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Abstract

Models of strategic candidacy analyze the incentives of candidates to run in an
election. Most work on this topic assumes that strategizing only takes place among
candidates, whereas voters vote truthfully. In this paper, we extend the analysis
to also include strategic behavior on the part of the voters. (We also study cases
where only candidates or only voters are strategic.) We consider two settings in
which strategic voting is well-defined and has a natural interpretation: majority-
consistent voting with single-peaked preferences and voting by successive elimination.
In the former setting, we analyze the type of strategic behavior required in order
to guarantee desirable voting outcomes. In the latter setting, we determine the
complexity of computing the set of potential outcomes if both candidates and voters
act strategically.

1 Introduction

When analyzing voting rules, the set of candidates is usually assumed to be fixed. In a
pathbreaking paper, Dutta, Jackson, and Le Breton [8] have initiated the study of strategic
candidacy by accounting for candidates’ incentives to run in an election. They assumed that
candidates have preferences over other candidates and defined a voting rule to be candidate
stable if no candidate ever has an incentive not to run. In this model, it is assumed that
every candidate prefers himself to all other candidates. Therefore, the winner of an election
never has an incentive not to run. Non-winning candidates, on the other hand, might be
able to alter the winner by leaving the election. Dutta et al. [8] showed that, under mild
conditions, no non-dictatorial rule is candidate stable.

This result naturally leads to the question of how voting outcomes are affected by can-
didates’ incentives. It is straightforward to model strategic candidacy as a two-stage game.
At the first stage, each candidate decides whether to run in the election or not. At the sec-
ond stage, each voter casts a ballot containing a ranking of the running candidates. When
analyzing this game, an important ingredient is the assumed voter behavior. That is, what
assumptions are made about the votes in the second stage, conditional on the set of running
candidates?

Most papers on strategic candidacy (see Section 2 for an overview) assume that voters
vote truthfully, i.e., their reported ranking for any given subset of candidates corresponds
to their true preferences, restricted to that subset. However, it is well known that this is an
unrealistic assumption [15, 30]. It is therefore natural to account for strategic behavior on
the part of the voters as well. Thus, in the models we consider, both candidates and voters
act strategically.

The technical problem in accounting for strategic voting is that, generally speaking, too
many voting equilibria exist [23, 6]. If we only consider Nash equilibria, then any profile of
votes for which no single voter can change the outcome is an equilibrium. In some cases,
a straightforward refinement rules out many of the equilibria [7, 32, 24]. For example, in
a majority election between two candidates, it is natural to rule out the strange equilibria
where some voters play the weakly dominated strategy of voting for their less-preferred
candidate. But this reasoning does not generally extend to more than two candidates. In
this paper, we focus on two settings that admit natural equilibrium refinements.

The first setting is that of single-peaked preferences [4]. It is well known that, if the



number of voters is odd, this domain restriction guarantees the existence of a Condorcet
winner (namely, the median) and admits a strategyproof and Condorcet-consistent voting
rule (namely, the median rule) [21]. Dutta et al. [8] observed that any Condorcet-consistent
rule is candidate-stable in any domain that guarantees the existence of a Condorcet winner.!
We study the effect of strategic candidacy with single-peaked preferences when the voting
rule is mot Condorcet-consistent. Our motivation is that the voting rules that are most
widely used in practice, plurality, plurality with runoff, and single transferable vote (STV),
may fail to select the Condorcet winner, even for single-peaked preferences. We consider the
class of majority-consistent voting rules, which are rules that, if there is a candidate that is
ranked first by more than half the voters, will select that candidate. This class includes all
Condorcet-consistent rules, but also other rules such as plurality, plurality with runoff, STV,
and Bucklin. For this class, we show that under some assumptions on strategic behavior,
the Condorcet winner does in fact end up being elected (though for other assumptions this
does not hold).

The second setting is voting by successive elimination. This voting rule, which is often
used in committees, proceeds by holding successive pairwise elections. In this setting, there
is a particularly natural notion of strategic voting known as sophisticated voting [13, 22, 20].
The outcomes of sophisticated voting (the so-called sophisticated outcomes) have been char-
acterized by Banks [1] for the case when all candidates run. Dutta et al. [9] extended the
characterization result by Banks to the case of strategic candidacy. We study the compu-
tational complexity of sophisticated outcomes in the latter case and show that computing
the set of sophisticated outcomes is NP-complete.

The paper is organized as follows. We review related literature in Section 2 and introduce
necessary concepts in Section 3. Sections 4 and 5 contain the results for the two settings
described above, and Section 6 concludes.

2 Related Work

Strategic candidacy was introduced by Dutta, Jackson, and Le Breton [8], who showed that
every non-dictatorial voting rule might give candidates incentives not to run. Subsequently,
Ehlers and Weymark [10] and Samejima [28] came up with alternative proofs and extensions
of some of the results of Dutta et al. [8]. Furthermore, models of strategic candidacy have
been extended to set-valued [11, 26] and probabilistic [27] voting rules.

In a companion paper, Dutta, Jackson, and Le Breton [9] focussed on the effects of
strategic candidacy on the class of binary voting rules. They completely characterized the
set of equilibrium outcomes for the successive elimination procedure, a prominent member
of this class. We will make use of this characterization when proving our computational
intractability result in Section 5.

