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Abstract

Endriss et al. [26] initiated the complexity-theoretic study of problems related to judgment
aggregation. We extend their results for manipulating two specific judgment aggregation pro-
cedures to a whole class of such procedures, namely to uniform premise-based quota rules.
In addition, we consider incomplete judgment sets and the notions of top-respecting and
closeness-respecting preferences introduced by Dietrich and List [21]. This complements
previous work on the complexity of manipulation in judgment aggregation that focused on
Hamming-distance-induced preferences only, which we also study here. We also introduce the
notion of control by bundling judges and study it in terms of its computational complexity.

1 Introduction

Judgment Aggregation is the task of aggregating individual judgment sets of possibly interconnected
logical propositions (see the surveys by List and Puppe [40] and List [39], and the bookchapter by
Endriss [23]) and can therefore be seen as an important framework for collective decision making.
Decision-making processes are often susceptible to various types of interference, be it internal or
external. In social choice theory and in computational social choice, ways of influencing the out-
come of elections—such as manipulation, bribery, and control—have been studied intensely, with
a particular focus on the complexity of the related problems (see, e.g., the early work of Bartholdi
et al. [4, 3, 5] and the recent surveys and bookchapters by Faliszewski et al. [31, 29, 32], Brandt et
al. [15], and Baumeister et al. [9]). In particular, (coalitional) manipulation (see, e.g., [4, 3, 18], the
survey by Faliszewski and Procaccia [31], and the bookchapter by Conitzer and Walsh [19]) refers to
(a group of) strategic voters casting their votes insincerely to reach their desired outcome; in bribery
(see, e.g., [28, 30] and the bookchapter by Faliszewski and Rothe [32]) an external agent seeks to
reach her desired outcome by bribing (without exceeding a given budget) some voters to alter their
votes; and in control (see, e.g., [S, 34] and the bookchapters by Faliszewski and Rothe [32] and
Baumeister et al. [9]) an external agent (usually called the “Chair”) seeks to change the structure of
an election (e.g., by adding/deleting/partitioning either candidates or voters) in order to reach her
desired outcome. In judgment aggregation, strategic behavior has been studied to a far lesser extent
than in voting so far.

Decision-making mechanisms or systems that are susceptible to strategic behavior, be it from the
agents involved as in manipulation or from external authorities or actors as in bribery and control,
are obviously not desirable, as that undermines the trust we have in these systems. We therefore have
a strong interest in accurately assessing how vulnerable a system for decision-making processes is
to these internal or external influences. Unfortunately, in many concrete settings of social choice,
“perfect” systems are impossible to exist. For example, the Gibbard—Satterthwaite theorem says
that no reasonable voting system can be “strategy-proof” [33, 43] (see also the generalization by
Duggan and Schwartz [22]), many natural voting systems are not “immune” to most or even all of
the standard types of control [5, 34, 32], and Dietrich and List [21] give an analogue of the Gibbard—
Satterthwaite theorem in judgment aggregation.

To avoid this obstacle, a common approach in computational social choice is to apply methods
from theoretical computer science to show that undesirable strategic behavior is blocked, or at least
hindered, by the corresponding task being a computationally intractable problem. Again, much
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work has been done in this regard for manipulation, bribery, and control problems in voting, but
only a few results are known for these problems in judgment aggregation. Most notably, Endriss et
al. [26] recently initiated the algorithmic and complexity-theoretic study of the winner determination
problem and the manipulation problem in judgment aggregation, and we here extend their work for
manipulation to other judgment aggregation procedures and to other notions of preference that have
been introduced by Dietrich and List [21]. Baumeister et al. [10, 6, 7] investigated bribery and
control in judgment aggregation. Extending their work on control, we here introduce and study
control by bundling judges.

This paper is organized as follows. In Section 2, we provide the basic framework of judgment
aggregation and define the relevant notions formally. We study the complexity of manipulation in
judgment aggregation in Section 3 and that of control by bundling judges in Section 4. Finally,
Section 5 summarizes our results and presents open problems for future research.

2 Preliminaries

We adopt the judgment aggregation framework described by Endriss et al. [26] (see also their pre-
vious conference papers [25, 24]). Let PS be the set of all propositional variables and let Zpg be
the set of propositional formulas built from PS, where the following connections can be used in
their usual meaning: disjunction (V), conjunction (A), implication (—), equivalence (<), and the
boolean constants 1 and 0. To avoid double negations, let ~¢ denote the complement of «, i.e.,
~o = —o if o is not negated, and ~a = 8 if & = —f3. The judges have to judge over all formulas
in the agenda ®, which is a finite, nonempty subset of .Zpg without doubly negated formulas. The
agenda is required to be closed under complementation, i.e., ~& € ® if @ € P.

