3) = {(0,0,0,0)}
mod(ϕ4) = {(1,1,1,0), (0,1,1,0)}

ϕ1 ϕ2 ϕ3 ϕ4 ddH ,Max ddH ,Σ ddH ,Σ2 ddH ,GMax
(0,0,0,0) 3 3 0 2 3 8 22 (3,3,2,0)

(0,0,0,1) 3 3 1 3 3 10 28 (3,3,3,1)
(0,0,1,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,0,1,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,0,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,1,0,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,1,1) 1 1 3 1 3 6 12 (3,1,1,1)
(1,0,0,0) 2 2 1 2 2 7 13 (2,2,2,1)
(1,0,0,1) 2 2 2 3 3 9 21 (3,2,2,2)
(1,0,1,1) 1 1 3 2 2 7 15 (3,2,1,1)
(1,1,0,1) 1 1 3 2 3 7 15 (3,2,1,1)
(1,1,1,1) 0 0 4 1 4 5 17 (4,1,0,0)

16 / 43

Example

µ = ((S ∧ T) ∨ (S ∧ P) ∨ (T ∧ P))→ I

ϕ1 = ϕ2 = S ∧ T ∧ P
ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I
ϕ4 = T ∧ P ∧ ¬I

mod(ϕ1) = {(1,1,1,1), (1,1,1,0)}
mod(ϕ3) = {(0,0,0,0)}
mod(ϕ4) = {(1,1,1,0), (0,1,1,0)}

ϕ1 ϕ2 ϕ3 ϕ4 ddH ,Max ddH ,Σ ddH ,Σ2 ddH ,GMax
(0,0,0,0) 3 3 0 2 3 8 22 (3,3,2,0)
(0,0,0,1) 3 3 1 3 3 10 28 (3,3,3,1)
(0,0,1,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,0,1,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,0,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,1,0,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,1,1) 1 1 3 1 3 6 12 (3,1,1,1)
(1,0,0,0) 2 2 1 2 2 7 13 (2,2,2,1)
(1,0,0,1) 2 2 2 3 3 9 21 (3,2,2,2)
(1,0,1,1) 1 1 3 2 2 7 15 (3,2,1,1)
(1,1,0,1) 1 1 3 2 3 7 15 (3,2,1,1)
(1,1,1,1) 0 0 4 1 4 5 17 (4,1,0,0)

16 / 43

Example

µ = ((S ∧ T) ∨ (S ∧ P) ∨ (T ∧ P))→ I

ϕ1 = ϕ2 = S ∧ T ∧ P
ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I
ϕ4 = T ∧ P ∧ ¬I

mod(ϕ1) = {(1,1,1,1), (1,1,1,0)}
mod(ϕ3) = {(0,0,0,0)}
mod(ϕ4) = {(1,1,1,0), (0,1,1,0)}

ϕ1 ϕ2 ϕ3 ϕ4 ddH ,Max ddH ,Σ ddH ,Σ2 ddH ,GMax
(0,0,0,0) 3 3 0 2 3 8 22 (3,3,2,0)
(0,0,0,1) 3 3 1 3 3 10 28 (3,3,3,1)
(0,0,1,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,0,1,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,0,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,1,0,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,1,1) 1 1 3 1 3 6 12 (3,1,1,1)
(1,0,0,0) 2 2 1 2 2 7 13 (2,2,2,1)
(1,0,0,1) 2 2 2 3 3 9 21 (3,2,2,2)
(1,0,1,1) 1 1 3 2 2 7 15 (3,2,1,1)
(1,1,0,1) 1 1 3 2 3 7 15 (3,2,1,1)
(1,1,1,1) 0 0 4 1 4 5 17 (4,1,0,0)

16 / 43

Example

µ = ((S ∧ T) ∨ (S ∧ P) ∨ (T ∧ P))→ I

ϕ1 = ϕ2 = S ∧ T ∧ P
ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I
ϕ4 = T ∧ P ∧ ¬I

mod(ϕ1) = {(1,1,1,1), (1,1,1,0)}
mod(ϕ3) = {(0,0,0,0)}
mod(ϕ4) = {(1,1,1,0), (0,1,1,0)}

ϕ1 ϕ2 ϕ3 ϕ4 ddH ,Max ddH ,Σ ddH ,Σ2 ddH ,GMax
(0,0,0,0) 3 3 0 2 3 8 22 (3,3,2,0)
(0,0,0,1) 3 3 1 3 3 10 28 (3,3,3,1)
(0,0,1,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,0,1,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,0,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,1,0,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,1,1) 1 1 3 1 3 6 12 (3,1,1,1)
(1,0,0,0) 2 2 1 2 2 7 13 (2,2,2,1)
(1,0,0,1) 2 2 2 3 3 9 21 (3,2,2,2)
(1,0,1,1) 1 1 3 2 2 7 15 (3,2,1,1)
(1,1,0,1) 1 1 3 2 3 7 15 (3,2,1,1)
(1,1,1,1) 0 0 4 1 4 5 17 (4,1,0,0)

16 / 43

Example

µ = ((S ∧ T) ∨ (S ∧ P) ∨ (T ∧ P))→ I

ϕ1 = ϕ2 = S ∧ T ∧ P
ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I
ϕ4 = T ∧ P ∧ ¬I

mod(ϕ1) = {(1,1,1,1), (1,1,1,0)}
mod(ϕ3) = {(0,0,0,0)}
mod(ϕ4) = {(1,1,1,0), (0,1,1,0)}

ϕ1 ϕ2 ϕ3 ϕ4 ddH ,Max ddH ,Σ ddH ,Σ2 ddH ,GMax
(0,0,0,0) 3 3 0 2 3 8 22 (3,3,2,0)
(0,0,0,1) 3 3 1 3 3 10 28 (3,3,3,1)
(0,0,1,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,0,1,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,0,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,1,0,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,1,1) 1 1 3 1 3 6 12 (3,1,1,1)
(1,0,0,0) 2 2 1 2 2 7 13 (2,2,2,1)
(1,0,0,1) 2 2 2 3 3 9 21 (3,2,2,2)
(1,0,1,1) 1 1 3 2 2 7 15 (3,2,1,1)
(1,1,0,1) 1 1 3 2 3 7 15 (3,2,1,1)
(1,1,1,1) 0 0 4 1 4 5 17 (4,1,0,0)

16 / 43

Example

µ = ((S ∧ T) ∨ (S ∧ P) ∨ (T ∧ P))→ I

ϕ1 = ϕ2 = S ∧ T ∧ P
ϕ3 = ¬S ∧ ¬T ∧ ¬P ∧ ¬I
ϕ4 = T ∧ P ∧ ¬I

mod(ϕ1) = {(1,1,1,1), (1,1,1,0)}
mod(ϕ3) = {(0,0,0,0)}
mod(ϕ4) = {(1,1,1,0), (0,1,1,0)}

ϕ1 ϕ2 ϕ3 ϕ4 ddH ,Max ddH ,Σ ddH ,Σ2 ddH ,GMax
(0,0,0,0) 3 3 0 2 3 8 22 (3,3,2,0)
(0,0,0,1) 3 3 1 3 3 10 28 (3,3,3,1)
(0,0,1,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,0,1,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,0,0) 2 2 1 1 2 6 10 (2,2,1,1)
(0,1,0,1) 2 2 2 2 2 8 16 (2,2,2,2)
(0,1,1,1) 1 1 3 1 3 6 12 (3,1,1,1)
(1,0,0,0) 2 2 1 2 2 7 13 (2,2,2,1)
(1,0,0,1) 2 2 2 3 3 9 21 (3,2,2,2)
(1,0,1,1) 1 1 3 2 2 7 15 (3,2,1,1)
(1,1,0,1) 1 1 3 2 3 7 15 (3,2,1,1)
(1,1,1,1) 0 0 4 1 4 5 17 (4,1,0,0)

16 / 43

Formula-Based Merging [BKM91,BKMS92]

Idea : Select some formulae from the union of the bases of the profile

MAXCONS(E, µ) = {M ⊆
⋃

E ∪ µ s.t. • M 0 ⊥
• µ ⊆ M
• ∀M ⊂ M ′ ⊆

⋃
E ∪ µ M ′ ` ⊥}

4C1
µ (E) = MAXCONS(E, µ)

4C3
µ (E) = {M : M ∈ MAXCONS(E,>) and M ∧ µ consistent}
4C4
µ (E) = MAXCONScard (E, µ)

4C5
µ (E) = {M ∧ µ : M ∈ MAXCONS(E,>) and M ∧ µ consistent}

if this set is nonempty and µ otherwise.

IC0 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 MI Maj
4C1 √ √ √ √ √ √ √

4C3 √ √ √ √ √

4C4 √ √ √ √ √ √

4C5 √ √ √ √ √ √ √ √

17 / 43

Formula-Based Merging [BKM91,BKMS92]

Idea : Select some formulae from the union of the bases of the profile

MAXCONS(E, µ) = {M ⊆
⋃

E ∪ µ s.t. • M 0 ⊥
• µ ⊆ M
• ∀M ⊂ M ′ ⊆

⋃
E ∪ µ M ′ ` ⊥}

4C1
µ (E) = MAXCONS(E, µ)

4C3
µ (E) = {M : M ∈ MAXCONS(E,>) and M ∧ µ consistent}
4C4
µ (E) = MAXCONScard (E, µ)

4C5
µ (E) = {M ∧ µ : M ∈ MAXCONS(E,>) and M ∧ µ consistent}

if this set is nonempty and µ otherwise.

IC0 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 MI Maj
4C1 √ √ √ √ √ √ √

4C3 √ √ √ √ √

4C4 √ √ √ √ √ √

4C5 √ √ √ √ √ √ √ √

17 / 43

Formula-Based Merging [BKM91,BKMS92]

Idea : Select some formulae from the union of the bases of the profile

MAXCONS(E, µ) = {M ⊆
⋃

E ∪ µ s.t. • M 0 ⊥
• µ ⊆ M
• ∀M ⊂ M ′ ⊆

⋃
E ∪ µ M ′ ` ⊥}

4C1
µ (E) = MAXCONS(E, µ)

4C3
µ (E) = {M : M ∈ MAXCONS(E,>) and M ∧ µ consistent}

4C4
µ (E) = MAXCONScard (E, µ)

4C5
µ (E) = {M ∧ µ : M ∈ MAXCONS(E,>) and M ∧ µ consistent}

if this set is nonempty and µ otherwise.