Samejima [29] studied strategic candidacy for single-peaked preferences and character-
ized the class of candidate stable voting rules for this domain. He showed that, under some
mild conditions, a voting rule is candidate stable for single-peaked preferences if and only
if it is a k-th leftmost peak rule for some k < |V|. A k-th leftmost peak rule fixes a single-
peaked axis, identifies each voter with his most preferred candidate (his “peak”), and selects
the peak of the k-th leftmost voter according to the ordering given by the axis. (The median
rule is the special case for k = "T'H)

Also related are two papers that precede Dutta et al. [8]. Osborne and Slivinski [25]
and Besley and Coate [3] study plurality equilibria in a candidacy game where all voters
are potential candidates and running is costly. In both papers, preferences of voters and

ILang et al. [16] extended this result by showing that, in this setting, no coalition of candidates ever has
an incentive to change their strategies as long as the Condorcet winner is running.



candidates are defined via a spatial model (which, in the one-dimensional case, yields single-
peaked preferences). However, the focus of these two papers is different from ours: They are
mainly interested in how the number and spatial position of candidates that run in equilib-
rium is affected by parameters such as entry costs, preferences, and candidates’ utilities for
winning. There is also a number of technical differences to our paper. For example, Osborne
and Slivinski [25] consider a continuum of voters and assume that voters vote truthfully.
And Besley and Coate [3] add a third stage to the two-stage candidacy game by letting
the selected candidate choose a policy from a given policy space. None of the two papers
considers strong equilibria.

Finally, there is a recent paper by Lang, Maudet, and Polukarov [16], which studies for
which voting rules the candidacy game admits pure equilibria under the assumption that
voters vote truthfully. They also consider strong equilibria and show that, for every domain
that guarantees the existence of a Condorcet winner and for every Condorcet-consistent vot-
ing rule, a set of running candidates forms a strong equilibrium if and only if the Condorcet
winner is contained in the set.

3 Preliminaries

This section introduces the concepts and notations that are used in the remainder of the
paper. For a finite set X, let £(X) denote the set of rankings of X, where a ranking
is a binary relation on X that is complete, transitive, and antisymmetric. For a ranking
R € L(X), top(R) denotes the top-ranked element according to R.

3.1 Players and Preferences

Let C be a finite set of candidates and V a finite set of voters. Throughout this paper,
we assume that |V| is odd. The set P of players is given by P = C U V. We assume that
CNV = (.2 Each player p € P has preferences over the set of candidates, given by a ranking
R, € L(C). For all candidates ¢ € C, we assume that the top-ranked candidate in R, is ¢
itself.> A preference profile R = (R,),cp € L(C)F contains preferences for all players. For
a player p € P and two candidates a,b € C, we write a =, b if (a,b) € R, and a >, b if
a>pbanda#b.

For a preference profile R and a candidate ¢, let Vr(c) denote the set of voters that
have ¢ as their top-ranked candidate, i.e., Vg(c) = {v € V : top(R,) = ¢}. Moreover, for a
candidate d # ¢, let Vr(c, d) denote the set of voters that prefer ¢ to d, i.e., Vr(c,d) = {v €
V : ¢ R, d}. Candidate ¢ is a majority winner in R if |Vr(c)| > |V]/2, and ¢ is a Condorcet
winner in R if |Vg(c,d)| > |V|/2 for all d € C'\ {c}. Note that both concepts ignore the
preferences of candidates. Every preference profile can have at most one majority winner
and at most one Condorcet winner. If candidate is a majority winner in R, then it is also a
Condorcet winner in R.

Let <« € C x C be a strict ordering of the candidates. A preference profile R = (R),)pep
is single-peaked with respect to < if the following condition holds for all a,b € C and p € P:
if a 9 b < top(Ry,) or top(R,) < b < a, then b R, a. For a preference profile R that is
single-peaked with respect to <, the median of R is defined as the unique candidate ¢ for
which both 3, cc.oee IVR(a)| < [V[/2 and ) cc.caa IVR(@)| < [V]/2. Tt is well known that
the median is a Condorcet winner in R.

2See Dutta et al. [8, 9] for results without this assumption.

3This assumption is known as narcissism. Without it, scenarios can arise where no candidate has an
incentive to run (see [8], page 1017). We also assume that each candidate prefers himself to the outcome T,
which corresponds to the case where no candidate runs.



Let ¢c1 9c2 <...< ¢y, and let R be a preference profile that is single-peaked with respect
to <. The peak distribution of R with respect to < is the vector of length m whose j-th entry
is the number |Vg(c;)| of voters that rank c; highest.

3.2 Voting Rules

A woting rule f maps a non-empty subset B C C of candidates and a profile of votes
r = (ry)vev € L(B) to a candidate f(B,r) € B. A voting rule f is majority-consistent if
f(B, (Ry)vev) = ¢ whenever ¢ is a majority winner in R|g, and f is Condorcet-consistent if
f(B,(Ry)vev) = ¢ whenever c is a Condorcet winner in R|p. Because majority winners are
always Condorcet winners, (perhaps confusingly) Condorcet-consistency implies majority-
consistency.

A scoring rule is a voting rule that is defined by a sequence s = (s™),,>1, where for each
n €N, s" = (s7,...,8") € R" is a score vector of length n. For a preference profile R
on k candidates, the score vector s* is used to allocate points to candidates: each candidate
receives a score of sé‘? for each time it is ranked in position j by a voter. (Again, preferences
of candidates are ignored.) The scoring rule then selects the candidate with maximal total
score. In the case of a tie, a fixed tie-breaking ordering 7 € L£(C) is used. Prominent
examples of scoring rules are plurality (s = (1,0,...,0)), Borda’s rule (s™ = (n — 1,n —
2,...,0)), and veto (s™ = (0,...,0,-1)).

The plurality winner is a candidate maximizing |Vgz(+)|. Plurality is majority-consistent,
but not Condorcet-consistent. Borda’s rule and veto are not majority-consistent and (hence)
not Condorcet-consistent.