A judgment set for an agenda ® is a subset J C ®. It is said to be an individual judgment set if it
is the set of propositions in the agenda accepted by an individual judge. A collective judgment set is
the set of propositions in the agenda accepted by all judges as the result of a judgment aggregation
procedure. A judgment set J is (1) complete if for all @ € ®, o € J or ~ € J; (2) complement-free
if for no @ € ®, @ and ~a are in J; and (3) consistent if there is an assignment that makes all
formulas in J true. If a judgment set is complete and consistent, it is obviously complement-free.
We denote the set of all complete and consistent subsets of ® by 7 ().

A judgment aggregation procedure is a function F : 7 (®)" — 2% that maps a profile of n
individual complete and consistent judgment sets to one collective judgment set. We will call a
procedure complete (complement-free, consistent) if the collective judgment set is always complete
(complement-free, consistent).

The famous doctrinal paradox [37] in judgment aggregation says that if the majority rule is used,
the collective judgment set can be inconsistent even if all individual judgment sets are consistent.
One way of circumventing the doctrinal paradox is to impose restrictions on the agenda.”? For
example, the premise-based judgment procedure preserves consistency (and thus avoids the doctrinal
paradox) by first applying the majority rule individually to the premises, and then logically deriving
the result for the conclusions from the result of the premises.

Example 1 Consider, for example, a controversial penalty situation in a soccer match with three
referees having different views of the situation. According to the rules, a team must get a penalty if
they have been fouled in the penalty area. The first referee says that there was a foul in the penalty
area; the second referee says that what he observed in the penalty area in fact was a dive, not a foul,
so there is no penalty; and the third one denies a penalty as well, since he has seen a foul outside the

2Endriss et al. [26, 24] studied the question of whether one can guarantee for a specific agenda that the outcome is always
complete and consistent. They established necessary and sufficient conditions on the agenda to satisfy these criteria, and
they studied the complexity of deciding whether a given agenda satisfies these conditions. They also showed that deciding
whether an agenda guarantees a complete and consistent outcome for the majority rule is an intractable problem.



penalty area. The three different individual judgments and the evaluation according to the majority
rule are shown in Table 1(a).

Table 1: Example of the doctrinal paradox and how to prevent it by the premise-based procedure

(a) Doctrinal paradox with the majority rule (b) Avoiding it with the premise-based procedure
penalty area  foul penalty penalty area  foul penalty

Referee 1 yes yes yes Referee 1 yes yes yes

Referee 2 yes no no Referee 2 yes no no

Referee 3 no yes no Referee 3 no yes no

Majority yes yes no PBP yes yes = yes

Applying the majority rule here leads to the inconsistent outcome that there was a foul in the
penalty area, but there is no penalty. By contrast, this can be avoided by using the premise-based
procedure (see Table 1(b)), where penalty area and foul are the premises, and the conclusion is
penalty area and foul which equals the penalty decision.

Endriss et al. [26] introduced and studied the winner and the manipulation problem for two
specific judgment aggregation procedures that always guarantee consistent outcomes: the premise-
based procedure and the distance-based procedure. We will study the complexity of manipulation
also for the more general class of premise-based quota rules as defined by Dietrich and List [20].

Definition 2 (Premise-based Quota Rule) The agenda @ is divided into two disjoint subsets ® =
D, WD, where @, is the set of premises and . is the set of conclusions. We assume both ®,
and ®. to be closed under complementation. The premises ®, are again divided into two disjoint
subsets, ®, = O WDy, such that either ¢ € 1 and ~@ € Py, or ~@ € ®y and ¢ € P,. Assign a
quota qp € Q, 0 < gy < 1, to each literal ¢ € ®1. The quota for each literal ¢ € O, is then derived
by 4o = 1—qq.

Let ||S|| denote the cardinality of set S and |= the satisfaction relation. A premise-based quota
rule is defined to be a function PQR : 7 (®)" — 2% such that, for ® = @, WD, each profile
J=(J1,...,Ju) of individual judgment sets is mapped to the collective judgment set

POR(J) = A U{@e® |A, =@}, where
Dy = {pe@i||{ilp i} >ngp}tU{p € Pa2|[{i|@ € Ji}|| > [ngy — 11}

To guarantee complete and consistent outcomes for this procedure, it is enough to require that ®
is closed under propositional variables and that @, consists of all literals. The number of affirmations
needed to be in the collective judgment set is [ngy + 1] for literals ¢ € ®; and [ngy,| for literals
¢ € ®,. Note that [nge + 1| + [ngy,| = n+ 1 ensures that either ¢ € POR(J) or ~¢ € POR(J) for
every ¢ € ®. Note further that the quota g, = 1 for a literal ¢ € @, is not allowed here, as n+1
affirmations were then needed for ¢ € ®; to be in the collective judgment set, which is impossible.
However, g = 01is allowed, as in that case ¢ € ® needs at least one affirmation and ~¢ € ®, needs
n affirmations, which is possible. In the special case of uniform premise-based quota rules, there is
one quota ¢ for every literal in @1, and the quota ¢’ = 1 — ¢ for every literal in ®,. We will focus
on such rules and denote them by UPQR,,. For ¢ = 1/2 and the case of an odd number of judges, we
obtain the premise-based procedure defined by Endriss et al. [26], and we will denote it by PBP.

