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Abstract

The game-theoretic solution concept Iterated Regret Minimization (IRM) was in-
troduced recently by Halpern and Pass. We give the first application of IRM to
simultaneous voting games. We study positional scoring rules in detail and give
theoretical results demonstrating the bias of IRM toward sincere voting. We present
comprehensive simulation results of the effect on social welfare of IRM compared to
both sincere and optimal voting. The results fit into a broader research theme of the
welfare consequences of strategic voting .

1 Introduction

The concept of regret has a long history in decision theory [12]. The idea that decision-
makers act to minimize regret is the main competitor to the idea that they aim to maximize
utility, particularly in situations where probabilities are not easily available. The concept
has also proved useful in game theory, where the minimax regret solution is used, and is
widely used in machine learning. In social choice theory, regret has been used to measure
the performance of voting rules under sincere voting [10]. All these applications can be
formulated to involve a single decision-maker “playing against nature”, and do not involve
strategic considerations of other players’ strategies.

Many models of strategic voting have been studied in recent decades. Much of this work
concerns sequential voting, whereas we deal here with simultaneous voting. Research on
simultaneous voting games has mostly focused on the plurality rule. The most commonly
used solution concept from game theory, namely Nash equilibrium, can lead to very strange
situations when applied to voting games. Not only are there hugely many equilibria, some are
of very low desirability from the point of view of social choice. For example, for most voting
rules used in practice or studied by researchers, the situation where voters are unanimous
in preferences yet all vote for their least preferred candidate is a Nash equilibrium. In this
context, game-theoretic solution concepts such as dominance solvability, strong equilibrium,
coalition-proof equilibrium, and other refinements of Nash equilibrium have been studied
[5], [11], [13], [14].

Iterated Regret Minimization (IRM) as a solution concept for strategic games was
introduced by Halpern and Pass [7], who considered several well-known games where the
outcome produced by IRM accords better with intuition than the Nash equilibrium. IRM
is analogous to dominance solvability in that it is defined by iterated deletion of strategies,
fewer assumptions on rationality are required than for Nash equilibrium, and it leads in
most cases to a definite prediction for the outcome of a game. However it is more widely
applicable than dominance solvability for voting games. A few other papers have explored
IRM in various contexts. In [4] a unified approach to iterated deletion solution concepts
from the viewpoint of regret is given. IRM has been applied to some restricted classes of
games, including game graphs [6].

1.1 Our contribution

We give what to our knowledge are the first results on IRM as applied to voting games,
with special emphasis on positional scoring rules. We give examples of some poor quality
outcomes that can occur with this solution concept. On the other hand, we show that in



addition to the good features listed above, IRM leads to a strong bias toward sincere voting,
and seems very worthy of study on this point alone. We explore computationally the quality
of the solution using various measures of overall societal welfare.

Specifically, we show that the IRM outcome under plurality or antiplurality coincides
with the sincere outcome, regardless of the tiebreaking scheme or voter utilities over candi-
dates. We carry out detailed simulations and measure the effect on overall welfare of IRM
compared to both sincere and optimal voting, and discuss in detail the interpretation of
these results.

Our results support a growing belief that widespread strategic voting may in fact be
socially desirable if and only if the information about other voters possessed by each voter
is sufficiently high, and that IRM is close to the boundary between high and low information
in this interpretation.

2 Preliminaries

We define IRM for voting games and refer the reader to [7] for more details. We use a set
of m candidates C = {c1, . . . , cm}, and a set of n voters V = {v1, . . . , vn}. Each voter vi
has a utility function ui which induces a sincere preference order (a strict linear ordering
of C) and the collection of all of these is the preference profile. The actions available to
vi are of the form α where α is a preference order (not necessarily sincere). This gives the
strategy profile which we denote by π. In this article we do not consider mixed strategies,
as is common when studying voting games, whose payoffs are typically ordinal.

Note that we require that the utility function distinguish between candidates, so that
indifference is not allowed. Much of the basic theory below still works when indifference is
allowed, but not all.

Definition 2.1. The scoring rule defined by a weight vector w = (s1, . . . , sm), with s1 ≥
s2 ≥ · · · ≥ sm and s1 > sm, elects all candidates with maximal score. The score of candidate
a is defined to be

∑
v si(v;a), where i(v; a) is the rank of a in the vote expressed by voter v.

We consider four specific scoring rules: plurality, anti-plurality, Borda and k-approval,
defined by (1, 0, 0, . . . , 0), (1, 1, . . . , 1, 0), (m − 1,m − 2, . . . , 1, 0) and (1, 1, . . . , 1, 0, . . . , 0)
(there are k 1’s) respectively.