3.3 Candidacy and Voting as a Two-Stage Game

We consider the following two-stage game. At the first stage, each candidate decides whether
to run in the election or not. At the second stage, each voter casts a ballot containing a
ranking of the running candidates. Throughout, we consider complete-information games:
the preferences of the candidates and voters are common knowledge among the candidates
and voters. Hence, we do not need to model games as (pre-)Bayesian and strategies do not
have to condition on the player’s type.

Let S, be the set of strategies of player p. Then for each candidate ¢ € C, the set S, is
given by {0, 1}, with the convention that 1 corresponds to “running” and 0 corresponds to
“not running.” For each voter v € V, the set S, consists of all functions

5,:2¢9 = U L(B)
BCC

that map a subset B C C' of candidates to a ranking s,(B) € L(B). The interpretation is
that s,(B) is the vote of voter v when the set of running candidates is B. In particular,
each S, contains a strategy that corresponds to truthful voting for voter v: this strategy
maps every set B to the ranking R,|g. In general, however, a voter can rank two candidates
differently depending on which other candidates run.

We are now ready to define the outcomes of the game. A strategy profile s = (sp)pep
contains a strategy for every player. Given a strategy profile s and a voting rule f, define
C(s) = {c € C : s, = 1} (the set of running candidates?) and r(s) = (5,(C(8)))vev €
L(C(s))V (the votes cast for this set of running candidates). The outcome oy(s) of s
under f is then given by of(s) = f(C(s),r(s)).

4If C(s) = 0, define of(s) = T. The assumption that every candidate prefers himself to T ensures that
at least one candidate will run whenever candidates act strategically.



3.4 Equilibrium Concepts

Let s = (sp)pep be a strategy profile. For a subset P C P and a profile of strategies

8’5 = (8},) e p for players in P, let (8’5, 5_p) denote the strategy profile where each player

p € P plays strategy s; and all remaining players play the same strategy as in s. Fix a
voting rule f and a preference profile R. For a strategy profile s and a subset P C Pof
players, say that s is (R, f)-deviation-proof w.r.t. P if for all 5’15, there exists p € P such
that

0y(s) =p 0f(5p,5_p)-
For a strategy profile s = (sp)pcp, we sometimes write s = (s¢, sv), where s¢ = (8¢)cec 1S

the profile of candidate strategies and sy = (8,)yev is the profile of voter strategies. We
can now define equilibrium behavior for both candidates and voters.

Definition 1. Let R be a preference profile and let f be a voting rule. A strategy profile
s=(sc,sv) is

e o C-equilibrium for R under f if s is (R, f)-deviation-proof w.r.t. {c} for all ¢ € C;

e a strong C-equilibrium for R under f if s is (R, f)-deviation-proof w.r.t. C' for all
c'Cco;

e a V-equilibrium for R under f if for every s, € {0,1}%, (si, sv) is (R, f)-deviation-
proof w.r.t. {v} for allv € V;

e a strong V-equilibrium for R under f if for every s € {0,1}°, (sk,sv) is (R, f)-
deviation-proof w.r.t. V' for all V' C V.

We omit the reference to R and f if the preference profile or the voting rule is known
from the context. In a C-equilibrium, no candidate can achieve a more preferred outcome by
unilaterally changing his strategy. In a strong C-equilibrium, no coalition of candidates can
change the outcome in such a way that every player in the coalition prefers the new outcome
to the original one. Thus, (strong) C-equilibria correspond to (strong) Nash equilibria when
strategies of voters are assumed to be fixed. For voters, the equilibrium notions are more
demanding: In order to be considered a (strong) V-equilibrium, the strategies of voters are
required to form a (strong) Nash equilibrium for every subset B C C' of running candidates.

It is instructive to relate these definitions to established game-theoretic solution concepts
for extensive-form games, such as subgame-perfect equilibrium and subgame-perfect strong
equilibrium. A strategy profile s is a subgame-perfect equilibrium of a game G if for any
subgame G’ C G, the restriction of s to G’ is a Nash equilibrium of G’, and it is a subgame-
perfect strong equilibrium if for any subgame G’ C G, the restriction of s to G’ is a strong
Nash equilibrium of G’. In the candidacy game, every subgame (other than the game itself)
corresponds to a voting game that takes place after the candidates have decided whether or
not to run. Thus, a proper subgame can be identified with the set of candidates that run
in this subgame.

For candidates, playing a subgame-perfect equilibrium is not a stronger requirement
than playing a Nash equilibrium, because the only subgame in which they play is the entire
game itself. For voters, on the other hand, playing a subgame-perfect equilibrium entails
playing a Nash equilibrium for every possible set of running candidates. Therefore, we have
the following.

Fact 1. A strategy profile is a subgame-perfect equilibrium of the candidacy game if and
only if it is both a C-equilibrium and a V -equilibrium.

For subgame-perfect strong equilibria, one implication is straightforward.



Fact 2. FEvery subgame-perfect strong equilibrium of the candidacy game is both a strong
C-equilibrium and a strong V -equilibrium.

However, the following example shows that the other direction does not hold in general,
because even if coalitions of either one type of players cannot successfully deviate, it is
possible that a mixed coalition including players of both types can.

Example 1. Consider a preference profile with candidates a,b,c and a single voter with
preferences a > b = c. The preferences of candidate b are given by b >y ¢ =y a. The voting
rule f selects the candidate ranked first by the voter whenever all three candidates run; if,
however, at most two candidates run, the lexicographically last one is chosen, ignoring the
voter’s vote. Let s be the strategy profile in which a and ¢ run and the voter votes truthfully.
The outcome of s under f is o5(s) = c¢. We claim that s is (1) a strong C-equilibrium and
(2) a strong V -equilibrium, but (3) not a subgame-perfect strong equilibrium (in fact not
even a strong equilibrium,).

