Information Fusion and Social Choice

Sébastien Konieczny

CNRS - CRIL, Lens, France
konieczny@cril.fr

COST-ADT Doctoral School on computational Social Choice

Merging

- Contradictory pieces of information (beliefs, goals, ...) coming from different sources

Merging

- Contradictory pieces of information (beliefs, goals, ...) coming from different sources
- Propositional Logic

Merging

- Contradictory pieces of information (beliefs, goals, ...) coming from different sources
- Propositional Logic
- no priority (same reliability, hierarchical importance, ...)

Merging

- Contradictory pieces of information (beliefs, goals, ...) coming from different sources
- Propositional Logic
- no priority (same reliability, hierarchical importance, ...)

$$
\begin{array}{ccc}
\varphi_{1} & \varphi_{2} & \varphi_{3} \\
a, b \rightarrow c & a, b & \neg a \\
\triangle\left(\varphi_{1} \sqcup \varphi_{2} \sqcup \varphi_{3}\right)= &
\end{array}
$$

Merging

- Contradictory pieces of information (beliefs, goals, ...) coming from different sources
- Propositional Logic
- no priority (same reliability, hierarchical importance, ...)

$$
\begin{array}{cc}
\varphi_{1} & \varphi_{2} \\
a, b \rightarrow c & a, b \\
\triangle\left(\varphi_{1} \sqcup \varphi_{2} \sqcup \varphi_{3}\right)=b \rightarrow c, b & \varphi_{3} \\
& \neg a
\end{array}
$$

Merging

- Contradictory pieces of information (beliefs, goals, ...) coming from different sources
- Propositional Logic
- no priority (same reliability, hierarchical importance, ...)

$$
\begin{array}{ccc}
\varphi_{1} & \varphi_{2} & \varphi_{3} \\
a, b \rightarrow c & a, b & \neg a \\
\triangle\left(\varphi_{1} \sqcup \varphi_{2} \sqcup \varphi_{3}\right)=b \rightarrow c, b, a
\end{array}
$$

Merging

- Applications :
- Distributed information systems
- Databases
- Multi-agent systems
- Propositional bases can encode different types of information :
- knowledge
- beliefs
- goals
- rules / laws
- Propositional Base Merging

■ Logical Properties

- Merging Operators
- Model based operators
- Formula based operators
- DA ${ }^{2}$ operators
- Vectors of conflicts
- Defaults based operators
- Similarity based operators
- Merging and ...
- ... Belief Revision
- . . . Social Choice
- . . . Judgment Aggregation
- Other logical merging frameworks
- Negotiation/Conciliation

Definitions

- A set of formulae \mathcal{L} build from :
- A set of propositional symbols : $\mathcal{P}=a, b, c, \ldots$
- Connectives $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$.
- An interpretation (world) is a function $\mathcal{P} \longrightarrow\{0,1\}$.
- A model of a formula is an interpretation that makes it true.
- The set of models of a formula α is denoted by $\bmod (\alpha)$.
- A formula α is consistent if $\bmod (\alpha) \neq \emptyset$
- A base φ is a finite set of propositional formulae.
- A profile E is a multi-set of bases : $E=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$.
- $\wedge E$ denotes the conjunction of the bases of E.
- A profile E is consistent if and only if ΛE is consistent. We will note $\bmod (E)$ instead of $\bmod (\wedge E)$.

Definitions

- A set of formulae \mathcal{L} build from :
- A set of propositional symbols : $\mathcal{P}=a, b, c, \ldots$
- Connectives $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$.
- An interpretation (world) is a function $\mathcal{P} \longrightarrow\{0,1\}$.
- A model of a formula is an interpretation that makes it true.
- The set of models of a formula α is denoted by $\bmod (\alpha)$.
- A formula α is consistent if $\bmod (\alpha) \neq \emptyset$
- A base φ is a finite set of propositional formulae.
- A profile E is a multi-set of bases : $E=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$.
- $\wedge E$ denotes the conjunction of the bases of E.
- A profile E is consistent if and only if ΛE is consistent. We will note $\bmod (E)$ instead of $\bmod (\wedge E)$.
Equivalence between profiles:
- Let E_{1}, E_{2} be two profiles. E_{1} and E_{2} are equivalent, noted $E_{1} \leftrightarrow E_{2}$, iff there exists a bijection f from $E_{1}=\left\{\varphi_{1}^{1}, \ldots, \varphi_{n}^{1}\right\}$ to $E_{2}=\left\{\varphi_{1}^{2}, \ldots, \varphi_{n}^{2}\right\}$ such that $\vdash f(\varphi) \leftrightarrow \varphi$.

Merging

$$
E=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}
$$

Merging

Profile

$$
E=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}
$$

Merging

Profile
$E=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$
μ

Merging

Profile
 $E=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$
 μ
 Integrity Constraints

Merging

Profile

$$
\left.\begin{array}{r}
E=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\} \\
\mu
\end{array}\right\} \rightarrow \triangle_{\mu}(E)
$$

Integrity Constraints

Merging

Profile

$$
\left.\begin{array}{r}
E=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\} \\
\mu
\end{array}\right\} \longrightarrow \triangle_{\mu}(E) \quad \text { Merged base }
$$

Integrity Constraints

Logical Characterization

\triangle is an Integrity Constraint merging operator (IC merging operator) if and only if it satisfies the following properties:

Logical Characterization

\triangle is an Integrity Constraint merging operator (IC merging operator) if and only if it satisfies the following properties:
(ICO) $\triangle_{\mu}(E) \vdash \mu$

Logical Characterization

\triangle is an Integrity Constraint merging operator (IC merging operator) if and only if it satisfies the following properties:
(ICO) $\triangle_{\mu}(E) \vdash \mu$
(IC1) If μ is consistent, then $\triangle_{\mu}(E)$ is consistent

Logical Characterization

\triangle is an Integrity Constraint merging operator (IC merging operator) if and only if it satisfies the following properties:
(ICO) $\triangle_{\mu}(E) \vdash \mu$
(IC1) If μ is consistent, then $\triangle_{\mu}(E)$ is consistent
(IC2) If $\wedge E$ is consistent with μ, then $\triangle_{\mu}(E)=\wedge E \wedge \mu$

Logical Characterization

\triangle is an Integrity Constraint merging operator (IC merging operator) if and only if it satisfies the following properties:
(ICO) $\triangle_{\mu}(E) \vdash \mu$
(IC1) If μ is consistent, then $\triangle_{\mu}(E)$ is consistent
(IC2) If $\wedge E$ is consistent with μ, then $\triangle_{\mu}(E)=\wedge E \wedge \mu$
(IC3) If $E_{1} \leftrightarrow E_{2}$ and $\mu_{1} \leftrightarrow \mu_{2}$, then $\triangle_{\mu_{1}}\left(E_{1}\right) \leftrightarrow \triangle_{\mu_{2}}\left(E_{2}\right)$

Logical Characterization

\triangle is an Integrity Constraint merging operator (IC merging operator) if and only if it satisfies the following properties:
(ICO) $\triangle_{\mu}(E) \vdash \mu$
(IC1) If μ is consistent, then $\triangle_{\mu}(E)$ is consistent
(IC2) If $\wedge E$ is consistent with μ, then $\triangle_{\mu}(E)=\wedge E \wedge \mu$
(IC3) If $E_{1} \leftrightarrow E_{2}$ and $\mu_{1} \leftrightarrow \mu_{2}$, then $\triangle_{\mu_{1}}\left(E_{1}\right) \leftrightarrow \triangle_{\mu_{2}}\left(E_{2}\right)$
(IC4) If $\varphi \vdash \mu$ and $\varphi^{\prime} \vdash \mu$, then $\triangle_{\mu}\left(\varphi \sqcup \varphi^{\prime}\right) \wedge \varphi \nvdash \perp \Rightarrow \triangle_{\mu}\left(\varphi \sqcup \varphi^{\prime}\right) \wedge \varphi^{\prime} \nvdash \perp$

Logical Characterization

\triangle is an Integrity Constraint merging operator (IC merging operator) if and only if it satisfies the following properties:
(ICO) $\triangle_{\mu}(E) \vdash \mu$
(IC1) If μ is consistent, then $\triangle_{\mu}(E)$ is consistent
(IC2) If $\wedge E$ is consistent with μ, then $\triangle_{\mu}(E)=\wedge E \wedge \mu$
(IC3) If $E_{1} \leftrightarrow E_{2}$ and $\mu_{1} \leftrightarrow \mu_{2}$, then $\triangle_{\mu_{1}}\left(E_{1}\right) \leftrightarrow \triangle_{\mu_{2}}\left(E_{2}\right)$
(IC4) If $\varphi \vdash \mu$ and $\varphi^{\prime} \vdash \mu$, then $\triangle_{\mu}\left(\varphi \sqcup \varphi^{\prime}\right) \wedge \varphi \nvdash \perp \Rightarrow \triangle_{\mu}\left(\varphi \sqcup \varphi^{\prime}\right) \wedge \varphi^{\prime} \nvdash \perp$
(IC5) $\triangle_{\mu}\left(E_{1}\right) \wedge \triangle_{\mu}\left(E_{2}\right) \vdash \triangle_{\mu}\left(E_{1} \sqcup E_{2}\right)$

Logical Characterization

\triangle is an Integrity Constraint merging operator (IC merging operator) if and only if it satisfies the following properties:
(ICO) $\triangle_{\mu}(E) \vdash \mu$
(IC1) If μ is consistent, then $\triangle_{\mu}(E)$ is consistent
(IC2) If $\wedge E$ is consistent with μ, then $\triangle_{\mu}(E)=\wedge E \wedge \mu$
(IC3) If $E_{1} \leftrightarrow E_{2}$ and $\mu_{1} \leftrightarrow \mu_{2}$, then $\triangle_{\mu_{1}}\left(E_{1}\right) \leftrightarrow \triangle_{\mu_{2}}\left(E_{2}\right)$
(IC4) If $\varphi \vdash \mu$ and $\varphi^{\prime} \vdash \mu$, then $\triangle_{\mu}\left(\varphi \sqcup \varphi^{\prime}\right) \wedge \varphi \nvdash \perp \Rightarrow \triangle_{\mu}\left(\varphi \sqcup \varphi^{\prime}\right) \wedge \varphi^{\prime} \nvdash \perp$
(IC5) $\triangle_{\mu}\left(E_{1}\right) \wedge \triangle_{\mu}\left(E_{2}\right) \vdash \triangle_{\mu}\left(E_{1} \sqcup E_{2}\right)$
(IC6) If $\triangle_{\mu}\left(E_{1}\right) \wedge \triangle_{\mu}\left(E_{2}\right)$ is consistent, then $\triangle_{\mu}\left(E_{1} \sqcup E_{2}\right) \vdash \triangle_{\mu}\left(E_{1}\right) \wedge \triangle_{\mu}\left(E_{2}\right)$

Logical Characterization

\triangle is an Integrity Constraint merging operator (IC merging operator) if and only if it satisfies the following properties:
(ICO) $\triangle_{\mu}(E) \vdash \mu$
(IC1) If μ is consistent, then $\triangle_{\mu}(E)$ is consistent
(IC2) If $\wedge E$ is consistent with μ, then $\triangle_{\mu}(E)=\wedge E \wedge \mu$
(IC3) If $E_{1} \leftrightarrow E_{2}$ and $\mu_{1} \leftrightarrow \mu_{2}$, then $\triangle_{\mu_{1}}\left(E_{1}\right) \leftrightarrow \triangle_{\mu_{2}}\left(E_{2}\right)$
(IC4) If $\varphi \vdash \mu$ and $\varphi^{\prime} \vdash \mu$, then $\triangle_{\mu}\left(\varphi \sqcup \varphi^{\prime}\right) \wedge \varphi \nvdash \perp \Rightarrow \triangle_{\mu}\left(\varphi \sqcup \varphi^{\prime}\right) \wedge \varphi^{\prime} \nvdash \perp$
(IC5) $\triangle_{\mu}\left(E_{1}\right) \wedge \triangle_{\mu}\left(E_{2}\right) \vdash \triangle_{\mu}\left(E_{1} \sqcup E_{2}\right)$
(IC6) If $\triangle_{\mu}\left(E_{1}\right) \wedge \triangle_{\mu}\left(E_{2}\right)$ is consistent, then $\triangle_{\mu}\left(E_{1} \sqcup E_{2}\right) \vdash \triangle_{\mu}\left(E_{1}\right) \wedge \triangle_{\mu}\left(E_{2}\right)$
(IC7) $\triangle_{\mu_{1}}(E) \wedge \mu_{2} \vdash \triangle_{\mu_{1} \wedge \mu_{2}}(E)$
(IC8) If $\triangle_{\mu_{1}}(E) \wedge \mu_{2}$ is consistent, then $\triangle_{\mu_{1} \wedge \mu_{2}}(E) \vdash \triangle_{\mu_{1}}(E)$

Majority vs Arbitration

Ally, Brian and Charles have to decide what they will do this night. Brian and Ally want to go to the restaurant and to the cinema. Charles does not want to go out this night and so he does not want to go nor to the restaurant nor to the cinema.

