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Abstrat

We onsider the problem of alloating indivisible goods to agents who have preferenes over

the goods. In suh a setting, a entral task is to maximize soial welfare. In this paper, we

assume the preferenes to be additive, and measure soial welfare by means of of the Nash

produt. We fous on the omputational omplexity involved in maximizing Nash produt

soial welfare when sores inherent in lassial voting proedures suh as Approval or Borda

voting are used to assoiate utilities with the agents' preferenes. In partiular, we show that

the maximum Nash produt soial welfare an be omputed e�iently when Approval sores

are used, while for Borda and Lexiographi sores the problem beomes NP-omplete.

1 Introdution

The alloation of goods (items, resoures) to agents who have preferenes over these goods (multiagent

resoure alloation) is a fundamental problem of eonomis, and, in partiular, soial hoie theory.

This problem has been takled in various senarios (see, e.g., Chevaleyre et al. (2006) for a survey),

where, e.g., we distinguish between divisible and indivisible goods, and entralized and deentralized

approahes. Here, we onsider the ase of indivisible and nonshareable goods to be distributed among

agents who report their preferenes to a entral authority. Typially, individual utilities of (bundles

of) items are assoiated with the preferenes over the items. In this work, this is done via numerial

sores used in voting rules. Now, a major task is to �nd an alloation whih maximizes the soial

welfare ahieved. Di�erent notions of soial welfare have been introdued, the most important being

utilitarian, egalitarian, and Nash Produt soial welfare (f. Brandt et al. (2013)).

Loosely speaking, utilitarian soial welfare of an alloation is given by the sum of the agents' utilities

resulting from the alloation. A more �ne-grained approah is egalitarian soial welfare, where the

lowest of the agents' individual utilities in a given alloation is onsidered. In a ertain sense, the Nash

produt soial welfare links these two approahes: by measuring the produt of the agents' utilities

in an alloation, maximizing the Nash produt soial welfare targets at a �balaned� alloation (see

also Nguyen et al. (2014)). In partiular, the Nash produt inreases when inequality among two agents

is redued (given the respetive hange is mean-preserving; see also Ramezani & Endriss (2010)). For

further desirable properties that are satis�ed by the Nash produt, suh as independene of individual

sale of utilities, we refer to Moulin (2003).

A entral question in maximizing soial welfare is the omputational omplexity involved. We assume

that the agents have additive preferenes, i.e., for eah agent, the utility of a set of goods is the sum

of the utilities of the single goods it ontains.

Clearly, maximizing utilitarian soial welfare is an easy task � simply alloate eah item to an agent who

it yields the highest utility for (see also Brandt et al. (2013)). In ontrast, it is known that maximizing

egalitarian soial welfare and Nash Produt soial welfare are NP-omplete for additive utilities and

general soring funtions (Roos & Rothe (2010)). Very reently, Baumeister et al. (2013) have shown

that maximizing egalitarian soial welfare remains NP-omplete for a number of prototypial soring

funtions: Quasi-Indi�erene, Borda, and Lexiographi soring. On the positive side, it is known

that the maximum egalitarian soial welfare an be omputed in polynomial time for Approval sores

(Golovin (2005)). To the best of our knowledge, the omputational omplexity of maximizing Nash

produt soial welfare under soring funtions suh as Approval, Borda, or Lexiographi soring



has not been onsidered yet. In this paper, we investigate the omputational omplexity involved in

maximizing Nash produt soial welfare under these lassial soring funtions.

Related work and our ontribution. In the ontext of maximizing soial welfare in multiagent

resoure alloation, omplexity results have been ahieved with respet to di�erent types of utility

representation: the bundle form, k-additive form, or straight-line programs. For the bundle form

representation, NP-ompleteness results for utilitarian (Chevaleyre et al. (2008)), egalitarian (Roos

& Rothe (2010)), and Nash produt soial welfare (Roos & Rothe (2010) and Ramezani & Endriss

(2010)) are known. For straight-line programs, Dunne et al. (2005) show that maximizing utilitar-

ian soial welfare is NP-omplete, while Nguyen et al. (2014) show that maximizing soial welfare is

NP-omplete both for the egalitarian and Nash produt approah. Both maximizing egalitarian soial

welfare and maximizing Nash Produt soial welfare turn out to be NP-omplete for 1-additive, i.e.,
additive utilities already (Lipton et al. (2004) and Roos & Rothe (2010)). In these works, redutions

from Partition are given, whih do not imply the NP-ompleteness for any of the soring funtions

onsidered in our work. Given additive utilities, very reently Baumeister et al. (2013), besides many

other results, have proven that maximizing egalitarian soial welfare is NP-omplete for Borda, Lexi-

ographi, and Quasi-Indi�erene soring.

In this paper, we show that maximizing Nash Produt soial welfare is NP-omplete for Borda and

Lexiographi sores, whereas it is polynomially solvable for Approval sores. The omputational

omplexity involved when Quasi-Indi�erene sores are used is still open.

2 Formal Framework

2.1 Preliminaries

Let R = {r1, r2, . . . , rm} be a set of m indivisible resoures (items) and let A = {a1, . . . , an} be a set

of n agents. An alloation is a mapping that assigns to eah agent a subset of resoures suh that eah

resoure is handed to exatly one agent. Formally, an alloation P is a mapping P : A → 2R with

⋃

a∈A P (a) = R and P (ai) ∩ P (aj) = ∅ whenever i 6= j.

Now, in our model, we start with ordinal inputs, i.e., the agents rank resoures, and map these ranks

to numerial sores then. Note that we do not laim that these numerial sores are equivalent or at

least lose to the agents' atual utilities. However, starting with numerial inputs instead would have

several drawbaks (see also Baumeister et al. (2013)); e.g., often it is easier for agents to rank items

instead of assoiating numerial values with eah single item, espeially in ontexts where money is

not a key fator. Next, as also pointed out in Baumeister et al. (2013), the use of numerial inputs

has the severe disadvantage that it insinuates omparability of interpersonal preferenes. Finally, note

that our approah is very ommon in voting theory, as in fat it resembles the way that positional

soring rules proeed

1

.