We assume that the reader is familiar with the basic concepts of complexity theory, with com-
plexity classes such as P and NP, and the notions of hardness and completeness with respect to the
polynomial-time many-one reducibility (denoted by <h); see, e.g., the textbooks [41, 42].



3 Manipulation in Judgment Aggregation

Recall the example from Table 1(b) illustrating how the doctrinal paradox can be avoided by the
premise-based procedure. From a similar example List [38] concludes that in a premise-based pro-
cedure the judges might have an incentive to report insincere judgments. Suppose that in the example
from Table 1(b) all soccer referees are absolutely sure that they are right, so they all want the aggre-
gated outcome to be identical to their own conclusions. In this case, referee 3 knows that insincerely
changing her judgment on whether there was a foul from “yes” to “no” would aggregate with the
other individual judgments on this issue to a “no” by majority and thus would deny the penalty in
conclusion. For the same reason, referee 2 might have an incentive to give an insincere judgment of
the “penalty area” question. This is a typical manipulation scenario.

Strategy-proofness and manipulation have been studied in a wide variety of fields—such as vot-
ing (see, e.g., [33, 43, 31, 19]), mechanism design (see, e.g., [2]), game theory (see, e.g., [45]), fair
division (see, e.g., [44, 35]), etc. In judgment aggregation, manipulability and (the game-theoretic
concept of) strategy-proofness were first introduced by Dietrich and List [21]. We focus on their
notion of strategy-proofness, since their (non)manipulability condition is not always appropriate in
our setting. They define nonmanipulability on a given subset of the agenda by considering every
proposition in this subset independently, whereas we will consider the subset as a whole.

The incentive of a manipulative attack is always to achieve a “better” result by agents (voters,
players, etc.) providing untruthful information. In judgment aggregation, this untruthful information
is the manipulator’s individual judgment set and the result is the collective outcome of a judgment
aggregation procedure. However, it is not at all obvious what a “better” result is. To compare two
collective judgment sets, a preference over all possible judgment sets would be needed, but such
preferences are rarely elicited, and they may be exponentially large in the number of formulas in
the agenda. One way to avoid this obstacle, is to derive an order from a given individual judgment
set. Based on the notions introduced by Dietrich and List [21], we in particular consider incomplete
judgment sets and the notions of top-respecting and closeness-respecting preferences. Since most
judgment aggregation rules are not strategy-proof, we study the computational complexity of the
corresponding decision problems. This complements and continues previous work on the complex-
ity of manipulation in judgment aggregation, which has been initiated by Endriss et al. [26] that
focused on Hamming-distance-induced preferences, which we also study here. For a very general
framework of manipulation in (both preference and judgment) aggregation, see the work of Falik
and Dokow [27].

As mentioned above, we apply the notions introduced by Dietrich and List [21] to study various
types of preferences. If for two judgment sets X,Y € ¢ (®), X is preferred to Y for a given type of
preference T and some individual judgment set J, we write X =7 Y.

Definition 3 Given some individual judgment set J, we define preferences to be (strictly)
e unrestricted (U) if there is no restriction on >—{J;
e top-respecting (TR) if J =p X forall X € ¢ (@)~ {J};
e closeness-respecting (CR) if for all X,Y € 7 (®), we have X =Lz Y if Y NJ C X NJ;

e Hamming-distance-induced (HD) if for all X,Y € 7 (®), X ={;p Y if and only if HD(X,J) <
HD(Y,J), where the Hamming distance HD(X,Y) between two (possibly incomplete) judg-
ment sets X and Y is the number of disagreements on propositions that occur in both judgment
sets.

By allowing equalities, the Hamming-distance-induced preference is the only complete relation
among the above. Intuitively, unrestricted preferences capture the setting where we know nothing
about the individual preferences. The slightly more restricted case of top-respecting preferences at



least requires the given judgment set to be the most preferred one. This also holds for closeness-
respecting preferences, but in addition judgment sets that have additional agreement are preferred.
In contrast, the Hamming-distance-induced preferences focus only on the total number of disagree-
ments. Hence, for X,Y € 7 (@), if X =45 ¥ then X =/ ¥, and if X =L ¥ then X =/, Y.

Example 4 For variables a, b, ¢, and d, let the agenda contain the formulas
a, b, ¢, d, aVvb, bVc, aVc, bVd,

and their negations. The individual judgment sets of three judges are shown in Table 2. A 0 indicates
that the negation of the formula is in the judgment set, and a 1 indicates that the formula itself is
contained in the judgment set.