IC0 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 MI Maj
4C1 √ √ √ √ √ √ √

4C3 √ √ √ √ √

4C4 √ √ √ √ √ √

4C5 √ √ √ √ √ √ √ √

17 / 43

Formula-Based Merging [BKM91,BKMS92]

Idea : Select some formulae from the union of the bases of the profile

MAXCONS(E, µ) = {M ⊆
⋃

E ∪ µ s.t. • M 0 ⊥
• µ ⊆ M
• ∀M ⊂ M ′ ⊆

⋃
E ∪ µ M ′ ` ⊥}

4C1
µ (E) = MAXCONS(E, µ)

4C3
µ (E) = {M : M ∈ MAXCONS(E,>) and M ∧ µ consistent}
4C4
µ (E) = MAXCONScard (E, µ)

4C5
µ (E) = {M ∧ µ : M ∈ MAXCONS(E,>) and M ∧ µ consistent}

if this set is nonempty and µ otherwise.

IC0 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 MI Maj
4C1 √ √ √ √ √ √ √

4C3 √ √ √ √ √

4C4 √ √ √ √ √ √

4C5 √ √ √ √ √ √ √ √

17 / 43

Formula-Based Merging [BKM91,BKMS92]

Idea : Select some formulae from the union of the bases of the profile

MAXCONS(E, µ) = {M ⊆
⋃

E ∪ µ s.t. • M 0 ⊥
• µ ⊆ M
• ∀M ⊂ M ′ ⊆

⋃
E ∪ µ M ′ ` ⊥}

4C1
µ (E) = MAXCONS(E, µ)

4C3
µ (E) = {M : M ∈ MAXCONS(E,>) and M ∧ µ consistent}
4C4
µ (E) = MAXCONScard (E, µ)

4C5
µ (E) = {M ∧ µ : M ∈ MAXCONS(E,>) and M ∧ µ consistent}

if this set is nonempty and µ otherwise.

IC0 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 MI Maj
4C1 √ √ √ √ √ √ √

4C3 √ √ √ √ √

4C4 √ √ √ √ √ √

4C5 √ √ √ √ √ √ √ √

17 / 43

Formula-Based Merging [BKM91,BKMS92]

Idea : Select some formulae from the union of the bases of the profile

MAXCONS(E, µ) = {M ⊆
⋃

E ∪ µ s.t. • M 0 ⊥
• µ ⊆ M
• ∀M ⊂ M ′ ⊆

⋃
E ∪ µ M ′ ` ⊥}

4C1
µ (E) = MAXCONS(E, µ)

4C3
µ (E) = {M : M ∈ MAXCONS(E,>) and M ∧ µ consistent}
4C4
µ (E) = MAXCONScard (E, µ)

4C5
µ (E) = {M ∧ µ : M ∈ MAXCONS(E,>) and M ∧ µ consistent}

if this set is nonempty and µ otherwise.

IC0 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 MI Maj
4C1 √ √ √ √ √ √ √

4C3 √ √ √ √ √

4C4 √ √ √ √ √ √

4C5 √ √ √ √ √ √ √ √

17 / 43

Formula-Based Merging : Selection Functions

Idea : Use a selection function to choose only the best maxcons.

• Partial-meet versus full-meet revision operators
• Take into account the distribution of the information among the sources

Example : Consider a profile E and a maxcons M :
• dist∩(M, ϕ) = |ϕ ∩M|
• dist∩,Σ(M,E) =

∑
ϕ∈E dist∩(M, ϕ)

IC0 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 MI Maj
4C1 √ √ √ √ √ √ √

4d √ √ √ √ √ √ √

4S,Σ √ √ √ √ √ √ √

4∩,Σ √ √ √ √ √ √ √ √

18 / 43

Formula-Based Merging : Selection Functions

Idea : Use a selection function to choose only the best maxcons.

• Partial-meet versus full-meet revision operators

• Take into account the distribution of the information among the sources

Example : Consider a profile E and a maxcons M :
• dist∩(M, ϕ) = |ϕ ∩M|
• dist∩,Σ(M,E) =

∑
ϕ∈E dist∩(M, ϕ)

IC0 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 MI Maj
4C1 √ √ √ √ √ √ √

4d √ √ √ √ √ √ √

4S,Σ √ √ √ √ √ √ √

4∩,Σ √ √ √ √ √ √ √ √

18 / 43

Formula-Based Merging : Selection Functions

Idea : Use a selection function to choose only the best maxcons.

• Partial-meet versus full-meet revision operators
• Take into account the distribution of the information among the sources

Example : Consider a profile E and a maxcons M :
• dist∩(M, ϕ) = |ϕ ∩M|
• dist∩,Σ(M,E) =

∑
ϕ∈E dist∩(M, ϕ)

IC0 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 MI Maj
4C1 √ √ √ √ √ √ √

4d √ √ √ √ √ √ √

4S,Σ √ √ √ √ √ √ √

4∩,Σ √ √ √ √ √ √ √ √

18 / 43

Formula-Based Merging : Selection Functions

Idea : Use a selection function to choose only the best maxcons.

• Partial-meet versus full-meet revision operators
• Take into account the distribution of the information among the sources

Example : Consider a profile E and a maxcons M :
• dist∩(M, ϕ) = |ϕ ∩M|

• dist∩,Σ(M,E) =
∑
ϕ∈E dist∩(M, ϕ)

IC0 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 MI Maj
4C1 √ √ √ √ √ √ √

4d √ √ √ √ √ √ √

4S,Σ √ √ √ √ √ √ √

4∩,Σ √ √ √ √ √ √ √ √

18 / 43

Formula-Based Merging : Selection Functions

Idea : Use a selection function to choose only the best maxcons.

• Partial-meet versus full-meet revision operators
• Take into account the distribution of the information among the sources

Example : Consider a profile E and a maxcons M :
• dist∩(M, ϕ) = |ϕ ∩M|
• dist∩,Σ(M,E) =

∑
ϕ∈E dist∩(M, ϕ)

IC0 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 MI Maj
4C1 √ √ √ √ √ √ √

4d √ √ √ √ √ √ √

4S,Σ √ √ √ √ √ √ √

4∩,Σ √ √ √ √ √ √ √ √

18 / 43

Formula-Based Merging : Selection Functions

Idea : Use a selection function to choose only the best maxcons.

• Partial-meet versus full-meet revision operators
• Take into account the distribution of the information among the sources

Example : Consider a profile E and a maxcons M :
• dist∩(M, ϕ) = |ϕ ∩M|
• dist∩,Σ(M,E) =

∑
ϕ∈E dist∩(M, ϕ)

IC0 IC1 IC2 IC3 IC4 IC5 IC6 IC7 IC8 MI Maj
4C1 √ √ √ √ √ √ √

4d √ √ √ √ √ √ √

4S,Σ √ √ √ √ √ √ √

4∩,Σ √ √ √ √ √ √ √ √

18 / 43

Example

ϕ1 ϕ2 ϕ3
a,b → c a,b ¬a

4C1
> (E) = MAXCONS(E,>) = {{a,b → c,b}, {¬a,b → c,b}}}

ϕ1 2 1
ϕ2 2 1
ϕ3 0 1
Σ 4 3

19 / 43

Example

ϕ1 ϕ2 ϕ3
a,b → c a,b ¬a

4C1
> (E) = MAXCONS(E,>) = {{a,b → c,b},

{¬a,b → c,b}}}

ϕ1 2 1
ϕ2 2 1
ϕ3 0 1
Σ 4 3

19 / 43

Example

ϕ1 ϕ2 ϕ3
a,b → c a,b ¬a

4C1
> (E) = MAXCONS(E,>) = {{a,b → c,b}, {¬a,b → c,b}}}

ϕ1 2 1
ϕ2 2 1
ϕ3 0 1
Σ 4 3

19 / 43

Example

ϕ1 ϕ2 ϕ3
a,b → c a,b ¬a

4C1
> (E) = MAXCONS(E,>) = {{a,b → c,b}, {¬a,b → c,b}}}

ϕ1 2 1

ϕ2 2 1
ϕ3 0 1
Σ 4 3

19 / 43

Example

ϕ1 ϕ2 ϕ3
a,b → c a,b ¬a

4C1
> (E) = MAXCONS(E,>) = {{a,b → c,b}, {¬a,b → c,b}}}

ϕ1 2 1
ϕ2 2 1

ϕ3 0 1
Σ 4 3

19 / 43

Example

ϕ1 ϕ2 ϕ3
a,b → c a,b ¬a

4C1
> (E) = MAXCONS(E,>) = {{a,b → c,b}, {¬a,b → c,b}}}

ϕ1 2 1
ϕ2 2 1
ϕ3 0 1

Σ 4 3

19 / 43

Example

ϕ1 ϕ2 ϕ3
a,b → c a,b ¬a

4C1
> (E) = MAXCONS(E,>) = {{a,b → c,b}, {¬a,b → c,b}}}

ϕ1 2 1
ϕ2 2 1
ϕ3 0 1
Σ 4 3

19 / 43

Example

ϕ1 ϕ2 ϕ3
a,b → c a,b ¬a

4C1
> (E) = MAXCONS(E,>) = {{a,b → c,b}, {¬a,b → c,b}}}

ϕ1 2 1
ϕ2 2 1
ϕ3 0 1
Σ 4 3

19 / 43

Merging

• Formula-based Merging
. Selection of maximal consistent

subsets of formulas in the union
of bases.

• Model-based Merging
. Selection of preferred models for

the bases.

– Distribution of information
– Bad logical properties
+ Inconsistent bases

+ Distribution of information
+ Good logical properties
– Inconsistent bases

• DA2 Operators

+ Distribution of information
+ Good logical properties
+ Inconsistent bases

20 / 43

Merging

• Formula-based Merging
. Selection of maximal consistent

subsets of formulas in the union
of bases.