In partiular, we assume that agents have preferenes over the single resoures. The preferenes are

expressed by means of strit orders ≻ai
over R, whih are summarized by the n-tuple π = (≻a1 ,≻a2

, . . . ,≻an
) alled pro�le. We denote by rankai

(r) the rank of resoure r in the ranking of agent ai.
We adopt sores used in voting proedures to evaluate these preferenes by means of utility funtions

ua : R → Q, a ∈ A. We assume that the utility funtions are additive, i.e., for any subset R′ ⊆ R we

have ua(R
′) =

∑

r∈R′ ua(R
′). For the sake of readability, we may write ua(P ) instead of ua(P (a)).

Given a pro�le π, we onsider the following types of sores (where r ∈ R):

• k-approval sores: For eah agent a ∈ A,

ua(r) =

{

1 if ranka(r) ≤ k

0 otherwise

1

Obviously, with the lear di�erene that we are �nally interested in alloations instead of winners of eletions.



• Borda sores: For eah agent a ∈ A, ua(r) = m+ 1− ranka(r).

• Lexiographi sores: For eah agent a ∈ A, ua(r) = 2m−ranka(r)
.

Given k-approval sores, for eah a ∈ A, ua partitions the set R into a set Sa := {r ∈ R : ua(r) = 1}
(the set of resoures agent a approves of) and a set Sc

a := {r ∈ R : ua(r) = 0} (the set of resoures agent
a disapproves of). Conversely, speifying the set Sa (of size k) for eah agent a uniquely determines the

orresponding k-approval sores. More generally (and slightly abusing notation), given a set S(a) ⊆ R
for eah a ∈ A, Approval sores are given by ua(r) = 1 for r ∈ S(a) and ua(r) = 0 for r ∈ R \ S(a).

Given an alloation P , the Nash produt soial welfare for P is given by swN (P ) =
∏

1≤i≤n uai
(P ).

2.2 Problem De�nitions

In this paper, we onsider the problem of maximizing the Nash produt soial welfare with respet to

the above sores, i.e., utility funtions. The orresponding deision problems are de�ned as follows.

De�nition 2.1 (Nash Produt Soial Welfare Maximization-approval)

GIVEN: Quadruple (R,A, S, k): R is a set of resoures, A a set of agents, a olletion

S = {Sa1 , Sa2 , . . . , San
} of subsets Sai

⊆ R, and k ∈ N.

QUESTION: Is there an alloation P suh that swN (P ) ≥ k, where uai
(r) = 1 if r ∈ Sai

and uai
(r) = 0 otherwise?

Analogously, we de�ne Nash Produt Soial Welfare Maximization-Borda.

De�nition 2.2 (Nash Produt Soial Welfare Maximization-Borda)

GIVEN: Quadruple (R,A, π, k): R is a set of resoures, A a set of agents, π is a pro�le,

and k ∈ N.

QUESTION: Is there an alloation P suh that swN (P ) ≥ k for Borda sores?

It is straightforward to de�ne Nash Produt Soial Welfare Maximization-lexiographi for lex-

iographi sores. In what follows, we use the shortut NPSW for Nash Produt Soial Welfare

Maximization.

3 Complexity of NPSW

3.1 The easy ase: NPSW-Approval

First, we show that NPSW is in P for approval sores. This is done by a transformation to the

polynomially solvable Min Cost Flow problem (f. Ahuja et al. (1993)). We begin with some basi

de�nitions and two known properties of a min ost �ow (i.e., an optimal solution of the Min Cost

Flow problem).

De�nition 3.1 In an instane M = (G, c, ℓ, p, b) of Min Cost Flow, we are given a direted graph

G = (V,E). With eah edge e ∈ E, two rational numbers are assoiated: a ost c(e) and an upper

bound p(e) on the apaity of e. For eah v ∈ V , we are given the rational-valued vertex demand b(v).
The Min Cost Flow problem an be stated as follows:

min
∑

(u,v)∈E

c(u, v)f(u, v)



s.t.
∑

v:(u,v)∈E f(u, v)−
∑

v:(v,u)∈E f(u, v) = b(u) for all u ∈ V

0 ≤ f(u, v) ≤ p(u, v) for all(u, v) ∈ E
(1)

A funtion f : E → Q is alled �ow, if f satis�es the onditions stated in (1). The ost of a �ow f is

de�ned by c(f) =
∑

(u,v)∈E c(u, v)f(u, v).

In an instaneM = (G, c, ℓ, p, b) of Min Cost Flow, the apaity onstraints on the edges are written

by means of [0, p(e)]. The ost of a direted yle de�ned as the sum of the osts of the edges in the

yle.

In M, we assoiate a residual network Gf with a �ow f . Gf is onstruted from G as follows. Eah

edge (i, j) ∈ E is replaed by the edges (i, j) and (j, i). In Gf , the ar (i, j) has ost c(i, j) and residual

apaity [0, p(i, j) − f(i, j)]; the ar (j, i) has ost c(j, i) = −c(i, j) and residual apaity [0, f(i, j)].
Finally, Gf onsists of edges with positive residual apaity only.

Theorem 3.1 (Negative yle optimality ondition; f. Ahuja et al. (1993)) A �ow f is an optimal

solution of Min Cost Flow, if and only if Gf does not ontain a negative ost direted yle.

Theorem 3.2 (Integrality property; f. Ahuja et al. (1993)) If all ar apaities and all node demands

are integer, then there is an integer min ost �ow.

Theorem 3.3 NPSW-Approval is in P.

Proof. Let I = (R,A, π, k) be an instane of NPSW-Approval. We assume that eah item is approved

of by at least one agent (otherwise, items with are not approved by any agent are removed in a

preproessing step). We argue that I an be deided by solving an instane M of Min Cost Flow.

