Power Indices and Game Theory (Applications to Bioinformatics)

Stefano MORETTI
stefano.moretti@dauphine.fr
LAMSADE (CNRS), Paris Dauphine

No binding agreements
 No side payments
 Q: Optimal behaviour in conflict situations

A building with three owners

$>$ Each owner has a weight (in thousandths)
$>$ Decision rule: a group of owners with at least 667 thousandths is winning \rightarrow they may force a decision concerning common facilities (e.g., "to construct an elevator")
$>\mathrm{Q}:$ How to measure the power of each owner?

Power index

Which properties should a power index satisfy?

This group has less than 667 thousands

This group has less than 667 thousands

This group has less than 667 thousands

1000
This group has more than 667 thousands

This group has less than 667 thousands

370

This group has less than 667 thousands

480

This group has less than 667 thousands

850

This group has more than 667 thousands

Null player property:
The power of the owners who never contribute to make a winning group must be zero.

Anonimity property:
The power index should not depend on the names of the owners

Efficiency property: the sum of the powers must be 1

Transfer property:
How to sum the power between two different interactive situations...(see later)

Shapley\&Shubik power index (1954) Satisfies anonymity, efficiency, null player and transfer properties
... it is the unique power index which satisfies such properties on the class of simple games...

Shapley\&Shubik power index (1954)

... a power index which satisfies such properties...

Simple games

A simple game is a (voting or similar) situation in which every potential coalition (set of players/voters) can be either winning or losing.

DEF. A simple game is a pair (N, v) where
$>\mathrm{N}$ is a finite set (players set) and
$>\mathrm{v}$ is map (characteristic function) defined on the power set 2^{N} such that
$>\mathrm{v}(\mathrm{S}) \in\{0,1\}$ for each coalition $\mathrm{S} \in 2^{\mathrm{N}}$
$>$ By convention $\mathrm{v}(\varnothing)=0$. We will assume $\mathrm{v}(\mathrm{N})=1$.

Example (weighted majority game)

$>$ Three owners Green (G), White (W), and Red (R) with 48\%, 37% and 15% of weights, respectively.
$>$ To take a decision the $2 / 3$ majority is required.
$>$ We can model this situation as a simple game(\{G,W,R\},w) s.t.:

$$
\begin{gathered}
w(G)=0 \\
w(W)=0 \\
w(R)=0 \\
w(G, W)=1 \\
w(G, R)=0 \\
w(W, R)=0 \\
w(G, W, R)=1
\end{gathered}
$$

Transfer property

A solution Φ is map assigning to each simple game (N, v) an n -vector of real numbers. For any two simple games (N, v), (N, w), Φ satisfies the transfer proeprty if it holds that $\Phi(\mathrm{v} \vee \mathrm{w})+\Phi(\mathrm{v} \wedge \mathrm{w})=\Phi(\mathrm{v})+\Phi(\mathrm{w})$.

Here $v \vee w$ is defined as $(v \vee w)(S)=(v(S) \vee w(S))=\max \{v(S), w(S)\}$, and $v \wedge w$ is defined as $(\mathrm{v} \wedge \mathrm{w})(\mathrm{S})=(\mathrm{v}(\mathrm{S}) \wedge \mathrm{w}(\mathrm{S}))=\min \{\mathrm{v}(\mathrm{S}), \mathrm{w}(\mathrm{S})\}$,

EXAMPLE

Two TU-games v and w on $\mathrm{N}=\{1,2,3\}$.

Real applications of simple games

$>$ Voting by disciplined party groups in multi-party parliaments (probably elected on the basis of proportional representation);
$>$ USA President election
$>$ UN Security Council
$>$ voting in the EU Council of Ministers
$>$ voting by stockholders (holding varying amounts of stock).
$>$ lawmaking power of the United States

Weighted majority example

$>$ Suppose that four parties receive these vote shares:
$>$ Party A, 27\%;
$>$ Party B, 25\%;
$>$ Party C, 24\%;
$>$ Party D 24\%.
$>$ Seats are apportioned in a 100-seat parliament:

- Party A: 27 seats Party C: 24 seats
- Party B: 25 seats Party D: 24 seats
$>$ Seats (voting weights) have been apportioned in a way that is precisely proportional to vote support, but voting power has not been so apportioned (and cannot be).