Majority vs Arbitration

Ally, Brian and Charles have to decide what they will do this night. Brian and Ally want to go to the restaurant and to the cinema. Charles does not want to go out this night and so he does not want to go nor to the restaurant nor to the cinema.

Majority restaurant and cinema

Ally $\quad++$
Brian + +
Charles --

Majority vs Arbitration

Ally, Brian and Charles have to decide what they will do this night. Brian and Ally want to go to the restaurant and to the cinema. Charles does not want to go out this night and so he does not want to go nor to the restaurant nor to the cinema.

Majority restaurant and cinema Arbitration restaurant xor cinema

Ally + +

Charles --

Ally	+
Brian	+
Charles	+

Majority - Arbitration

(Maj) $\exists n \triangle_{\mu}\left(E_{1} \sqcup E_{2}{ }^{n}\right) \vdash \triangle_{\mu}\left(E_{2}\right)$
\triangleright An IC merging operator is a majority operator if it satisfies (Maj).

Majority - Arbitration

(Maj) $\exists n \triangle_{\mu}\left(E_{1} \sqcup E_{2}{ }^{n}\right) \vdash \triangle_{\mu}\left(E_{2}\right)$
\triangleright An IC merging operator is a majority operator if it satisfies (Maj).
(Arb)

$$
\left.\begin{array}{l}
\triangle_{\mu_{1}}\left(\varphi_{1}\right) \leftrightarrow \triangle_{\mu_{2}}\left(\varphi_{2}\right) \\
\triangle_{\mu_{1} \leftrightarrow \neg \mu_{2}\left(\varphi_{1} \sqcup \varphi_{2}\right) \leftrightarrow\left(\mu_{1} \leftrightarrow \neg \mu_{2}\right)}^{\mu_{1} \nvdash \mu_{2}} \\
\mu_{2} \nvdash \mu_{1}
\end{array}\right\} \Rightarrow \triangle_{\mu_{1} \vee \mu_{2}\left(\varphi_{1} \sqcup \varphi_{2}\right) \leftrightarrow \triangle_{\mu_{1}}\left(\varphi_{1}\right)}
$$

\triangleright An IC merging operator is an arbitration operator if it satifies (Arb).

Syncretic Assignment

A syncretic assignment is a function mapping each profile E to a total pre-order \leq_{E} over interpretations such that :

1) If $\omega \models E$ and $\omega^{\prime} \models E$, then $\omega \simeq_{E} \omega^{\prime}$
2) If $\omega \models E$ and $\omega^{\prime} \not \models E$, then $\omega<E \omega^{\prime}$
3) If $E_{1} \equiv E_{2}$, then $\leq E_{1}=\leq E_{2}$
4) $\forall \omega \models \varphi_{1} \exists \omega^{\prime} \models \varphi_{2} \omega^{\prime} \leq \varphi_{1} \sqcup \varphi_{2} \omega$
5) If $\omega \leq_{E_{1}} \omega^{\prime}$ and $\omega \leq_{E_{2}} \omega^{\prime}$, then $\omega \leq_{E_{1} \sqcup E_{2}} \omega^{\prime}$
6) If $\omega<E_{E_{1}} \omega^{\prime}$ and $\omega \leq_{E_{2}} \omega^{\prime}$, then $\omega<E_{1} \sqcup E_{2} \omega^{\prime}$

Syncretic Assignment

A syncretic assignment is a function mapping each profile E to a total pre-order \leq_{E} over interpretations such that :

1) If $\omega \models E$ and $\omega^{\prime} \models E$, then $\omega \simeq_{E} \omega^{\prime}$
2) If $\omega \models E$ and $\omega^{\prime} \not \models E$, then $\omega<E \omega^{\prime}$
3) If $E_{1} \equiv E_{2}$, then $\leq_{E_{1}}=\leq_{E_{2}}$
4) $\forall \omega \models \varphi_{1} \exists \omega^{\prime} \models \varphi_{2} \omega^{\prime} \leq \varphi_{1} \sqcup \varphi_{2} \omega$
5) If $\omega \leq_{E_{1}} \omega^{\prime}$ and $\omega \leq_{E_{2}} \omega^{\prime}$, then $\omega \leq_{E_{1} \sqcup E_{2}} \omega^{\prime}$
6) If $\omega<E_{E_{1}} \omega^{\prime}$ and $\omega \leq_{E_{2}} \omega^{\prime}$, then $\omega<E_{1} \sqcup E_{2} \omega^{\prime}$

A majority syncretic assignment is a syncretic assignment which satisfies :
7) If $\omega<E_{2} \omega^{\prime}$, then $\exists n \omega<E_{1} \sqcup E_{2}{ }^{n} \omega^{\prime}$

Syncretic Assignment

A syncretic assignment is a function mapping each profile E to a total pre-order \leq_{E} over interpretations such that :

1) If $\omega \models E$ and $\omega^{\prime} \models E$, then $\omega \simeq_{E} \omega^{\prime}$
2) If $\omega \models E$ and $\omega^{\prime} \not \models E$, then $\omega<E \omega^{\prime}$
3) If $E_{1} \equiv E_{2}$, then $\leq E_{1}=\leq E_{2}$
4) $\forall \omega \models \varphi_{1} \exists \omega^{\prime} \models \varphi_{2} \omega^{\prime} \leq \varphi_{1} \sqcup \varphi_{2} \omega$
5) If $\omega \leq E_{1} \omega^{\prime}$ and $\omega \leq E_{2} \omega^{\prime}$, then $\omega \leq E_{1} \sqcup E_{2} \omega^{\prime}$
6) If $\omega<E_{1} \omega^{\prime}$ and $\omega \leq E_{2} \omega^{\prime}$, then $\omega<E_{1} \sqcup E_{2} \omega^{\prime}$

A majority syncretic assignment is a syncretic assignment which satisfies:
7) If $\omega<E_{2} \omega^{\prime}$, then $\exists n \omega<E_{1} \sqcup E_{2}{ }^{n} \omega^{\prime}$

A fair syncretic assignment is a syncretic assignment which satisfies :
8) $\left.\begin{array}{l}\omega<_{\varphi_{1}} \omega^{\prime} \\ \omega<\varphi_{2} \omega^{\prime \prime} \\ \omega^{\prime} \simeq_{\varphi_{1} \sqcup \varphi_{2}} \omega^{\prime \prime}\end{array}\right\} \Rightarrow \omega<_{\varphi_{1} \sqcup \varphi_{2}} \omega^{\prime}$

Arbitration

Arbitration

Arbitration

\qquad

Arbitration

\qquad

Arbitration

Arbitration

Arbitration

Arbitration

Arbitration

Representation Theorem

Theorem An operator is an IC merging operator if and only if there exists a syncretic assignment that maps each profile E to a total pre-order \leq_{E} such that

$$
\left.\bmod \left(\triangle_{\mu}(E)\right)\right)=\min \left(\bmod (\mu), \leq_{E}\right)
$$

Representation Theorem

Theorem An operator is an IC merging operator (respectively IC majority merging operator or IC arbitration operator) if and only if there exists a syncretic assignment (respectively majority syncretic assignment or fair syncretic assignment) that maps each profile E to a total pre-order \leq_{E} such that

$$
\left.\bmod \left(\triangle_{\mu}(E)\right)\right)=\min \left(\bmod (\mu), \leq_{E}\right)
$$

Model-Based Merging

Idea : Select the interpretations that are the most plausible for a given profile.

Model-Based Merging

Idea : Select the interpretations that are the most plausible for a given profile.

$$
\omega \leq_{E}^{d_{x}} \omega^{\prime} \text { iff } d_{x}(\omega, E) \leq d_{x}\left(\omega^{\prime}, E\right)
$$

Model-Based Merging

Idea : Select the interpretations that are the most plausible for a given profile.

$$
\omega \leq_{E}^{d_{x}} \omega^{\prime} \text { iff } d_{x}(\omega, E) \leq d_{x}\left(\omega^{\prime}, E\right)
$$

d_{x} can be computed using : • a distance between interpretations d

- an aggregation function f

Model-Based Merging

Idea : Select the interpretations that are the most plausible for a given profile.

$$
\omega \leq_{E}^{d_{x}} \omega^{\prime} \text { iff } d_{x}(\omega, E) \leq d_{x}\left(\omega^{\prime}, E\right)
$$

d_{x} can be computed using : • a distance between interpretations d - an aggregation function f

- Distance between interpretations
- $d\left(\omega, \omega^{\prime}\right)=d\left(\omega^{\prime}, \omega\right)$
- $d\left(\omega, \omega^{\prime}\right)=0$ iff $\omega=\omega^{\prime}$

Model-Based Merging

Idea : Select the interpretations that are the most plausible for a given profile.

$$
\omega \leq_{E}^{d_{x}} \omega^{\prime} \text { iff } d_{x}(\omega, E) \leq d_{x}\left(\omega^{\prime}, E\right)
$$

d_{x} can be computed using : • a distance between interpretations d - an aggregation function f

- Distance between interpretations
$\square d\left(\omega, \omega^{\prime}\right)=d\left(\omega^{\prime}, \omega\right)$
- $d\left(\omega, \omega^{\prime}\right)=0$ iff $\omega=\omega^{\prime}$
- Distance between an interpretation and a base
$\square d(\omega, \varphi)=\min _{\omega^{\prime} \vDash \varphi} d\left(\omega, \omega^{\prime}\right)$

Model-Based Merging

Idea : Select the interpretations that are the most plausible for a given profile.

$$
\omega \leq_{E}^{d_{x}} \omega^{\prime} \text { iff } d_{x}(\omega, E) \leq d_{x}\left(\omega^{\prime}, E\right)
$$

d_{x} can be computed using : • a distance between interpretations d - an aggregation function f

- Distance between interpretations
$\square d\left(\omega, \omega^{\prime}\right)=d\left(\omega^{\prime}, \omega\right)$
- $d\left(\omega, \omega^{\prime}\right)=0$ iff $\omega=\omega^{\prime}$
- Distance between an interpretation and a base

■ $d(\omega, \varphi)=\min _{\omega^{\prime} \neq \varphi} d\left(\omega, \omega^{\prime}\right)$

- Distance between an interpretation and a profile
- $d_{d, f}(\omega, E)=f\left(d\left(\omega, \varphi_{1}\right), \ldots d\left(\omega, \varphi_{n}\right)\right)$

Model-Based Merging

- Examples of aggregation function:

■ max, leximax, Σ, Σ^{n}, leximin, ...