Table 2: Applying the premise-based judgment aggregation procedure

a b ¢ d aVb bVc aVec bVvd
Judgel 1 1 0 O 1 1 1 1
Judge2 0 O O O
Judge3 1 0 1 1 1 1 1 1
PBP 1 0 0 0 = 1 0 1 0

The result according to the premise-based procedure is also given in the table. Now assume that
the third judge is trying fo manipulate and reports the untruthful individual judgment set {a,b,c,d}
and the corresponding conclusions. Then the collective outcome equals the individual judgment set
of the first judge.

o If the manipulator has unrestricted preferences, we do not know whether she prefers this new
outcome or not.

e [f she has closeness-respecting preferences, we again do not know whether she prefers the
new outcome, since the agreement on —b is no longer given. However, if she is interested only
in the conclusions, then she does prefer the new outcome, since the agreement on aV b and
aV c is preserved and there are the two additional agreements on b\ c and bV d.

e The same holds for top-respecting preferences: If the manipulator is interested in the whole
collective judgment set, we do not know which outcome is better for her, but restricted to the
conclusions the new outcome equals her initial individual judgment set and thus is preferred
to all other outcomes.

o [fthe manipulator has Hamming-distance-induced preferences, we know that the new outcome
is preferred to the old one, since before the manipulation the Hamming distance was 4, but
now it is only 3.

Konczak and Lang [36] (see also the work of Xia and Conitzer [46]) introduced the notions of
necessary and possible winner in voting. A possible winner is a candidate who can be made a winner
by some extension of a given partial preference profile to a complete profile, and a necessary winner
is a candidate who wins for every complete extension of a given partial preference profile. Inspired
by their notions,> we now introduce the notions of necessary and possible strategy-proofness in
judgment aggregation.

Just as Dietrich and List [21], we study settings where the desired judgment set is incomplete,
to also capture their “reason-oriented” and “outcome-oriented” preferences. However, we will not

3See also the remotely related notions of “possible envy-freeness” vs “necessary envy-freeness” in fair division that are
due to Bouveret et al. [12] (see also the papers by Brams et al. [13, 14]).



generally restrict the desired judgment set to the premises or the conclusions; rather, we allow ar-
bitrary incomplete desired judgment sets (which still must have a consistent extension to the whole
agenda). In this case, we restrict the preferences to the formulas that occur in the desired judgment
set. Since we want to compare two preferences with each other, but most of the induced preferences
will be incomplete, we distinguish the cases where the relation between them is known or unknown.

Definition 5 Let T € {U,TR,CR} be a type of induced preferences and J, X, and Y individual
judgment sets. (1) A judge necessarily prefers X to Y for type T and individual judgment set J
if X >1. Y for all complete extensions of =%. (2) A judge possibly prefers X to Y for type T and
individual judgment set J if X >JT Y for some complete extension of >—JT.

A judgment aggregation rule F is necessarily/possibly strategy-proof with respect to induced
preferences of type T € {U,TR,CR} if for all profiles (J1,...,J,) and each i, 1 < i< n, judge i
necessarily/possibly prefers the outcome F(J1,...,J,) to the outcome F(J1,... . Ji—1,J} Jix1,...,Jn)
(with respect to preferences of type T and the individual judgment set J;) for any Ji € ¢ (®) with
F(Ji,.o dn) 2 F UL di 1 I i ).

Definition 5 applies to complete desired judgment sets J; only. More generally, the definition
can easily be extended to incomplete desired judgment sets J C J; as well.

The stronger notion of necessary strategy-proofness corresponds to the “strategy-proofness”
condition defined by Dietrich and List [21], whereas the weaker notion of possible strategy-
proofness is introduced here. Note that since the Hamming-distance-induced preferences are a com-
plete relation, we simply say that F is strategy-proof (with respect to Hamming-distance-induced
preferences) if for each individual judge the actual outcome is at least as good as all outcomes
obtained by reporting a different individual judgment set.

The result of Dietrich and List [21] says that an aggregation rule that satisfies the “universal
domain” condition is necessarily strategy-proof with respect to nonstrict closeness-respecting pref-
erences if and only if it is independent and monotonic. Universal domain is satisfied if the domain of
the aggregation function is the set of all possible profiles from _# (®)", which obviously is true for
UPQR,,. Independence means that the collective decision on each proposition only relies on the in-
dividual judgments of this proposition. Since UPQR,, derives the outcome for the conclusions from
the outcome of the premises, it is not independent and hence not necessarily strategy-proof with
respect to nonstrict closeness-respecting preferences. An aggregation function is monotonic if addi-
tional support for some proposition that is currently accepted may never result in a nonacceptance
for this formula, provided everything else remains unchanged. In the case where the agenda contains
solely premises, UPQR,, is independent and monotonic, and hence necessarily strategy-proof also
for the case of strict closeness-respecting preferences.