• Model-based Merging
. Selection of preferred models for

the bases.

– Distribution of information
– Bad logical properties
+ Inconsistent bases

+ Distribution of information
+ Good logical properties
– Inconsistent bases

• DA2 Operators

+ Distribution of information
+ Good logical properties
+ Inconsistent bases

20 / 43

Merging

• Formula-based Merging
. Selection of maximal consistent

subsets of formulas in the union
of bases.

• Model-based Merging
. Selection of preferred models for

the bases.

– Distribution of information
– Bad logical properties
+ Inconsistent bases

+ Distribution of information
+ Good logical properties
– Inconsistent bases

• DA2 Operators

+ Distribution of information
+ Good logical properties
+ Inconsistent bases

20 / 43

Merging

• Formula-based Merging
. Selection of maximal consistent

subsets of formulas in the union
of bases.

• Model-based Merging
. Selection of preferred models for

the bases.

– Distribution of information
– Bad logical properties
+ Inconsistent bases

+ Distribution of information
+ Good logical properties
– Inconsistent bases

• DA2 Operators

+ Distribution of information
+ Good logical properties
+ Inconsistent bases

20 / 43

Merging

• Formula-based Merging
. Selection of maximal consistent

subsets of formulas in the union
of bases.

• Model-based Merging
. Selection of preferred models for

the bases.

– Distribution of information
– Bad logical properties
+ Inconsistent bases

+ Distribution of information
+ Good logical properties
– Inconsistent bases

• DA2 Operators

+ Distribution of information
+ Good logical properties
+ Inconsistent bases

20 / 43

Merging

• Formula-based Merging
. Selection of maximal consistent

subsets of formulas in the union
of bases.

• Model-based Merging
. Selection of preferred models for

the bases.

– Distribution of information
– Bad logical properties
+ Inconsistent bases

+ Distribution of information
+ Good logical properties
– Inconsistent bases

• DA2 Operators

+ Distribution of information
+ Good logical properties
+ Inconsistent bases

20 / 43

DA2 Operators

Let d be a distance between interpretations and f and g be two aggregation
functions. The DA2 merging operator 4d,f ,g

µ (E) is defined by :
For each ϕi = {αi,1, . . . , αi,ni}

d(ω, ϕi) = f (

d(ω, αi,1), . . . ,d(ω, αi,ni)

)

Let E = {ϕ1, . . . , ϕn}

d(ω,E) = g(d(ω, ϕ1), . . . ,d(ω, ϕm))

mod(4d,f ,g
µ (E))) = {ω ∈ mod(µ) | d(ω,E) is minimal}

21 / 43

DA2 Operators

Let d be a distance between interpretations and f and g be two aggregation
functions. The DA2 merging operator 4d,f ,g

µ (E) is defined by :
For each ϕi = {αi,1, . . . , αi,ni}

d(ω, ϕi) = f (d(ω, αi,1), . . . ,d(ω, αi,ni))

Let E = {ϕ1, . . . , ϕn}

d(ω,E) = g(d(ω, ϕ1), . . . ,d(ω, ϕm))

mod(4d,f ,g
µ (E))) = {ω ∈ mod(µ) | d(ω,E) is minimal}

21 / 43

DA2 Operators

Let d be a distance between interpretations and f and g be two aggregation
functions. The DA2 merging operator 4d,f ,g

µ (E) is defined by :
For each ϕi = {αi,1, . . . , αi,ni}

d(ω, ϕi) = f (d(ω, αi,1), . . . ,d(ω, αi,ni))

Let E = {ϕ1, . . . , ϕn}

d(ω,E) = g(d(ω, ϕ1), . . . ,d(ω, ϕm))

mod(4d,f ,g
µ (E))) = {ω ∈ mod(µ) | d(ω,E) is minimal}

21 / 43

DA2 Operators

Let d be a distance between interpretations and f and g be two aggregation
functions. The DA2 merging operator 4d,f ,g

µ (E) is defined by :
For each ϕi = {αi,1, . . . , αi,ni}

d(ω, ϕi) = f (d(ω, αi,1), . . . ,d(ω, αi,ni))

Let E = {ϕ1, . . . , ϕn}

d(ω,E) = g(d(ω, ϕ1), . . . ,d(ω, ϕm))

mod(4d,f ,g
µ (E))) = {ω ∈ mod(µ) | d(ω,E) is minimal}

21 / 43

Example

ϕ1 ϕ2 ϕ3 ϕ4
a, b, c, a ∧ ¬b a, b ¬a,¬b a,a→ b

MAXCONS = c
MAXCONScard = c

4Σ = a ∧ b
4GMAX = (a ∧ ¬b) ∨ (¬a ∧ b)

4dD,Σ,Σ = a ∧ b ∧ c

22 / 43

Example

ϕ1 ϕ2 ϕ3 ϕ4
a, b, c, a ∧ ¬b a, b ¬a,¬b a,a→ b

MAXCONS = c
MAXCONScard = c

4Σ = a ∧ b
4GMAX = (a ∧ ¬b) ∨ (¬a ∧ b)

4dD,Σ,Σ = a ∧ b ∧ c

22 / 43

Example

ϕ1 ϕ2 ϕ3 ϕ4
a, b, c, a ∧ ¬b a, b ¬a,¬b a,a→ b

MAXCONS = c
MAXCONScard = c

4Σ = a ∧ b
4GMAX = (a ∧ ¬b) ∨ (¬a ∧ b)

4dD,Σ,Σ = a ∧ b ∧ c

22 / 43

Example

ϕ1 ϕ2 ϕ3 ϕ4
a, b, c, a ∧ ¬b a, b ¬a,¬b a,a→ b

MAXCONS = c
MAXCONScard = c

4Σ = a ∧ b
4GMAX = (a ∧ ¬b) ∨ (¬a ∧ b)

4dD,Σ,Σ = a ∧ b ∧ c

22 / 43

Vectors of conflicts

a, ¬a, b ∧ c, b ∧ d , e, ¬b

¬ ® ¯

¬ ® ¯ dH

Σ vect

11101 0 1 1 1 (0,1,1,1)

3 { ∅ , {a}, {d}, {b}}

00111 1 1 1 0 (0,1,1,1)

3 {{a}, {b}, {b}, ∅ }

• A distance is a compact description of the conflicts between two
interpretations

Loss of information

• Vectors of conflicts capture all the information about the conflicts

23 / 43

Vectors of conflicts

a, ¬a, b ∧ c, b ∧ d , e, ¬b

¬ ® ¯

¬ ® ¯ dH Σ

vect

11101 0 1 1 1 (0,1,1,1) 3

{ ∅ , {a}, {d}, {b}}

00111 1 1 1 0 (0,1,1,1) 3

{{a}, {b}, {b}, ∅ }

• A distance is a compact description of the conflicts between two
interpretations

Loss of information

• Vectors of conflicts capture all the information about the conflicts

23 / 43

Vectors of conflicts

a, ¬a, b ∧ c, b ∧ d , e, ¬b

¬ ® ¯

¬ ® ¯ dH Σ vect
11101 0 1 1 1 (0,1,1,1) 3 { ∅ , {a}, {d}, {b}}
00111 1 1 1 0 (0,1,1,1) 3 {{a}, {b}, {b}, ∅ }

• A distance is a compact description of the conflicts between two
interpretations

Loss of information

• Vectors of conflicts capture all the information about the conflicts

23 / 43

Vectors of conflicts

a, ¬a, b ∧ c, b ∧ d , e, ¬b

¬ ® ¯

¬ ® ¯ dH Σ vect
11101 0 1 1 1 (0,1,1,1) 3 { ∅ , {a}, {d}, {b}}
00111 1 1 1 0 (0,1,1,1) 3 {{a}, {b}, {b}, ∅ }

• A distance is a compact description of the conflicts between two
interpretations

Loss of information

• Vectors of conflicts capture all the information about the conflicts

23 / 43

Vectors of conflicts

a, ¬a, b ∧ c, b ∧ d , e, ¬b

¬ ® ¯

¬ ® ¯ dH Σ vect
11101 0 1 1 1 (0,1,1,1) 3 { ∅ , {a}, {d}, {b}}
00111 1 1 1 0 (0,1,1,1) 3 {{a}, {b}, {b}, ∅ }

• A distance is a compact description of the conflicts between two
interpretations

Loss of information

• Vectors of conflicts capture all the information about the conflicts

23 / 43

Default based merging [Delgrande, Schaub 2007]

• Based on (supernormal) default logic
Let B = {α1, . . . , αn} be the background base
Let D = {δ1, . . . , δm} be the set of (supernormal) defaults.
An extension M of (B,D) is a maximal consistent subsets of B ∪ D that
contains B.
The consequences of a default theory (B,D) are (for instance) the formulae
that are consequences of each extension of (B,D).

• Rename all the bases of E = {ϕ1, . . . , ϕn} in different languages
L1, . . . ,Ln. (where Li = {β i | β ∈ L}).

• B = ∪ϕi∈E (ϕi)
i

• Two different operators
D = {a↔ ai | a ∈ P}
D = {ai ↔ ak | a ∈ P}

24 / 43

Default based merging [Delgrande, Schaub 2007]

• Based on (supernormal) default logic
Let B = {α1, . . . , αn} be the background base
Let D = {δ1, . . . , δm} be the set of (supernormal) defaults.
An extension M of (B,D) is a maximal consistent subsets of B ∪ D that
contains B.
The consequences of a default theory (B,D) are (for instance) the formulae
that are consequences of each extension of (B,D).

• Rename all the bases of E = {ϕ1, . . . , ϕn} in different languages
L1, . . . ,Ln. (where Li = {β i | β ∈ L}).

• B = ∪ϕi∈E (ϕi)
i

• Two different operators
D = {a↔ ai | a ∈ P}
D = {ai ↔ ak | a ∈ P}

24 / 43

Default based merging [Delgrande, Schaub 2007]

• Based on (supernormal) default logic
Let B = {α1, . . . , αn} be the background base
Let D = {δ1, . . . , δm} be the set of (supernormal) defaults.
An extension M of (B,D) is a maximal consistent subsets of B ∪ D that
contains B.
The consequences of a default theory (B,D) are (for instance) the formulae
that are consequences of each extension of (B,D).