In order to have a definite result (and not to have to deal with the utility to a player of
a set of winners, a rather controversial subject), we always use a fixed tiebreaking order on
the candidates (alphabetical unless otherwise specified).

Once we have an idea of payoffs, a given rule and set of players and candidates specifies a
game form. We shall use different models of payoffs. Purely ordinal payoffs do not allow us
to compute regret, because we cannot compare the difference between our first and second
with the difference between our second and third candidate, for example. A commonly used
assumption is that of Borda utilities whereby the payoff to a voter when her ith highest
candidate is elected is precisely m − i. We could also generate utilities from the interval
[0, 1], which we do for some results.

Definition 2.2. Let α be an action and π a strategy profile. The partial profile π−i is
formed from π by deleting the action of voter vi. We first define the regret of α with
respect to π−i, denoted R(i, π−i, α). When vi votes α, this leads to some candidate c
winning the election. There are other possible winners if vi votes differently (keeping π−i
fixed), and we let b be the one of highest utility to vi. Then

R(i, π−i, α) = ui(b)− ui(c) ≥ 0.



We next define the maximum regret of α by

MR(i, α) := max
π−i

R(i, π−i, α).

Finally, the minimax regret for player i is

MMR(i) := min
α

MR(i, α).

Example 2.3. (regret with respect to a partial profile) Consider a scenario under the Borda
rule with three candidates A,B,C, a voter v with the preference BAC, and a partial profile
where A has 0 points, B has 1 point and C has 2 points. We use Borda utilities and an
alphabetical tiebreaking rule. Consider v’s six possible actions of voting ABC, ACB, BAC,
BCA, CAB, and CBA. The candidates elected by these votes in this partial profile are
respectively A, C, B, B, C, and C. Thus the best possible outcome for v is B and the
regrets of BAC and BCA in this partial profile are 0. The vote that elects A has a regret
of 1, while the three that elect C all have regret 2.

Definition 2.4. Iterated regret minimization (IRM) is the solution concept defined by
iterative removal of all strategies that do not minimize maximum regret. At iteration j, each
player vi updates her action set Sji by removing all actions that do not minimize maximum

regret among all actions in Sj−1
i , assuming that each other player vk is playing actions in

Sj−1
k . Note that S0

i consists of all possible actions, for each i. This iterative process must
terminate. In that case, if Si is the set of actions remaining to player vi, then IRM returns
the set of all winners of elections specified by profiles (s1, . . . , sn) with si ∈ Si.

Remark 2.5. IRM is a rather pessimistic solution concept in that it presupposes very little
knowledge about others’ preferences. However it is not as pessimistic as the usual minimax
regret solution, which is what is computed by the first round of the IRM process.

Example 2.6. (IRM winner)
Consider a scenario under plurality with m = 3, n = 3. Tiebreaking is alphabetical and

we use Borda utilities. The voters v1, v2, and v3 respectively have preferences ABC,CAB,
and CBA.

In the first iteration, each voter vi considers the two other voters, both of whom can
place either A,B, or C first. This gives nine different partial profiles, and there are
three actions that vi can take in each of these profiles. The table below gives the winning
candidate for each combination of partial profile and vote.
vi’s Partial profile
vote AA AB AC BA BB BC CA CB CC
A A A A A B A A A C
B A B A B B B A B C
C A A C A B C C C C

For each of the three voters the maximum regret is found for each vote, based on that
voter’s preference. Note that the maximum possible regret for any action with respect to any
partial profile is 2.

When v1 faces the partial profile AC, A will win the election unless v1 places C first,
in which case C wins. This implies that for v1, placing C first has maximum regret 2.
Similarly, placing B first has maximum regret 1 (attained for example in the partial profile
BA), and placing A first has maximum regret 0. Thus v1 is left only with votes that place
A first. Similarly, v2 and v3 place C first. The IRM winner is found in a single iteration,
because all actions remaining to all players give the same result, namely that C wins.



IRM is analogous to dominance solvability, where all dominated strategies are iteratively
removed, all players acting (i.e. thinking) simultaneously at each iteration.

In [7] a formal epistemic characterization of IRM is given. Intuitively, each player makes
no assumptions about other players, with high probability, but with probability ε they
are assumed to be rational (in the sense of applying IRM themselves), with probability ε2

they are assumed to be rational and to believe that they are playing rational players, etc.
Equivalently, players use a lexicographic minimization strategy: first minimize regret with
respect to all strategies by other players, then minimize regret with respect to all strategies
by rational players, etc.