Define the related manipulation problems for uniform premise-based quota rules and a given
preference type 7.

UPQRq—T—NECESSARY—MANIPULATION

Given: An agenda @, a profile J = (J1,...,J,) € # (®)", and the manipulator’s desired consistent
(possibly incomplete) judgment set J C Jj,.

Question:  Does there exist a judgment set J* € ¢ (®) such that UPQRq(Jl,...,Jn,l,J*)\J >§
UPQOR,(J1; ... ,Ju)|s for all extensions >JT that are consistent with >JT?

Here, UPQOR,(J1,...,Jy)|; denotes the restriction of UPQR,(J1,...,J,) to the formulas that oc-
cur, negated or not, in the manipulator’s desired judgment set J.

In UPQRq-T—POSSIBLE-MANIPULATION, we for the same input ask whether there exists a
judgment set J* € _Z (@) such that UPQR,(J1, - -, Ju—1,")|s >7 UPQR,(J1;-..,Jn)| for some ex-
tension >JT that is consistent with >—§. In the case of Hamming-distance-induced preferences we
will simply say UPQR,-HD-MANIPULATION, since the relation between two given judgment sets
is always known.



Furthermore, we introduce and study the exact variant, UPQR,,-EXACT-MANIPULATION, where
the manipulator seeks to achieve not only a better, but a best outcome for a given subset of her
desired judgment set. Here, the question is whether there is some judgment set J* € _# (®) such
that J C UPQR,(J1,. -, Ju—1,J").

We start by showing that exact manipulation is hard to achieve for uniform premise-based quota
rules.

Theorem 6 For each rational quota g, 0 < g < 1, UPQR,-EXACT-MANIPULATION is NP-
complete, even for only three judges.

Proof. We will only present the proof for ¢ = 1/2; the remaining cases can be shown by slightly
adapting this proof.

The proof for ¢ = 1/2 is by a reduction from the NP-complete satisfiability problem. Let ¢ be a
given formula in conjunctive normal form, where the clauses are built from the set A = {ay, ..., 0t}
of variables. The question is whether there is a satisfying assignment for this formula. Without
loss of generality, we may assume that neither setting all variables to true, nor setting all variables
to false is a satisfying assignment for ¢. Now construct an agenda & that consists of the variables
in A and their negations, an additional variable 8 and its negation, and the formula ¢ Vv 8 and its
negation. The profile J = (J,J2,J3) consists of three individual judgment sets. The first one, Jj,
contains A, —f3, and —(¢@ V ), and the second one, J, contains —¢q; for each i, 1 <i <m, -3, and
—(@V B). The third judge is the manipulative one and his individual judgment set, J3, contains A,
B, and (¢ V B). His desired outcome consists of the conclusion ¢ V f only. It holds that

UPQR,(J) = AU{=B}U{~(oVB)}.

Note also that the third judge is decisive for every formula in A, and that independently of the indi-
vidual judgment set of the manipulator, 3 is never contained in the collective judgment set. Hence,
the only way to obtain the conclusion ¢ V 3 in the collective outcome is to evaluate the formula ¢ to
true. This implies that there is a satisfying assignment for ¢ if and only if the individual judgment
set of the third judge can be modified such that ¢ \V 8 is contained in the collective outcome. QO

Next, we provide generic relations between the various manipulation problems we have defined.

Theorem 7 For each uniform premise-based quota rule with rational quota q, 0 < g < 1,

1. UPQR,-EXACT-MANIPULATION <b UPQR,-T-NECESSARY-MANIPULATION for each
type T € {TR,CR},

2. UPQR,;~-EXACT-MANIPULATION <k UPQR,-T-POSSIBLE-MANIPULATION for each type
T € {U,TR,CR}, and

3. UPQRq-EXACT-MANIPULATION <k UPQRq-HD-MANIPULATION.

Proof. For the exact problem, we have an agenda ®, some profile J = (J,...,J,), and some
desired judgment setJ = {a,. .., 0, } C J,, and we are looking for a modified judgment set J such
that J C UPQR,(J1,.-.,Ju-1,J;). In the trivial case that J C UPQR,(J), J,; = J, obviously fulfills
the requirement, so we can construct an arbitrary yes-instance for the corresponding manipulation
problem. We will prove all three assertions via the same reduction, but using different arguments.
Assume that J \ UPQR,(J) # @ and consider the following problem. Fix some T €
{TR,CR,HDY}, let the agenda @’ be the union of @, the formula @ = @ A - -+ A 04, and its negation.
Let J' € #(®')" be the consistent extensions of J. In particular, J;, = J, U{¢@}. Let the desired
judgment set be J' = { @}, and we are looking for a modified judgment set J/* such that for all/some
extensions > of 7., we have UPQR,(Jy,.. .y 1, )|y > UPQR,(Jy,....J;_y,J})| ;. Since J'
consists of the single formula ¢, there are only two different collective outcomes when restricted to