For (1), observe that ¢ has no incentive to participate in any deviation. The same holds
for a, because the outcome will still be ¢ if a deviates (whether b runs or not). And when
all three candidates run, the outcome is a, making candidate b—the only deviator—worse
off. For (2), s is a strong V -equilibrium because the voter makes his favorite candidate win
in the only case where his vote has any influence. For (8), consider the following deviation.
Candidate b deviates to running and the voter deviates to ranking b first whenever b runs.
The outcome will change to b, and both deviators (candidate b and the voter) prefer b to c.

Splitting up the equilibrium definitions into separate requirements for C' and V allows us
to capture scenarios in which only players of one type (candidates or voters) act according
to the corresponding equilibrium notion. In Section 4 we will analyze which combinations of
equilibrium notions yield desirable outcomes. We will present both positive results, stating
that a desirable outcome will be selected whenever a strategy profile meets a certain com-
bination of equilibrium conditions, and negative results, stating that undesirable outcomes
may be selected even if certain equilibrium conditions hold.

In sufficiently general settings, the existence of solutions is not guaranteed for any of the
equilibrium concepts in Definition 1.> However, for all the positive results in Section 4, we
also show that every preference profile admits a strategy profile that meets the corresponding
equilibrium conditions.

4 Majority-Consistent Voting Rules and Single-Peaked
Preferences

In this section, we assume that preference profiles are single-peaked and that the order <
witnessing single-peakedness is given. (If the order is not part of the input, it can be
computed in polynomial time [2, 12].) Note that our definition of single-peakedness in
Section 3.1 also requires the preferences of candidates to be single-peaked with respect to <.
Given that the preferences of voters are single-peaked with respect to <, this does not appear
to be an unreasonable assumption.

We are interested in the following question: which requirements on the strategies of play-
ers are sufficient for the Condorcet winner (which is guaranteed to exist) to be the outcome?
For Condorcet-consistent rules, the answer to this question is relatively straightforward [16].

5Subgame-perfect equilibria (i.e., strategy profiles that are simultaneously a C-equilibrium and a V-
equilibrium) are guaranteed to exist if one allows for mized strategies and extends the preferences of players
to the set of all probability distributions over C' U {T} in an appropriate way.



Therefore, we are mainly interested in voting rules that are majority-consistent, but not
Condorcet-consistent. The simplest and most important such rule is plurality.

Since plurality is not a k-th leftmost peak rule, the result by Samejima [29] (see Sec-
tion 2) implies that there exist profiles where some candidates have an incentive not to run
(assuming truthful voting). Indeed, it is easy to construct such a profile.6

Example 2. Consider a single-peaked preference profile with candidates a < b < ¢ and peak
distribution (3,2,4). Under truthful voting, the plurality winner is c. However, if candidate a
does not run, the three voters in Vi(a) rank candidate b first, making b the plurality winner.
By single-peakedness, candidate a prefers b to c.

This example also shows that plurality can fail to select the Condorcet winner when all
candidates run and all voters vote truthfully. The next example shows that requiring both
candidates and voters to play subgame-perfect equilibrium strategies is still not sufficient
for the Condorcet winner to be chosen.

Example 3. Consider a single-peaked preference profile with candidates a <b<c<d<e
and peak distribution (11,3,3,3,3). The Condorcet winner is b. Let s be the strategy profile
in which s, =1 for all x € {a,b,c,d,e} and s, is “truthful voting” for all voters v. Then
Oplurality () = a and no candidate other than a can change that outcome by unilaterally
deviating. Therefore, s is a C-equilibrium. To see that s is also a V-equilibrium, we need
to check that “truthful voting” is deviation-proof for every subset of running candidates.
Deviation-proofness clearly holds whenever at most two candidates run. If at least three
candidates run, single-peakedness implies that the leftmost among the running candidates
has a plurality score of at least 11, whereas each other running candidate has a score of at
most 9. Thus, no voter can change the outcome by unilaterally deviating.

We go on to show that the Condorcet winner will be chosen if we require stronger
equilibrium notions. We first analyze strong V-equilibria. Our result does not require
single-peaked preferences; it holds for a strictly larger class of preference profiles.”

Theorem 1. Let R be a preference profile with Condorcet winner ¢* and let f be a majority-
consistent voting rule.

(i) If R|p has a Condorcet winner for every nonempty subset B C C, then there exists a
subgame-perfect strong equilibrium (and hence a strategy profile that is both a strong
C-equilibrium and a strong V -equilibrium) for R under f in which all candidates run.

(i1) If s is a strong V-equilibrium for R under f and s.~ =1, then of(s) = c*.

Proof. For (i), denote by cg € B the Condorcet winner in R|g. Let s be a strategy profile
where all candidates run and all voters rank cp first whenever the set of running candidates
is given by B. Hence, of(s) = ¢*. We claim that s is a subgame-perfect strong equilibrium
for R under f. In order to prove this claim, we need to show that for every subgame, there
is no beneficial deviation for any coalition.

First, consider the subgame that is given by the entire game itself. Suppose, for the
sake of contradiction, that there is a coalition P = C’ U V" of candidates and voters that
can change the outcome to some a # ¢* and that all players in P prefer a to c¢*. Let

s’ = (s’5,5_p) denote the strategy profile that results from this deviation. Observe that

¢* ¢ P, because ¢* =, a. Therefore, ¢* is still running under s’ and all non-deviating

6We often simplify examples by specifying the peak distribution only. This piece of information is clearly
sufficient to identify both the Condorcet winner and, in the absence of ties, the plurality winner.

7In particular, note that Theorem 1 does not make any assumptions on the preferences of candidates
(other than narcissism).



voters V' \ V' still rank ¢* highest under s’. That means that the number |V’| of deviating
voters has to be greater than |V|/2, as otherwise majority-consistency of f would yield
of(s’") = c¢*. But then V' is a majority of voters, each preferring a over ¢*. This contradicts
the assumption that ¢* is a Condorcet winner.