Model-Based Merging

- Examples of aggregation function:
- max, leximax, Σ, Σ^{n}, leximin, ...
- Let d be any distance between interpretations.
- $\Delta^{d, \text { max }}$ operators satisfy (IC0-IC5), (IC7), (IC8) and (Arb).
- $\triangle^{d, \mathrm{GmIN}}$ operators are IC merging operators.
- $\triangle^{d, \text { Gax }}$ operators are arbitration operators.
- $\triangle^{d, \Sigma}$ and $\triangle^{d, \Sigma^{n}}$ operators are majority operators.

Model-Based Merging

An aggregation function f is a function that associates a positive number to any tuple of positive numbers such that :

- If $x \leq y$, then $f\left(x_{1}, \ldots, x, \ldots, x_{n}\right) \leq f\left(x_{1}, \ldots, y, \ldots, x_{n}\right)$
- $f\left(x_{1}, \ldots, x_{n}\right)=0$ if and only if $x_{1}=\ldots=x_{n}=0$
- $f(x)=x$
(monotony)
(minimality)
(identity)

Model-Based Merging

An aggregation function f is a function that associates a positive number to any tuple of positive numbers such that :

- If $x \leq y$, then $f\left(x_{1}, \ldots, x, \ldots, x_{n}\right) \leq f\left(x_{1}, \ldots, y, \ldots, x_{n}\right) \quad$ (monotony)
- $f\left(x_{1}, \ldots, x_{n}\right)=0$ if and only if $x_{1}=\ldots=x_{n}=0 \quad$ (minimality)
- $f(x)=x$
(identity)
Theorem Let d be a distance between interpretation and f be an aggregation function, then the operateur $\triangle^{d, f}$ satisfies properties (IC0), (IC1), (IC2), (IC7) et (IC8).

Model-Based Merging

An aggregation function f is a function that associates a positive number to any tuple of positive numbers such that :

- If $x \leq y$, then $f\left(x_{1}, \ldots, x, \ldots, x_{n}\right) \leq f\left(x_{1}, \ldots, y, \ldots, x_{n}\right)$
(monotony)
- $f\left(x_{1}, \ldots, x_{n}\right)=0$ if and only if $x_{1}=\ldots=x_{n}=0$
(minimality)
- $f(x)=x$ (identity)

Theorem Let d be a distance between interpretation and f be an aggregation function, then the operateur $\triangle^{d, t}$ satisfies properties (IC0), (IC1), (IC2), (IC7) et (IC8).
Theorem The operateur $\triangle^{d, f}$ satisfies properties (IC0-IC8) if and only if f satisfies:

- For any permutation $\sigma, f\left(x_{1}, \ldots, x_{n}\right)=f\left(\sigma\left(x_{1}, \ldots, x_{n}\right)\right)$
- If $f\left(x_{1}, \ldots, x_{n}\right) \leq f\left(y_{1}, \ldots, y_{n}\right)$, then $f\left(x_{1}, \ldots, x_{n}, z\right) \leq f\left(y_{1}, \ldots, y_{n}, z\right)$
(composition)
- If $f\left(x_{1}, \ldots, x_{n}, z\right) \leq f\left(y_{1}, \ldots, y_{n}, z\right)$, then $f\left(x_{1}, \ldots, x_{n}\right) \leq f\left(y_{1}, \ldots, y_{n}\right)$ (decomposition)

Example

$$
\begin{aligned}
& \mu=((S \wedge T) \vee(S \wedge P) \vee(T \wedge P)) \rightarrow I \\
& \varphi_{1}=\varphi_{2}=S \wedge T \wedge P \\
& \varphi_{3}=\neg S \wedge \neg T \wedge \neg P \wedge \neg I \\
& \varphi_{4}=T \wedge P \wedge \neg I
\end{aligned}
$$

Example

$$
\begin{array}{ll}
\mu=((S \wedge T) \vee(S \wedge P) \vee(T \wedge P)) \rightarrow I \\
\varphi_{1}=\varphi_{2}=S \wedge T \wedge P & \bmod (4 \\
\varphi_{3}=\neg S \wedge \neg T \wedge \neg P \wedge \neg I & \bmod (4 \\
\varphi_{4}=T \wedge P \wedge \neg I & \bmod (4
\end{array}
$$

Example

$$
\begin{aligned}
& \mu=((S \wedge T) \vee(S \wedge P) \vee(T \wedge P)) \rightarrow I \\
& \varphi_{1}=\varphi_{2}=S \wedge T \wedge P \quad \bmod \left(\varphi_{1}\right)=\{(1,1,1,1),(1,1,1,0)\} \\
& \varphi_{3}=\neg S \wedge \neg T \wedge \neg P \wedge \neg I \quad \bmod \left(\varphi_{3}\right)=\{(0,0,0,0)\} \\
& \varphi_{4}=T \wedge P \wedge \neg I \quad \bmod \left(\varphi_{4}\right)=\{(1,1,1,0),(0,1,1,0)\} \\
& \begin{array}{ccccccccc}
& \varphi_{1} & \varphi_{2} & \varphi_{3} & \varphi_{4} & d_{d_{H}, \operatorname{Max}} & d_{d_{H}, \Sigma} & d_{d_{H}, \Sigma^{2}} & d_{d_{H}, G \operatorname{Max}} \\
\hline(0,0,0,0) & 3 & 3 & 0 & 2 & & & &
\end{array}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mu=((S \wedge T) \vee(S \wedge P) \vee(T \wedge P)) \rightarrow I \\
& \varphi_{1}=\varphi_{2}=S \wedge T \wedge P \quad \bmod \left(\varphi_{1}\right)=\{(1,1,1,1),(1,1,1,0)\} \\
& \varphi_{3}=\neg S \wedge \neg T \wedge \neg P \wedge \neg I \quad \bmod \left(\varphi_{3}\right)=\{(0,0,0,0)\} \\
& \varphi_{4}=T \wedge P \wedge \neg I \quad \bmod \left(\varphi_{4}\right)=\{(1,1,1,0),(0,1,1,0)\} \\
& \begin{array}{ccccccccc}
& \varphi_{1} & \varphi_{2} & \varphi_{3} & \varphi_{4} & d_{d_{H}, \operatorname{Max}} & d_{d_{H}, \Sigma} & d_{d_{H}, \Sigma^{2}} & d_{d_{H}, G M a x} \\
\hline(0,0,0,0) & 3 & 3 & 0 & 2 & 3 & & &
\end{array}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mu=((S \wedge T) \vee(S \wedge P) \vee(T \wedge P)) \rightarrow I \\
& \varphi_{1}=\varphi_{2}=S \wedge T \wedge P \quad \bmod \left(\varphi_{1}\right)=\{(1,1,1,1),(1,1,1,0)\} \\
& \varphi_{3}=\neg S \wedge \neg T \wedge \neg P \wedge \neg I \quad \bmod \left(\varphi_{3}\right)=\{(0,0,0,0)\} \\
& \varphi_{4}=T \wedge P \wedge \neg I \quad \bmod \left(\varphi_{4}\right)=\{(1,1,1,0),(0,1,1,0)\} \\
& \begin{array}{ccccccccc}
& \varphi_{1} & \varphi_{2} & \varphi_{3} & \varphi_{4} & d_{d_{H}, \operatorname{Max}} & d_{d_{H}, \Sigma} & d_{d_{H}, \Sigma^{2}} & d_{d_{H}, G M a x} \\
\hline(0,0,0,0) & 3 & 3 & 0 & 2 & 3 & 8 & &
\end{array}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mu=((S \wedge T) \vee(S \wedge P) \vee(T \wedge P)) \rightarrow I \\
& \varphi_{1}=\varphi_{2}=S \wedge T \wedge P \quad \bmod \left(\varphi_{1}\right)=\{(1,1,1,1),(1,1,1,0)\} \\
& \varphi_{3}=\neg S \wedge \neg T \wedge \neg P \wedge \neg I \quad \bmod \left(\varphi_{3}\right)=\{(0,0,0,0)\} \\
& \varphi_{4}=T \wedge P \wedge \neg I \quad \bmod \left(\varphi_{4}\right)=\{(1,1,1,0),(0,1,1,0)\} \\
& \begin{array}{ccccccccc}
& \varphi_{1} & \varphi_{2} & \varphi_{3} & \varphi_{4} & d_{d_{H}, \operatorname{Max}} & d_{d_{H}, \Sigma} & d_{d_{H}, \Sigma^{2}} & d_{d_{H}, G \operatorname{Max}} \\
\hline(0,0,0,0) & 3 & 3 & 0 & 2 & 3 & 8 & 22 &
\end{array}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mu=((S \wedge T) \vee(S \wedge P) \vee(T \wedge P)) \rightarrow I \\
& \varphi_{1}=\varphi_{2}=S \wedge T \wedge P \quad \bmod \left(\varphi_{1}\right)=\{(1,1,1,1),(1,1,1,0)\} \\
& \varphi_{3}=\neg S \wedge \neg T \wedge \neg P \wedge \neg I \quad \bmod \left(\varphi_{3}\right)=\{(0,0,0,0)\} \\
& \varphi_{4}=T \wedge P \wedge \neg I \quad \bmod \left(\varphi_{4}\right)=\{(1,1,1,0),(0,1,1,0)\} \\
& \begin{array}{ccccccccc}
& \varphi_{1} & \varphi_{2} & \varphi_{3} & \varphi_{4} & d_{d_{H}, \operatorname{Max}} & d_{d_{H}, \Sigma} & d_{d_{H}, \Sigma^{2}} & d_{d_{H}, G M a x} \\
\hline(0,0,0,0) & 3 & 3 & 0 & 2 & 3 & 8 & 22 & (3,3,2,0)
\end{array}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mu=((S \wedge T) \vee(S \wedge P) \vee(T \wedge P)) \rightarrow I \\
& \varphi_{1}=\varphi_{2}=S \wedge T \wedge P \quad \bmod \left(\varphi_{1}\right)=\{(1,1,1,1),(1,1,1,0)\} \\
& \varphi_{3}=\neg S \wedge \neg T \wedge \neg P \wedge \neg I \quad \bmod \left(\varphi_{3}\right)=\{(0,0,0,0)\} \\
& \varphi_{4}=T \wedge P \wedge \neg I \\
& \bmod \left(\varphi_{4}\right)=\{(1,1,1,0),(0,1,1,0)\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mu=((S \wedge T) \vee(S \wedge P) \vee(T \wedge P)) \rightarrow I \\
& \varphi_{1}=\varphi_{2}=S \wedge T \wedge P \quad \bmod \left(\varphi_{1}\right)=\{(1,1,1,1),(1,1,1,0)\} \\
& \varphi_{3}=\neg S \wedge \neg T \wedge \neg P \wedge \neg I \quad \bmod \left(\varphi_{3}\right)=\{(0,0,0,0)\} \\
& \varphi_{4}=T \wedge P \wedge \neg I \\
& \bmod \left(\varphi_{4}\right)=\{(1,1,1,0),(0,1,1,0)\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mu=((S \wedge T) \vee(S \wedge P) \vee(T \wedge P)) \rightarrow I \\
& \varphi_{1}=\varphi_{2}=S \wedge T \wedge P \quad \bmod \left(\varphi_{1}\right)=\{(1,1,1,1),(1,1,1,0)\} \\
& \varphi_{3}=\neg S \wedge \neg T \wedge \neg P \wedge \neg I \quad \bmod \left(\varphi_{3}\right)=\{(0,0,0,0)\} \\
& \varphi_{4}=T \wedge P \wedge \neg I \\
& \bmod \left(\varphi_{4}\right)=\{(1,1,1,0),(0,1,1,0)\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mu=((S \wedge T) \vee(S \wedge P) \vee(T \wedge P)) \rightarrow I \\
& \varphi_{1}=\varphi_{2}=S \wedge T \wedge P \quad \bmod \left(\varphi_{1}\right)=\{(1,1,1,1),(1,1,1,0)\} \\
& \varphi_{3}=\neg S \wedge \neg T \wedge \neg P \wedge \neg I \quad \bmod \left(\varphi_{3}\right)=\{(0,0,0,0)\} \\
& \varphi_{4}=T \wedge P \wedge \neg I \\
& \bmod \left(\varphi_{4}\right)=\{(1,1,1,0),(0,1,1,0)\}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mu=((S \wedge T) \vee(S \wedge P) \vee(T \wedge P)) \rightarrow I \\
& \varphi_{1}=\varphi_{2}=S \wedge T \wedge P \quad \bmod \left(\varphi_{1}\right)=\{(1,1,1,1),(1,1,1,0)\} \\
& \varphi_{3}=\neg S \wedge \neg T \wedge \neg P \wedge \neg I \quad \bmod \left(\varphi_{3}\right)=\{(0,0,0,0)\} \\
& \varphi_{4}=T \wedge P \wedge \neg I \\
& \bmod \left(\varphi_{4}\right)=\{(1,1,1,0),(0,1,1,0)\}
\end{aligned}
$$