M is de�ned as follows. In the graph G = (V,E), ertain verties are identi�ed with items/agents

of the same label. In partiular, V = {s, t} ∪ A ∪ R ∪ {ti,j |i ∈ A, j ∈ R}. The vertex demands are

b(s) = m, b(t) = −m and b(v) = 0 for eah v ∈ V \ {s, t}. In order to onstrut the edge set E,

• for eah r ∈ R we introdue edge (s, r) with apaity [0, 1] and zero ost.

• for eah ai ∈ A and for eah r ∈ R with uai
(r) = 1 we introdue the edge (r, ai) with apaity

[0, 1] and zero ost.

• for eah ai ∈ A and 1 ≤ j ≤ m, we introdue

� the edge (ai, ti,j) with apaity [0, 1] and ost c(ai, ti,j) = nj

� the edge (ti,j , t) with apaity [0, 1] and zero ost.

By the integrality property, there is an integer min ost �ow f in M. I.e., for eah e ∈ E, f either

does not send �ow along e or f sends exatly 1 unit of �ow along e. Clearly, due to the hoie of the

vertex demands and the edge apaities [0, 1] of the edges (s, r), for eah r ∈ R there is exatly one

unit of �ow sent through vertex r. Due to the apaities of the edges (r, a) this means that for eah

r ∈ R, there is exatly one a ∈ A suh that f sends (one unit of) �ow along (r, a). Thus, the mapping

Pf : A → R de�ned by r ∈ Pf (a) i� f(r, a) = 1 is an alloation in I. On the other hand, it is not hard

to see that an alloation P indues an integer �ow fP
in M by

• sending one unit of �ow along (s, r) for eah r ∈ R

• for eah ai ∈ A and for eah r ∈ R, sending one unit of �ow along (r, ai) i� r ∈ P (ai)

• sending one unit of �ow along (ai, ti,h) and (ti,h, t) for eah 1 ≤ h ≤ uai
(P )



The proof proeeds in three steps.

STEP 1: Let f be an integer �ow in instane M, where fi denotes the amount of �ow sent through

vertex ai. We show that the following holds: f is a min ost �ow if and only if the two properties

1. for eah ai ∈ A, f sends �ow along the ars (ai, ti,h), for all 1 ≤ h ≤ fi, and

2. there is no sequene (ai1 , rj1 , ai2 , rj2 , . . . , rjℓ−1
, aiℓ) with fi1 − fiℓ ≥ 2, suh that for all 1 ≤ h ≤

ℓ− 1 we have (i) (rjh , aih+1
) ∈ E and (ii) f sends �ow along the ar (rjh , aih)

are satis�ed. Note that the seond property re�ets the idea that a more �balaned� and thus heaper

�ow annot be immediately derived from f .

In partiular, we show that the above onditions are equivalent to the negative yle optimality on-

dition. First, note that due to the fat that for eah edge (s, rj) demand and upper bound equal to 1,
the residual apaity of the edge is 0. I.e., the edge is not ontained in the residual network H . Thus,

H does not ontain any edge emanating from s. Hene, s annot be part of any yle in R.
STEP 1a: Assume that one of the two onditions above are not satis�ed. Case I onsiders the ase

that the �rst ondition is violated. Case II onsiders the situation that the �rst ondition holds, but

the seond is violated.

Case I: For some ai ∈ A, there is an 1 ≤ h ≤ fi suh that f does not send �ow along the edges

(ai, ti,h). Then, f must send along an edge (ai, ti,ℓ) for some ℓ > fi. But then it is easy to see that in

the residual network H the yle γ = (t, ti,ℓ, ai, ti,h, t) is a yle of ost c(γ) = −nℓ + nh < 0 due to

ℓ > h.

Case II: For all ai ∈ A, f sends one unit of �ow along the edges (ai, ti,h), 1 ≤ h ≤ fi. Assume

there is a pair (ai, aj) with fi − fj ≥ 2 suh that (i) (r, aj) ∈ E and (ii) f sends �ow along the ar

(r, ai). Then, in the residual network H the yle γ′ = (t, ti,fi , ai, r, aj, tj,fj+1, t) has negative ost:

c(γ′) = −nfi + nfj+1 < 0, beause fi − fj ≥ 2 by assumption.

Hene, if one of the two onditions is violated, there is a negative ost yle.

STEP 1b: On the other hand, assume H ontains a negative ost yle γ. We show that this implies

that at least one of the two onditions is violated. Clearly, s annot be ontained in γ. In addition, γ
annot be made up of vertex t and verties ti,j only, sine eah edge (ti,j , t) is of zero ost.

Assume γ does not ontain a vertex rj , 1 ≤ j ≤ m. Then, for some i, x, y, γ = (t, ti,x, ai, ti,y, t) holds.
Note that c(γ) = −c(ti,x, ai) + c(ai, ti,y) = −nx + ny

. Thus, c(γ) < 0 implies

x > y (2)

Assume that f sends �ow along (ai, ti,h) for all 1 ≤ h ≤ fi. Then the residual network H must ontain

(i) the edges (ti,h, ai) for 1 ≤ h ≤ fi as only edges with head ai. Thus, x ≤ fi follows. In addition,

sine f is integer and in the original network G the upper bound of the apaity of eah of the edges

(ai, ti,h) equals 1, it follows that f sends exatly one unit of �ow along eah of the ars (ai, ti,h), for
1 ≤ h ≤ fi. Hene, H annot ontain any of these edges. Thus, y > fi must hold. Putting things

together, we get x ≤ fi < y, in ontradition with (2). Hene, the �rst ondition is violated.