In each iteration, voters know only how many other players there are, and what actions
are available to those players; from this information each voter can find all possible partial
profiles. In subsequent iterations each voter can infer which votes the other voters have
eliminated and which have been retained.

The issue of how much information players have about others is crucial for IRM: under
full common knowledge it reduces to maximizing expected utility.

3 Theoretical results

Although in Example 2.6 the IRM winner was the same as the sincere winner, this certainly
does not always happen (as with most strategic voting solution concepts).

Example 3.1. (the sincere loser can be the IRM winner)
Consider the following scenario under the Borda rule with Borda utilities and alphabetical

tie breaking.
Voters Preference order
v1 ACDB
v2 BCAD
v3 BDCA
v4 CDAB
v5 DABC

The sincere ranking is C,D,A,B. Here C and D each have score 8, and C wins the tie,
while A and B each have score 7, with A winning the tie. Following the first two iterations
of IRM, the first four voters have already eliminated all but their sincere votes, while v5 is
left with DABC and DBAC. If v5 votes sincerely then his least preferred candidate C will
win, while the insincere vote causes candidate B to win, and so B is the IRM winner. This
is a case where all four candidates were close to being tied and so all possible outcomes have
an almost equal payoff for each player. Further, despite being the lowest ranked candidate
under sincere voting, B is preferred to the sincere winner by a majority of voters (in other
words B is witness to the fact that C is not a Condorcet winner).

IRM appears to yield a single winner far more often than dominance solvability. However,
it does not always do so.

Example 3.2. (IRM doesn’t always give a unique winner, even for scoring rules) Consider a
scenario under the Borda rule with candidates A,B,C,D, and voters v1, v2, v3, v4, v5. The
sincere preferences of the voters are respectively ABDC,ACDB,BADC,BDAC,CBDA.
Borda utilities are used and the tiebreaking rule is alphabetical.

Following the first iteration, each voter is left with two votes – those that place their most
preferred candidate first and least preferred last, with the remaining two candidates in either
order. In the second iteration there are 32 profiles and two of these elect D as the winner,
while the rest elect A or B. For v2, there are no partial profiles in which switching C and
D changes the winner and so both votes have a regret of 0. For v4, voting BADC can cause



A to win where otherwise D wins, and so the vote BADC has a regret of 1. On the other
hand, changing from BADC to BDAC always leads to the same or a better result for this
voter and so BDAC has a regret of 0.

For the remaining voters, both votes have a regret of 1. For v1, we see that voting ADBC
causes D to win in two profiles where otherwise B would have won. On the other hand, if
v5 votes insincerely while the remaining voters vote sincerely, then v1 can make A win by
voting ADBC, and B win by voting ABDC. Thus both votes have the same regret. For
v3 and v5 we have a similar result where one vote almost always leads to a better outcome,
except in the two profiles where D wins.

Thus in the second iteration the vote BADC is eliminated for v4 while all other votes
are retained. In the third iteration no further votes are eliminated and so we have three
possible winners: A,B,D.

One useful fact about IRM is that under some assumptions on utilities, all voters with the
same preference order adopt the same pure strategy. Note that when using Borda utilities,
all voters with the same preference order will have the same payoffs for each outcome. This
enables much simpler computation of the IRM outcome.

Proposition 3.3. If two voters have the same payoffs over all outcomes, then those voters
eliminate the same votes in every iteration, and hence adopt the same pure strategy.

Proof. Each voter in each iteration bases his decision on the possible votes the other voters
could cast, and the payoffs he receives. In the first iteration, every other voter is choosing
from the same set of votes (i.e. all possible votes) and so the voter’s decision is based only
on the number of other voters, and his payoffs. Hence two voters with the same payoffs
will eliminate the same votes in the first iteration. The result follows by induction on the
number of iterations.

For most commonly used voting rules, ranking one’s most preferred candidate above
one’s least preferred makes sense for both sincere and strategic voting. This is also the case
for IRM. Note, however, that actions violating this constraint are not weakly dominated in
general, because non-monotonic rules exist. One of these is Instant Runoff Voting (IRV), the
single-winner version of STV. This rule successively eliminates the plurality loser, deleting
this candidate from all voters’ preference orders, until a single winner remains.

Definition 3.4. Let vi be a voter and π−i a partial profile. Votes α and β are called π−i-
equivalent for i if the winner is the same whether vi votes α or β when faced with π−i.
The votes are equivalent if they are equivalent for each choice of vi and π−i.

Definition 3.5. A voting rule is weakly positively responsive (WPR) if the set S below
is nonempty, and whenever there are precisely 2 winners x, y in a partial profile π−i, adding
any single extra vote α ∈ S makes x the sole winner.