Formula-Based Merging [BKM91,BKMS92]

Idea : Select some formulae from the union of the bases of the profile $\operatorname{MAXCONS}(E, \mu)=\{M \subseteq \bigcup E \cup \mu$ s.t. $\bullet M \nvdash \perp$

- $\mu \subseteq M$
- $\left.\forall M \subset M^{\prime} \subseteq \bigcup E \cup \mu \quad M^{\prime} \vdash \perp\right\}$

Formula-Based Merging [BKM91,BKMS92]

Idea : Select some formulae from the union of the bases of the profile $\operatorname{MAXCONS}(E, \mu)=\{M \subseteq \bigcup E \cup \mu$ s.t. $\bullet M \nvdash \perp$

- $\mu \subseteq M$
- $\left.\forall M \subset M^{\prime} \subseteq \bigcup E \cup \mu \quad M^{\prime} \vdash \perp\right\}$

$$
\triangle_{\mu}^{C 1}(E)=\operatorname{MAXCONS}(E, \mu)
$$

Formula-Based Merging [BKM91,BKMS92]

Idea : Select some formulae from the union of the bases of the profile $\operatorname{MAxCONS}(E, \mu)=\{M \subseteq \bigcup E \cup \mu$ s.t. $\bullet M \nvdash \perp$

- $\mu \subseteq M$
- $\left.\forall M \subset M^{\prime} \subseteq \bigcup E \cup \mu \quad M^{\prime} \vdash \perp\right\}$
$\triangle_{\mu}^{C 1}(E)=\operatorname{MAXCONS}(E, \mu)$
$\triangle_{\mu}^{C 3}(E)=\{M: M \in \operatorname{MAXCONS}(E, \top)$ and $M \wedge \mu$ consistent $\}$

Formula-Based Merging [BKM91,BKMS92]

Idea : Select some formulae from the union of the bases of the profile

$$
\begin{array}{ll}
\operatorname{MAXCONS}(E, \mu)=\{M \subseteq \cup E \cup \mu \text { s.t. } & \bullet M \nvdash \perp \\
& \bullet \mu \subseteq M \\
\triangle_{\mu}^{C 1}(E)=\operatorname{MAXCONS}(E, \mu) & \left.\bullet M \subset M^{\prime} \subseteq \cup E \cup \mu \quad M^{\prime} \vdash \perp\right\} \\
\triangle_{\mu}^{C 3}(E)=\{M: M \in \operatorname{MAXCONS}(E, T) \text { and } M \wedge \mu \text { consistent }\} \\
\triangle_{\mu}^{C 4}(E)=\operatorname{MAXCONS}_{c a r d}(E, \mu) &
\end{array}
$$

Formula-Based Merging [BKM91,BKMS92]

Idea : Select some formulae from the union of the bases of the profile

$$
\left.\begin{array}{ll}
\operatorname{MAXCONS}(E, \mu)=\{M \subseteq \cup E \cup \mu \text { s.t. } & \bullet M \nvdash \perp \\
\bullet \mu \subseteq M
\end{array} \quad \bullet \forall M \subset M^{\prime} \subseteq \cup E \cup \mu \quad M^{\prime} \vdash \perp\right\}
$$

Formula-Based Merging [BKM91,BKMS92]

Idea : Select some formulae from the union of the bases of the profile $\operatorname{MAxCONS}(E, \mu)=\{M \subseteq \bigcup E \cup \mu$ s.t. $\bullet M \nvdash \perp$

- $\mu \subseteq M$
- $\left.\forall M \subset M^{\prime} \subseteq \bigcup E \cup \mu \quad M^{\prime} \vdash \perp\right\}$
$\triangle_{\mu}^{C 1}(E)=\operatorname{MAXCONS}(E, \mu)$
$\triangle_{\mu}^{C 3}(E)=\{M: M \in \operatorname{MAXCONS}(E, \top)$ and $M \wedge \mu$ consistent $\}$
$\triangle_{\mu}^{C 4}(E)=$ MAXCONS $_{\text {card }}(E, \mu)$
$\triangle_{\mu}^{C 5}(E)=\{M \wedge \mu: M \in \operatorname{MAXCONS}(E, \top)$ and $M \wedge \mu$ consistent $\}$ if this set is nonempty and μ otherwise.

	IC0	IC1	IC2	IC3	IC4	IC5	IC6	IC7	IC8	MI	Maj
$\triangle^{\text {C1 }}$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	
$\triangle^{C 3}$					\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
$\triangle^{C 4}$	\checkmark	\checkmark	\checkmark					\checkmark	\checkmark	\checkmark	
$\triangle^{C 5}$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	

Formula-Based Merging : Selection Functions

Idea : Use a selection function to choose only the best maxcons.

Formula-Based Merging : Selection Functions

Idea : Use a selection function to choose only the best maxcons.

- Partial-meet versus full-meet revision operators

Formula-Based Merging : Selection Functions

Idea : Use a selection function to choose only the best maxcons.

- Partial-meet versus full-meet revision operators
- Take into account the distribution of the information among the sources

Formula-Based Merging : Selection Functions

Idea : Use a selection function to choose only the best maxcons.

- Partial-meet versus full-meet revision operators
- Take into account the distribution of the information among the sources Example : Consider a profile E and a maxcons M :
- $\operatorname{dist}_{\cap}(M, \varphi)=|\varphi \cap M|$

Formula-Based Merging : Selection Functions

Idea : Use a selection function to choose only the best maxcons.

- Partial-meet versus full-meet revision operators
- Take into account the distribution of the information among the sources Example : Consider a profile E and a maxcons M :
- $\operatorname{dist}_{\cap}(M, \varphi)=|\varphi \cap M|$
- $\operatorname{dist}_{\cap, \Sigma}(M, E)=\sum_{\varphi \in E} \operatorname{dist}_{\cap}(M, \varphi)$

Formula-Based Merging : Selection Functions

Idea : Use a selection function to choose only the best maxcons.

- Partial-meet versus full-meet revision operators
- Take into account the distribution of the information among the sources Example : Consider a profile E and a maxcons M :
- $\operatorname{dist}_{\cap}(M, \varphi)=|\varphi \cap M|$
- $\operatorname{dist}_{\cap, \Sigma}(M, E)=\sum_{\varphi \in E} \operatorname{dist}_{\cap}(M, \varphi)$

	IC0	IC1	IC2	IC3	IC4	IC5	IC6	IC7	IC8	MI	Maj
$\triangle^{C 1}$	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	
\triangle^{d}	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark			\checkmark
$\triangle^{S, \Sigma}$	\checkmark	\checkmark	\checkmark		\checkmark			\checkmark	\checkmark		\checkmark
$\triangle^{n, \Sigma}$	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark		\checkmark

Example

$$
\begin{array}{ccc}
\varphi_{1} & \varphi_{2} & \varphi_{3} \\
a, b \rightarrow c & a, b & \neg a
\end{array}
$$

Example

$$
\begin{array}{cc}
\begin{array}{c}
\varphi_{1} \\
a, b \rightarrow c
\end{array} & \begin{array}{c}
\varphi_{2} \\
a, b
\end{array} \\
\triangle_{\top}^{C 1}(E)= & \varphi_{3} \\
\operatorname{MAXCONS}(E, \top)=\{\{a, b \rightarrow c, b\},
\end{array}
$$

Example

$$
\left.\begin{array}{ccc}
\varphi_{1} & \varphi_{2} & \varphi_{3} \\
a, b \rightarrow c & a, b & \neg a
\end{array}\right] \begin{gathered}
\\
\left.\triangle C_{T}^{C 1}(E)=\operatorname{MAXCONS}(E, \top)=\{\{a, b \rightarrow c, b\},\{\neg a, b \rightarrow c, b\}\}\right\}
\end{gathered}
$$

Example

$$
\begin{array}{ccc}
\varphi_{1} & \varphi_{2} & \varphi_{3} \\
a, b \rightarrow c & a, b & \neg a
\end{array}
$$

$$
\left.\triangle_{\uparrow}^{C 1}(E)=\operatorname{MAXCONS}(E, \top)=\{\{a, b \rightarrow c, b\},\{\neg a, b \rightarrow c, b\}\}\right\}
$$

$$
\varphi_{1}
$$

2
1

Example

$$
\begin{array}{ccc}
\begin{array}{c}
\varphi_{1} \\
a, b \rightarrow c
\end{array} & \begin{array}{c}
\varphi_{2} \\
a, b
\end{array} & \varphi_{3} \\
\triangle a \\
\left.\triangle C_{\top}(E)=\operatorname{MAXCONS}(E, \top)=\{\{a, b \rightarrow c, b\},\{\neg a, b \rightarrow c, b\}\}\right\} \\
& \\
& \\
\varphi_{1} & 2 & 1 \\
\varphi_{2} & 2 & 1
\end{array}
$$

Example

$$
\begin{aligned}
& \begin{array}{ccc}
\varphi_{1} & \varphi_{2} & \varphi_{3} \\
a, b \rightarrow c & a, b & \neg a
\end{array} \\
& \left.\triangle_{\top}^{C 1}(E)=\operatorname{MAXCONS}(E, \top)=\{\{a, b \rightarrow c, b\},\{\neg a, b \rightarrow c, b\}\}\right\}
\end{aligned}
$$

Example

$$
\begin{array}{ccc}
\begin{array}{c}
\varphi_{1} \\
a, b \rightarrow c
\end{array} & \begin{array}{c}
\varphi_{2} \\
a, b
\end{array} & \begin{array}{c}
\varphi_{3} \\
\neg a
\end{array} \\
\left.\triangle_{\top}^{C 1}(E)=\operatorname{MAXCONS}(E, \top)=\{\{a, b \rightarrow c, b\},\{\neg a, b \rightarrow c, b\}\}\right\} \\
& \\
& \\
& \varphi_{1} & 2 \\
\varphi_{2} & 2 & 1 \\
\varphi_{3} & 0 & 1 \\
\hline \Sigma & 4 & 1 \\
\hline
\end{array}
$$

Example

$$
\begin{array}{ccc}
\begin{array}{c}
\varphi_{1} \\
a, b \rightarrow c
\end{array} & \begin{array}{c}
\varphi_{2} \\
a, b
\end{array} & \begin{array}{c}
\varphi_{3} \\
\neg a
\end{array} \\
\left.\triangle C_{\top}^{C 1}(E)=\operatorname{MAXCONS}(E, \top)=\{\{a, b \rightarrow c, b\},\{\neg a, b \rightarrow c, b\}\}\right\} \\
& & \\
& \varphi_{1} & 2 \\
\varphi_{2} & 2 & 1 \\
& \varphi_{3} & 0 \\
\Sigma & 4 & 1 \\
\hline \Sigma & 3
\end{array}
$$

Merging

- Formula-based Merging

Selection of maximal consistent subsets of formulas in the union of bases.