Weighted majority example (2)

A:27 seats;

B:25 seats;
C:24 seats;
D:24 seats
$>$ Party A has voting power that greatly exceeds its slight advantage in seats. This is because:
$>$ Party A can form a winning coalition with any one of the other parties; and
$>$ the only way to exclude Party A from a winning coalition is for Parties B, C, and D to form a three-party coalition.

A:27 seats; B:25 seats; C:24 seats; D:24 seats; Quota: 51 A:2 seats; B:1 seats; C:1 seats; D:1 seats; Quota: 3

$$
\begin{gathered}
w(A)=1 \\
w(B)=0 \\
w(C)=0 \\
w(D)=0 \\
w(A, B)=1 \\
w(A, C)=1 \\
w(A, D)=1 \\
w(B, C)=0 \\
w(B, D)=0 \\
w(C, D)=0 \\
w(A, B, C)=1 \\
w(A, B, D)=1 \\
w(A, C, D)=1 \\
w(B, C, D)=1 \\
w(A, B, C, D)=1
\end{gathered}
$$

Power Indices

$>$ Several power indices have been proposed to quantify the share of power held by each player in simple games.
> These particularly include:
$>$ the Shapley-Shubik power index (1954); $>$ And the Banzhaf power index (1965).
$>$ Such power indices provide precise formulas for evaluating the voting power of players in weighted voting games.

The Shapley-Shubik Index

$>$ Let (N, v) be a simple game (assume v is monotone: for each $\left.S, T \in 2^{N} . S \subseteq T \Rightarrow v(S) \leq v(T)\right)$
$>$ "Room parable": Players gather one by one in a room to create the "grand coalition",
$>$ At some point a winning coalition forms.
$>$ For each ordering in which they enter, identify the pivotal player who, when added to the players already in the room, converts a losing coalition into a winning coalition.

$$
\begin{array}{llllllllllll}
\mathrm{A} & \mathrm{~A} & \mathrm{~A} & \mathrm{~A} & \mathrm{~A} & \mathrm{~A} & \mathrm{~B} & \mathrm{~B} & \mathrm{~B} & \mathrm{~B} & \mathrm{~B} & \mathrm{~B} \\
\mathrm{~B}<= & \mathrm{B}<= & \mathrm{C}<= & \mathrm{D}<= & \mathrm{C}<= & \mathrm{D}<= & \mathrm{A}<= & \mathrm{A}<= & \mathrm{C} & \mathrm{D} & \mathrm{C} & \mathrm{D} \\
\mathrm{C} & \mathrm{D} & \mathrm{~B} & \mathrm{~B} & \mathrm{D} & \mathrm{C} & \mathrm{C} & \mathrm{D} & \mathrm{~A}<= & \mathrm{A}<= & \mathrm{D}<= & \mathrm{C}<= \\
\mathrm{D} & \mathrm{C} & \mathrm{D} & \mathrm{C} & \mathrm{~B} & \mathrm{~B} & \mathrm{D} & \mathrm{C} & \mathrm{D} & \mathrm{C} & \mathrm{~A} & \mathrm{~A} \\
\mathrm{C} & \mathrm{D} & \mathrm{D} & \mathrm{D} & \mathrm{D} & \mathrm{D} \\
\mathrm{D} & \mathrm{D} & \mathrm{~A}<= & \mathrm{B} & \mathrm{~A}<= & \mathrm{B} & \mathrm{C} & \mathrm{C} & \mathrm{D} & \mathrm{D} & \mathrm{C} & \mathrm{C}<= \\
\mathrm{A}<= & \mathrm{B}<= & \mathrm{D} & \mathrm{D}<= & \mathrm{B} & \mathrm{~A}<= & \mathrm{A}<= & \mathrm{B}<= & \mathrm{C} & \mathrm{C}<= & \mathrm{B} & \mathrm{~B}<= \\
\mathrm{B} & \mathrm{~A} & \mathrm{~B} & \mathrm{~A} & \mathrm{D} & \mathrm{D} & \mathrm{~B} & \mathrm{~A} & \mathrm{~B} & \mathrm{~A} & \mathrm{C} & \mathrm{C}
\end{array}
$$

The Shapley-Shubik Index (cont.)