S is the set of all votes α satisfying

• in α, x is ranked above y;

• α is not equivalent to the vote obtained from α by swapping x and y.

Example 3.6. Each scoring rule is WPR (S consists of all votes giving x a strictly greater
score than y).

Definition 3.7. Let v be a voter with sincere preference order c1, . . . , cm. An expressed
preference order by v is extremely insincere if it places cm above c1. A vote by v attains
the maximum possible regret if it elects cm when faced with some partial profile, where
another vote would have elected c1.



Recall that a voting rule is neutral if it is symmetric with respect to all candidates. It
is Pareto optimal if whenever x is ranked above y by all voters, y is not a winner.

Proposition 3.8. Suppose that a voting rule is neutral, Pareto optimal, and weakly pos-
itively responsive. Then in the first iteration, every extremely insincere vote attains the
maximum possible regret.

Proof. Suppose that n − 1 is even, and let A and C be voter v’s most (respectively) least
preferred candidates. Consider a partial profile in which half the voters rank A first and C
second, and half rank C first and A second. By Pareto optimality and neutrality, A and C
are tied winners and no other candidate is a winner (in the partial profile). By WPR, there
is a vote in which v ranks A above C and A wins. Thus ranking C over A has maximum
possible regret for v.

If n−1 is odd we use a different construction that depends on the tiebreaking rule. First
construct a partial profile as in the previous case, with n− 2 voters. If A wins in a tie then
the extra vote in the partial profile will have C above A, whereas if C wins in a tie then the
extra vote in the partial profile has A above C. In each case v can make A win by ranking
A above C, but C will win if v ranks C above A.

Example 3.9. (sometimes, all votes attain maximum possible regret)
Consider a voter v with preference ABC under IRM with Borda utilities and alphabetical

tiebreaking, where m = 3, n = 9 and the rule is IRV. Consider the partial profile where
there are 3 ABC voters, 3 CAB voters and 2 BCA voters. If v votes sincerely then B will be
eliminated, and C will win overall. However if v votes BAC then C will be eliminated and
the winner will be A. Thus for v, the sincere vote has maximum possible regret. In fact in
this situation all six of v’s possible votes have this regret and so v eliminates nothing in the
first iteration. Thus if in fact we have 9 voters each with ABC as their sincere preference
order, each will perform the same computation and retain all possible votes. Thus IRM will
return all candidates as winners.

For scoring rules, we can say more, because some other votes have lesser regret.

Definition 3.10. Let v be a voter with preference order c1, . . . , cm. A vote by v is extreme-
fixing if it gives c1 the highest possible score and cm the lowest possible score.

Theorem 3.11. When carrying out IRM using a scoring rule, the votes not eliminated at
the first iteration are precisely the extreme-fixing ones.

Proof. Let u1, . . . , um denote the utilities of voter v with preference order c1, c2, . . . , cm. We
have four cases, as the proof differs depending whether the number of voters n is odd or
even, and depending which candidate is favoured by the tie-breaking rule. For each case
the result can be shown by constructing either one or two profiles, each of which eliminate
some set of votes, such that the complete set of votes eliminated consists precisely of the
ones that are not extreme-fixing. This is done by showing that the votes in this set can all
cause the voter’s lowest ranked candidate to win, while a different vote makes the highest
ranked candidate the winner, thus giving them the maximum possible regret of u1 − um.
Finally we show that the maximum regret of the remaining votes is u2 − um. This means
that all votes with regret u1 − um are eliminated.

Let the score vector be s = {s1, s2, . . . , sm}. We construct a new vector t =
{t1, t2, . . . , tx} where x ≤ m that contains only the unique scores. For example, under
plurality, antiplurality, and k-approval, t = {1, 0}, while under the Borda rule, t = s be-
cause all scores are unique. Let pi be the score of candidate i in the partial profile under
consideration.



Case 1: n odd; c1 beats cm in a tie As c1 will win when c1 and cm are tied, we need
to construct a profile where pm = p1 − tx + t1. This ensures that the only possible
way for v to make c1 the winner is to give c1 the highest possible score, and cm the
lowest possible score. Any other positioning of these two candidates will leave cm with
a strictly higher score than c1. Firstly, we have two groups of voters, each of size
(n − 3)/2. The first group places c1 first and cm second, and the second group has
cm first and c1 second. All other candidates are permuted among the n − 3 voters.
This ensures that c1 and cm are the only possible winners following the addition of v’s
votes, as the scores of the other candidates will not be high enough. At this point c1
and cm have an equal number of points. One of the two remaining votes places c1 last
and cm at some position i corresponding to the score tj , and the other has cm first
and c1 at position i. This gives us pm − t1 − tj = p1 − tx − tj → pm = p1 − tx + t1 as
required.