Second, consider a subgame that arises after the candidates have chosen whether or not
to run. Let B C C be the set of candidates that run in this subgame. If B = (), the
outcome is T and no coalition of voters can change the outcome. If B # (), all voters rank
cp first by the definition of s. By an argument analogous to the one above, the existence
of a successfully deviating coalition of voters would violate the assumption that cp is the
Condorcet winner in R|g. Therefore, s is a subgame-perfect strong equilibrium.

For (i1), let s be a strong V-equilibrium for R under f with s.« = 1. Assume for the sake
of contradiction that os(s) = a # ¢*. We will show that s is not a strong V-equilibrium,
by means of the following deviation. Let P = Vr(c*,a) be the set of voters that prefer ¢*
over a and let " = (s%;,s_p) be the strategy profile in which all voters in P rank c* first
whenever ¢* runs. Since s.- = 1 and |P| = [Vr(c*,a)| > |V|/2, majority-consistency of f
implies of(s") = ¢*. Moreover, ¢* >, a for all p € P by the definition of P. Therefore,
s is not (R, f)-deviation-proof w.r.t. P, contradicting the assumption that s is a strong
V-equilibrium. O

We remark that part (i) of Theorem 1 can be generalized by observing that it is suffi-
cient for f to satisfy the following condition, which is considerably weaker than majority-
consistency:

Whenever a set V' C V of voters forms a majority (i.e., |V’| > |V|/2), then for
every candidate a € C that is running and every profile of votes for voters in
V \ V', the voters in V' can vote in such a way that candidate a is chosen.

It can be shown that all unanimous C2 functions [14] satisfy this property.
The following corollary summarizes the consequences of Theorem 1 for single-peaked
preference profiles.

Corollary 1. Let R be a single-peaked preference profile with Condorcet winner ¢* and let f
be a majority-consistent voting rule.

(i) There exists a subgame-perfect strong equilibrium (and hence a strategy profile that is
both a strong V -equilibrium and a strong C-equilibrium) for R under f.

(ii) If s is a strong V -equilibrium and a C-equilibrium (strong or not) for R under f, then
of(s) = c*.

Proof. For every subset B C C of candidates, R|p is still single-peaked and thus has a
Condorcet winner. Therefore, (7) immediately follows from the first part of Theorem 1.
For (ii), assume that s is a strong V-equilibrium. Then, the second part of Theorem 1
implies that the Condorcet winner ¢* will be the outcome whenever he runs. It follows that,
holding the strategies of the voters fixed, the strategy “running” (s. = 1) strictly dominates
“not running” (s, = 0) for ¢*. Since in a C-equilibrium (strong or not), no candidate plays
a strategy that is strictly dominated when the voters’ strategies are held fixed, ¢* is running
(and winning) in any C-equilibrium. O

Thus, the Condorcet winner will be chosen if voter strategies form a strong V-equilibrium
and candidate strategies satisfy a minimal degree of rationality. Messner and Polborn [19]
show a similar result for the plurality rule when all candidates are assumed to run.

We provide two examples that show that the statements of Corollary 1 do not hold for
voting rules that are not majority-consistent.



Example 4. Let R be a single-peaked preference profile with candidates a < b <4 ¢ and
peak distribution (5,0,4). If f is Borda’s rule, there does not exist a strong V -equilibrium
(and hence no subgame-perfect strong equilibrium). To see this, consider the case where all
candidates run. Observe that in any strong V -equilibrium, the outcome would have to be a.
(Suppose the outcome is not a. Then, the five voters in Vg(a) can jointly deviate and change
the outcome to a. They can do this by having one voter voting a = b = ¢, and the remaining
four voters voting exactly the opposite rankings of the voters in Vr(c).) However, there is
no strong V-equilibrium that yields outcome a. This is because the voters in Vgr(c) prefer
both other alternatives to a, and—no matter how the voters in Vg(a) vote—the voters in
Vr(c) can jointly deviate and achieve an outcome other than a. (One of b and ¢ will obtain
a score of at least 3 from the voters in Vr(a). Without loss of generality, suppose it is b.
Then the voters in Vg(c) can all vote b = ¢ > a, making b the winner.)

Example 5. Let R be a single-peaked preference profile with candidates a < b < ¢ and five
voters: three voters have preferences a > b > ¢ and two voters have preferences b > ¢ > a.
The Condorcet winner is a. Let f be the voting rule veto® and let s be the strategy profile
where all candidates run and all voters vote truthfully. Then, of(s) = b. Moreover, s is a
strong C-equilibrium and a strong V -equilibrium. The former holds because any deviation
involving a does not change the outcome (provided b still runs), and ¢ can only change the
outcome to the less preferred alternative a. For the latter, the only interesting case is when
all three candidates run. In this case, the two voters in Vr(b) have no incentive to deviate
from truthful voting (their favorite candidate is winning) and there is no way for the three
voters in Vgr(a) to jointly deviate and achieve outcome a. (They can change the outcome
to ¢ by voting a > ¢ > b, but they prefer b to c.) It can furthermore be shown that, when all
candidates Tun, every strong V -equilibrium yields outcome b.

We now move to the case where candidates play a strong equilibrium. If voters vote
truthfully, the outcome will be the Condorcet winner.

Theorem 2. Let R be a single-peaked preference profile with Condorcet winner ¢* and let f
be a majority-consistent voting rule.

(i) There exists a strong C-equilibrium for R under f where all voters vote truthfully.

(ii) If s is a strong C-equilibrium for R under f where all voters vote truthfully, then
of(s) = c*.