Thus, γ ontains a vertex r ∈ R. Assume the �rst ondition is not violated (otherwise there is nothing

to show). Then, there is a sequene (ai1 , rj1 , ai2 , rj2 , . . . , rjℓ−1
, aiℓ) suh that

γ = (t, ti1,x, ai1 , rj1 , ai2 , rj2 , . . . , rjℓ−1
, aiℓ , tiℓ,y, t)

for some ℓ ≥ 2 and some x, y, with i1 6= iℓ.
Sine by assumption the �rst ondition is satis�ed, x ≤ fi1 and y ≥ fiℓ +1 hold. c(γ) = −c(ti1,x, ai1)+
c(aiℓ , tiℓ,y) = −nx + ny ≥ −nx + nfiℓ+1

. Now, c(γ) < 0 implies −nx + nfiℓ+1 < 0, i.e., x > fiℓ + 1.
Hene, fi1 ≥ x > fiℓ + 1 holds. Thus, fi1 ≥ fiℓ + 2 holds, sine all �ow values are integer. I.e., the

seond ondition is violated.



As a onsequene, the negative yle ondition is in fat equivalent to the two above stated onditions.

STEP 2: Let P ′
be an alloation that maximizes Nash produt soial welfare. Throughout this proof,

let g be the integer �ow indued by alloation P ′
. We show that g is a min ost �ow.

For eah ai ∈ A, g sends gi = uai
(P ′) units of �ow through vertex ai and one unit of �ow through

eah of the ars (ai, ti,h) for 1 ≤ h ≤ gi. Assume there is a pair (ai, aj) with gi − gj ≥ 2 suh

that (i) (r, aj) ∈ E and (ii) g sends �ow along the ar (r, ai). Then, both ai, aj approve of item r.
Consider the assignment P ′′

de�ned by P ′′(a) = P (a) for a ∈ A \ {ai, aj}, P ′′(ai) = P ′(ai) \ {r} and

P ′′(aj) = P ′(aj) ∪ {r}. Then,
∏

ai∈A uai
(P ′′)

∏

ai∈A uai
(P ′)

=
(uai

(P ′)− 1)(uaj
(P ′) + 1)

uai
(P ′)(uaj

(P ′)
=

uai
(P ′)uaj

(P ′) + uai
(P ′)− uaj

(P ′)− 1

uai
(P ′)(uaj

(P ′)
> 1

where the last inequality follows from uai
(P ′)− uaj

(P ′)− 1 = gi − gj − 1 ≥ 1. This ontradits with
the fat that P ′

maximizes Nash soial welfare. With Step 1, if follows that g is a min ost �ow.

STEP 3: Let f be an integer min ost �ow. We show that

∏

ai∈A fi =
∏

ai∈A gi holds. W.l.o.g., we

assume f1 ≥ f2 ≥ . . . ≥ fn. Clearly, there is a permutation π : A → A suh that gπ(1) ≥ gπ(2) ≥ . . . ≥
gπ(n) holds. We show that fi = gπ(i) for eah 1 ≤ i ≤ n.
Assume the opposite, i.e., there is an index k ≥ 1 suh that fi = gπ(i) for i < k and fk 6= gπ(k). If

fk > gπ(k), then

c(f)− c(g) =

n
∑

i=1

(

f(i)
∑

h=1

nh −

gπ(i)
∑

h′=1

nh′

)

= (n+ n2 + . . .+ nfk)− (n+ n2 + . . .+ ngπ(k)) +
n
∑

i=k+1

(

fi
∑

h=1

nh −

gπ(i)
∑

h′=1

nh′

)

= ngπ(k)+1 + ngπ(k)+2 . . .+ nfk +

n
∑

i=k+1

(

fi
∑

h=1

nh −

gπ(i)
∑

h′=1

nh′

) (3)

Note that for any �xed h ∈ N,
∑h

i=1 n
h = nh+1−1

n−1 − 1 holds. Thus,

n
∑

i=k+1

gπ(i)
∑

h′=1

nh′

≤ (n− k)

gπ(k)
∑

h′=1

nh′

< (n− k)
ngπ(k)+1

n− 1
≤ ngπ(k)+1

(4)

With (4) and fk > gπ(k), we get

n
∑

i=k+1

(

fi
∑

h=1

nh −

gπ(i)
∑

h′=1

nh′

) > −
n
∑

i=k+1

gπ(i)
∑

h′=1

nh′

> −ngπ(k)+1 ≥ −nfk

Together with (3) we get c(f)− c(g) > 0, in ontradition with the fat that f is a min ost �ow.

Analogously, fk < gπ(k) leads to a ontradition with the fat that g is an integer min ost �ow (beause

of c(f) = c(g)). Thus, fi = gπ(i) holds for all 1 ≤ i ≤ k. Hene,
∏

ai∈A fi =
∏

ai∈A gi follows.

Sine g is an integer �ow of minimum total ost (step 2), from step 3

∏

ai∈A fi =
∏

ai∈A gi follows
for any integer min ost �ow f . Hene, in order to maximize the Nash produt soial welfare, it is

su�ient to �nd an integer min ost �ow in instane M. This an be done in polynomial time (see,

e.g., Ahuja et al. (1993)). �

3.2 The hard ases: NPSW-Borda and NPSW-Lexiographi

Theorem 3.4 NPSW-Borda is NP-omplete.



Proof. The proof proeeds by a redution from Cubi Monotone 1-in-3 Sat (f. Moore & Robson

(2001)) and is omitted here. �

Theorem 3.5 NPSW-Lexiographi is NP-omplete.

Proof. We provide a redution from the NP-omplete problem Cubi Monotone 1-in-3 Sat

(f. Moore & Robson (2001)). An instane I = (X,C) of that problem onsists of a set of vari-

ables X and a set C of lauses over X , suh that eah lause is made up of exatly three variables of

X and eah variable ours in exatly three lauses. In Cubi Monotone 1-in-3 Sat we ask if there

is a truth assignment for X suh that exatly one variable is true in eah lause of C.
Note that there are no negated literals ontained in any lause of C. In addition, observe that |X | = |C|
holds. Further note that φ an be a satisfying truth assignment in instane I only if it the number of

variables set true under φ is exatly

|X|
3 . Thus, |X | is a multiple of 3.