Case 2: n odd; cm beats c1 in a tie In this case we need to construct a profile where
pm < p1 − t1 + tx. However if pm is too low, it may be possible that some vote that
gives c1 a slightly lower score, or cm a slightly higher score, will still elect c1 as the
winner. To ensure this is not the case, we consider two different partial profiles. In
both, as above, we have two groups in which c1 and cm are alternately first and second,
with all other candidates permuted. The two remaining votes in the first partial profile
are as follows: one voter places c1 last and cm at position i, while the other places cm
in a position corresponding to the score t2, with c1 at position i. In this partial profile
we have pm − t2 − tj = p1 − tx − tj → pm = p2 − tx + t1, ensuring that v must give
c1 the highest possible score t1 in order for c1’s final score to be strictly higher than
cm’s final score. However, depending on the values of the score vector, c1 may still
win when v gives c1 the highest score but gives cm a score higher than tx.

Hence we consider a second similar partial profile that differs only in the final two
votes. In this partial profile we have one of these two voters place cm first and c1
at position i, while the other voter places c1 in a position corresponding to the score
tx−1, with cm at position i. With similar reasoning to above, this shows that v must
give cm the lowest possible score in order for c1 to win overall.

Case 3: n even; c1 beats cm in a tie As in Case 1 above, we need to construct a profile
where pm = p1− tx + t1. We have again the two groups of voters placing c1 and cm in
either first or second place, this time each of size (n− 2)/2. This leaves one remaining
voter, who places c1 last and cm first, giving pm − t1 = p1 − tx → pm = p1 − tx + t1
as required.

Case 4: n even; cm beats c1 in a tie Analogously to Case 2, we need to consider two
different partial profiles. With both partial profiles we start as always with the two
groups of voters, each of size (n− 2)/2. The remaining vote in the first partial profile
places c1 last and cm at a position corresponding to score t2. Thus we have pm− t2 =
p1 − tx → pm = p2 − tx + t1, and so v must give c1 the highest possible score as
otherwise c1 and cm could tie, in which case cm would win, or cm could have a strictly
higher score than c1, also leading to cm winning.

In the second partial profile the final voter places cm first and c1 in a position corre-
sponding to the score tx−1. From this it follows that votes that do not give cm the
lowest possible score will have the maximum possible regret.

In order to show that the maximum regret of the votes that give c1 the highest possible
score and cm the lowest possible score is u2 − um, we can consider a set of partial profiles
similar to those above, but with c1 and c2 switched. That is, these profiles describe situations



in which votes that give c2 the highest possible score and cm the lowest possible score will
elect c2, with this being the best possible outcome, while all other votes will elect cm and
thus have a regret of u2 − um. Because scoring rules are positively responsive, it is not
possible for votes giving c1 the highest possible score and cm the lowest possible score to get
a higher regret than this, because adding support to c1 can not change it from the winner
to a loser.

Corollary 3.12. IRM always elects the sincere winner under each scoring rule when m ≤ 3,
and under plurality and antiplurality for every m.

Proof. For plurality the highest possible score is 1, given only to the the candidate placed
first. The lowest possible score is 0, given to all other candidates. Thus under the plurality
rule, all votes that do not place the voter’s highest ranked candidate first are eliminated
in the first iteration. Because permuting the remaining candidates has no effect on their
scores and thus no effect on the outcome of the election, every vote receives a regret of 0
in the second iteration, and the process halts. Thus the IRM outcome is always the same
as the sincere outcome under plurality. A similar line of reasoning for anti-plurality leads
to a situation where all voters are left with only those votes that place their least preferred
candidate last, producing an outcome identical to the sincere outcome.

In order for the results on iterated regret minimization to be meaningful, the process
must produce results that differ from those produced by other solution concepts. This is
now easy to see, because Nash equilibrium, strong equilibrium, coalition-proof equilibrium,
dominance solvability, and maximin utility solutions can all involve insincere voting under
the plurality rule. For completeness and to aid the reader’s intuition we give some explicit
examples.

Example 3.13. (IRM differs from Nash) Consider the plurality rule with n ≥ 3. The
unanimous profile where all voters have the same preference order ρ is a Nash equilibrium
where the top-ranked candidate wins, which is also the outcome under IRM. However, there
are many other Nash equilibria, including the profile where all voters submit the reverse of
ρ and the bottom-ranked candidate in ρ wins. On the other hand, IRM strategies are not
always Nash equilibrium strategies. Consider the profile under plurality (where A beats B
beats C in a tie) having 2 ABC voters, 2 BAC voters and 1 CBA voter. Under IRM, A
wins. However this is not a Nash equilibrium as the CBA voter can switch her vote to B
to make B the winner.