Proof. For (1), let s be the strategy profile in which only ¢* runs and all voters vote truthfully.
We show that this is a strong C-equilibrium for R under f. Suppose, for the sake of
contradiction, that C C C'is a coalition of candidates that can, by changing its strategies,
make alternative a # ¢* win, and moreover that all candidates in C prefer a to ¢*. Define
C-={ceC:cac}and C* = {c € C:c* <c}, and without loss of generality suppose
that @ € C~. Because candidates’ preferences are single-peaked and they rank themselves
first, it follows that ¢ C C'~. But this implies that still, no candidate in C* runs. Hence, all
voters with top(R,) € CTU{c*} still rank ¢* first (since they vote truthfully), and because f
is majority-consistent, it follows that ¢* wins. This gives us the desired contradiction.

For (ii), let s be a strong C-equilibrium for R under f where all voters vote truthfully.
Consider the set C(s) of candidates that are running under s. Define C; = {c¢ € C(s) :
cac*} and CF = {c € C(s) : ¢* < ¢}. Assume for the sake of contradiction that of(s) =
a # c¢*. Without loss of generality, suppose that a € C; . Consider the set C of candidates

8Veto does not only violate majority-consistency, but also the weaker property defined after Theorem 1.



given by C' = Cf U {¢*}. Define Se = (5c)eee DY

, 1 ife=c¢*
SC = .
0 ifceCyf
and observe that of(sj;,s_s) = ¢*. The reason for the latter is that (1) the set of vot-

ers v with top(R,) = ¢* or ¢* < top(R,) forms a majority, (2) all of these voters sat-
isfy top(Ry|o(s,.s_s)) = ¢, and (3) all voters vote truthfully by assumption. Moreover,

c ~
single-peakedness implies that all candidates in C' prefer ¢* to a. Therefore, s is not (R, f)-

deviation-proof w.r.t. C, contradicting the assumption that s is a strong C-equilibrium. [

Similar to the case of Theorem 1, we now provide examples that show that Theorem 2
cannot be generalized in certain ways. The first example shows that Theorem 2 does not
hold for Borda’s rule (which is not majority-consistent).

Example 6. Consider a single-peaked preference profile with candidates a < b < ¢ and five
voters: three voters have preferences a = b > ¢ and two voters have preferences b > ¢ = a.
The Condorcet winner is a. Let s be the strategy profile where s, = sp = s = 1 and s,
is “truthful voting” for all voters v. It is easily verified that s is a strong C-equilibrium
and 0Borda(s) = b. In fact, it can be checked that the Condorcet winner is not chosen in
any strong C-equilibrium with truthful voting. (The only other strong C-equilibrium under
truthful voting has candidates b and ¢ running and also yields outcome b.)

The second example shows that Theorem 2 does not hold if the preferences of candidates
are not single-peaked with respect to the given order.

Example 7. Consider the following preference profile with candidates a,b,c and 14 voters.

4 4 6

a b c

b a b
c

The preferences of the candidates are such that a prefers ¢ over b and b prefers ¢ over a.
Whereas the preferences of the voters are single-peaked with respect to the ordering a < b<c,
this is not true for the preferences of the candidates. (Therefore, this profile is not single-
peaked according to the definition in Section 3.1.) The Condorcet winner is b and the
Condorcet loser is c. Let s be the strategy profile where all candidates run and all voters
vote truthfully. It is easily verified that s is a strong C-equilibrium and Opiyraiity(s) = c. In
fact, “everybody running” is the only strong C-equilibrium under truthful voting.

Since Theorem 1 already covers the case where both voters and candidates play a strong
(subgame-perfect) equilibrium, only one case is left to consider: candidates playing a strong
C-equilibrium, and voters merely playing a V-equilibrium. The following example shows
that these requirements are not sufficient for the Condorcet winner to be chosen.

Example 8. Consider a single-peaked preference profile with candidates a < b < ¢ and peak
distribution (1,1,1). The Condorcet winner is b. Let s be a strategy profile with s. = 1 and
voter strategies s, that satisfy

c ifce B
top(Ry|B) otherwise

top(sy(B)) = {



strong
V-equilibrium

V-equilibrium

truthful voting
(su(B) = Ry|B)

strong
C-equilibrium

yes

(Corollary 1)

no

(Example 8)

yes

(Theorem 2)

C-equilibrium

yes

(Corollary 1)

no

(Example 3)

no

(Example 3)

naive candidacy

(sc=1)

yes

(Theorem 1)

no

(Example 3)

no

(Examples 2 & 3)

<

Table 1: Overview of results. A table entry is “yes” if every strategy profile that satisfies
the corresponding (row and column) conditions yields the Condorcet winner under every
majority-consistent voting rule. Moreover, for every “yes” entry, a strategy profile satisfying
the conditions is guaranteed to exist.

for each B C C. That is, all three voters rank c first whenever ¢ runs, and vote truthfully
otherwise. Obviously, oplumh-ty(s) = c. We claim that s is both a V -equilibrium and a strong
C-equilibrium. For the former, we distinguish two cases: If ¢ runs, then all voters rank c
first and no wvoter can change the outcome by unilaterally deviating. If ¢ does not run,
then at most two candidates run and no wvoter can benefit by voting for his less preferred
candidate. For the latter, no coalition of candidates can change the outcome in such a way
that all members of the coalition prefer the new outcome to c. (Such a coalition would need
to include candidate ¢, who has no incentive to deviate.)

The phenomenon illustrated in this example is perhaps somewhat surprising: Assuming
that candidates play a strong C-equilibrium, both truthful voting and strong V-equilibrium
voting yields the desirable outcome; however, V-equilibrium voting—a notion of sophisti-
cation that might appear to be “in between” the other two notions—does not. Table 1
summarizes the results of this section.