$>$ Player i's Shapley-Shubik power index value is simply
Number of orderings in which the voter i is pivotal Total number of orderings
$>$ Power index values of all voters add up to 1.
$>$ Counting up, we see that A is pivotal in 12 orderings and each of B, C, and D is pivotal in 4 orderings. Thus:

$$
\begin{gathered}
\frac{\text { Voter }}{A} \\
\text { B } \\
\text { C } \\
\text { D }
\end{gathered}
$$

Sh-Sh Power
1/2
1/6
1/6
1/6
$>$ So according to the Shapley-Shubik index, Party A has 3 times the voting power of each other party.

The Banzhaf Index

$>$ The Banzhaf power index works as follows:
$>$ A player i is critical for a winning coalition if
$>i$ belongs to the coalition, and
$>$ the coalition would no longer be winning if i defected from it.
$>$ Voter i's Banzhaf power $\mathrm{Bz}(i)$ is
Number of winning coalitions for which i is critical Total number of coalitions to which i belongs.

The Banzhaf Index (2)

$>$ Given the seat shares before the election, and looking first at all the coalitions to which A belongs, we identify:

$$
\begin{gathered}
\{\mathrm{A}\},\{\mathrm{A}, \mathrm{~B}\},\{\mathrm{A}, \mathrm{C}\},\{\mathrm{A}, \mathrm{D}\},\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\},\{\mathrm{A}, \mathrm{~B}, \mathrm{D}\}, \\
\{\mathrm{A}, \mathrm{C}, \mathrm{D}\},(\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\} .
\end{gathered}
$$

$>$ Checking further we see that A is critical for all but two of these coalitions, namely
$>\{\mathrm{A}\}$ (because it is not winning); and
$>\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$ (because $\{\mathrm{B}, \mathrm{C}, \mathrm{D}\}$ can win without A).
$>$ Thus: $\quad B z(A)=6 / 8=.75$

The Banzhaf Index (3)

$>$ Looking at the coalitions to which B belongs, we identify:
$\{B\},\{A, B\},\{B, C\},\{B, D\},\{A, B, C\},\{A, B, D\},\{B, C, D\},(A, B, C, D\}$.
$>$ Checking further we see that B is critical to only two of these coalitions:
$>\{B\},\{B, C\},\{B, D\}$ are not winning; and
$>\{\mathrm{A}, \mathrm{B}, \mathrm{C}\},\{\mathrm{A}, \mathrm{B}, \mathrm{D}\}$, and $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$ are winning even if B defects.
$>$ The positions of C and D are equivalent to that of B .
$>$ Thus: $\mathrm{Bz}(\mathrm{B})=\mathrm{Bz}(\mathrm{C})=\mathrm{Bz}(\mathrm{D})=2 / 8=.25$

Power indices: a general formulation

$>$ Let $\mathrm{p}_{\mathrm{i}}(\mathrm{S})$, for each $\mathrm{S} \in 2^{\mathrm{N}} \backslash\{\varnothing\}, \mathrm{i} \notin \mathrm{S}$, be the probability of coalition $\mathrm{S} \cup\{\mathrm{i}\}$ to form (of course $\left.\sum_{S \subseteq N: i \notin S} p_{i}(S)=1\right)$
$>$ A power index $\psi_{\mathrm{i}}(\mathrm{v})$ is defined as the probability of player i to be critical in v according to p :

$$
\psi_{\mathrm{i}}(\mathrm{v})=\sum_{\mathrm{S} \subseteq \mathrm{~N}: i \notin \mathrm{~S}} \mathrm{p}_{\mathrm{i}}(\mathrm{~S})[\mathrm{v}(\mathrm{~S} \cup\{\mathrm{i}\})-\mathrm{v}(\mathrm{~S})]
$$

Power indices: a general formulation (2)

$>$ According to the Banzhaf power index, every coalitions has the same probability to form: $p_{i}(S)=1 /\left(2^{n-1}\right)$, for each $S \in 2^{\mathrm{N}} \backslash\{\varnothing\}, \mathrm{i} \notin \mathrm{S}$
$>$ According to the Shapley-Shubick power index, compute $\mathrm{p}_{\mathrm{i}}(\mathrm{S})$ according to the following procedure to create at random from N a subset S to which i does not belong:
$>$ Draw at random a number out of the urn consisting of possible sizes $0,1,2, \ldots, n-1$ where each number has probability $1 / n$ to be drawn
$>$ If size s is chosen, draw a set out of the urn consisting of subsets of $\mathrm{N} \backslash\{i\}$ of size s , where each set has the same probability, i.e. 1/combinations(n-1,s)
$>$ indeed, $\mathrm{p}_{\mathrm{i}}(\mathrm{S})=(\mathrm{s}!(\mathrm{n}-\mathrm{s}-1)!) / \mathrm{n}$!