Merging

- Formula-based Merging
\triangleright Selection of maximal consistent subsets of formulas in the union of bases.
- Distribution of information
- Bad logical properties
+ Inconsistent bases

Merging

- Formula-based Merging
\triangleright Selection of maximal consistent subsets of formulas in the union of bases.
- Distribution of information
- Bad logical properties
+ Inconsistent bases
- Model-based Merging
\triangleright Selection of preferred models for the bases.

Merging

- Formula-based Merging
\triangleright Selection of maximal consistent subsets of formulas in the union of bases.
- Distribution of information
- Bad logical properties
+ Inconsistent bases
- Model-based Merging
\triangleright Selection of preferred models for the bases.
+ Distribution of information
+ Good logical properties
- Inconsistent bases

Merging

- Formula-based Merging
\triangleright Selection of maximal consistent subsets of formulas in the union of bases.
- Distribution of information
- Bad logical properties
+ Inconsistent bases
- DA ${ }^{2}$ Operators
- Model-based Merging
\triangleright Selection of preferred models for the bases.
+ Distribution of information
+ Good logical properties
- Inconsistent bases

Merging

- Formula-based Merging
\triangleright Selection of maximal consistent subsets of formulas in the union of bases.
- Distribution of information
- Bad logical properties
+ Inconsistent bases
- Model-based Merging
\triangleright Selection of preferred models for the bases.
+ Distribution of information
+ Good logical properties
- Inconsistent bases
- DA ${ }^{2}$ Operators
+ Distribution of information
+ Good logical properties
+ Inconsistent bases

DAㄹ Operators

Let d be a distance between interpretations and f and g be two aggregation functions. The DA^{2} merging operator $\triangle_{\mu}^{d, f, g}(E)$ is defined by :
For each $\varphi_{i}=\left\{\alpha_{i, 1}, \ldots, \alpha_{i, n_{i}}\right\}$

$$
d\left(\omega, \alpha_{i, 1}\right), \ldots, d\left(\omega, \alpha_{i, n_{i}}\right)
$$

DA ${ }^{2}$ Operators

Let d be a distance between interpretations and f and g be two aggregation functions. The DA^{2} merging operator $\triangle_{\mu}^{d, f, g}(E)$ is defined by :
For each $\varphi_{i}=\left\{\alpha_{i, 1}, \ldots, \alpha_{i, n_{i}}\right\}$

$$
d\left(\omega, \varphi_{i}\right)=f\left(d\left(\omega, \alpha_{i, 1}\right), \ldots, d\left(\omega, \alpha_{i, n_{i}}\right)\right)
$$

DA ${ }^{2}$ Operators

Let d be a distance between interpretations and f and g be two aggregation functions. The DA^{2} merging operator $\triangle_{\mu}^{d, f, g}(E)$ is defined by :
For each $\varphi_{i}=\left\{\alpha_{i, 1}, \ldots, \alpha_{i, n_{i}}\right\}$

$$
d\left(\omega, \varphi_{i}\right)=f\left(d\left(\omega, \alpha_{i, 1}\right), \ldots, d\left(\omega, \alpha_{i, n_{i}}\right)\right)
$$

Let $E=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$

$$
d(\omega, E)=g\left(d\left(\omega, \varphi_{1}\right), \ldots, d\left(\omega, \varphi_{m}\right)\right)
$$

DA² Operators

Let d be a distance between interpretations and f and g be two aggregation functions. The DA^{2} merging operator $\triangle_{\mu}^{d, f, g}(E)$ is defined by :
For each $\varphi_{i}=\left\{\alpha_{i, 1}, \ldots, \alpha_{i, n_{i}}\right\}$

$$
d\left(\omega, \varphi_{i}\right)=f\left(d\left(\omega, \alpha_{i, 1}\right), \ldots, d\left(\omega, \alpha_{i, n_{i}}\right)\right)
$$

Let $E=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$

$$
d(\omega, E)=g\left(d\left(\omega, \varphi_{1}\right), \ldots, d\left(\omega, \varphi_{m}\right)\right)
$$

$$
\left.\bmod \left(\triangle_{\mu}^{d, f, g}(E)\right)\right)=\{\omega \in \bmod (\mu) \mid d(\omega, E) \text { is minimal }\}
$$

Example

$$
\begin{array}{cccc}
\varphi_{1} & \varphi_{2} & \varphi_{3} & \varphi_{4} \\
a, b, c, a \wedge \neg b & a, b & \neg a, \neg b & a, a \rightarrow b
\end{array}
$$

Example

$$
\begin{aligned}
& \varphi_{1} \quad \varphi_{2} \\
& a, b, c, a \wedge \neg b \quad a, b \\
& \neg a, \neg b \\
& \begin{array}{c}
\varphi_{4} \\
a, a \rightarrow b
\end{array} \\
& \text { MAXCONS }=c \\
& \text { MAXCONS }_{\text {card }}=c
\end{aligned}
$$

Example

$$
\begin{aligned}
& \begin{array}{cccc}
\varphi_{1} & \varphi_{2} & \varphi_{3} & \varphi_{4} \\
a, b, c, a \wedge \neg b & a, b & \neg a, \neg b & a, a \rightarrow b
\end{array} \\
& \begin{array}{llll}
\text { MAXCONS } & =c & \triangle^{\Sigma} & =a \wedge b \\
\text { MAXCONS }_{\text {card }} & =c & \triangle^{\text {Gmax }} & =(a \wedge \neg b) \vee(\neg a \wedge b)
\end{array}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \begin{array}{cccc}
\varphi_{1} \\
a, b, c, a \wedge \neg b & a, b & \varphi_{2} & \varphi_{3}
\end{array} c \begin{array}{c}
\varphi_{4} \\
a, \neg b
\end{array} \quad a, a \rightarrow b \\
& \begin{array}{llll}
\text { MAXCONS } & =c & \triangle^{\Sigma} & =a \wedge b \\
\text { MAXCONS }_{\text {card }} & =c & \triangle^{G \max } & =(a \wedge \neg b) \vee(\neg a \wedge b)
\end{array} \\
& \triangle^{d_{D}, \Sigma, \Sigma}=a \wedge b \wedge c
\end{aligned}
$$

Vectors of conflicts

$$
(a, \underbrace{\neg a, b \wedge c,}_{(1)} \underbrace{b \wedge d, e}_{(3)} \neg b
$$

	${ }^{(1)}$	${ }^{(2)}$	(3)	(4)	d_{H}
11101	0	1	1	1	$(0,1,1,1)$
00111	1	1	1	0	$(0,1,1,1)$

Vectors of conflicts

$$
(a, \underbrace{\neg a, b \wedge c,}_{(1)} \underbrace{b \wedge d, e}_{(3)} \neg b
$$

	${ }^{(1)}$	(2)	(3)	${ }^{(4)}$	d_{H}	\sum
11101	0	1	1	1	$(0,1,1,1)$	3
00111	1	1	1	0	$(0,1,1,1)$	3

Vectors of conflicts

$$
(a, \underbrace{\neg a, b \wedge c,}_{(1)} \underbrace{b \wedge d, e}_{(3)} \neg b
$$

	(1)	${ }^{(2)}$	(3)	${ }^{(4)}$	d_{H}	\sum	vect
11101	0	1	1	1	$(0,1,1,1)$	3	$\{\emptyset,\{a\},\{d\},\{b\}\}$
00111	1	1	1	0	$(0,1,1,1)$	3	$\{\{a\},\{b\},\{b\}, \emptyset\}$

Vectors of conflicts

	${ }^{(1)}$	(2)	(3)	${ }^{(4)}$	d_{H}	\sum	vect
11101	0	1	1	1	$(0,1,1,1)$	3	$\{\emptyset,\{a\},\{d\},\{b\}\}$
00111	1	1	1	0	$(0,1,1,1)$	3	$\{\{a\},\{b\},\{b\}, \emptyset\}$

- A distance is a compact description of the conflicts between two interpretations
- Loss of information

Vectors of conflicts

	${ }^{(1)}$	${ }^{(2)}$	(3)	${ }^{(4)}$	d_{H}	Σ	vect
11101	0	1	1	1	$(0,1,1,1)$	3	$\{\emptyset,\{a\},\{d\},\{b\}\}$
00111	1	1	1	0	$(0,1,1,1)$	3	$\{\{a\},\{b\},\{b\}, \emptyset\}$

- A distance is a compact description of the conflicts between two interpretations
- Loss of information
- Vectors of conflicts capture all the information about the conflicts

Default based merging [Delgrande, Schaub 2007]

- Based on (supernormal) default logic

■ Let $B=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be the background base

- Let $D=\left\{\delta_{1}, \ldots, \delta_{m}\right\}$ be the set of (supernormal) defaults.
- An extension M of (B, D) is a maximal consistent subsets of $B \cup D$ that contains B.
- The consequences of a default theory (B, D) are (for instance) the formulae that are consequences of each extension of (B, D).

Default based merging [Delgrande, Schaub 2007]

- Based on (supernormal) default logic

■ Let $B=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be the background base

- Let $D=\left\{\delta_{1}, \ldots, \delta_{m}\right\}$ be the set of (supernormal) defaults.
- An extension M of (B, D) is a maximal consistent subsets of $B \cup D$ that contains B.
- The consequences of a default theory (B, D) are (for instance) the formulae that are consequences of each extension of (B, D).
- Rename all the bases of $E=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ in different languages $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$. $\left(\right.$ where $\left.\mathcal{L}_{i}=\left\{\beta^{i} \mid \beta \in \mathcal{L}\right\}\right)$.