J'. Since @ € J', it obviously holds that ¢ >—JT/ - for all T € {TR,CR,HD}, and since in this case
>JT, is complete, there is no difference between the notions of necessary and possible preference. In
the case of unrestricted preferences and the possible manipulation problem, we ask whether there
is some different outcome, since they all may be possibly preferred. Since there is some J; with
J CUPQR,(J1,...,Jn—1,J;) if and only if there is some J," with ¢ € UPQR,(J1,...,J;_,,J;*), the
reduction works in all cases. a

Note that this reduction requires a partial desired judgment set of the manipulator for
UPQRq-T—NECESSARY-MANIPULATION, UPQRq-T-POSSIBLE—MANIPULATION, and UPQRq-
HD-MANIPULATION.  Together with Theorem 6 (and the obvious NP upper bounds of
these problems), this implies NP-completeness of UPQR,-HD-MANIPULATION, UPQR,-T-
NECESSARY-MANIPULATION for T € {TR,CR}, and UPQR,-T-POSSIBLE-MANIPULATION for
T € {U,TR,CR} whenever the desired judgment set of the manipulator is incomplete. Alterna-
tively, the reduction given by Endriss et al. [26] in fact shows NP-completeness for PBP-HD-
MANIPULATION even if the desired judgment set of the manipulator is complete. By contrast, if
the manipulator’s desired judgment set is complete, the possible manipulation problem turns out to
be easy to solve for unrestricted and top-respecting preferences.

Proposition 8 For T € {U, TR} and for each rational quota q, 0 < q < 1, UPQR-T-POSSIBLE-
MANIPULATION can be solved in polynomial time if the desired judgment set of the manipulator is
complete.

Proof. This result holds, since a UPQRq—U-POSSIBLE—MANIPULATION instance is positive ex-
actly if there is some premise from the desired judgment set for which the manipulator is deci-
sive, i.e., the collective outcome depends on the decision of the manipulator. For a UPQRq-TR-
POSSIBLE-MANIPULATION instance to be positive, it must additionally be required that the desired
judgment set is not the actual outcome. d

Proposition 9 If the desired judgment set of the manipulator is complete and he tries to exactly
reach his desired outcome, then UPOR,, 0 < g < 1, is strategy-proof.

Proof. Note that the premises are considered independently. Let n be the number of judges. If
some ¢ from the premises is contained in the judgment set J of the manipulator, and ¢ does not have
|n-q+1] (respectively, [n(1 —g)]) affirmations without considering J, it cannot reach the required
number of affirmations if the manipulator switches from ¢ to ~¢ in his judgment set. d

Finally, we state a result on possible strategy-proofness for the premise-based procedure. Note
that this does not contradict the results of Dietrich and List [21], since they impose different condi-
tions on nonmanipulability and nonstrict preferences.

Proposition 10 If the desired judgment set of the manipulator is complete and top-respecting or
closeness-respecting preferences are assumed, then UPQOR,, 0 < g < 1, is possibly strategy-proof.

Proof. In case of possible strategy-proofness, there may be no alternative outcome resulting from
an untruthful individual judgment set of the manipulator that is necessarily preferred to the ac-
tual outcome. If closeness-respecting preferences are assumed, a judgment set that is necessarily
preferred to the actual collective outcome must preserve all agreements between the desired judg-
ment set and the actual outcome. If top-respecting preferences are assumed, a judgment set that is
necessarily preferred to the actual collective outcome must equal the manipulators individual true
judgment set.

Now consider a premise « that is contained in the collective judgment set, but ~¢ is contained
in the desired judgment set. Obviously, it can never be the case that the manipulator switching from



~qa to o would cause ~ o to be in the collective judgment set. Hence there can be no additional
agreement among the premises. Since the desired judgment set is complete and the outcome for the
conclusions depends solely on the outcome of the premises, UPQR,, is possibly strategy-proof in
both cases. a

Proposition 11 Assuming unrestricted preferences, UPQR,, 0 < g < 1, is possibly strategy-proof.

Proof. In case of unrestricted preferences, we know nothing about the preference of the manip-
ulator. Hence, the actual outcome is always possibly preferred to all outcomes that result from a
different individual judgment set of the manipulator. u

4 Control by Bundling Judges

Previous work on control in judgment aggregation (see [6, 7]) considered the problems of control
by adding, deleting, or replacing judges. While adding and deleting judges is inspired by the corre-
sponding control problems in voting, explicit examples for such control actions in judgment aggre-
gation have been given, and the third type, control by replacing judges, was motivated by real-world
examples from international arbitration.