Example 3.14. (IRM differs from dominance solvability)
A game is dominance solvable if iteratively eliminating strongly dominated actions

leads to a unique outcome. A vote A strongly dominates a vote B for some voter v if in
every possible partial profile of the other voters, casting A leads to a winner that is more
highly ranked by v than the candidate who wins when B is cast. It is known that plurality
voting games are not often dominance solvable (necessary and sufficient conditions are given
in [5]), so that this solution concept must differ from IRM in general.

For example, consider a profile with 2 ABC voters, 2 BAC voters and 1 CBA voter.
Borda utilities are used and the tiebreaking rule is alphabetical. Under plurality, this is not
dominance solvable, since in the first iteration the option of voting for A is eliminated for
the voter with preference CBA, but no further votes can be removed for any voter. However,
IRM produces a unique outcome for this game.

There also exist elections where both dominance solvability and IRM yield unique pre-
dictions, but the corresponding winners are different. For example, consider the profile with
2 ABC voters, 3 BAC voters and 2 CAB voters. Again we use Borda utilities and the



alphabetical tiebreaking rule. Borda utilities are used and the tiebreaking rule is alphabetical.
Applying iterated removal of dominated strategies under plurality, we have in the first iter-
ation that each voter eliminates the vote for their least preferred candidate. In the second
iteration, if the CAB voters vote for their most preferred candidate C then B will win, while
if they vote for A, A will win. Thus they eliminate the vote for C and we have A as the
final winner.

Under IRM, only the sincere votes are left after the first iteration, and the winner is B.

Example 3.15. (IRM differs from strong Nash and coalition-proof equilibrium) A game is
in a strong equilibrium if no subset of players exists that can profitably deviate. A game is
in a coalition-proof equilibrium if there is no possible deviation by a set of players that is
self-enforcing, meaning that once this deviation has taken place, no further deviations are
possible. Under plurality, the winner of an election that is in a strong equilibrium is always
the Condorcet winner for that profile [11]. If no Condorcet winner exists, then there is also
no strong equilibrium. On the other hand, a candidate is the IRM winner if and only if
it is the sincere winner. The plurality rule is not Condorcet consistent, and so there exist
profiles where the sincere winner differs from the Condorcet winner, thus for these profiles,
the strong equilibrium result and the IRM result differ.

For example, the following profile under the plurality rule is both a strong equilibrium and
a coalition-proof equilibrium. There are 2 ABC voters, 2 BCA voters and 3 CBA voters.
The winner of this election is the Condorcet winner B.

The BCA voters have no incentive to change as their most preferred candidate is already
winning. The ABC voters and the CBA voters are too few separately to change the outcome
of the election, but will not form a coalition together. This is because the CBA voters will
not be part of a coalition that makes A the winner, as A is their least preferred candidate,
and similarly the ABC voters will not switch their vote to C, as C is their least preferred
candidate. Thus there are no possible successful deviating coalitions, and this is both a
strong and a coalition-proof equilibrium. This profile could not be produced by iterated regret
minimization, as the IRM winner will be the sincere winner C.

4 Experimental results

We carried out detailed numerical computations. The parameters were:

• voting rules: Borda, 2-approval, IRV;

• utilities: randomly chosen in interval [0, 1];

• social welfare measures: utilitarian, egalitarian, net satisfaction;

• values of m (number of candidates) and n (number of voters).

We generated 10000 elections for each given rule and regret utility measure, except for
m = 4 and n = 30, which we restricted to 1000 scenarios for reasons of running time.
Profiles were generated from the IC (uniform) distribution. This was done by using the
Mersenne Twister random generator to generate utilities for each candidate, for each voter.
These utilities were then ordered to give a preference order over the candidates. In cases
where a voter had the same utility for two candidates (a very rare event) the profile was
discarded.

For each rule, we used the same utility measure to compute regret in order to compute
the welfare. The welfare measures used on each profile were as follows. The utilitarian social
welfare U is the sum of utilities over all voters, while the egalitarian social welfare E is the
minimum over all voters. In cases where more than one winner was produced by IRM, the
winner with the lowest welfare was used.



Table 1: Summary statistics with m = 4: Borda (B) and 2-approval (2A) rule and utilities.
% S gives percentage of simulated elections where IRM winner is sincere winner.