• Rename all the bases of E = {ϕ1, . . . , ϕn} in different languages
L1, . . . ,Ln. (where Li = {β i | β ∈ L}).

• B = ∪ϕi∈E (ϕi)
i

• Two different operators
D = {a↔ ai | a ∈ P}
D = {ai ↔ ak | a ∈ P}

24 / 43

Default based merging [Delgrande, Schaub 2007]

• Based on (supernormal) default logic
Let B = {α1, . . . , αn} be the background base
Let D = {δ1, . . . , δm} be the set of (supernormal) defaults.
An extension M of (B,D) is a maximal consistent subsets of B ∪ D that
contains B.
The consequences of a default theory (B,D) are (for instance) the formulae
that are consequences of each extension of (B,D).

• Rename all the bases of E = {ϕ1, . . . , ϕn} in different languages
L1, . . . ,Ln. (where Li = {β i | β ∈ L}).

• B = ∪ϕi∈E (ϕi)
i

• Two different operators
D = {a↔ ai | a ∈ P}

D = {ai ↔ ak | a ∈ P}

24 / 43

Default based merging [Delgrande, Schaub 2007]

• Based on (supernormal) default logic
Let B = {α1, . . . , αn} be the background base
Let D = {δ1, . . . , δm} be the set of (supernormal) defaults.
An extension M of (B,D) is a maximal consistent subsets of B ∪ D that
contains B.
The consequences of a default theory (B,D) are (for instance) the formulae
that are consequences of each extension of (B,D).

• Rename all the bases of E = {ϕ1, . . . , ϕn} in different languages
L1, . . . ,Ln. (where Li = {β i | β ∈ L}).

• B = ∪ϕi∈E (ϕi)
i

• Two different operators
D = {a↔ ai | a ∈ P}
D = {ai ↔ ak | a ∈ P}

24 / 43

Similarity based merging [Shockaert, Prade 2009]

• Associate to every propositional symbol a similarity relation (partial
pre-order)

• Merging = Find the best compromise

to look for compromises, thus solving conflicts by
looking for “intermediary” interpretations.

Example 1. Consider atoms oc (“tomorrow the

sky will be overcast”), pc (“tomorrow the sky will

be partially cloudy”), and os (“tomorrow the sky

will be open”), and assume that we have access

to two web services with weather forecast infor-

mation, whose prediction for tomorrow is con-

flicting with the integrity constraint that the three

atoms are jointly exhaustive and pairwise disjoint

(JEPD): K1 = {oc} and K2 = {os}. Classical

merging operators typically lead to ∆(K1, K2) =
{oc ∨ os}. However, unless one of the sources is

substantially less reliable, the most intuitive con-

clusion would be ∆(K1, K2) = {pc}.

In this example, pc acts as a borderline case of both
os and oc, which is why the result ∆(K1, K2) =
{pc} seems so appealing. Given the importance of
borderline cases to explain conflicts, it may be use-
ful to introduce atoms that do not occur in any of
the given knowledge bases; e.g. the result of merg-
ing {os} and {pc} may be defined as an os-pc bor-
derline case (i.e. a sky which is open, apart from a
few small clouds).

Example 2. Assume that there are five different

JEPD atoms between os and oc, say pc−2, pc−1,

pc0, pc1, pc2 with easy-to-guess meanings. Now

there are different outcomes that may be advo-

cated. Adhering to a symmetry principle, and try-

ing to be as precise as possible, one may desire

∆(K1, K2) = {pc0}. However, also the more

cautious ∆(K1, K2) = {pc−1 ∨ pc0 ∨ pc1} and

∆(K1, K2) = {pc−2 ∨ pc−1 ∨ pc0 ∨ pc1 ∨ pc2}
can intuitively be justified.

When more than two knowledge bases are
available, merging strategies may implement
arbitration-like behaviour, or (soft) majority prin-
ciples, as illustrated in the next example.

Example 3. When a third knowledge base K3 =
{os} becomes available, pc−2 and pc−1 may be

perceived as more plausible than pc0. Thus, the

desired behaviour of the merging operator might

be ∆(K1, K2, K3) = {pc−2 ∨ pc−1}, or even

∆(K1, K2, K3) = {os ∨ pc−2 ∨ pc−1 ∨ pc0}.

4. Qualitative Similarity

Manipulating atoms Since it is usually not pos-
sible to quantify the strength of similarities be-
tween atoms, we focus on a qualitative notion of

Figure 1. Similarity graph for atoms
related to marriage.

similarity. For each atom a, we assume that a se-
quence of weakenings a∗, a∗∗, a∗∗∗, etc. is avail-
able, corresponding to increasingly more tolerant
interpretations of the assertion modeled by atom
a. In general, we write a(k) for the kth element in
this sequence, and a(0) = a. The integrity con-
straints C then specify what is known about an
atom such as a(k). In the same way, we assume
that a sequence of tightenings a∗, a∗∗, etc. is avail-
able, where we write a(k) for the kth element.

In practice, such sequences of weakenings and
tightenings can be defined in terms of a similarity
graph G = (A, S), where the set of nodes A coin-
cides with the set of atoms, and there is an edge
(a, b) in S if atoms a and b are similar. Given
a similarity graph G, we can interpret a(k) (resp.
a(k)) as the disjunction (resp. conjunction) of all
atoms whose distance to a in G is at most k. As
an example, Figure 1 depicts a similarity graph in-
volving predicates related to marriage.

Weakenings and tightenings can also be applied
to propositions and knowledge bases. Positive oc-
currences of an atom a are then replaced by an
atom of the form a(k), and negative occurrences
by an atom of the form a(k). For instance, for
K = {¬p ∨ q, r} we have K∗ = {¬p∗ ∨ q∗, r∗}.

Manipulating interpretations Using the simi-
larity information encoded by the sequences of
weakenings a(k), we can define a sequence of ex-
pansions of an interpretation I as follows. Let
Csim be the fragment of the integrity constraints
in which the semantics of the atoms a(k) and a(k)

is specified. Then we define the k-expansion of an
interpretation I (where a ∈ I means I |= a) as

�I�k = {b|∃a ∈ I . Csim ∪ {b} |= a(k)} (1)

Note that by definition of Csim, Csim∪{b} |= a(k)

intuitively means that b is similar to a. We write
�I� for �I�1. Intuitively, �I� is the set of atoms that

25 / 43

Merging and Belief Revision

The operator ∗ is an AGM revision operator if and only if it satisfies the
following properties :

(R1) ϕ ∗ µ implies µ
(R2) If ϕ ∧ µ is consistent then ϕ ∗ µ ≡ ϕ ∧ µ
(R3) If µ is consistent then ϕ ∗ µ is consistent
(R4) If ϕ1 ≡ ϕ2 and µ1 ≡ µ2 then ϕ1 ∗ µ1 ≡ ϕ2 ∗ µ2

(R5) (ϕ ∗ µ) ∧ ψ implies ϕ ∗ (µ ∧ ψ)

(R6) If (ϕ ∗ µ) ∧ ψ is consistent then ϕ ∗ (µ ∧ ψ) implies (ϕ ∗ µ) ∧ ψ

• If 4 is an IC merging operator (it satisfies (IC0-IC8)), then the operator
∗4, defined as ϕ ∗4 µ = 4µ(ϕ), is an AGM revision operator (it satisfies
(R1-R6)).

• Links between prioritized merging and iterated revision :
Delgrande, Dubois, Lang. Iterated Revision as Prioritized Merging. [KR’06]

26 / 43

Merging and Belief Revision

The operator ∗ is an AGM revision operator if and only if it satisfies the
following properties :

(R1) ϕ ∗ µ implies µ
(R2) If ϕ ∧ µ is consistent then ϕ ∗ µ ≡ ϕ ∧ µ
(R3) If µ is consistent then ϕ ∗ µ is consistent
(R4) If ϕ1 ≡ ϕ2 and µ1 ≡ µ2 then ϕ1 ∗ µ1 ≡ ϕ2 ∗ µ2

(R5) (ϕ ∗ µ) ∧ ψ implies ϕ ∗ (µ ∧ ψ)

(R6) If (ϕ ∗ µ) ∧ ψ is consistent then ϕ ∗ (µ ∧ ψ) implies (ϕ ∗ µ) ∧ ψ

• If 4 is an IC merging operator (it satisfies (IC0-IC8)), then the operator
∗4, defined as ϕ ∗4 µ = 4µ(ϕ), is an AGM revision operator (it satisfies
(R1-R6)).

• Links between prioritized merging and iterated revision :
Delgrande, Dubois, Lang. Iterated Revision as Prioritized Merging. [KR’06]

26 / 43

Judgment Aggregation

• A set N = {1, . . .n} of individuals
• A set X = {α1, . . . , αm} of logical formulae, called the agenda
• Each individual i gives her (consistent) judgment set about the

agenda : Ji : X → {0,1}
• Question : how to define a consistent judgment of the group

J = f (J1, . . . , Jn) from the judgment sets of the individuals ?

27 / 43

Judgment Aggregation

Doctrinal Paradox / Discursive Paradox
α β γ

1 1 0 0
2 0 1 0
3 1 1 1

majority

1 1 0

• α : good researcher
• β : good teacher
• γ : hire the candidate
• γ ↔ α ∧ β

• Majority does not lead to a consistent judgment

• What are the solutions ?

Suppose that α and β are premises, and that γ is the conclusion.

I Premise-based approach
I Conclusion-based approach

• Principles for judgment aggregation ?

28 / 43

Judgment Aggregation

Doctrinal Paradox / Discursive Paradox
α β γ

1 1 0 0
2 0 1 0
3 1 1 1

majority

1 1 0

• α : good researcher
• β : good teacher
• γ : hire the candidate
• γ ↔ α ∧ β

• Majority does not lead to a consistent judgment

• What are the solutions ?

Suppose that α and β are premises, and that γ is the conclusion.

I Premise-based approach
I Conclusion-based approach

• Principles for judgment aggregation ?