We here introduce another type of control motivated by real-world scenarios, control by bundling
Jjudges, which is remotely akin to control by partitioning voters in voting. A prominent natural ex-
ample for control by bundling judges can be found in European legislation. Certain European leg-
islative acts, such as Directives, give considerable freedom to Member States regarding the concrete
implementation of these acts. Yet, in some cases uniform implementation is crucial, so the basic act
confers implementing powers on the European Commission or the Council of the European Union
to adopt the required implementing acts.* The exercise of implementing powers through the Com-
mission and Council is controlled by the member states through so-called comitology committees in
accordance with previously specified rules.’ The committees are set up by the basic act in question.®
Some of these committees are concerned with such a broad range of issues that they are divided into
subcommittees, each of which is dealing with different issues. When preparing implementing acts
covering several issues, each subcommittee votes on the issues assigned to it, and the implementing
act is shaped according to the decisions of the different subcommittees.”

The formal definition for the Hamming-distance-induced version control by bundling judges is
as follows. In the problem definition below, we will use the notation A = U, <;<; UPOR,(J |q>;7 N>

where UPQR,(J |q,;) 7 Ni) is the collective judgment set obtained by restricting the premises ®,, of the

agenda to its part dbi, in a partition (see the problem definition below) and the set of judges to N; C N.
The formal definition is as follows.

UPQR,-CONTROL BY BUNDLING JUDGES

Given: An agenda @, where the premises are partitioned into k subsets fb},, e ,CIJf,, a complete pro-
file J € #(®)", and a consistent judgment set J C Je J (®) (not necessarily complete).
Question: s there a partition {Ny,...,N;} of the n judges such that

HD(J,AU{p € . |A = ¢}) < HD(J,UPQR,(J))?

4 Article 291 of the Treaty on the Functioning of the European Union.

SRegulation (EU) No 182/2011 of the European Parliament and of the Council of 16 February 2011 laying down the rules
and general principles concerning mechanisms for control by Member States of the Commission’s exercise of implementing
powers (Implementing Acts Regulation).

SRecital 6 of the Preamble of Implementing Acts Regulation.

7One example is the Customs Code Committee, see Articles 1 (1) and 5 (7) (8) of the Rules of procedure for the Customs
Code Committee.



In UPQR,-EXACT CONTROL BY BUNDLING JUDGES we ask, for the same input, whether there
is a partition {Nj,...,N; } of the n judges such that

JCAU{ped. |A = o)}).

Example 12 Consider the same variables a,b,c, and d and the same individual judgment sets as
in Example 4. Let the quota be q = 1/2 for every positive literal in the agenda. Assume that the set
of premises is partitioned into ® = {a,b} and ®) = {c,d}, and that the desired judgment set J
contains

aVb, bVe, —(aVc), and bVd.

Note that this is a consistent judgment set, since it can be reached by accepting b and the negation
of all other variables. The Hamming distance between the current collective outcome and J is 3.
But if we partition the set of judges into two groups, where the first judge forms the first group
and the last two judges are in the second group, the outcome is as shown in Table 3, where the
individual judgments for a single variable not belonging to the group who decides over this variable
are marked with 1 or ). Recall that the negative literal is contained in the collective judgment set
in case of a tie by convention.

Table 3: Example for CONTROL BY BUNDLING JUDGES

a b ¢ d aVb bVc aVc bVd
Judge 1 1 1 9o 9 1 1 1 1
Judge2 P P 0 O 0
Judge 3 r o 1 1 1 1 1 1
UPQRy, 1 1 0 0 = 1 1 1 1

After bundling the judges, the Hamming distance between the collective outcome and J has
decreased to 1. Hence, this is a positive instance of UPQR,,-CONTROL BY BUNDLING JUDGES.
However, since it is not possible to bundle the judges into two groups to obtain exactly J as a subset
of the collective outcome, it is a negative instance of UPQR,,-EXACT CONTROL BY BUNDLING
JUDGES.

Remotely related bundling problems in judgment aggregation have recently been studied by
Alon et al. [1]. However, their setting is different from ours. They consider judgment aggregation
over independent variables, and only the variables are bundled in their bundling attacks. It is as-
sumed that then all judges decide over all bundles by deciding uniformly for all variables contained
in the same bundle. Furthermore, the goal in their model is to always accept all positive variables,
that is, a complete desired judgment set. This setting in fact covers a restriction of judgment aggre-
gation known as optimal lobbying (see the papers by Christian et al. [17], Binkele-Raible et al. [11],
and Bredereck et al. [16]).

To study the computational complexity of bundling judges, we adopt the terminology introduced
by Bartholdi, Tovey, and Trick [5] for control problems in voting and adapt it to judgment aggre-
gation. Let ¢ be a given control type. UPQR,, is said to be immune to control by ¢ if it is never
possible for the chair to successfully control the judgment aggregation procedure via %-control.
UPQR, is said to be susceptible to control by ¢’ if it is not immune. UPQR,, is said to be resistant to
control by ¢ if it is susceptible and the corresponding decision problem is NP-hard. UPQR,, is said
to be vulnerable to control by ¥ if it is susceptible and the corresponding decision problem is in P.