UN Security Council

- 15 member states:
- 5 Permanent members: China, France, Russian Federation, United Kingdom, USA
- 10 temporary seats (held for two-year terms) (http://www.un.org/)

UN Security Council decisions

- Decision Rule: substantive resolutions need the positive vote of at least nine Nations but...
...it is sufficient the negative vote of one among the permanent members to reject the decision.
- Q: quantify the power of nations inside the ONU council to force a substantive decision?
- Game Theory gives an answer using the Shapley-Shubik power index:

Shapley-Shubik power index

temporary seats since January $1^{\text {st }} 2007$ until January $1^{\text {st }} 2009$

Banzhaf power index

temporary seats since January $1^{\text {st }} 2007$ until January 1st 2009

Central "dogma" of molecular biology
 (Crick (1958)

$>$ Gene expression occurs when genetic information contained within DNA is transcripted into mRNA molecules and then translated into the proteins.
$>$ Nowadays, microarray technology is available for taking "pictures" of gene expressions. Within a single experiment of this sophisticated technology, the level of expression of thousands of genes can be estimated in a sample of cells under a given con

Normal Cell

Tumor cell

Fluorescent labelling reaction with reverse transcription

Normal Tumor

Array1

Array2

Array3

Arrays

Array1 Array2 Array3 Array4 Array5 ...

Gene1	0.46	0.30	0.80	1.51	0.90	\ldots
Gene2	0.10	0.49	0.24	0.06	0.46	\ldots
Gene3	0.15	0.74	0.04	0.10	0.20	\ldots
Gene4	0.45	1.03	0.79	0.56	0.32	\ldots
Gene5	0.06	1.06	1.35	1.09	1.09	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	
		\ldots	\ldots			

Expression level of gene 5 in array 4

The dimension of information

- A typical experiment: a table of numbers with more than 22000 rows (genes) e 60 of arrays (samples).
- If we would print the entire table with a character of 12 pt , it would be necessary almost 3700 pages A4...
- ...a surface of almost 220 square meters!

From political and social science to genomics...

- Players are genes
- Who knows the decision rule in this context?
- IDEA: we can make a rule on microarray gene expression profiles.
- Example: we define a criterion to establish which genes have abnormal expressions on each array

	array1
gene1	1.121
gene2	2.453
gene3	3.586

\square| | array1 |
| :---: | :---: |
| gene1 | 0 |
| gene2 | 1 |
| gene3 | 1 |

Decision rule

A group of genes is winning on a single array if all genes that have abnormal expressions belong to that group

Both groups \{gene2, gene3\} and group \{gene1, gene2, gene3\} are winning.

Array1

Array2

Array3

array 1
0
1
1

array 3
0
0
1

-coalition \{gene2, gene3\} is winning two times out of three;
-coalition \{gene1, gene2\} is winning one time out of three;
-And so on for each coalition...

Example

	Aray1	Aray2	Aray3
g_{1}	0	1	0
$\mathrm{~g}_{2}$	1	1	0
$\mathrm{~g}_{3}$	1	0	1

$$
\begin{aligned}
& \text { The corresponding microarray game } \\
& <\left\{\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{~g}_{3}\right\}, \mathrm{v}>\text { tale che } \\
& \mathrm{v}(\varnothing)=\mathrm{v}\left(\left\{\mathrm{~g}_{1}\right\}\right)=\mathrm{v}\left(\left\{\mathrm{~g}_{2}\right\}\right)=0 \\
& \mathrm{v}\left(\left\{\mathrm{~g}_{1}, \mathrm{~g}_{3}\right\}\right)=\mathrm{v}(\{\mathrm{~g} 1, \mathrm{~g} 2\})=\mathrm{v}\left(\left\{\mathrm{~g}_{3}\right\}\right)=1 / 3 \\
& \mathrm{v}\left(\left\{\mathrm{~g}_{2}, \mathrm{~g}_{3}\right\}\right)=2 / 3 \\
& \mathrm{v}\left(\left\{\mathrm{~g}_{1}, \mathrm{~g}_{2}, \mathrm{~g}_{3}\right\}\right)=1 .
\end{aligned}
$$

The Shapley value is
$\mathrm{Sh}_{\mathrm{g} 1}=1 / 6 \quad \mathrm{Sh}_{\mathrm{g} 2}=1 / 3 \quad \mathrm{Sh}_{\mathrm{g} 3}=1 / 2$

Property 1: Null Gene (NG)

A gene which does not contribute to change the worth of any coalition of genes, should receive zero power.