5 Computing the Candidate Stable Set

In this section, we study a voting rule known as voting by successive elimination (VSE). In
particular, we will be interested in the computational complexity of computing outcomes
under VSE if both candidates and voters act strategically. We do not require single-peaked
preferences, but in order to avoid majority ties, we still assume that the number of voters
is odd. VSE takes as input an ordering o € L(C) of the candidates. The rule proceeds
by holding successive pairwise elections. In a pairwise election, there are two candidates a
and b and every voter v € V' votes for exactly one of the two candidates. Candidate a wins
the pairwise election if the number of voters voting for a is strictly greater than |V|/2.

For a given subset B C C' of candidates with |B| > 2, VSE works as follows. Label the
candidates such that o|p = (c1,c2,...,¢p)). In the first round, there is a pairwise election
between ¢; and c;. The winner of this election proceeds to the second round, where he
faces c3. The winner of this election then faces ¢4, and so on. VSE selects the winner of
round |B| — 1.



Truthful voting for a voter v with preferences R, corresponds to the strategy that, in
every pairwise election between two candidates a and b, the voter votes for top(Ry|1qpy)- It
is well known that, under VSE, voters can benefit from voting strategically. Moreover, there
is a particularly natural notion of strategic voting called sophisticated voting [13, 22, 20].
Sophisticated voting assumes that voters’ preferences are common knowledge and applies
a backward induction argument: In the last round of VSE, there is no incentive to vote
strategically and thus the majority winner of the remaining two candidates will be chosen.
Anticipating that, in the second-to-last round, voters are able to compare which outcome
would eventually result from either one of the current candidates winning this round, and
vote accordingly; etc. In the absence of majority ties, sophisticated voting yields a unique
winning candidate, the sophisticated outcome. The sophisticated outcome corresponds to
the outcome that results when voters iteratively eliminate weakly dominated strategies.

In order to determine both the truthful outcome and the sophisticated outcome, it
is sufficient to know the truthful outcome of pairwise elections between all pairs of the
candidates. This information is captured by the majority relation. For a preference profile R,
the majority relation Ry C C' x C' is defined by

a Ry b if and only if Vg(a,b) > %
The majority relation of a preference profile R (with an odd number of voters) can be
conveniently represented as a tournament, i.e., a directed graph T = (C,>) with a > b if
and only if a Ry b.

Shepsle and Weingast [31] defined an algorithm that, given a majority relation Ry, an
ordering o, and a subset B C C of the candidates, computes the sophisticated outcome
when the set of running candidates is given by B. Moreover, Banks [1] characterized the
set of candidates that, for given Ry, and B C C, are the sophisticated outcome for some
ordering o. This set is known as the Banks set BA(B, Rys). In the notation® developed
in this paper, BA(B, Rys) corresponds to |J, ovsg(s)(s), where s, = 1 if ¢ € B and s, is
“sophisticated voting” for all voters v € V.

Dutta et al. [9] analyzed how the set of sophisticated outcomes changes when strategic
candidacy is accounted for. Consider a strategy profile s = (s¢, sy), where s¢ = (S¢)cec
and sy = (8y)vev and say that s is an entry equilibrium if it is a C-equilibrium and s,
is “sophisticated voting” for all voters v € V. The candidate stable set (CS) is defined as
the set of all candidates that are the sophisticated outcome for some collection of candidate
preferences and for some ordering o, when the set of running candidates is given by C(s)
for some entry equilibrium s.

More formally, for a preference profile R = (R,)pep, define R = (Rc)cec and Ry =
(Ry)vev. For an ordering o, let F(R,0) = E(R¢, Ry, o) denote the set of entry equilibria
of R when the order is 0. Then, the candidate stable set of Ry is given by

CS(Ry) = U U U OVSE(o)(8)-

g Re SGE(Rc,Rv,U)

Thus, the candidate stable set is the analog of the Banks set when strategic candidacy is
taken into account. Since CS(Ry) only depends on the majority relation Rp; of R, we
usually write CS(Ryy).1°

Dutta et al. [9] have provided an elegant characterization of the candidate stable set in
terms of the majority relation Ry;. In order to present this characterization, we need some

9Strategies, outcomes, and equilibrium notions for VSE can be defined similarly to the definitions in
Section 3. We omit the details since they are not important for our result. For formal definitions of the
concepts considered in this section, we refer to Dutta et al. [9].

10Recall that the majority relation is independent of the preferences of candidates.



notation. Let H(a, Rps) be the set of all subsets B C C such that Rys|pxp is transitive
and a € B is the Condorcet winner in R|g. Furthermore, say that a covers b if a Ry b and
for all c € C'\ {a, b}, b Ry ¢ implies a Ry c.

Proposition 1 (Dutta et al. [9]). The candidate stable set is characterized as
CS(Ry)={a€ C:3H € H(a,Ry) s.t. Yo ¢ H 3c € H s.t. b does not cover c}.

We use this characterization to show that computing the candidate stable set is in-
tractable. More precisely, we show that the following decision problem is NP-complete:
Given a preference profile R and a candidate ¢ € C, is it the case that ¢ € CS(Rps)?

Theorem 3. Computing the candidate stable set is NP-complete.

Proof. Membership in NP is straightforward: for a fixed candidate, we can simply guess a
set H and verify whether it satisfies the conditions in Proposition 1. For hardness, we give
a reduction from 3SAT and adapt a construction that was used by Brandt et al. [5] to show
that the Banks set is NP-hard to compute.