Given an instane I = (X,C) of Cubi Monotone 1-in-3 Sat we onstrut an instane L =
(R,A, π, k) of NPSW-Lexiographi as follows. Let n = |X | = |C|, and ℓ = 12n.
R onsists of ℓ+ 6n+ n

3 items:

• the items d1, d2, . . . , dℓ

• the item sets X = {x1, x2, . . . , xn}, and Y = {x1,1, x1,2, x1,3, x2,1, x2,2, x2,3, . . . , xn,1, xn,2, xn,3}

• the item sets B = {b1,1, b1,2, b2,1, b2,2, . . . , bn,1, bn,2} and H = {h1, h2, . . . , hn
3
}

Over the sets B,H,X resp. Y we de�ne the rankings τB , τH , τX , and τY as follows:

• τX = x1 ≻ x2 ≻ . . . ≻ xn, τH = h1 ≻ h2 ≻ . . . ≻ hn
3
,

• τB = b1,1 ≻ b1,2 ≻ b2,1 ≻ . . . ≻ bn,2, and τY = x1,1 ≻ x1,2 ≻ x1,3 ≻ x2,1 ≻ . . . ≻ xn,3

Let S ∈ {B,H,X, Y }. For any subset Z of S, by τZ we denote the ranking τS restrited to the subset

Z. Within this proof, we represent the lause Ci = (xi1,k1 ∨xi2,k2 ∨xi3,k3), where kj ∈ {1, 2, 3} denotes
the kj-th ourrene of variable xij in C, by the set Ci = {xi1,k1 ∨ xi2,k2 ∨ xi3,k3}.

A onsists of ℓ+ 5n agents:

• For eah 1 ≤ i ≤ ℓ, the ranking of agent Di is given by

d1 ≻ d2 ≻ . . . ≻ dℓ ≻ τB ≻ τY ≻ τX ≻ τH

• For 1 ≤ i ≤ n, the ranking of agent Hi is given by

τH ≻ xi ≻ d1 ≻ d2 ≻ . . . ≻ d5n−1 ≻ τB ≻ τY ≻ τX\{xi} ≻ d5n ≻ . . . ≻ dℓ

• For 1 ≤ i ≤ n, the ranking of agent Xi is given by

xi ≻ d1 ≻ . . . ≻ dn ≻ xi,1 ≻ xi,2 ≻ xi,3 ≻ dn+1 ≻ . . . ≻ d5n−6 ≻

≻ τB ≻ τY \{xi,1,xi,2,xi,3} ≻ τX\{xi} ≻ d5n−5 ≻ . . . ≻ dℓ

• For 1 ≤ i ≤ n, the rankings of the agents αi, βi, γi are as follows. Let

ταi
= xi1,k1 ≻ d2n+5 ≻ d2n+6 ≻ . . . ≻ d3n+4 ≻ xi2,k2 ≻ d3n+5 ≻ d3n+6 ≻ . . . ≻ d4n+4 ≻ xi3,k3

τβi
= xi2,k2 ≻ d2n+5 ≻ d2n+6 ≻ . . . ≻ d3n+4 ≻ xi3,k3 ≻ d3n+5 ≻ d3n+6 ≻ . . . ≻ d4n+4 ≻ xi1,k1

ταi
= xi3,k3 ≻ d2n+5 ≻ d2n+6 ≻ . . . ≻ d3n+4 ≻ xi1,k1 ≻ d3n+5 ≻ d3n+6 ≻ . . . ≻ d4n+4 ≻ xi2,k2



The ranking of αi is given by

d1 ≻ . . . ≻ dn+4 ≻ bi,1 ≻ bi,2 ≻ dn+5 ≻ . . . d2n+4 ≻ ταi
≻ d4n+5 ≻ . . . ≻ d5n−1 ≻

τB\{bi,1,bi,2} ≻ τY \Ci
≻ τX ≻ τH ≻ d5n ≻ . . . ≻ dℓ

The ranking of βi (resp. γi) results from παi
by replaing ταi

with τβi
(resp. τγi

).

Let M := |R| − 1, and

κ = [2M−(n+1) + 2M−(n+2) + 2M−(n+3)]
2n
3 · [2M−(n+4) · 2M−(n+5) · 2M−(3n+6)]

n
3

Set

k = (

ℓ−1
∏

i=0

2M−i) · 2
n
3 · 2

∑n
3

−1

i=0 (M−i) · 2(M−n
3 ) 2n

3 · κ

In instane L we ask if there is an alloation P with swN (P ) ≥ k.

We begin with two simple lemmata.

Lemma 3.6 Let P be an alloation. Let Q result from P by handing an item p ∈ P (a2) to agent a1
suh that the following properties are satis�ed:

• ∃q ∈ P (a2) suh that a2 ranks q higher than p

• a1 ranks p higher than the highest-ranked item of P (a1)

Then,

∏

a∈A ua(P ) <
∏

a∈A ua(Q).

Proof. Let ua2(p) = 2s and ua1(p) = 2t for some s, t ∈ N. Clearly, the stated properties imply

ua2(P ) > 2s+1
and ua1(P ) < 2t (5)

With (5), we an onlude that

ua1(Q) · ua2(Q) = [ua1(P ) + 2t)] · [ua2(P )− 2s]

= ua1(P ) · ua2(P ) + 2tua2(P )− 2sua1(P )− 2s+t

> ua1(P ) · ua2(P ) + 2t+s+1 − 2s2t − 2s+t

= ua1(P ) · ua2(P )

holds. Therefore,

∏

a∈A ua(P ) <
∏

a∈A ua(Q). ♦

Lemma 3.7 Let P be an alloation. Let Q result from P by handing an item p ∈ P (a2) to agent a1
and q ∈ P (a1) to agent a2 suh that for some j ∈ N the following properties are satis�ed:

• a2 ranks q at most j positions lower than p

• a1 ranks p at least (j + 1) positions higher than the highest-ranked item of P (a1)

Then,

∏

a∈A ua(P ) <
∏

a∈A ua(Q).