Prop.2:Equal Splitting (ES)

Each sample should receive the same level of reliability. So the power of a gene on two samples should be equal to the sum of the power on each sample divided by two.

	s1	ψ_{1}	+	s2	$\psi^{\prime}{ }_{1}$		s1	s2	$\left(\psi_{1}+\psi^{\prime}{ }_{1}\right)^{\prime} / 2$
g1	0			1		g1	0	1	
g2	0	ψ_{2}		1	$\psi^{\prime}{ }_{2}$	g2	0	1	$\left(\psi_{2}+\psi^{\prime}{ }_{2}\right)^{\prime} / 2$
g3	1	ψ_{3}		0	$\psi^{\prime}{ }_{3}$	g3	1	0	$\left(\psi_{3}+\psi^{\prime}{ }_{3}\right)^{\prime} / 2$

Partnership of genes

A group of genes S such that does not exist a proper (\subset) subset of S which contributes in changing the worth of genes outside S .

Example

These two sets are partnerships of genes in the corresponding Microarray game

Property 3: Partnership Monotonicity (PM)

(N, v) a microarray game. If two partnerships of genes S and T , with $|T| \geq|\mathrm{S}|$ are such that they are
-disjoint ($\mathrm{S} \cap \mathrm{T}=\varnothing$),
-equivalent $(\mathrm{v}(\mathrm{S})=\mathrm{v}(\mathrm{T}))$
-exhaustive $(\mathrm{v}(\mathrm{S} \cup \mathrm{T})=\mathrm{v}(\mathrm{N}))$,
then genes in the smaller partnership S must receive more relevance then genes in T .

Example

$$
\psi_{\mathrm{i}} \geq \psi_{\mathrm{k}}
$$

For each $\mathrm{i} \in\{1,2\}$
$\mathrm{k} \in\{3,4,5\}$

Property 4: Partnership Rationality (PR)

The total amount of power index received from players of a partnership S should not be smaller than $v(S)$

Property 5: Partnership Feasibility (PF)
The total amount of power index received from players of a partnership S should not be greater than $\mathrm{v}(\mathrm{N})$

Theorem (Moretti, Patrone, Bonassi (2007)):
The Shapley value is the unique solution which satisfies NG, ES, PM, PR, PF on the class of microarray games.

Real data analysis

Application (1): Neuroblastic Tumors data

 (Cancer, 113(6), 1412 - 1422)$>$ Neuroblastic Tumors (NTs) is a group of pediatric cancers with a great tissue heterogeneity.
$>$ Most of NTs are composed of undifferentiated, poorly
differentiated or differentiating neuroblastic (Nb) cells with very few or absence of Schwannian Stromal (SS) cells: these tumors are grouped as Neuroblastoma (Schwannian stromapoor) (labeled as NTs-SP).
$>$ The remaining NTs are composed of abundant SS cells and classified as Ganglioneuroblastoma (Schwannian stroma-rich) intermixed or nodular and Ganglioneurom (labeled as NTs-SR).
$>$ The evolution of the disease is strongly influenced by the istology of the tumor and children with NTs-SR have a better prognosis w.r.t, NTs-SP.

22283 geni

Minimum
expression \square
Maximum
expression

Maximum expression

Minimum expression

Application (2): effects of air pollution

BMC Bioinformatics (IF 3.49), 9:361).

- Study population:
>23 children from 12 families (2 siblings) from the areas of Teplice (TP) in Czech Republic
$>$ TP is infamous for air pollution
>24 children from the rural, less polluted are of Prachatice (PR)
$>$ Hybridization to Agilent Human 1A Oligo Microarray (v2) G4110B, containing over 2200060 mer probes
$>$ Individual samples were hybridized with a sample of the common reference (a pool of PR individuals)
> Data have been normalized, condensed and filtered by Genedata, Basel (CH)

Selection based on two criteria: Shapley value and CASh

>47 biological samples (columns) and 159 genes (rows) with highest Shapley values and with un-adjusted p -value smaller than 0.01 .
$>$ yellow = high expression
> blue = low expression

Distance: Euclidean Agglomerative method: Ward