An instance!! of 8SAT is given by a Boolean formula ¢ = (zi Va2 Vad)A--- A (zl, V

22,V ad), where each z € {a}, 22, 23: 1 <i < m} is a literal. We assume the literals to be

indexed and by X; we denote the set {z}, 2%, 2?}. Formula ¢ is satisfiable if there is a tuple
(@1, ...y @) In X <j<m Xi such that v/ = v for no v,v’ € {z1,...,2m}.

Given a formula ¢ = (z1 Va2 Vvad)A--- A (zl, Va2 vad), we define a tournament
T, = (C,>). (We will later invoke McGarvey’s theorem [17], which guarantees the existence
of a preference profile whose majority relation coincides with >.)

The set of nodes is given by C = {¢*} UAUBUU; U---UUsyp—_1, where A =
{a1,...,a9m-1}, B={b1,...,bam—1}, and for all j < 2m — 1,

X, ifj=2i-1,
Ui= {{yj} ifj‘ - 2.

The relation >~ satisfies the following properties for all u; € U; and u; € Uj:

e a; > a; if and only if ¢ < j,

e b; = b; if and only if ¢ < 7,

e a; > b; if and only if i = j,

e a; > c"and b; > c¢* for all i <2m — 1,

o ¢* > u; foralli <2m —1,

e u; > a; if and only if ¢ = j,

o by~ wu; foralli,j <2m—1,

e u; > uj; if i < j and at least one of ¢ and j is even.
For all x € X; and 2’ € X; with ¢ < j, we furthermore have

o v 1o if 2’ #Z, and

o 2/ =zifa =1z



Figure 1: Tournament T, for the formula ¢ = (-pVsVg)A(pVsVr)A(pVqgV-r). A
directed edge from node u to node v denotes u > v. All omitted edges point downwards or
(in the case where two nodes are located at the same height) to the left.

Finally, there is a >-cycle z; = z7 > z? > x} for all i < m. An example of a tournament 7,
for a specific formula ¢ is shown in Figure 1.

We now apply McGarvey’s theorem [17] and let R be a preference profile on candidate
set C' such that the majority relation RY, coincides with >. Note that McGarvey’s theorem
is constructive and that the size of R¥ is polynomial in the size of ¢.

We now show that the formula ¢ is satisfiable if and only if ¢* € CS(RY,;). For the
direction from left to right, assume that ¢ is satisfiable. Then there is a tuple (z1,...,Zm)
in X <;<m X; such that such that 2’ = & for no z,2’ € {z1,...,2m}. Define

H = {$17...,$m} U {yg,y4,...,y2m_2}u {C*}

By the definition of >, ¢* is the Condorcet winner in R¥|y and H does not contain any
cycles. Therefore, H is an element of H(c*, R%,). Furthermore, no candidate in C'\ H
covers all candidates in H. To see this, observe that such a candidate, call him d, would
have to satisfy d > h for all h € H. This implies that d € {b1,...,b2,m—1}. But no candidate
in {by,...,bam_1} covers all candidates in H because, for each i < 2m — 1, candidate b;
does not cover the unique candidate in the set H NU;. Therefore, Proposition 1 yields that
c* € CS(RY)).

For the direction from right to left, assume that ¢* € CS(RY,). By Proposition 1, there
exists H € H(c*, RY;) such that no candidate outside H covers all candidates in H. We
claim that H satisfies the following properties.

(Z) Hg{c*}UUlU...UUmel,
(1) HNU; # 0 for all j <2m —1, and

(#7) x' # T for all x,2' € H (i.e., there does not exist a literal x such that H contains both
a node corresponding to z and a node corresponding to Z).

For (i), observe that ¢* = h is necessary for h € H \ {¢*}. For (i), suppose that
HNU; =0 for some j < 2m — 1. Then, b; covers all candidates in H. For (iii), suppose
x' = T for some x,x’ € H. Let i,j < m be such that z € X; and 2’ € X;. The assumption

M Following [5], we assume that for any two literals z and y in the same clause, neither 2 = y nor = = §.



in Footnote 11 implies ¢ # j, and we can without loss of generality assume ¢ < j. Then,
there is a =-cycle x > y9; > o’ > x, violating transitivity of R?|gxm.

Define the tuple (21,...,2m) € X <i<m Xi by ; = HN X, for all i < m. Property (i)
ensures that (z1,...,,,) is well defined and (7ii) implies that (x1,...,,,) satisfies ¢. [

6 Conclusion

We have analyzed the combination of strategic candidacy and strategic voting in two set-
tings that allow meaningful voting equilibria. In both settings, the set of equilibrium out-
comes under strategic candidacy (given that voters are sufficiently sophisticated) has an
elegant characterization: the Condorcet winner (in the single-peaked, majority-consistent
rule setting with strong V-equilibria or with truthful voting and strong C-equilibria) and
the candidate stable set (in the VSE setting with sophisticated voting). Whereas Condorcet
winners are easy to compute, we have shown that the candidate stable set is computationally
intractable.

It seems likely that the positive results in Section 4 extend to settings where preferences
are single-peaked on a tree. It would also be interesting to check whether similar results
can be obtained for related domain restrictions such as single-crossing or value-restricted
preferences.

The positive results in Section 4 rely on finding the right level of equilibrium refinement
(strong V-equilibrium, or strong C-equilibrium with truthful voting). If we move away from
restricted domains, is there another type of equilibrium refinement [7, 32, 24] that allows us
to arrive at meaningful equilibria by ruling out “unnatural” ones?

Equilibrium dynamics [18] is another topic for future research. For example, in the
setting with single-peaked preferences and a majority-consistent rule, are there natural
dynamics that are guaranteed to lead us to an equilibrium choosing the Condorcet winner?

On a higher level, one might wonder to what extent the phenomena exhibited in can-
didacy games can be related to other problems that involve altering the set of candidates,
such as control problems, cloning, and nomination of alternatives.
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