UPQR,-CONTROL BY BUNDLING JUDGES is somewhat similar to the problem UPQR,-
CONTROL BY DELETING JUDGES defined in [6, 7]. We will exploit this in the following proof.
Note that it does not make sense to consider uniform constant premise-based quota rules for control
by bundling judges: If we have a constant number of judges and then partition the group of judges,



bundling them to smaller groups, it wouldn’t be reasonable to have the original constant number of
judges carry over to the smaller groups.

Theorem 13 UPQR,, is resistant to exact control by bundling judges and to control by bundling
judges.

Proof.  The proof will be by a reduction from the related problem UPQR;/,-EXACT CONTROL BY
DELETING JUDGES. Given an agenda ® = ®, U®,, a complete profile J € _# (P)", and a positive
integer k as a bound on the number of judges that may be deleted. The quota 1/2 holds for every
positive literal in the agenda. We assume that the desired judgment set is /. Now, we construct an in-
stance of UPQR, ,-EXACT CONTROL BY BUNDLING JUDGES, resistance for UPQR, ,-CONTROL
BY BUNDLING JUDGES then follows easily. Without loss of generality, we assume that n > k+ 2.
The agenda is @ = ® U {o,~}, and the premises are divided into two subsets. The first one con-
sists of @, and the second one is {&, ~a}. The quota 1/2 again holds for every positive literal in the
agenda. The profile S € ¢ (@’ )+k+1 contains the individual judgment sets from J, each extended
by —a. Furthermore, there are k + 1 new individual judgment sets that each contain ¢ € &, if and
only if ~¢ € J, they each contain ¢, and the conclusions are evaluated accordingly. These k4 1 new
judges will be denoted by N’. The desired judgment set is J' = J U {o}. We show that it is possible
to obtain the desired judgment set J by deleting at most k judges from J if and only if the judges
from S can be bundled into two groups such that the desired outcome is J'.

From left to right, assume that there is a subset T' C J, || T'|| < k, such that UPQR, ,(J\T') = J.
Then the judges can be bundled as follows. The k + 1 new judges and the judges corresponding to
T’ decide over o. Then obviously o is contained in the collective outcome, hence the constructed
instance is a positive one for UPQR; ,-EXACT CONTROL BY BUNDLING JUDGES.

From right to left, assume that the judges can be bundled into N; and N, such that the collec-
tive outcome is J'. Hence, it holds that UPQR,/,(S|on,) = J. We will show that [N~ N'|| < k
and UPQR, /2(S|<I,"N1 ) =J. Since « is contained in the collective judgment set and since there
are only k4 1 judges having o in their individual judgment set, at most k of the initial judges
can be in N,. Due to the premise-based procedure, it is enough to show that UPQR, /2(S\¢P.’N}) =
UPQR/,(S|®, v, ~)- This holds trivially, since for all judges from N it holds that ¢ € ®,, is con-
tained in the individual judgment set if and only if ~¢ € J. d

5 Conclusions and Open Questions

We have studied the complexity of problems related to manipulation and a new control type in
judgment aggregation. In particular, for manipulation, we have extended the results of Endriss et
al. [26] from two specific judgment aggregation procedures to the class of uniform premise-based
quota rules. Moreover, our results also apply to incomplete judgment sets and the notions of top-
respecting and closeness-respecting preferences that are due to Dietrich and List [21]. Table 4 gives
an overview of our results for manipulation problems with uniform premise-based quota rules. In
this table, “DJS” stands for “desired judgment set” and “NP-c” for “NP-complete.”

More specifically, we have introduced and studied the notions of necessary and possible strategy-
proofness in judgment aggregation, which are inspired by the notions of necessary and possible
winner in voting (see the work of Konczak and Lang [36] and Xia and Conitzer [46]). Note that
distinguishing between these notions does not apply to the exact problem variants, nor to manipula-
tion problems based on Hamming-distance-induced preferences. Only one of the cases considered
in Table 4 remains open: the complexity of possible manipulation for complete desired judgment
sets with respect to closeness-respecting preferences.



Table 4: Overview of results for manipulation problems with uniform premise-based quota rules

U TR CR HD EXACT
POSSIBLE-
MANIPULATION NP-c NP-c NP-c
for incomplete DJS
NP-c NP-c
NECESSARY- bl
MANIPULATION POSSIDYY NP-c NP-c

for incomplete DJS strategy-proof

POSSIBLE-
MANIPULATION in P in P ?
for complete DJS
NP-c8 strategy-proof
E&C}iiﬁi\;m\] possibly possibly possibly
for complete DJS strategy-proof strategy-proof strategy-proof

Finally, we have introduced and studied a new control scenario in judgment aggregation, control
by bundling judges, in addition to the previously studied scenarios of control by adding, deleting, or
replacing judges [6, 7].
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