Default based merging [Delgrande, Schaub 2007]

- Based on (supernormal) default logic

■ Let $B=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be the background base

- Let $D=\left\{\delta_{1}, \ldots, \delta_{m}\right\}$ be the set of (supernormal) defaults.
- An extension M of (B, D) is a maximal consistent subsets of $B \cup D$ that contains B.
- The consequences of a default theory (B, D) are (for instance) the formulae that are consequences of each extension of (B, D).
- Rename all the bases of $E=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ in different languages $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$. where $\mathcal{L}_{i}=\left\{\beta^{i} \mid \beta \in \mathcal{L}\right\}$).
- $B=\cup_{\varphi_{i} \in E}\left(\varphi_{i}\right)^{i}$

Default based merging [Delgrande, Schaub 2007]

- Based on (supernormal) default logic

■ Let $B=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be the background base

- Let $D=\left\{\delta_{1}, \ldots, \delta_{m}\right\}$ be the set of (supernormal) defaults.
- An extension M of (B, D) is a maximal consistent subsets of $B \cup D$ that contains B.
- The consequences of a default theory (B, D) are (for instance) the formulae that are consequences of each extension of (B, D).
- Rename all the bases of $E=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ in different languages $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$. $\left(\right.$ where $\left.\mathcal{L}_{i}=\left\{\beta^{i} \mid \beta \in \mathcal{L}\right\}\right)$.
- $B=\cup_{\varphi_{i} \in E}\left(\varphi_{i}\right)^{i}$
- Two different operators
$\square=\left\{a \leftrightarrow a^{i} \mid a \in \mathcal{P}\right\}$

Default based merging [Delgrande, Schaub 2007]

- Based on (supernormal) default logic

■ Let $B=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be the background base

- Let $D=\left\{\delta_{1}, \ldots, \delta_{m}\right\}$ be the set of (supernormal) defaults.
- An extension M of (B, D) is a maximal consistent subsets of $B \cup D$ that contains B.
- The consequences of a default theory (B, D) are (for instance) the formulae that are consequences of each extension of (B, D).
- Rename all the bases of $E=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ in different languages $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$. $\left(\right.$ where $\left.\mathcal{L}_{i}=\left\{\beta^{i} \mid \beta \in \mathcal{L}\right\}\right)$.
- $B=\cup_{\varphi_{i} \in E}\left(\varphi_{i}\right)^{i}$
- Two different operators

■ $D=\left\{a \leftrightarrow a^{i} \mid a \in \mathcal{P}\right\}$
$\square D=\left\{a^{i} \leftrightarrow a^{k} \mid a \in \mathcal{P}\right\}$

Similarity based merging [Shockaert, Prade 2009]

- Associate to every propositional symbol a similarity relation (partial pre-order)
- Merging $=$ Find the best compromise

Merging and Belief Revision

The operator $*$ is an AGM revision operator if and only if it satisfies the following properties :
(R1) $\varphi * \mu$ implies μ
(R2) If $\varphi \wedge \mu$ is consistent then $\varphi * \mu \equiv \varphi \wedge \mu$
(R3) If μ is consistent then $\varphi * \mu$ is consistent
(R4) If $\varphi_{1} \equiv \varphi_{2}$ and $\mu_{1} \equiv \mu_{2}$ then $\varphi_{1} * \mu_{1} \equiv \varphi_{2} * \mu_{2}$
(R5) $(\varphi * \mu) \wedge \psi$ implies $\varphi *(\mu \wedge \psi)$
(R6) If $(\varphi * \mu) \wedge \psi$ is consistent then $\varphi *(\mu \wedge \psi)$ implies $(\varphi * \mu) \wedge \psi$

- If Δ is an IC merging operator (it satisfies (ICO-IC8)), then the operator ${ }^{*} \Delta$, defined as $\varphi * \Delta \mu=\triangle_{\mu}(\varphi)$, is an AGM revision operator (it satisfies (R1-R6)).

Merging and Belief Revision

The operator $*$ is an AGM revision operator if and only if it satisfies the following properties :
(R1) $\varphi * \mu$ implies μ
(R2) If $\varphi \wedge \mu$ is consistent then $\varphi * \mu \equiv \varphi \wedge \mu$
(R3) If μ is consistent then $\varphi * \mu$ is consistent
(R4) If $\varphi_{1} \equiv \varphi_{2}$ and $\mu_{1} \equiv \mu_{2}$ then $\varphi_{1} * \mu_{1} \equiv \varphi_{2} * \mu_{2}$
(R5) $(\varphi * \mu) \wedge \psi$ implies $\varphi *(\mu \wedge \psi)$
(R6) If $(\varphi * \mu) \wedge \psi$ is consistent then $\varphi *(\mu \wedge \psi)$ implies $(\varphi * \mu) \wedge \psi$

- If \triangle is an IC merging operator (it satisfies (ICO-IC8)), then the operator ${ }^{*} \Delta$, defined as $\varphi * \Delta \mu=\triangle_{\mu}(\varphi)$, is an AGM revision operator (it satisfies (R1-R6)).
- Links between prioritized merging and iterated revision :

■ Delgrande, Dubois, Lang. Iterated Revision as Prioritized Merging. [KR’06]

Judgment Aggregation

- A set $N=\{1, \ldots n\}$ of individuals
- A set $X=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ of logical formulae, called the agenda
- Each individual i gives her (consistent) judgment set about the agenda : $J_{i}: X \rightarrow\{0,1\}$
- Question : how to define a consistent judgment of the group $J=f\left(J_{1}, \ldots, J_{n}\right)$ from the judgment sets of the individuals?

Judgment Aggregation

\[

\]

Judgment Aggregation

\[

\]

Judgment Aggregation

$$
\begin{aligned}
& \text { Doctrinal Paradox / Discursive Paradox } \\
& \qquad
\end{aligned}
$$

Judgment Aggregation

$$
\begin{aligned}
& \text { Doctrinal Paradox / Discursive Paradox } \\
& \qquad
\end{aligned}
$$

Judgment Aggregation

$$
\begin{aligned}
& \text { Doctrinal Paradox / Discursive Paradox } \\
& \qquad
\end{aligned}
$$

Judgment Aggregation

$$
\begin{aligned}
& \text { Doctrinal Paradox / Discursive Paradox } \\
& \qquad
\end{aligned}
$$

Judgment Aggregation

Doctrinal Paradox / Discursive Paradox

α	β	γ		
1	1	0	0	
2	0	1	0	$\bullet \beta$ good researcher
3	1	1	1	$\bullet \gamma$: hire the candidate
majority	1	1	0	$\bullet \gamma \leftrightarrow \alpha \wedge \beta$

Judgment Aggregation

Doctrinal Paradox / Discursive Paradox

	α	β	γ
1	1	0	0
2	0	1	0
3	1	1	1
majority	1	1	0

- α : good researcher
- β : good teacher
- γ : hire the candidate
- $\gamma \leftrightarrow \alpha \wedge \beta$
- Majority does not lead to a consistent judgment

Judgment Aggregation

Doctrinal Paradox / Discursive Paradox

	α	β	γ
1	1	0	0
2	0	1	0
3	1	1	1
majority	1	1	0

- α : good researcher
- β : good teacher
- γ : hire the candidate
- $\gamma \leftrightarrow \alpha \wedge \beta$
- Majority does not lead to a consistent judgment
- What are the solutions?

Judgment Aggregation

Doctrinal Paradox / Discursive Paradox

	α	β	γ
1	1	0	0
2	0	1	0
3	1	1	1
majority	1	1	0

- α : good researcher
- β : good teacher
- γ : hire the candidate
- $\gamma \leftrightarrow \alpha \wedge \beta$
- Majority does not lead to a consistent judgment
- What are the solutions?
- Suppose that α and β are premises, and that γ is the conclusion.

Judgment Aggregation

Doctrinal Paradox / Discursive Paradox

	α	β	γ
1	1	0	0
2	0	1	0
3	1	1	1
majority	1	1	0

- α : good researcher
- β : good teacher
- γ : hire the candidate
- $\gamma \leftrightarrow \alpha \wedge \beta$
- Majority does not lead to a consistent judgment
- What are the solutions?
- Suppose that α and β are premises, and that γ is the conclusion.
- Premise-based approach
- Conclusion-based approach

Judgment Aggregation

\section*{Doctrinal Paradox / Discursive Paradox
 | | α | β | γ |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 0 |
| 2 | 0 | 1 | 0 |
| 3 | 1 | 1 | 1 |
| majority | 1 | 1 | 0 |
 - α : good researcher
 - β : good teacher
 - γ : hire the candidate
 - $\gamma \leftrightarrow \alpha \wedge \beta$}

- Majority does not lead to a consistent judgment
- What are the solutions?
\square Suppose that α and β are premises, and that γ is the conclusion.
- Premise-based approach
- Conclusion-based approach
- Principles for judgment aggregation?

Judgment Aggregation

Universal Domain The judgment aggregation function should accept any profile of individual judgment sets (complete, consistent, deductively closed)

Judgment Aggregation

Universal Domain The judgment aggregation function should accept any profile of individual judgment sets (complete, consistent, deductively closed)
Collective Rationality The judgment aggregation function produces consistent and complete collective judgment sets

Judgment Aggregation

Universal Domain The judgment aggregation function should accept any profile of individual judgment sets (complete, consistent, deductively closed)
Collective Rationality The judgment aggregation function produces consistent and complete collective judgment sets
Anonymity The result should be invariant under any permutation of individuals in N

Judgment Aggregation

Universal Domain The judgment aggregation function should accept any profile of individual judgment sets (complete, consistent, deductively closed)
Collective Rationality The judgment aggregation function produces consistent and complete collective judgment sets
Anonymity The result should be invariant under any permutation of individuals in N
Systematicity For any formulae $\alpha, \beta \in X$, and any profiles $\left(J_{1}, \ldots J_{n}\right)$, $\left(J_{1}^{\prime}, \ldots J_{n}^{\prime}\right)$, if for all individuals $\mathrm{i}, \alpha \in J_{i}$ iff $\beta \in J_{i}^{\prime}$, then $\alpha \in f\left(J_{1}, \ldots J_{n}\right)$ iff $\beta \in f\left(J_{1}^{\prime}, \ldots J_{n}^{\prime}\right)$

Judgment Aggregation

Universal Domain The judgment aggregation function should accept any profile of individual judgment sets (complete, consistent, deductively closed)
Collective Rationality The judgment aggregation function produces consistent and complete collective judgment sets
Anonymity The result should be invariant under any permutation of individuals in N
Systematicity For any formulae $\alpha, \beta \in X$, and any profiles $\left(J_{1}, \ldots J_{n}\right)$, $\left(J_{1}^{\prime}, \ldots J_{n}^{\prime}\right)$, if for all individuals $\mathrm{i}, \alpha \in J_{i}$ iff $\beta \in J_{i}^{\prime}$, then $\alpha \in f\left(J_{1}, \ldots J_{n}\right)$ iff $\beta \in f\left(J_{1}^{\prime}, \ldots J_{n}^{\prime}\right)$
Theorem [List-Pettit 2002] There is no judgment aggregation function satisfying universal domain, collective rationality, anonymity and systematicity.

Judgment Aggregation

Universal Domain The judgment aggregation function should accept any profile of individual judgment sets (complete, consistent, deductively closed)
Collective Rationality The judgment aggregation function produces consistent and complete collective judgment sets
Anonymity The result should be invariant under any permutation of individuals in N
Systematicity For any formulae $\alpha, \beta \in X$, and any profiles $\left(J_{1}, \ldots J_{n}\right)$, ($J_{1}^{\prime}, \ldots J_{n}^{\prime}$), if for all individuals $\mathrm{i}, \alpha \in J_{i}$ iff $\beta \in J_{i}^{\prime}$, then $\alpha \in f\left(J_{1}, \ldots J_{n}\right)$ iff $\beta \in f\left(J_{1}^{\prime}, \ldots J_{n}^{\prime}\right)$
Theorem [List-Pettit 2002] There is no judgment aggregation function satisfying universal domain, collective rationality, anonymity and systematicity.