28 / 43

Judgment Aggregation

Doctrinal Paradox / Discursive Paradox
α β γ

1 1 0 0
2 0 1 0
3 1 1 1

majority

1 1 0

• α : good researcher
• β : good teacher
• γ : hire the candidate
• γ ↔ α ∧ β

• Majority does not lead to a consistent judgment

• What are the solutions ?

Suppose that α and β are premises, and that γ is the conclusion.

I Premise-based approach
I Conclusion-based approach

• Principles for judgment aggregation ?

28 / 43

Judgment Aggregation

Doctrinal Paradox / Discursive Paradox
α β γ

1 1 0 0
2 0 1 0
3 1 1 1

majority 1

1 0

• α : good researcher
• β : good teacher
• γ : hire the candidate
• γ ↔ α ∧ β

• Majority does not lead to a consistent judgment

• What are the solutions ?

Suppose that α and β are premises, and that γ is the conclusion.

I Premise-based approach
I Conclusion-based approach

• Principles for judgment aggregation ?

28 / 43

Judgment Aggregation

Doctrinal Paradox / Discursive Paradox
α β γ

1 1 0 0
2 0 1 0
3 1 1 1

majority 1 1

0

• α : good researcher
• β : good teacher
• γ : hire the candidate
• γ ↔ α ∧ β

• Majority does not lead to a consistent judgment

• What are the solutions ?

Suppose that α and β are premises, and that γ is the conclusion.

I Premise-based approach
I Conclusion-based approach

• Principles for judgment aggregation ?

28 / 43

Judgment Aggregation

Doctrinal Paradox / Discursive Paradox
α β γ

1 1 0 0
2 0 1 0
3 1 1 1

majority 1 1 0

• α : good researcher
• β : good teacher
• γ : hire the candidate
• γ ↔ α ∧ β

• Majority does not lead to a consistent judgment

• What are the solutions ?

Suppose that α and β are premises, and that γ is the conclusion.

I Premise-based approach
I Conclusion-based approach

• Principles for judgment aggregation ?

28 / 43

Judgment Aggregation

Doctrinal Paradox / Discursive Paradox
α β γ

1 1 0 0
2 0 1 0
3 1 1 1

majority 1 1 0

• α : good researcher
• β : good teacher
• γ : hire the candidate
• γ ↔ α ∧ β

• Majority does not lead to a consistent judgment

• What are the solutions ?

Suppose that α and β are premises, and that γ is the conclusion.

I Premise-based approach
I Conclusion-based approach

• Principles for judgment aggregation ?

28 / 43

Judgment Aggregation

Doctrinal Paradox / Discursive Paradox
α β γ

1 1 0 0
2 0 1 0
3 1 1 1

majority 1 1 0

• α : good researcher
• β : good teacher
• γ : hire the candidate
• γ ↔ α ∧ β

• Majority does not lead to a consistent judgment

• What are the solutions ?

Suppose that α and β are premises, and that γ is the conclusion.

I Premise-based approach
I Conclusion-based approach

• Principles for judgment aggregation ?

28 / 43

Judgment Aggregation

Doctrinal Paradox / Discursive Paradox
α β γ

1 1 0 0
2 0 1 0
3 1 1 1

majority 1 1 0

• α : good researcher
• β : good teacher
• γ : hire the candidate
• γ ↔ α ∧ β

• Majority does not lead to a consistent judgment
• What are the solutions ?

Suppose that α and β are premises, and that γ is the conclusion.

I Premise-based approach
I Conclusion-based approach

• Principles for judgment aggregation ?

28 / 43

Judgment Aggregation

Doctrinal Paradox / Discursive Paradox
α β γ

1 1 0 0
2 0 1 0
3 1 1 1

majority 1 1 0

• α : good researcher
• β : good teacher
• γ : hire the candidate
• γ ↔ α ∧ β

• Majority does not lead to a consistent judgment
• What are the solutions ?

Suppose that α and β are premises, and that γ is the conclusion.

I Premise-based approach
I Conclusion-based approach

• Principles for judgment aggregation ?

28 / 43

Judgment Aggregation

Doctrinal Paradox / Discursive Paradox
α β γ

1 1 0 0
2 0 1 0
3 1 1 1

majority 1 1 0

• α : good researcher
• β : good teacher
• γ : hire the candidate
• γ ↔ α ∧ β

• Majority does not lead to a consistent judgment
• What are the solutions ?

Suppose that α and β are premises, and that γ is the conclusion.
I Premise-based approach
I Conclusion-based approach

• Principles for judgment aggregation ?

28 / 43

Judgment Aggregation

Doctrinal Paradox / Discursive Paradox
α β γ

1 1 0 0
2 0 1 0
3 1 1 1

majority 1 1 0

• α : good researcher
• β : good teacher
• γ : hire the candidate
• γ ↔ α ∧ β

• Majority does not lead to a consistent judgment
• What are the solutions ?

Suppose that α and β are premises, and that γ is the conclusion.
I Premise-based approach
I Conclusion-based approach

• Principles for judgment aggregation ?

28 / 43

Judgment Aggregation

Universal Domain The judgment aggregation function should accept any
profile of individual judgment sets (complete, consistent,
deductively closed)

Collective Rationality The judgment aggregation function produces
consistent and complete collective judgment sets

Anonymity The result should be invariant under any permutation of
individuals in N

Systematicity For any formulae α, β ∈ X , and any profiles (J1, . . . Jn),
(J ′1, . . . J

′
n), if for all individuals i, α ∈ Ji iff β ∈ J ′i , then

α ∈ f (J1, . . . Jn) iff β ∈ f (J ′1, . . . J
′
n)

Theorem [List-Pettit 2002] There is no judgment aggregation function satisfying
universal domain, collective rationality, anonymity and systematicity.

• Agenda
• Collective Rationality
• Systematicity

29 / 43

Judgment Aggregation

Universal Domain The judgment aggregation function should accept any
profile of individual judgment sets (complete, consistent,
deductively closed)

Collective Rationality The judgment aggregation function produces
consistent and complete collective judgment sets

Anonymity The result should be invariant under any permutation of
individuals in N

Systematicity For any formulae α, β ∈ X , and any profiles (J1, . . . Jn),
(J ′1, . . . J

′
n), if for all individuals i, α ∈ Ji iff β ∈ J ′i , then

α ∈ f (J1, . . . Jn) iff β ∈ f (J ′1, . . . J
′
n)

Theorem [List-Pettit 2002] There is no judgment aggregation function satisfying
universal domain, collective rationality, anonymity and systematicity.

• Agenda
• Collective Rationality
• Systematicity

29 / 43

Judgment Aggregation

Universal Domain The judgment aggregation function should accept any
profile of individual judgment sets (complete, consistent,
deductively closed)

Collective Rationality The judgment aggregation function produces
consistent and complete collective judgment sets

Anonymity The result should be invariant under any permutation of
individuals in N

Systematicity For any formulae α, β ∈ X , and any profiles (J1, . . . Jn),
(J ′1, . . . J

′
n), if for all individuals i, α ∈ Ji iff β ∈ J ′i , then

α ∈ f (J1, . . . Jn) iff β ∈ f (J ′1, . . . J
′
n)

Theorem [List-Pettit 2002] There is no judgment aggregation function satisfying
universal domain, collective rationality, anonymity and systematicity.

• Agenda
• Collective Rationality
• Systematicity

29 / 43

Judgment Aggregation

Universal Domain The judgment aggregation function should accept any
profile of individual judgment sets (complete, consistent,
deductively closed)

Collective Rationality The judgment aggregation function produces
consistent and complete collective judgment sets

Anonymity The result should be invariant under any permutation of
individuals in N

Systematicity For any formulae α, β ∈ X , and any profiles (J1, . . . Jn),
(J ′1, . . . J

′
n), if for all individuals i, α ∈ Ji iff β ∈ J ′i , then

α ∈ f (J1, . . . Jn) iff β ∈ f (J ′1, . . . J
′
n)

Theorem [List-Pettit 2002] There is no judgment aggregation function satisfying
universal domain, collective rationality, anonymity and systematicity.

• Agenda
• Collective Rationality
• Systematicity

29 / 43

Judgment Aggregation

Universal Domain The judgment aggregation function should accept any
profile of individual judgment sets (complete, consistent,
deductively closed)

Collective Rationality The judgment aggregation function produces
consistent and complete collective judgment sets

Anonymity The result should be invariant under any permutation of
individuals in N

Systematicity For any formulae α, β ∈ X , and any profiles (J1, . . . Jn),
(J ′1, . . . J

′
n), if for all individuals i, α ∈ Ji iff β ∈ J ′i , then

α ∈ f (J1, . . . Jn) iff β ∈ f (J ′1, . . . J
′
n)

Theorem [List-Pettit 2002] There is no judgment aggregation function satisfying
universal domain, collective rationality, anonymity and systematicity.

• Agenda
• Collective Rationality
• Systematicity

29 / 43

Judgment Aggregation

Universal Domain The judgment aggregation function should accept any
profile of individual judgment sets (complete, consistent,
deductively closed)

Collective Rationality The judgment aggregation function produces
consistent and complete collective judgment sets

Anonymity The result should be invariant under any permutation of
individuals in N

Systematicity For any formulae α, β ∈ X , and any profiles (J1, . . . Jn),
(J ′1, . . . J

′
n), if for all individuals i, α ∈ Ji iff β ∈ J ′i , then

α ∈ f (J1, . . . Jn) iff β ∈ f (J ′1, . . . J
′
n)

Theorem [List-Pettit 2002] There is no judgment aggregation function satisfying
universal domain, collective rationality, anonymity and systematicity.