Proof. Let λ denote the rank of the highest-ranked item of P (a1) in the ranking of a1. Then,

2λ ≤ ua1(P ) < 2λ+1
(6)



holds. Let µ denote the rank of item p in the ranking of a2; 2
µ ≤ ua2(P ) holds. Comparing the Nash

produt soial welfare ahieved by the alloations, it is enough to onsider

ua1(Q) · ua2(Q)− ua1(P ) · ua2(P )

sine for the remaining the agents the utilities of P and P ′
oinide. Now,

ua1(Q) · ua2(Q)− ua1(P ) · ua2(P )

≥ (ua1(P ) + 2λ+(j+1) − 2λ)(ua2(P ) + 2µ−j − 2µ)− ua1(P ) · ua2(P )

= ua1(P )(2µ−j − 2µ) + (2λ+(j+1) − 2λ)ua2(P ) + 2λ+µ+1 − 2λ+(j+1)+µ − 2λ+µ−j + 2λ+µ

= [ua1(P )2µ−j − 2λ+µ−j ] + [2λ+µ+1 − 2µua1(P )] + [(2λ+(j+1) − 2λ)ua2(P )− 2λ+(j+1)+µ + 2λ+µ]

> [(2λ+(j+1) − 2λ)ua2(P )− 2λ+(j+1)+µ + 2λ+µ]

where the last inequality follows from (6). Sine ua2(P ) ≥ 2µ, we hene get

ua1(Q)·ua2 (Q)−ua1 (P )·ua2(P ) > [(2λ+(j+1) − 2λ)2µ − 2λ+(j+1)+µ + 2λ+µ] = 0

As a onsequene,

∏

a∈A ua(P ) <
∏

a∈A ua(Q). ♦

Claim. I is a �yes�-instane of Cubi Monotone 1-in-3 Sat if and only if L is a �yes�-instane of

NPSW-Lexiographi.

Proof of Claim. �Only-if �-part: Let φ be a truth assignment that sets true exatly one variable in

eah lause. Abusing notation, we identify φ with the set of variables set true under φ. Reall that

|φ| = n
3 . We de�ne the alloation P as follows.

• P (Di) = di for eah 1 ≤ i ≤ ℓ. Thus, the total produt of the utilities of these agents is

∏ℓ−1
i=0 2

M−i
.

• For eah xi ∈ φ, let P (Xi) = xi,

� for the q-th lause Cj that ontains xi, q ∈ {1, 2, 3}, assign xi,q to the one among αj , βj, γj
that ranks xi,q highest (i.e., diretly below d2n+4, in position 3n+7); for the two remaining

agents among αj , βj, γj , alloate bi,1 to one and bi,2 to the other agent.

� alloate exatly one of {h1, . . . , hn
3
} to agent Hi.

Hene, the total produt of the utilities of these agents is

(2M )
n
3 · (2M−(3n+6) · 2M−(n+4) · 2M−(n+5))

n
3 · (2M · 2M−1 · · · 2M−n

3 +1)

• For eah xi /∈ φ, let P (Hi) = xi and P (Xi) = {xi,1, xi,2, xi,3}. The total produt of the utilities
of these agents is

(2M )
2n
3 · (2M−(n+1) + 2M−(n+2) + 2M−(n+3))

2n
3

Thus,

∏

a∈A ua(P ) = k, implying that L is a �yes�-instane.

�If �-part: Let P be an alloation with

∏

a∈A ua(P ) ≥ k. This implies that the maximum Nash produt

soial welfare ahieved exeeds the threshold k. W.l.o.g. we assume that P is an alloation of maximum

Nash produt soial welfare. We show that P must satisfy several properties:

1. di is alloated to Di for eah 1 ≤ i ≤ n: Assume there is an agent Di suh that P (Di) ∩
{d1, . . . , dℓ} = ∅. Let r ∈ P (Di) denote the item whih Di ranks highest among the items in

P (Di). We distinguish the following ases.



(a) There is a Dj who gets alloated at least two elements of {d1, . . . , dℓ}. Let dmin be the

lowest ranked of these items in the ranking of Dj . Consider the alloation P ′
whih results

from P by handing dmin to Di. With Lemma 3.6,

∏

a∈A ua(P ) <
∏

a∈A ua(P
′) holds whih

ontradits with the hoie of P .

(b) There is an agent a 6= Dj who gets alloated at least one of {d1, . . . , dℓ}. Take an arbitrary

suh d ∈ P (a). Consider the alloation P ′′
whih results from P by handing r to a and d

to Di. If a ranks r above d, trivially ua(P
′′) > ua(P ) and uDi

(P ′′) > uDi
(P ) follow, sine

Di by onstrution ranks d above r.
Assume a ranks r below d. We an observe that in the ranking of Di, r is among the last

(6n+ n
3 ) positions. For any other agent, r is ranked higher by onstrution. Thus, a ranks

r higher than Di does; also by onstrution, Di ranks d at least as high as a does. Hene,

the number µ of items between d and r in the ranking of Di exeeds the number of items

between d and r in the ranking of a by at least one item. In other words, Lemma 3.7 an

be applied, again leading to a ontradition with the hoie of P .

As a onsequene, eah agent Di gets at least (and thus exatly) one item of {d1, . . . dℓ}. Sine
the rankings of the agents Di, 1 ≤ i ≤ ℓ, oinide, w.l.o.g. we assume that di is alloated to Di.