- Agenda
- Collective Rationality
- Systematicity

Merging and Judgment Aggregation

Merging
Input

Profile of bases

Judgment Aggregation
Profile of individual judgments

Merging and Judgment Aggregation

Merging
Input
\longrightarrow

Profile of bases
Fully informed process

Judgment Aggregation
Profile of individual judgments
Partially informed process

Merging and Judgment Aggregation

Merging
Input
\longrightarrow
Computation

Profile of bases
Fully informed process
Global

Judgment Aggregation
Profile of individual judgments
Partially informed process
Local

Merging and Judgment Aggregation

Merging
Input
\longrightarrow
Computation
Consequences - computational complexity

Judgment Aggregation
Profile of individual judgments
Partially informed process
Local

+ computational complexity

Merging and Judgment Aggregation

Merging
Input
\longrightarrow
Computation
Consequences - computational complexity

+ logical properties

Judgment Aggregation
Profile of individual judgments
Partially informed process
Local

+ computational complexity
- logical properties

Merging and Judgment Aggregation

Merging
Input
\longrightarrow
Computation
Consequences - computational complexity + logical properties

Ideal Process

Judgment Aggregation
Profile of individual judgments
Partially informed process
Local

+ computational complexity
- logical properties

Practical Process

Merging and Social Choice

- Merging as social choice function
- Social choice function
- Merging

$$
\begin{aligned}
& \left(\leq_{1}, \ldots, \leq_{n}\right) \rightarrow \leq \\
& \left(\varphi_{1}, \ldots, \varphi_{n}\right) \rightarrow \varphi
\end{aligned}
$$

Merging and Social Choice

- Merging as social choice function
- Social choice function

$$
\left(\leq_{1}, \ldots, \leq_{n}\right) \rightarrow \leq
$$

- Merging
- Arrow's impossibility theorem
- There is no social choice function that satisfies all of :
- Universality
- Pareto Efficiency
- Independence of Irrelevant Alternatives
- Non-dictatorship

Merging and Social Choice

- Merging as social choice function
- Social choice function

$$
\left(\leq_{1}, \ldots, \leq_{n}\right) \rightarrow \leq
$$

- Merging
- Arrow's impossibility theorem
- There is no social choice function that satisfies all of :
- Universality
- Pareto Efficiency
- Independence of Irrelevant Alternatives
- Non-dictatorship
- Gibbard-Satterthwaite theorem
- There is no social choice function that satisfies all of :
- Surjectivity
- Strategy-proofness
- Non-Dictatorship

Merging and Social Choice

- Merging as social choice function
- Social choice function

$$
\begin{aligned}
& \left(\leq_{1}, \ldots, \leq_{n}\right) \rightarrow \leq \\
& \left(\varphi_{1}, \ldots, \varphi_{n}\right) \rightarrow \varphi
\end{aligned}
$$

- Merging
- Arrow's impossibility theorem
- There is no social choice function that satisfies all of :
- Universality
- Pareto Efficiency
- Independence of Irrelevant Alternatives
- Non-dictatorship
- Gibbard-Satterthwaite theorem
- There is no social choice function that satisfies all of :
- Surjectivity
- Strategy-proofness
- Non-Dictatorship
- Condorcet's Jury Theorem
- When voters are competent and independent then majority will find the correct answer
- 2 alternatives (yes/no questions)
- competence
- independence

Strategy-Proof Merging

Intuitively, a merging operator is strategy-proof if and only if, given the beliefs/goals of the other agents, reporting untruthful beliefs/goals does not enable an agent to improve her satisfaction.

Strategy-Proof Merging

Intuitively, a merging operator is strategy-proof if and only if, given the beliefs/goals of the other agents, reporting untruthful beliefs/goals does not enable an agent to improve her satisfaction.

Definition A merging operator Δ is strategy-proof for a satisfaction index if and only if there is no integrity constraint μ, no profile $E=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$, no base φ and no base φ^{\prime} such that

$$
i\left(\varphi, \Delta_{\mu}\left(E \sqcup\left\{\varphi^{\prime}\right\}\right)\right)>i\left(\varphi, \Delta_{\mu}(E \sqcup\{\varphi\})\right)
$$

Strategy-Proof Merging

Intuitively, a merging operator is strategy-proof if and only if, given the beliefs/goals of the other agents, reporting untruthful beliefs/goals does not enable an agent to improve her satisfaction.

Definition A merging operator Δ is strategy-proof for a satisfaction index i if and only if there is no integrity constraint μ, no profile $E=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$, no base φ and no base φ^{\prime} such that

$$
i\left(\varphi, \Delta_{\mu}\left(E \sqcup\left\{\varphi^{\prime}\right\}\right)\right)>i\left(\varphi, \Delta_{\mu}(E \sqcup\{\varphi\})\right)
$$

Strategy-Proof Merging

Intuitively, a merging operator is strategy-proof if and only if, given the beliefs/goals of the other agents, reporting untruthful beliefs/goals does not enable an agent to improve her satisfaction.

Definition A merging operator Δ is strategy-proof for a satisfaction index i if and only if there is no integrity constraint μ, no profile $E=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$, no base φ and no base φ^{\prime} such that

$$
i\left(\varphi, \Delta_{\mu}\left(E \sqcup\left\{\varphi^{\prime}\right\}\right)\right)>i\left(\varphi, \Delta_{\mu}(E \sqcup\{\varphi\})\right)
$$

Clearly, there are numerous different ways to define the satisfaction of an agent given a merged base.

Strategy-Proof Merging : Satisfaction Indexes

- Weak drastic index : the agent is considered satisfied if her beliefs/goals are consistent with the merged base.

$$
i_{d_{w}}\left(\varphi, \varphi_{\Delta}\right)=\left\{\begin{array}{l}
1 \text { if } \varphi \wedge \varphi_{\Delta} \text { is consistent } \\
0 \text { otherwise } .
\end{array}\right.
$$

Strategy-Proof Merging : Satisfaction Indexes

- Weak drastic index : the agent is considered satisfied if her beliefs/goals are consistent with the merged base.

$$
i_{d_{w}}\left(\varphi, \varphi_{\Delta}\right)=\left\{\begin{array}{l}
1 \text { if } \varphi \wedge \varphi_{\Delta} \text { is consistent } \\
0 \text { otherwise }
\end{array}\right.
$$

- Strong drastic index : in order to be satisfied, the agent must impose her beliefs/goals to the whole group.

$$
i_{d_{s}}\left(\varphi, \varphi_{\Delta}\right)=\left\{\begin{array}{l}
1 \text { if } \varphi_{\Delta} \models \varphi \\
0 \text { otherwise }
\end{array}\right.
$$

Strategy-Proof Merging : Satisfaction Indexes

- Weak drastic index : the agent is considered satisfied if her beliefs/goals are consistent with the merged base.

$$
i_{d_{w}}\left(\varphi, \varphi_{\Delta}\right)=\left\{\begin{array}{l}
1 \text { if } \varphi \wedge \varphi_{\Delta} \text { is consistent } \\
0 \text { otherwise } .
\end{array}\right.
$$

- Strong drastic index : in order to be satisfied, the agent must impose her beliefs/goals to the whole group.

$$
i_{d_{s}}\left(\varphi, \varphi_{\Delta}\right)=\left\{\begin{array}{l}
1 \text { if } \varphi_{\Delta} \models \varphi \\
0 \text { otherwise } .
\end{array}\right.
$$

- Probabilistic index : the more compatible the merged base with the agent's base the more satisfied the agent.

$$
i_{p}\left(\varphi, \varphi_{\Delta}\right)=\frac{\#\left(\bmod (\varphi) \cap \bmod \left(\varphi_{\Delta}\right)\right)}{\#\left(\bmod \left(\varphi_{\Delta}\right)\right)}
$$

Strategy-Proof Merging : Some Results for $i_{d_{w}}$

\#(E)	φ	μ	$\Delta^{d_{H}, \Sigma}$	$\Delta^{d_{H}, G_{\text {max }}}$	$\Delta^{C 1}$	$\Delta^{\text {c3 }}$	$\Delta^{\text {C4 }}$	$\Delta^{C 5}$
2	φ_{ω}	T	sp	$\overline{s p}$	sp	sp	$\overline{s p}$	sp
		μ	sp	$\overline{s p}$	sp	$\overline{s p}$	$\overline{s p}$	sp
	φ	T	sp	$\overline{s p}$	sp	sp	$\overline{s p}$	sp
		μ	$\overline{s p}$	$\overline{s p}$	sp	$\overline{s p}$	$\overline{s p}$	$\overline{s p}$
>2	φ_{ω}	T	sp	$\overline{s p}$	sp	sp	$\overline{s p}$	sp
		μ	sp	$\overline{s p}$	sp	$\overline{s p}$	$\overline{s p}$	sp
	φ	T	$\overline{s p}$	$\overline{s p}$	sp	sp	$\overline{s p}$	sp
		μ	$\overline{s p}$	$\overline{s p}$	sp	$\overline{s p}$	$\overline{s p}$	$\overline{s p}$

Unanimity

- If everyone agrees on a merits of a candidate, so does the aggregation result.

Unanimity

- If everyone agrees on a merits of a candidate, so does the aggregation result.
- Two possible interpretations for merging :
- Unanimity on Interpretations
(UnaM) If $\omega \models \mu$ and

$$
\text { if } \forall \varphi \in E, \omega \models \varphi \text {, then } \omega \models \triangle_{\mu}(E)
$$

Unanimity

- If everyone agrees on a merits of a candidate, so does the aggregation result.
- Two possible interpretations for merging :
- Unanimity on Interpretations
(UnaM) If $\omega \models \mu$ and

$$
\text { if } \forall \varphi \in E, \omega \models \varphi \text {, then } \omega \models \triangle_{\mu}(E)
$$

- This is a consequence of (IC2)

Unanimity

- If everyone agrees on a merits of a candidate, so does the aggregation result.
- Two possible interpretations for merging :
- Unanimity on Interpretations
(UnaM) If $\omega \models \mu$ and

$$
\text { if } \forall \varphi \in E, \omega \models \varphi \text {, then } \omega \models \triangle_{\mu}(E)
$$

- This is a consequence of (IC2)
- Unanimity on Consequences
(UnaF) If $\exists \varphi \in E$ s.t. $\mu \wedge \varphi$ is consistent, then
if $\forall \varphi \in E, \varphi \models \alpha$, then $\triangle_{\mu}(E) \models \alpha$

Unanimity

- If everyone agrees on a merits of a candidate, so does the aggregation result.
- Two possible interpretations for merging :
- Unanimity on Interpretations
(UnaM) If $\omega \models \mu$ and

$$
\text { if } \forall \varphi \in E, \omega \models \varphi \text {, then } \omega \models \triangle_{\mu}(E)
$$

- This is a consequence of (IC2)
- Unanimity on Consequences
(UnaF) If $\exists \varphi \in E$ s.t. $\mu \wedge \varphi$ is consistent, then

$$
\text { if } \forall \varphi \in E, \varphi \models \alpha \text {, then } \triangle_{\mu}(E) \models \alpha
$$

- This is equivalent to :
(UnaC) If $\bigvee E$ is consistent with μ, then

$$
\text { if } \forall \varphi \in E, \omega \not \vDash \varphi \text {, then } \omega \not \vDash \triangle_{\mu}(E)
$$

Unanimity

- If everyone agrees on a merits of a candidate, so does the aggregation result.
- Two possible interpretations for merging :
- Unanimity on Interpretations
(UnaM) If $\omega \vDash \mu$ and

$$
\text { if } \forall \varphi \in E, \omega \models \varphi \text {, then } \omega \models \triangle_{\mu}(E)
$$

- This is a consequence of (IC2)
- Unanimity on Consequences
(UnaF) If $\exists \varphi \in E$ s.t. $\mu \wedge \varphi$ is consistent, then

$$
\text { if } \forall \varphi \in E, \varphi \models \alpha \text {, then } \triangle_{\mu}(E) \models \alpha
$$