Util/rule n Mean N Mean U Mean E % S
B/B 5 0.010 -0.004 -0.016 90.4
B/B 30 0.0003 -0.0002 0.0 99
2A/B 5 -0.014 -0.027 -0.020 88.9
2A/B 30 -0.00001 -0.001 -0.00001 100
2A/2A 5 0.013 -0.013 0.0 100
2A/2A 30 0.0 0.0 0.0 100

Net satisfaction: the difference N between the number of voters who preferred the IRM
outcome to the sincere outcome, and the number who preferred the sincere outcome
to the IRM outcome.

Utilitarian difference: the difference U between U under the IRM outcome and the max-
imum possible value of U (the “socially optimal outcome”).

Egalitarian difference: the difference E between E under the IRM outcome and the
maximum possible value of E.

In order to make meaningful comparisons, we normalized the welfare measures by the
maximum possible value. For example, the maximum Borda welfare score of a candidate
is n(m − 1), and the maximum when random utilities are generated is n. Our normalized
welfare measures below all lie between −1 and 1.

We computed, in addition to the sincere and IRM winner, the optimal winner with
respect to each measure of social welfare.

To compute regret of actions, we used a straightforward algorithm based on the defi-
nition. In order to speed up the algorithm, we used compilation functions as in [15]. For
example, for scoring rules, only the scores of each candidate in a partial profile are relevant
when regret computations are being made. We therefore generated possible score vectors
directly. Since the scoring rules we dealt with have differences of 0 or 1 between successive
elements of the weight vector, possible score vectors correspond to compositions (ordered
sums of nonnegative integers) of (n−1)

∑
i si with no part larger than (n−1) max si. These

can be generated lexicographically in a standard way.
We implemented the algorithm above in Java 1.7.0 25 via Eclipse. Source code and raw

data files for all experimental output are available from the first author on request. Data
analysis was done via a standard spreadsheet program.

The results for Borda rules with Borda utilities are summarised in Table 1, where m is
the number of candidates and n is the number of voters.

We computed more detailed results when m = 4. Figure 1 displays the mean net
satisfaction for m = 4 and 1 < n ≤ 20.

Table 2 gives the IRM winners by sincere ranks for the Borda rule and 2-approval rule
using all three measures of utility.

A subset of these computations was carried out for IRV. In these cases, interesting results
can be obtained even when m = 3. Figure 2 shows the fraction of IRM winners at each
position using both utilitarian and egalitarian Borda ranking. Note that sincere ranking is
not computed, because the standard version of IRV does not rank all candidates.



Figure 1: Mean net satisfaction (m = 4). Horizontal axis: n. Vertical axis: N .

Table 2: Sincere rank of IRM winner: m = 4, n = 5.
Utility/rule Sincere rank

1 2 3 4
Borda/Borda 9037 941 69 7
Borda/2-approval 8885 1002 151 60
2-approval/Borda 8285 2408 295 27
2-approval/2-approval 8992 981 150 36
Random/Borda 9037 941 69 7
Random/2-approval 8885 1002 151 60

Figure 2: Rank of IRM winner: Borda utilities, IRV, m = 3, n = 5. Left bars, U ; right, E.



4.1 Interpetation

4.1.1 Sincerity

The first point to note is that sincere voting occurs very often, and as n increases for m
fixed, it becomes more frequent, while as m increases with n fixed, it becomes less common.
Thus the overwhelming number of data points lead to values of 0 for net satisfaction, for
example. This bias toward sincerity is common to all solution concepts where players do
not form binding coalitions: voting sincerely makes sense if one cannot change the outcome.

However, IRM leads more often than other solution concepts to sincere outcomes even
for small values of m and n, and not all voters need vote sincerely for this to happen. This
is because of the pessimistic nature of regret minimization. The following example is one in
which the IRM winner is equal to the sincere winner but not all voters vote sincerely.

Example 4.1. (why sincere outcomes are so common)
The rule is Borda and Borda utilities are used. Tie-breaking is alphabetical.

Voters Preference order
v1 ACDB
v2 ADBC
v3 BCAD
v4 CBAD
v5 DBCA

In the first iteration every voter eliminates all votes that do not have their least preferred
candidate last and most preferred candidate first, leaving each with two votes. Of the 25 = 32
possible combinations of votes, all but 4 of them elect the sincere winner A. The first voter v1
eliminates the sincere vote and votes insincerely, while the remaining four voters eliminate
the insincere vote and vote sincerely.

Sincere voting was less common with IRV than with scoring rules, which accords with
intuition. Being not positively responsive, this rule can easily lead to scenarios in which
sincere voting hurts an otherwise winning candidate.