2. hi is alloated to one of {H1, . . . , Hn}, for eah 1 ≤ i ≤ n
3 . Assume hi is alloated to an agent

a /∈ {H1, . . . , Hn}. Then, take an arbitrary Hj ∈ {H1, . . . , Hn} who is not alloated any item

of {h1, . . . , hn
3
}. Obviously, suh an agent Hj exists. It is easy to see that for the alloation

P̄ whih results from P by handing hi to Hj , and, in turn, any item of P (Hj) to a satis�es

uHj
(P̄ ) > uHj

(P ) and ua(P̄ ) > ua(P ), i.e.,
∏

a∈A ua(P ) <
∏

a∈A ua(P̄ ).

3. xi is alloated to one of {Hi, Xi}, for eah 1 ≤ i ≤ n. Assume xi is assigned to an agent

a /∈ {Hi, Xi}. Consider the alloation P̃ whih results from P by handing xi to Xi, and, in turn,

the item r′ of P (Xi) whih Xi ranks highest to agent a. Reall that r
′ /∈ {d1, . . . , dℓ, h1, . . . hn

3
}.

If r′ /∈ {xi+1, . . . , xn}, then obviously uXi
(P̃ ) > uXi

(P ) and ua(P̃ ) > ua(P ) hold, i.e.,

∏

a∈A ua(P ) <
∏

a∈A ua(P̃ ). Let r′ ∈ {xi+1, . . . , xn}. Then, Xi ranks xi more than 3n po-

sitions above r′. Note that any agent a /∈ {Hi, Xi} ranks r′ at most (n− 1) positions below xi.

Thus, the onditions stated in Lemma 3.7 are satis�ed, and again we get a ontradition with

the hoie of P .

4. Hj is alloated exatly one of {h1, . . . , hn
3
} ∪ {xj}, for eah 1 ≤ j ≤ n. Note that with Step 3

this means that Hj is alloated exatly one of {h1, . . . , hn
3
} ∪ {x1, . . . , xn}. This step is split in

three parts:

(a) Hj is alloated at most one of {h1, . . . , hn
3
}, for eah 1 ≤ j ≤ n. Assume there is an agent

Hj who is alloated at least two items of {h1, . . . , hn
3
}. Let hg be the lower-ranked of the

two items in the ranking of Hj . For the alloation P̂ whih results from P by handing hg to

an agent Hj′ who P does not alloate an item of {h1, . . . , hn
3
} to, we get with Lemma 3.6

that

∏

a∈A ua(P ) <
∏

a∈A ua(P̂ ) holds.

(b) If Hj is alloated one of {h1, . . . , hn
3
}, then Hj is not alloated xj . Let h ∈ {h1, . . . , hn

3
}

be alloated to Hj . Assume the opposite. Consider the alloation Q whih results from P
by handing xj to Xj . Again, with Lemma 3.6 uHj

(Q) · uXi
(Q) > uHj

(P ) · uXi
(P ) follows.

() If Hj is alloated none of {h1, . . . , hn
3
}, then Hj is alloated xj . Assume the opposite. Sine

by assumption

∏

a∈A ua(P ) > 0, P must alloate an item r to agent Hj . Again, let r be

the item highest-ranked by Hj that Hj reeives under P .
From Steps 1-3, we an onlude that r ∈ {b1,1, . . . , bn,2} ∪ {x1,1, . . . , xn,3} holds. Consider

the alloation Q′
whih results from P by handing xj to Hj , and, in turn, item r to Xj . By

onstrution, Xi ranks r more than

n
3 positions higher than Hj does. On the other hand,

Hj ranks xj exatly

n
3 positions lower than Xi does. Therefore, the number µ of items



between xj and r in the ranking of Hj exeeds the number of items between xj and r in

the ranking of Xi by at least one item. As a onsequene, Lemma 3.7 yields a ontradition

with the hoie of P .

5. Two of {αi, βi, γi} are alloated exatly one of {bi,1, bi,2}, for eah 1 ≤ i ≤ n. This step is proven

in two parts.

(a) bi,1 (resp. bi,2) is alloated to αi, βi or γi , for eah 1 ≤ i ≤ n. Assume bi,1 is not alloated
to one of these agents. Clearly, at most one of αi, βi, γi is alloated bi,2. W.l.o.g. assume

bi,2 is not alloated to αi. By Step (1), this implies that αi ranks bi,1 more than 2n positions

higher than the highest-ranked among the items in P (αi). Take an arbitrary p ∈ P (αi).
Note that with Steps (1)-3, p /∈ {d1, . . . , dℓ, x1, . . . , xn, h1, . . . , hn

3
}∪{bi,2} follows. Consider

the alloation Q whih results from P by handing p to the agent a with bi,1 ∈ P (a) and,
in turn, bi,1 to agent αi. By onstrution (in partiular, by the items dn+5, . . . , d2n+4

in the ranking of αi), it follows that the onditions of Lemma 3.7 are satis�ed. Thus

∏

a∈A ua(P ) <
∏

a∈A ua(Q) holds, in ontradition with the hoie of P .

(b) bi,1 and bi,2 are not alloated to the same agent, for eah 1 ≤ i ≤ n. Assume the opposite.

Then, analogously to above, by the use of Lemma 3.7 we an �nd an alloation with a

higher Nash produt soial welfare than P .

6. For eah 1 ≤ i ≤ n and a ∈ {αi, βi, γi}, the following holds: If bi,1 or bi,2 is alloated to a, then a
is alloated no further item. It remains to show that no item of Y is alloated to a. We provide a

proof for agent αi and bi,2 ∈ P (αi) (the other ases follow analogously). Assume at least one of

Y is alloated to αi. Let xg,j be alloated to αi. Consider the alloation Q′
whih results from

P by handing xg,j to agent Xg. Let uαi
(xg,j) = 2ε for some ε ∈ N. Note that uXg

(xg,j) ≥ 2ε+2n

and

uαi
(P ) ≥ 2M−(n+4) + 2ε (7)

hold. We get

uXg
(Q′) · uαi

(Q′)− uXg
(P ) · uαi

(P )

≥ (uXg
(P ) + 2ε+2n) · (uαi

(P )− 2ε)− uXg
(P ) · uαi

(P )

≥ [uXg
(P ) · uαi

(P )− 2εuXg
(P ) + 2ε+2n2M−(n+4)]− uXg

(P ) · uαi
(P )

> −2ε+M+1 + 2ε+M+n−4

> 0

where the third line follows from (7), the fourth from uXg
(P ) < 2M+1

, and the last from n > 5.