• Agenda
• Collective Rationality
• Systematicity

29 / 43

Merging and Judgment Aggregation

Merging Judgment Aggregation

Input Profile of bases Profile of individual judgments

−→ Fully informed process Partially informed process

Computation Global Local

Consequences – computational complexity + computational complexity
+ logical properties – logical properties

Ideal Process Practical Process

30 / 43

Merging and Judgment Aggregation

Merging Judgment Aggregation

Input Profile of bases Profile of individual judgments

−→ Fully informed process Partially informed process

Computation Global Local

Consequences – computational complexity + computational complexity
+ logical properties – logical properties

Ideal Process Practical Process

30 / 43

Merging and Judgment Aggregation

Merging Judgment Aggregation

Input Profile of bases Profile of individual judgments

−→ Fully informed process Partially informed process

Computation Global Local

Consequences – computational complexity + computational complexity
+ logical properties – logical properties

Ideal Process Practical Process

30 / 43

Merging and Judgment Aggregation

Merging Judgment Aggregation

Input Profile of bases Profile of individual judgments

−→ Fully informed process Partially informed process

Computation Global Local

Consequences – computational complexity + computational complexity

+ logical properties – logical properties

Ideal Process Practical Process

30 / 43

Merging and Judgment Aggregation

Merging Judgment Aggregation

Input Profile of bases Profile of individual judgments

−→ Fully informed process Partially informed process

Computation Global Local

Consequences – computational complexity + computational complexity
+ logical properties – logical properties

Ideal Process Practical Process

30 / 43

Merging and Judgment Aggregation

Merging Judgment Aggregation

Input Profile of bases Profile of individual judgments

−→ Fully informed process Partially informed process

Computation Global Local

Consequences – computational complexity + computational complexity
+ logical properties – logical properties

Ideal Process Practical Process

30 / 43

Merging and Social Choice

• Merging as social choice function
Social choice function (≤1, . . . ,≤n)→≤
Merging (ϕ1, . . . , ϕn)→ ϕ

• Arrow’s impossibility theorem
There is no social choice function that satisfies all of :

I Universality
I Pareto Efficiency
I Independence of Irrelevant Alternatives
I Non-dictatorship

• Gibbard-Satterthwaite theorem
There is no social choice function that satisfies all of :

I Surjectivity
I Strategy-proofness
I Non-Dictatorship

• Condorcet’s Jury Theorem
When voters are competent and independent then majority will find the
correct answer

I 2 alternatives (yes/no questions)
I competence
I independence

31 / 43

Merging and Social Choice

• Merging as social choice function
Social choice function (≤1, . . . ,≤n)→≤
Merging (ϕ1, . . . , ϕn)→ ϕ

• Arrow’s impossibility theorem
There is no social choice function that satisfies all of :

I Universality
I Pareto Efficiency
I Independence of Irrelevant Alternatives
I Non-dictatorship

• Gibbard-Satterthwaite theorem
There is no social choice function that satisfies all of :

I Surjectivity
I Strategy-proofness
I Non-Dictatorship

• Condorcet’s Jury Theorem
When voters are competent and independent then majority will find the
correct answer

I 2 alternatives (yes/no questions)
I competence
I independence

31 / 43

Merging and Social Choice

• Merging as social choice function
Social choice function (≤1, . . . ,≤n)→≤
Merging (ϕ1, . . . , ϕn)→ ϕ

• Arrow’s impossibility theorem
There is no social choice function that satisfies all of :

I Universality
I Pareto Efficiency
I Independence of Irrelevant Alternatives
I Non-dictatorship

• Gibbard-Satterthwaite theorem
There is no social choice function that satisfies all of :

I Surjectivity
I Strategy-proofness
I Non-Dictatorship

• Condorcet’s Jury Theorem
When voters are competent and independent then majority will find the
correct answer

I 2 alternatives (yes/no questions)
I competence
I independence

31 / 43

Merging and Social Choice

• Merging as social choice function
Social choice function (≤1, . . . ,≤n)→≤
Merging (ϕ1, . . . , ϕn)→ ϕ

• Arrow’s impossibility theorem
There is no social choice function that satisfies all of :

I Universality
I Pareto Efficiency
I Independence of Irrelevant Alternatives
I Non-dictatorship

• Gibbard-Satterthwaite theorem
There is no social choice function that satisfies all of :

I Surjectivity
I Strategy-proofness
I Non-Dictatorship

• Condorcet’s Jury Theorem
When voters are competent and independent then majority will find the
correct answer

I 2 alternatives (yes/no questions)
I competence
I independence

31 / 43

Strategy-Proof Merging

Intuitively, a merging operator is strategy-proof if and only if, given the
beliefs/goals of the other agents, reporting untruthful beliefs/goals does not
enable an agent to improve her satisfaction.

Definition A merging operator ∆ is strategy-proof for a satisfaction index i if
and only if there is no integrity constraint µ, no profile E = {ϕ1, . . . , ϕn}, no
base ϕ and no base ϕ′ such that

i(ϕ,∆µ(E t {ϕ′})) > i(ϕ,∆µ(E t {ϕ}))

Clearly, there are numerous different ways to define the satisfaction of an
agent given a merged base.

32 / 43

Strategy-Proof Merging

Intuitively, a merging operator is strategy-proof if and only if, given the
beliefs/goals of the other agents, reporting untruthful beliefs/goals does not
enable an agent to improve her satisfaction.

Definition A merging operator ∆ is strategy-proof for a satisfaction index i if
and only if there is no integrity constraint µ, no profile E = {ϕ1, . . . , ϕn}, no
base ϕ and no base ϕ′ such that

i(ϕ,∆µ(E t {ϕ′})) > i(ϕ,∆µ(E t {ϕ}))

Clearly, there are numerous different ways to define the satisfaction of an
agent given a merged base.

32 / 43

Strategy-Proof Merging

Intuitively, a merging operator is strategy-proof if and only if, given the
beliefs/goals of the other agents, reporting untruthful beliefs/goals does not
enable an agent to improve her satisfaction.

Definition A merging operator ∆ is strategy-proof for a satisfaction index i if
and only if there is no integrity constraint µ, no profile E = {ϕ1, . . . , ϕn}, no
base ϕ and no base ϕ′ such that

i(ϕ,∆µ(E t {ϕ′})) > i(ϕ,∆µ(E t {ϕ}))

Clearly, there are numerous different ways to define the satisfaction of an
agent given a merged base.

32 / 43

Strategy-Proof Merging

Intuitively, a merging operator is strategy-proof if and only if, given the
beliefs/goals of the other agents, reporting untruthful beliefs/goals does not
enable an agent to improve her satisfaction.

Definition A merging operator ∆ is strategy-proof for a satisfaction index i if
and only if there is no integrity constraint µ, no profile E = {ϕ1, . . . , ϕn}, no
base ϕ and no base ϕ′ such that

i(ϕ,∆µ(E t {ϕ′})) > i(ϕ,∆µ(E t {ϕ}))

Clearly, there are numerous different ways to define the satisfaction of an
agent given a merged base.

32 / 43

Strategy-Proof Merging : Satisfaction Indexes

• Weak drastic index : the agent is considered satisfied if her beliefs/goals
are consistent with the merged base.

idw (ϕ,ϕ∆) =

{
1 if ϕ ∧ ϕ∆ is consistent
0 otherwise.

• Strong drastic index : in order to be satisfied, the agent must impose her
beliefs/goals to the whole group.

ids (ϕ,ϕ∆) =

{
1 if ϕ∆ |= ϕ
0 otherwise.

• Probabilistic index : the more compatible the merged base with the
agent’s base the more satisfied the agent.

ip(ϕ,ϕ∆) =
#(mod(ϕ) ∩mod(ϕ∆))

#(mod(ϕ∆))

33 / 43

Strategy-Proof Merging : Satisfaction Indexes

• Weak drastic index : the agent is considered satisfied if her beliefs/goals
are consistent with the merged base.

idw (ϕ,ϕ∆) =

{
1 if ϕ ∧ ϕ∆ is consistent
0 otherwise.

• Strong drastic index : in order to be satisfied, the agent must impose her
beliefs/goals to the whole group.

ids (ϕ,ϕ∆) =

{
1 if ϕ∆ |= ϕ
0 otherwise.

• Probabilistic index : the more compatible the merged base with the
agent’s base the more satisfied the agent.

ip(ϕ,ϕ∆) =
#(mod(ϕ) ∩mod(ϕ∆))

#(mod(ϕ∆))

33 / 43

Strategy-Proof Merging : Satisfaction Indexes

• Weak drastic index : the agent is considered satisfied if her beliefs/goals
are consistent with the merged base.

idw (ϕ,ϕ∆) =

{
1 if ϕ ∧ ϕ∆ is consistent
0 otherwise.

• Strong drastic index : in order to be satisfied, the agent must impose her
beliefs/goals to the whole group.

ids (ϕ,ϕ∆) =

{
1 if ϕ∆ |= ϕ
0 otherwise.

• Probabilistic index : the more compatible the merged base with the
agent’s base the more satisfied the agent.

ip(ϕ,ϕ∆) =
#(mod(ϕ) ∩mod(ϕ∆))

#(mod(ϕ∆))

33 / 43

Strategy-Proof Merging : Some Results for idw

#(E) ϕ µ ∆dH ,Σ ∆dH ,Gmax ∆C1 ∆C3 ∆C4 ∆C5

2
ϕω

> sp sp sp sp sp sp
µ sp sp sp sp sp sp

ϕ
> sp sp sp sp sp sp
µ sp sp sp sp sp sp

> 2

ϕω > sp sp sp sp sp sp
µ sp sp sp sp sp sp

ϕ
> sp sp sp sp sp sp
µ sp sp sp sp sp sp

34 / 43

Unanimity

• If everyone agrees on a merits of a candidate, so does the aggregation
result.

• Two possible interpretations for merging :
Unanimity on Interpretations

(UnaM) If ω |= µ and
if ∀ϕ ∈ E , ω |= ϕ, then ω |= 4µ(E)

I This is a consequence of (IC2)

Unanimity on Consequences

(UnaF) If ∃ϕ ∈ E s.t. µ ∧ ϕ is consistent, then
if ∀ϕ ∈ E , ϕ |= α, then 4µ(E) |= α

I This is equivalent to :

(UnaC) If
∨

E is consistent with µ, then
if ∀ϕ ∈ E , ω 6|= ϕ, then ω 6|= 4µ(E)

I This is also equivalent to :

(Disj) If
∨

E is consistent with µ, then 4µ(E) |=
∨

E

35 / 43

Unanimity

• If everyone agrees on a merits of a candidate, so does the aggregation
result.