- This is equivalent to :
(UnaC) If $\bigvee E$ is consistent with μ, then

$$
\text { if } \forall \varphi \in E, \omega \not \vDash \varphi \text {, then } \omega \not \models \triangle_{\mu}(E)
$$

- This is also equivalent to:
(Disj) If $\bigvee E$ is consistent with μ, then $\triangle_{\mu}(E) \models \bigvee E$

Criteria for evaluating merging operators

- Rationality (logical properties)

Criteria for evaluating merging operators

- Rationality (logical properties)
- Computational Complexity

Criteria for evaluating merging operators

- Rationality (logical properties)
- Computational Complexity
- Inferential Power

Criteria for evaluating merging operators

- Rationality (logical properties)
- Computational Complexity
- Inferential Power
- Strategy-Proofness

Merging in other frameworks

- Merging of weighted formulae

■ Benferhat-Dubois-Kaci-Prade [2000,2002,2003]

- Meyer [2001]
- First order logic
- Gorogiannis-Hunter [2008]
- Logic programs
- Delgrande-Schaub-Tompits-Woltran [2009]
- Hué-Papini-Würbel [2009]
- Constraints Networks

■ Condotta-Kaci-Marquis-Schwind [2009]

- Argumentation systems [AAAl'05, AIJ-07]
- Dung : arguments + relation d'attaque entre arguments
- Cadres d'argumentation partiels (PAF)
- Distances d'édition

Iterated Merging

- Iterated Merging Operators
$\left(\varphi_{1}^{0}, \ldots, \varphi_{n}^{0}\right)$

Iterated Merging

- Iterated Merging Operators

$$
\left(\varphi_{1}^{0}, \ldots, \varphi_{n}^{0}\right) \xrightarrow{\text { Merging }} \varphi^{\Delta_{0}}
$$

Iterated Merging

- Iterated Merging Operators

$$
\begin{aligned}
&\left(\varphi_{1}^{0}, \ldots, \varphi_{n}^{0}\right) \xrightarrow{\text { Merging }} \varphi^{\Delta_{0}} \\
& \downarrow^{\text {Revision }} \\
&\left(\varphi_{1}^{0} * \varphi^{\Delta_{0}}, \ldots, \varphi_{n}^{0} * \varphi^{\Delta_{0}}\right)
\end{aligned}
$$

Iterated Merging

- Iterated Merging Operators

$$
\begin{array}{r}
\left(\varphi_{1}^{0}, \ldots, \varphi_{n}^{0}\right) \xrightarrow{\text { Merging }} \varphi^{\varphi^{\Delta_{0}}} \\
\\
\qquad \begin{array}{l}
\\
\left(\varphi_{1}^{0} * \varphi^{\Delta_{0}}, \ldots, \varphi_{n}^{0} * \varphi^{\Delta_{0}}\right) \\
\\
\\
\left(\varphi_{1}^{1}, \ldots, \varphi_{n}^{1}\right)
\end{array}
\end{array}
$$

Iterated Merging

- Iterated Merging Operators

$\left(\varphi_{1}^{1}, \ldots, \varphi_{n}^{1}\right) \longrightarrow \varphi^{\Delta_{1}}$

Iterated Merging

- Iterated Merging Operators

$\left(\varphi_{1}^{k}, \ldots, \varphi_{n}^{k}\right)$

Iterated Merging

- Iterated Merging Operators

Iterated Merging

- Iterated Merging Operators

Iterated Merging

- Iterated Merging Operators

Iterated Merging

- Iterated Merging Operators

- Merging
- Conciliation

$$
\begin{gathered}
\left(\varphi_{1}, \ldots, \varphi_{n}\right) \longrightarrow \varphi_{\Delta} \\
\left(\varphi_{1}, \ldots, \varphi_{n}\right) \xrightarrow{\longrightarrow}\left(\varphi_{1}^{*}, \ldots, \varphi_{n}^{*}\right)
\end{gathered}
$$

Negotiation - Conciliation

Let $E=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ be a profile of belief/goal bases.
Two questions :

- What are the beliefs/goals of the group of agents ?
- Merging (vote, social choice, MCDM, ...)
- Can the agents find a consensual position?

■ Conciliation (negotiation, bargaining, ...)

A Game between Sources

- Negotiation :
- Some sources have to concede to solve the conflicts

A Game between Sources

- Negotiation :
- Some sources have to concede to solve the conflicts
- The idea :
- Each source gives her base
- Contest between the bases :
- The weakest ones loose
- The loosers have to concede (logical weakening)
- Ends when a compromise is reached

A Game between Sources

- Negotiation :
- Some sources have to concede to solve the conflicts
- The idea :
- Each source gives her base
- Contest between the bases :
- The weakest ones loose
- The loosers have to concede (logical weakening)
- Ends when a compromise is reached

Definition A Belief Game Model is a pair $\mathcal{N}=\langle g, \boldsymbol{v}\rangle$ where g is a choice function and $\boldsymbol{\nabla}$ is a weakening function.
The solution to a belief profile E for a Belief Game Model $\mathcal{N}=\langle g, \mathbf{\nabla}\rangle$, noted $\mathcal{N}(E)$, is the belief profile $E_{\mathcal{N}}$, defined as:

- $E_{0}=E$
- $E_{i+1}=\mathbf{\nabla}_{g\left(E_{i}\right)}\left(E_{i}\right)$
- $E_{\mathcal{N}}$ is the first E_{i} that is consistent

A Game between Sources

- Negotiation :
- Some sources have to concede to solve the conflicts
- The idea :
- Each source gives her base
- Contest between the bases :
- The weakest ones loose
- The loosers have to concede (logical weakening)
- Ends when a compromise is reached

Definition A Belief Game Model is a pair $\mathcal{N}=\langle g, \mathbf{v}\rangle$ where g is a choice function and $\boldsymbol{\nabla}$ is a weakening function.
The solution to a belief profile E for a Belief Game Model $\mathcal{N}=\langle g, \mathbf{\nabla}\rangle$ under the integrity constraints μ, noted $\mathcal{N}_{\mu}(E)$, is the belief profile $E_{\mathcal{N}_{\mu}}$, defined as:

- $E_{0}=E$
- $E_{i+1}=\mathbf{\nabla}_{g\left(E_{i}\right)}\left(E_{i}\right)$
- $E_{\mathcal{N}_{\mu}}$ is the first E_{i} that is consistent with μ

A Game between Sources

- Negotiation :
- Some sources have to concede to solve the conflicts
- The idea :
- Each source gives her base
- Contest between the bases :
- The weakest ones loose
- The loosers have to concede (logical weakening)
- Ends when a compromise is reached

Definition A Belief Game Model is a pair $\mathcal{N}=\langle g, \boldsymbol{\nabla}\rangle$ where g is a choice function and $\boldsymbol{\nabla}$ is a weakening function.
The solution to a belief profile E for a Belief Game Model $\mathcal{N}=\langle g, \mathbf{\nabla}\rangle$ under the integrity constraints μ, noted $\mathcal{N}_{\mu}(E)$, is the belief profile $E_{\mathcal{N}_{\mu}}$, defined as:

- $E_{0}=E$
- $E_{i+1}=\mathbf{\nabla}_{g\left(E_{i}\right)}\left(E_{i}\right)$
- $E_{\mathcal{N}_{\mu}}$ is the first E_{i} that is consistent with μ

Belief Game Model

A choice function is a function $g: \mathcal{E} \rightarrow \mathcal{E}$ such that :

- $g(E) \subseteq E$
- If $\wedge E \not \equiv T$, then $\exists \varphi \in g(E)$ s.t. $\varphi \not \equiv \top$
- If $E \leftrightarrow E^{\prime}$, then $g(E) \leftrightarrow g\left(E^{\prime}\right)$

A weakening function is a function $\boldsymbol{\nabla}: \mathcal{K} \rightarrow \mathcal{K}$ such that:

- $\varphi \vdash \boldsymbol{\nabla}(\varphi)$
- If $\varphi=\boldsymbol{\nabla}(\varphi)$, then $\varphi \leftrightarrow \top$
- If $\varphi \leftrightarrow \varphi^{\prime}$, then $\boldsymbol{\nabla}(\varphi) \leftrightarrow \boldsymbol{\nabla}\left(\varphi^{\prime}\right)$

Example : Database Class [Revesz, 1994]

- $g=d_{D}^{\Sigma}, \mathbf{v}=\delta$

$$
\begin{gathered}
\varphi_{1}=\{100,001,101\}\{010,001\} \\
\bmod \left(\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3}\right)=\emptyset
\end{gathered}
$$

$$
\varphi_{3}=\{111\}
$$

Example : Database Class [Revesz, 1994]

- $g=d_{D}^{\Sigma}, \mathbf{v}=\delta$

$$
\begin{gathered}
\varphi_{1}=\{100,001,101\}=\{010,001\} \\
\bmod \left(\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3}\right)=\emptyset
\end{gathered}
$$

$$
\varphi_{3}=\{111\}
$$

	φ_{1}	φ_{2}	φ_{3}	Σ	g
φ_{1}		0	1	1	
φ_{2}	0		1	1	
φ_{3}	1	1		2	

Example : Database Class [Revesz, 1994]

- $g=d_{D}^{\Sigma}, \mathbf{v}=\delta$

$$
\begin{gathered}
\varphi_{1}=\{100,001,101\}=\{010,001\} \\
\bmod \left(\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3}\right)=\emptyset
\end{gathered}
$$

	φ_{1}	φ_{2}	φ_{3}	Σ	g
φ_{1}		0	1	1	
φ_{2}	0		1	1	
φ_{3}	1	1		2	

Example : Database Class [Revesz, 1994]

- $g=d_{D}^{\Sigma}, \mathbf{v}=\delta$
$\varphi_{1}=\{100,001,101\} \quad \varphi_{2}=\{010,001\}$
$\bmod \left(\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3}\right)=\emptyset$

	φ_{1}	φ_{2}	φ_{3}	Σ	g
φ_{1}		0	0	0	
φ_{2}	0		1	1	
φ_{3}	0	1		1	

Example : Database Class [Revesz, 1994]

- $g=d_{D}^{\Sigma}, \mathbf{v}=\delta$
$\varphi_{1}=\{100,001,101\}$

$$
\begin{array}{cc}
\varphi_{2}=\{010,001\} & \varphi_{3}=\{111\} \\
\varphi_{2}=\{010,001,110,000,011,101\} & \varphi_{3}=\{111,011,101,110\} \\
\{111,011,101,110,001,010,100\}
\end{array}
$$

	φ_{1}	φ_{2}	φ_{3}	Σ	g
φ_{1}		0	0	0	
φ_{2}	0		1	1	\bullet
φ_{3}	0	1		1	

Example : Database Class [Revesz, 1994]

- $g=d_{D}^{\Sigma}, \mathbf{\nabla}=\delta$

$$
\begin{array}{cc}
\varphi_{1}=\{100,001,101\} & \varphi_{2}=\{010,001\}
\end{array} \begin{gathered}
\varphi_{3}=\{111\} \\
\varphi_{3}=\{111,011,101,110\} \\
\varphi_{2}=\{010,001,110,000,011,101\}
\end{gathered} \begin{gathered}
\\
\varphi_{3}=\{111,011,101,110,001,010,100\}
\end{gathered}
$$

	φ_{1}	φ_{2}	φ_{3}	Σ	g
φ_{1}		0	0	0	
φ_{2}	0		1	1	
φ_{3}	0	1		1	

Skipped something?

4 Back to Condorcet's Jury Theorem
Back to Unanimity
4 Back to Default-based merging