7. For eah 1 ≤ i ≤ n and a ∈ {αi, βi, γi}, the following holds: If a is alloated an item of

{xi1,k1 , xi2,k2 , xi3,k3}, then a is alloated exatly one item. This follows analogously to Step 6.

8. None of the items in Y is alloated to an agent a ∈ {D1, . . . , Dℓ, H1, . . . , Hn}. Assume the

opposite. Take an arbitrary item xg,j ∈ P (a)∩Y . Note that ua(xg,j) = 2ε and uXg
(xg,j) ≥ 2ε+3n

for some ε < M − ℓ. Thus,
ua(P ) ≥ 2ε + 2M−n

3
(8)

Consider the alloation Q′′
whih results from P by handing xg,j to agent Xg. With (8),

uXg
(Q′′) · ua(Q

′′)− uXg
(P ) · ua(P )

≥ (uXg
(P ) + 2ε+3n) · (ua(P )− 2ε)− uXg

(P ) · ua(P )

> [uXg
(P ) · ua(P )− 2εuXg

(P ) + 2ε+3n2M−n
3 − uXg

(P ) · ua(P )

> −2ε+M+1 + 2ε+M+2n

> 0



and thus a ontradition with the hoie of P is implied.

As an immediate onsequene, we know that (i) eah of D1, . . . , Dℓ, H1, . . . , Hn is alloated exatly one

item (follows from Steps 1-5 and Step 8), and (ii) there are at most 2n items available for the agents

X1, . . . , Xn (by the pigeonhole priniple), all of whih belonging to the set Y . From (i), it follows with

steps 1 and 4 that

∏

a∈{D1,...,Dℓ}

ua(P ) ·
∏

a∈{H1,...,Hn}

ua(P ) = (

ℓ−1
∏

i=0

2M−i) · 2
∑n

3
−1

i=0 (M−i) · 2(M−n
3 ) 2n

3
(9)

From Steps 3 and 4 we know that there are exatly

n
3 agents among the agentsXi that are alloated xi,

1 ≤ i ≤ n, while the remaining

2n
3 agents among X1, . . . , Xn are not alloated any item of X . Keeping

in mind that the Nash produt is maximized for the most balaned alloation, it is not di�ult to

verify that the following observation holds.

Observation. If at most 2n items of Y are ontained in

⋃

a∈{X1,...,Xn}
P (a), then

∏

a∈{X1,...,Xn}

ua(P ) ≤ (2M )
n
3 · (2M−(n+1) + 2M−(n+2) + 2M−(n+3))

2n
3

(10)

holds; equality in (10) is ahieved if and only if for all 1 ≤ i ≤ n, all the items {xi,1, xi,2, xi3} are

alloated to the agent Xi satisfying xi /∈ P (Xi).

Now, assume for some i, there is an a ∈ {αi, βi, γi} whih is alloated none of {bi,1, bi,2} ∪
{xi1,k1 , xi2,k2 , xi3,k3}. With Step 1, ua(P ) < 2M−7n

follows. With Steps 6 and 7, we get

∏

a∈{αi,βi,γi|1≤i≤n}

ua(P ) < (2M−7n · 2M−(n+4) · 2M−(n+5)) · (2M−(3n+6) · 2M−(n+4) · 2M−(n+5))n−1
(11)

Combining (9), (10), (11),

∏

a∈A < k follows.

Thus, for eah i and a ∈ {αi, βi, γi}, a is alloated at least � by Steps 6 and 7, that means exatly

� one of {bi,1, bi,2} ∪ {xi1,k1 , xi2,k2 , xi3,k3}. With Step 5, we an onlude that exatly one agent of

{αi, βi, γi} is alloated exatly one of {xi1,k1 , xi2,k2 , xi3,k3}, obviously yielding an utility of 2M−(3n+6)
.

Hene, we get

∏

a∈{αi,βi,γi|1≤i≤n}

ua(P ) = (2M−(3n+6) · 2M−(n+4) · 2M−(n+5))n (12)

With (9) and (12), the above observation implies that

• for eah lause Ci, exatly one of {xi1,k1 , xi2,k2 , xi3,k3} is alloated to one of {αi, βi, γi} (i.e., one
of the variables xi1 , xi2 , xi3 is set �true�), and

• either all or none of {xi,1, xi,2, xi,3} are alloated to some agents of the set C = {αj , βj , γj |1 ≤
i, j ≤ n}, i.e., either {xi,1, xi,2, xi,3} ⊂ (

⋃

a∈C P (a)) or {xi,1, xi,2, xi,3} ∩ (
⋃

a∈C P (a)) = ∅ holds.

Therewith, the truth assignment φ whih sets xi �true� if and only if xi ∈ P (Xi) (i.e., xi,1, xi,2, xi,3 are

alloated to some agent {αj , βj , γj}, 1 ≤ j ≤ n), is a feasible truth assignment that sets �true� exatly

one variable of eah lause. Hene, I is a �yes�-instane of Cubi Monotone 1-in-3 Sat. �

4 Conlusion

We have shown that maximizing Nash produt soial welfare is omputationally intratable when

Borda or Lexiographi sores are used, and solvable in polynomial time for Approval sores. An



interesting open question is the omputational omplexity of maximizing Nash produt soial welfare

for Quasi-Indi�erene sores.

The NP-ompleteness results for Borda and Lexiographi sores imply that the problem of �nding an

alloation that maximizes Nash produt soial welfare is an NP-hard problem in these ases. A further

interesting diretion for future researh is to investigate the existene of approximation algorithms for

the problem of �nding suh an alloation that run in polynomial time.
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