• Two possible interpretations for merging :
Unanimity on Interpretations

(UnaM) If ω |= µ and
if ∀ϕ ∈ E , ω |= ϕ, then ω |= 4µ(E)

I This is a consequence of (IC2)

Unanimity on Consequences

(UnaF) If ∃ϕ ∈ E s.t. µ ∧ ϕ is consistent, then
if ∀ϕ ∈ E , ϕ |= α, then 4µ(E) |= α

I This is equivalent to :

(UnaC) If
∨

E is consistent with µ, then
if ∀ϕ ∈ E , ω 6|= ϕ, then ω 6|= 4µ(E)

I This is also equivalent to :

(Disj) If
∨

E is consistent with µ, then 4µ(E) |=
∨

E

35 / 43

Unanimity

• If everyone agrees on a merits of a candidate, so does the aggregation
result.

• Two possible interpretations for merging :
Unanimity on Interpretations

(UnaM) If ω |= µ and
if ∀ϕ ∈ E , ω |= ϕ, then ω |= 4µ(E)

I This is a consequence of (IC2)

Unanimity on Consequences

(UnaF) If ∃ϕ ∈ E s.t. µ ∧ ϕ is consistent, then
if ∀ϕ ∈ E , ϕ |= α, then 4µ(E) |= α

I This is equivalent to :

(UnaC) If
∨

E is consistent with µ, then
if ∀ϕ ∈ E , ω 6|= ϕ, then ω 6|= 4µ(E)

I This is also equivalent to :

(Disj) If
∨

E is consistent with µ, then 4µ(E) |=
∨

E

35 / 43

Unanimity

• If everyone agrees on a merits of a candidate, so does the aggregation
result.

• Two possible interpretations for merging :
Unanimity on Interpretations

(UnaM) If ω |= µ and
if ∀ϕ ∈ E , ω |= ϕ, then ω |= 4µ(E)

I This is a consequence of (IC2)

Unanimity on Consequences

(UnaF) If ∃ϕ ∈ E s.t. µ ∧ ϕ is consistent, then
if ∀ϕ ∈ E , ϕ |= α, then 4µ(E) |= α

I This is equivalent to :

(UnaC) If
∨

E is consistent with µ, then
if ∀ϕ ∈ E , ω 6|= ϕ, then ω 6|= 4µ(E)

I This is also equivalent to :

(Disj) If
∨

E is consistent with µ, then 4µ(E) |=
∨

E

35 / 43

Unanimity

• If everyone agrees on a merits of a candidate, so does the aggregation
result.

• Two possible interpretations for merging :
Unanimity on Interpretations

(UnaM) If ω |= µ and
if ∀ϕ ∈ E , ω |= ϕ, then ω |= 4µ(E)

I This is a consequence of (IC2)

Unanimity on Consequences

(UnaF) If ∃ϕ ∈ E s.t. µ ∧ ϕ is consistent, then
if ∀ϕ ∈ E , ϕ |= α, then 4µ(E) |= α

I This is equivalent to :

(UnaC) If
∨

E is consistent with µ, then
if ∀ϕ ∈ E , ω 6|= ϕ, then ω 6|= 4µ(E)

I This is also equivalent to :

(Disj) If
∨

E is consistent with µ, then 4µ(E) |=
∨

E

35 / 43

Unanimity

• If everyone agrees on a merits of a candidate, so does the aggregation
result.

• Two possible interpretations for merging :
Unanimity on Interpretations

(UnaM) If ω |= µ and
if ∀ϕ ∈ E , ω |= ϕ, then ω |= 4µ(E)

I This is a consequence of (IC2)

Unanimity on Consequences

(UnaF) If ∃ϕ ∈ E s.t. µ ∧ ϕ is consistent, then
if ∀ϕ ∈ E , ϕ |= α, then 4µ(E) |= α

I This is equivalent to :

(UnaC) If
∨

E is consistent with µ, then
if ∀ϕ ∈ E , ω 6|= ϕ, then ω 6|= 4µ(E)

I This is also equivalent to :

(Disj) If
∨

E is consistent with µ, then 4µ(E) |=
∨

E

35 / 43

Criteria for evaluating merging operators

• Rationality (logical properties)

• Computational Complexity
• Inferential Power
• Strategy-Proofness

36 / 43

Criteria for evaluating merging operators

• Rationality (logical properties)
• Computational Complexity

• Inferential Power
• Strategy-Proofness

36 / 43

Criteria for evaluating merging operators

• Rationality (logical properties)
• Computational Complexity
• Inferential Power

• Strategy-Proofness

36 / 43

Criteria for evaluating merging operators

• Rationality (logical properties)
• Computational Complexity
• Inferential Power
• Strategy-Proofness

36 / 43

Merging in other frameworks

• Merging of weighted formulae
Benferhat-Dubois-Kaci-Prade [2000,2002,2003]

Meyer [2001]

• First order logic
Gorogiannis-Hunter [2008]

• Logic programs
Delgrande-Schaub-Tompits-Woltran [2009]

Hué-Papini-Würbel [2009]

• Constraints Networks
Condotta-Kaci-Marquis-Schwind [2009]

• Argumentation systems [AAAI’05, AIJ-07]

Dung : arguments + relation d’attaque entre arguments
I Cadres d’argumentation partiels (PAF)
I Distances d’édition

37 / 43

Iterated Merging
• Iterated Merging Operators

(ϕ0
1, . . . , ϕ

0
n)

ϕ∆0

(ϕ0
1 ∗ ϕ∆0 , . . . , ϕ0

n ∗ ϕ∆0)

(ϕ1
1, . . . , ϕ

1
n) ϕ∆1

(ϕk
1, . . . , ϕ

k
n)

ϕ∆k

Merging

Revision

Merging

Conciliation

• Merging (ϕ1, . . . , ϕn) −→ ϕ∆

• Conciliation (ϕ1, . . . , ϕn) −→ (ϕ∗1, . . . , ϕ
∗
n)

38 / 43

Iterated Merging
• Iterated Merging Operators

(ϕ0
1, . . . , ϕ

0
n) ϕ∆0

(ϕ0
1 ∗ ϕ∆0 , . . . , ϕ0

n ∗ ϕ∆0)

(ϕ1
1, . . . , ϕ

1
n) ϕ∆1

(ϕk
1, . . . , ϕ

k
n)

ϕ∆k

Merging

Revision

Merging

Conciliation

• Merging (ϕ1, . . . , ϕn) −→ ϕ∆

• Conciliation (ϕ1, . . . , ϕn) −→ (ϕ∗1, . . . , ϕ
∗
n)

38 / 43

Iterated Merging
• Iterated Merging Operators

(ϕ0
1, . . . , ϕ

0
n) ϕ∆0

(ϕ0
1 ∗ ϕ∆0 , . . . , ϕ0

n ∗ ϕ∆0)

(ϕ1
1, . . . , ϕ

1
n) ϕ∆1

(ϕk
1, . . . , ϕ

k
n)

ϕ∆k

Merging

Revision

Merging

Conciliation

• Merging (ϕ1, . . . , ϕn) −→ ϕ∆

• Conciliation (ϕ1, . . . , ϕn) −→ (ϕ∗1, . . . , ϕ
∗
n)

38 / 43

Iterated Merging
• Iterated Merging Operators

(ϕ0
1, . . . , ϕ

0
n) ϕ∆0

(ϕ0
1 ∗ ϕ∆0 , . . . , ϕ0

n ∗ ϕ∆0)

(ϕ1
1, . . . , ϕ

1
n)

ϕ∆1

(ϕk
1, . . . , ϕ

k
n)

ϕ∆k

Merging

Revision

Merging

Conciliation

• Merging (ϕ1, . . . , ϕn) −→ ϕ∆

• Conciliation (ϕ1, . . . , ϕn) −→ (ϕ∗1, . . . , ϕ
∗
n)

38 / 43

Iterated Merging
• Iterated Merging Operators

(ϕ0
1, . . . , ϕ

0
n) ϕ∆0

(ϕ0
1 ∗ ϕ∆0 , . . . , ϕ0

n ∗ ϕ∆0)

(ϕ1
1, . . . , ϕ

1
n) ϕ∆1

(ϕk
1, . . . , ϕ

k
n)

ϕ∆k

Merging

Revision

Merging

Conciliation

• Merging (ϕ1, . . . , ϕn) −→ ϕ∆

• Conciliation (ϕ1, . . . , ϕn) −→ (ϕ∗1, . . . , ϕ
∗
n)

38 / 43

Iterated Merging
• Iterated Merging Operators

(ϕ0
1, . . . , ϕ

0
n) ϕ∆0

(ϕ0
1 ∗ ϕ∆0 , . . . , ϕ0

n ∗ ϕ∆0)

(ϕ1
1, . . . , ϕ

1
n) ϕ∆1

(ϕk
1, . . . , ϕ

k
n)

ϕ∆k

Merging

Revision

Merging

Conciliation

• Merging (ϕ1, . . . , ϕn) −→ ϕ∆

• Conciliation (ϕ1, . . . , ϕn) −→ (ϕ∗1, . . . , ϕ
∗
n)

38 / 43

Iterated Merging
• Iterated Merging Operators

(ϕ0
1, . . . , ϕ

0
n) ϕ∆0

(ϕ0
1 ∗ ϕ∆0 , . . . , ϕ0

n ∗ ϕ∆0)

(ϕ1
1, . . . , ϕ

1
n) ϕ∆1

(ϕk
1, . . . , ϕ

k
n)

ϕ∆k

Merging

Revision

Merging

Conciliation

• Merging (ϕ1, . . . , ϕn) −→ ϕ∆

• Conciliation (ϕ1, . . . , ϕn) −→ (ϕ∗1, . . . , ϕ
∗
n)

38 / 43

Iterated Merging
• Iterated Merging Operators

(ϕ0
1, . . . , ϕ

0
n) ϕ∆0

(ϕ0
1 ∗ ϕ∆0 , . . . , ϕ0

n ∗ ϕ∆0)

(ϕ1
1, . . . , ϕ

1
n) ϕ∆1

(ϕk
1, . . . , ϕ

k
n)