Table 2 shows that the level of sincerity in the outcomes is robust to the choice of
utilities. For both Borda and 2-approval the number of winners of each sincere rank is
the same regardless of whether Borda utilities or random utilities are used. Because there
were only four candidates, two of which are always fixed after the first iteration, in most
scenarios the majority of possible profiles from the second iteration onwards elect the same
winner, with a small proportion possibly electing another candidate. When this is the
case, the source of positive regret for all voters is the difference in utility between these
two candidates and so the results will be the same regardless of whether Borda utilities or
random utilities are used.

4.1.2 Welfare

We first discuss the Borda/Borda case. For many of the scenario sets tested, the mean net
satisfaction was positive despite the mean utilitarian difference being negative, implying
that there are scenarios where most voters prefer the IRM winner, but those who prefer the
sincere winner prefer it by a wider margin. As an example of this, consider the following
profile with four candidates and five voters.

Example 4.2. (net satisfaction vs utilitarian difference)
The rule is Borda and Borda utilities are used. Tie-breaking is alphabetical.



Voters Preference order
v1 ADCB
v2 BADC
v3 BCAD
v4 DBAC
v5 DCAB

The sincere winner is D with 9 points, while the IRM winner is A, with 8 points. Thus
net satisfaction is 0.2, since 3 voters prefer A to D. However the two voters who prefer D
to A contribute −0.8 to utilitarian difference while the three other voters contribute 0.6, so
U = −0.2.

The utilitarian difference and egalitarian difference can by definition never be positive
in this case, but we do find in Table 1 that the average utilitarian difference is very close to
0 for all scenario sets. The magnitude of the maximum value for the net satisfaction was
never bigger than the magnitude of the minimum value, which could indicate that, in those
scenario sets where the net satisfaction was positive, there were many scenarios in which
a small number of voters preferred the IRM outcome to the sincere outcome, with only a
small number of scenarios where a large number of voters preferred the sincere outcome.
For example, if we look at the set of scenarios with m = 4 and n = 5, the number of
scenarios with the maximum net satisfaction of 0.2 is 769, while there are only 18 scenarios
with the minimum net satisfaction of -0.6.

The results for the Borda rule and 2-approval utilities are very similar to those for
the Borda rule and Borda utilities, with all averages close to 0. However in this case the
net satisfaction was never above 0 and for n = 5 the minimum net satisfaction was -1,
indicating that at least one scenario existed in which all of the voters preferred the sincere
winner to the IRM winner. This is mostly due to the difference between the Borda utilities
used to find the regrets, and the 2-approval utilities used to find the winner: the lowest
net satisfaction often occurs in situations where two candidates tie or are close to tying
under 2-approval, as both are ranked first or second by many candidates, but have very
different Borda scores, because their rankings among those voters that place at least one
of them below second are very different. If we look instead at the net satisfaction using
2-approval with 2-approval utilities rather than Borda utilities, then the averages are higher.

5 Conclusion and future work

Our work so far has established:

• IRM has a strong bias toward sincere outcomes;

• when the sincere winner is not elected by IRM, the IRM winner often has majority
support over the sincere winner;

• under IRM, the overall loss in welfare owing to strategic behaviour is rather small, at
least for scoring rules.

To the extent that IRM is believed to be a realistic solution concept, this substantially
mitigates concerns about manipulation in voting games. Our results fit into a growing body
of work on welfare effects of strategic voting. For example, [15] presents simulation experi-
ments for sequential voting under plurality and antiplurality where the backward induction
solution gave positive net satisfaction on average, while [14] shows that a refinement of



Nash equilibrium often leads to good outcomes under plurality. Earlier simulation results
along these lines were obtained by Lehtinen [8, 9]. While socially bad outcomes can occur
in the worst case with any solution concept (for example [2]), our preliminary investigations
show that for solution concepts which presuppose a high level of information and reasoning
about other players, such improvements in welfare often occur, whereas for simple heuristic
attempts to manipulate, the overall outcome is generally worse than with sincere voting.
Clearly, this issue deserves further study.

There is a difference in the behaviour of IRM when using a positively responsive rule
such as a scoring rule, and a rule that is not, such as IRV. This should be explored further.

As pointed out by a referee, our mapping of utility functions to preference orders is not
the only possibility. A more thorough investigation using ideas such as in [3, 1] would be
interesting.

We have used only synthetic data. Checking the performance of IRM on real preference
data, on data with only partial preferences, or in general studying how realistic a solu-
tion concept IRM is when voting games are played in practice, is another very interesting
direction of research.

We thank numerous anonymous referees for their comments on various versions of this
paper.
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