ϕ∆k

Merging

Revision

Merging

Conciliation

• Merging (ϕ1, . . . , ϕn) −→ ϕ∆

• Conciliation (ϕ1, . . . , ϕn) −→ (ϕ∗1, . . . , ϕ
∗
n)

38 / 43

Iterated Merging
• Iterated Merging Operators

(ϕ0
1, . . . , ϕ

0
n) ϕ∆0

(ϕ0
1 ∗ ϕ∆0 , . . . , ϕ0

n ∗ ϕ∆0)

(ϕ1
1, . . . , ϕ

1
n) ϕ∆1

(ϕk
1, . . . , ϕ

k
n)

ϕ∆k

Merging

Revision

Merging

Conciliation

• Merging (ϕ1, . . . , ϕn) −→ ϕ∆

• Conciliation (ϕ1, . . . , ϕn) −→ (ϕ∗1, . . . , ϕ
∗
n)

38 / 43

Iterated Merging
• Iterated Merging Operators

(ϕ0
1, . . . , ϕ

0
n) ϕ∆0

(ϕ0
1 ∗ ϕ∆0 , . . . , ϕ0

n ∗ ϕ∆0)

(ϕ1
1, . . . , ϕ

1
n) ϕ∆1

(ϕk
1, . . . , ϕ

k
n)

ϕ∆k

Merging

Revision

Merging

Conciliation

• Merging (ϕ1, . . . , ϕn) −→ ϕ∆

• Conciliation (ϕ1, . . . , ϕn) −→ (ϕ∗1, . . . , ϕ
∗
n)

38 / 43

Negotiation - Conciliation

Let E = (ϕ1, . . . , ϕn) be a profile of belief/goal bases.

Two questions :

• What are the beliefs/goals of the group of agents ?
Merging (vote, social choice, MCDM, . . .)

• Can the agents find a consensual position ?
Conciliation (negotiation, bargaining, . . .)

39 / 43

A Game between Sources

• Negotiation :
• Some sources have to concede to solve the conflicts

• The idea :
• Each source gives her base
• Contest between the bases :

The weakest ones loose
The loosers have to concede (logical weakening)

• Ends when a compromise is reached

Definition A Belief Game Model is a pair N = 〈g,H〉 where g is a choice
function and H is a weakening function.
The solution to a belief profile E for a Belief Game Model N = 〈g,H〉, noted
N (E), is the belief profile EN , defined as :
• E0 = E
• E i+1 = Hg(E i)(E i)

• EN is the first E i that is consistent

40 / 43

A Game between Sources

• Negotiation :
• Some sources have to concede to solve the conflicts

• The idea :
• Each source gives her base
• Contest between the bases :

The weakest ones loose
The loosers have to concede (logical weakening)

• Ends when a compromise is reached

Definition A Belief Game Model is a pair N = 〈g,H〉 where g is a choice
function and H is a weakening function.
The solution to a belief profile E for a Belief Game Model N = 〈g,H〉, noted
N (E), is the belief profile EN , defined as :
• E0 = E
• E i+1 = Hg(E i)(E i)

• EN is the first E i that is consistent

40 / 43

A Game between Sources

• Negotiation :
• Some sources have to concede to solve the conflicts

• The idea :
• Each source gives her base
• Contest between the bases :

The weakest ones loose
The loosers have to concede (logical weakening)

• Ends when a compromise is reached

Definition A Belief Game Model is a pair N = 〈g,H〉 where g is a choice
function and H is a weakening function.
The solution to a belief profile E for a Belief Game Model N = 〈g,H〉, noted
N (E), is the belief profile EN , defined as :
• E0 = E
• E i+1 = Hg(E i)(E i)

• EN is the first E i that is consistent

40 / 43

A Game between Sources

• Negotiation :
• Some sources have to concede to solve the conflicts

• The idea :
• Each source gives her base
• Contest between the bases :

The weakest ones loose
The loosers have to concede (logical weakening)

• Ends when a compromise is reached

Definition A Belief Game Model is a pair N = 〈g,H〉 where g is a choice
function and H is a weakening function.
The solution to a belief profile E for a Belief Game Model N = 〈g,H〉under the
integrity constraints µ, noted N µ(E), is the belief profile ENµ

, defined as :
• E0 = E
• E i+1 = Hg(E i)(E i)

• ENµ
is the first E i that is consistent with µ

40 / 43

A Game between Sources

• Negotiation :
• Some sources have to concede to solve the conflicts

• The idea :
• Each source gives her base
• Contest between the bases :

The weakest ones loose
The loosers have to concede (logical weakening)

• Ends when a compromise is reached

Definition A Belief Game Model is a pair N = 〈g,H〉 where g is a choice
function and H is a weakening function.
The solution to a belief profile E for a Belief Game Model N = 〈g,H〉under the
integrity constraints µ, noted N µ(E), is the belief profile ENµ

, defined as :
• E0 = E
• E i+1 = Hg(E i)(E i)

• ENµ
is the first E i that is consistent with µ

40 / 43

Belief Game Model

A choice function is a function g : E → E such that :
• g(E) ⊆ E
• If

∧
E 6≡ >, then ∃ϕ ∈ g(E) s.t. ϕ 6≡ >

• If E ↔ E′, then g(E)↔ g(E′)

A weakening function is a function H : K → K such that :
• ϕ ` H(ϕ)

• If ϕ = H(ϕ), then ϕ↔ >
• If ϕ↔ ϕ′, then H(ϕ)↔ H(ϕ′)

41 / 43

Example : Database Class [Revesz, 1994]

• g = dΣ
D , H = δ

ϕ1 = {100, 001, 101} ϕ2 = {010, 001} ϕ3 = {111}

ϕ3 = {111, 011, 101, 110}
ϕ2 = {010, 001, 110, 000, 011, 101} ϕ3 = {111, 011, 101, 110, 001, 010, 100}

mod(ϕ1 ∧ ϕ2 ∧ ϕ3) = ∅

ϕ1 ϕ2 ϕ3 Σ g
ϕ1 0 1 1
ϕ2 0 1 1
ϕ3 1 1 2 •

ϕ1 ϕ2 ϕ3 Σ g
ϕ1 0 0 0
ϕ2 0 1 1 •
ϕ3 0 1 1 •

42 / 43

Example : Database Class [Revesz, 1994]

• g = dΣ
D , H = δ

ϕ1 = {100, 001, 101} ϕ2 = {010, 001} ϕ3 = {111}

ϕ3 = {111, 011, 101, 110}
ϕ2 = {010, 001, 110, 000, 011, 101} ϕ3 = {111, 011, 101, 110, 001, 010, 100}

mod(ϕ1 ∧ ϕ2 ∧ ϕ3) = ∅

ϕ1 ϕ2 ϕ3 Σ g
ϕ1 0 1 1
ϕ2 0 1 1
ϕ3 1 1 2 •

ϕ1 ϕ2 ϕ3 Σ g
ϕ1 0 0 0
ϕ2 0 1 1 •
ϕ3 0 1 1 •

42 / 43

Example : Database Class [Revesz, 1994]

• g = dΣ
D , H = δ

ϕ1 = {100, 001, 101} ϕ2 = {010, 001} ϕ3 = {111}
ϕ3 = {111, 011, 101, 110}

ϕ2 = {010, 001, 110, 000, 011, 101} ϕ3 = {111, 011, 101, 110, 001, 010, 100}

mod(ϕ1 ∧ ϕ2 ∧ ϕ3) = ∅

ϕ1 ϕ2 ϕ3 Σ g
ϕ1 0 1 1
ϕ2 0 1 1
ϕ3 1 1 2 •

ϕ1 ϕ2 ϕ3 Σ g
ϕ1 0 0 0
ϕ2 0 1 1 •
ϕ3 0 1 1 •

42 / 43

Example : Database Class [Revesz, 1994]

• g = dΣ
D , H = δ

ϕ1 = {100, 001, 101} ϕ2 = {010, 001} ϕ3 = {111}
ϕ3 = {111, 011, 101, 110}

ϕ2 = {010, 001, 110, 000, 011, 101} ϕ3 = {111, 011, 101, 110, 001, 010, 100}

mod(ϕ1 ∧ ϕ2 ∧ ϕ3) = ∅

ϕ1 ϕ2 ϕ3 Σ g
ϕ1 0 1 1
ϕ2 0 1 1
ϕ3 1 1 2 •

ϕ1 ϕ2 ϕ3 Σ g
ϕ1 0 0 0
ϕ2 0 1 1 •
ϕ3 0 1 1 •

42 / 43

Example : Database Class [Revesz, 1994]

• g = dΣ
D , H = δ

ϕ1 = {100, 001, 101} ϕ2 = {010, 001} ϕ3 = {111}
ϕ3 = {111, 011, 101, 110}

ϕ2 = {010, 001, 110, 000, 011, 101} ϕ3 = {111, 011, 101, 110, 001, 010, 100}

mod(ϕ1 ∧ ϕ2 ∧ ϕ3) = ∅

ϕ1 ϕ2 ϕ3 Σ g
ϕ1 0 1 1
ϕ2 0 1 1
ϕ3 1 1 2 •

ϕ1 ϕ2 ϕ3 Σ g
ϕ1 0 0 0
ϕ2 0 1 1 •
ϕ3 0 1 1 •

42 / 43

Example : Database Class [Revesz, 1994]

• g = dΣ
D , H = δ

ϕ1 = {100, 001, 101} ϕ2 = {010, 001} ϕ3 = {111}
ϕ3 = {111, 011, 101, 110}

ϕ2 = {010, 001, 110, 000, 011, 101} ϕ3 = {111, 011, 101, 110, 001, 010, 100}

mod(ϕ1 ∧ ϕ2 ∧ ϕ3) = {001,101}

ϕ1 ϕ2 ϕ3 Σ g
ϕ1 0 1 1
ϕ2 0 1 1
ϕ3 1 1 2 •

ϕ1 ϕ2 ϕ3 Σ g
ϕ1 0 0 0
ϕ2 0 1 1 •
ϕ3 0 1 1 •

42 / 43

Skipped something ?

Back to Condorcet’s Jury Theorem

Back to Unanimity

Back to Default-based merging

43 / 43

