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Abstract

We study convergence properties of iterative voting procedures. Such a procedure is defined
by a voting rule and a (restricted) iterative process, where at each step one agent can modify his
vote towards a better outcome for himself. It has already been observed in previous works that
if voters are allowed to make arbitrary moves (or even only best responses), such processes may
not converge for most common voting rules. It is therefore important to investigate whether
and which natural restrictions on the dynamics of iterative voting procedures can guarantee
convergence.
To this end, we provide two general conditions on dynamics based on iterative myopic im-
provements, each of which is sufficient for convergence. We then identify several classes of
voting rules, along with their corresponding iterative processes, for which at least one of these
conditions hold. Our work generalizes recent results and relaxes a number of restrictive as-
sumptions made in previous research.

1 Introduction
Voting rules constitute a popular tool for preference aggregation and collective decision making in
various multi-agent systems, involving entities with possibly diverse preferences. The major concern
however of voting as a decision-making process is that voters may have incentives to misreport their
real preferences in order to favor certain candidates. The famous Gibbard-Satterthwaite theorem [7,
16] states that under mild assumptions, such scenarios are feasible. Strategic behavior is therefore
inherent in most voting rules.

Since manipulation is unavoidable, a natural next step would be to resort to game-theoretic tools
in order to model voting behavior and assess the outcome of a voting process. A first attempt is to
view elections as games among strategic agents and study the properties of Nash equilibria or other
solution concepts. This is not enough however. It has long been observed that Nash equilibria may
fail to provide a good prediction of how such voting games may evolve. The reason is that there is
usually a multitude of equilibria, some of which are also very unlikely to be observed in practice. A
representative example of this is when all voters vote for a commonly least preferred candidate, and
a unilateral deviation cannot change the outcome.

Departing from this, we are interested in solution concepts that are more likely to be realized in
a voting process. Following [11], in this work we consider iterative voting procedures, where agents
start from some initial configuration (e.g., the truthful profile), and subsequently make myopic im-
provements. Iterative voting has recently received significant attention in the literature, motivated by
web services such as Doodle, but also as a way to model the response of an electorate to information
polls.

Several results have already been obtained regarding the convergence of best/better response
dynamics for various voting rules (see Related Work). One of the main findings is that if players
are allowed to make arbitrary moves (or just play only best responses), then convergence of such
processes is not guaranteed. Nevertheless, it is often the case that voters will not choose a best
response when they update their voting decision. Natural restrictions may apply if the voters are
computationally bounded, or if they tend to behave myopically and make only greedy local moves.
Voters may also not be interested in plain manipulation but rather in reaching an agreement or



compromise with a minimal way of changing their ballot. Restrictions on the dynamics of voting
processes as an attempt to model some of the above considerations have already been described
recently in [14] and [8]. However, the family of restricted moves that enforces convergence has not
been yet characterized.
Contribution: We consider iterative voting procedures, specified by a voting rule along with the
allowed dynamics, i.e., a specification of the possible improvement steps that can be made by the
voters. Under lexicographic tie-breaking, we provide two general conditions on these processes,
each of which is sufficient for convergence. The first one is based essentially on potential func-
tion arguments, whereas the second regards the monotonicity of a set sequence defined along an
improvement path. We then identify several classes of voting rules, along with restricted dynamics
under these rules, for which at least one of these conditions hold. Our work provides a unifying
framework for studying convergence issues of such processes. Furthermore, we generalize recent
results and relax a number of restrictive assumptions made in previous research.

1.1 Related Work
Some earlier work on iterative voting processes is well summarized in [9], and concerns dynamics
for deciding on allocations of public goods. The study of iterative voting in the more recent AI
literature was initiated by [11], which focused on improvement dynamics under the Plurality rule.
Both positive and negative results were established, depending on the initial voting profile, the tie-
breaking rule and the improvement steps allowed (better replies or best responses). In a follow up
work, [10] showed that for other voting rules (in fact for the most popular ones), it is often the case
that convergence of even best responses cannot be guaranteed. More results along this direction were
established in [15], who also improved on the convergence bounds of [11]. An analysis in terms of
the quality of equilibria reachable by such processes was obtained in [3]. Finally, a different type of
voting processes was studied in [1], where each player is allowed to propose a change in the current
state and then a vote is held for its acceptance.

The works most closely related to ours are those of [14] and [8]. Both of them considered pro-
cedures where voters may not play a best response but instead move according to certain restricted
best responses. Three types of restricted dynamics have been considered (defined in Preliminaries),
and convergence results were established for these moves under some families of voting rules. As
we exhibit in the following sections, our framework incorporates these positive results and relaxes
some of the limitations on the allowed moves.

Finally, there have been many other works applying game-theoretic tools to voting, starting
with [6]. More recent research in this line has focused either on studying stronger equilibrium
concepts [17] or on different models of voting behavior such as voting with abstentions [4] or truth-
biased voting [11, 18, 5, 13]. We do not consider any of these models here.

2 Preliminaries
We first recall the common voting rules studied in this work, and define the setting of iterative voting
based on myopic improvement moves by single voters.

2.1 Voting rules
There is a set V = {1, . . . , n} of n voters (or agents) electing a winner from a set C = {c1, . . . , cm}
of m candidates (or alternatives). Let L(C) be the set of all strict linear orders on C. Each voter
i submits a vote (or ballot) bi ∈ L(C), which may or may not coincide with his real preference
order, �i∈ L(C), over the candidates. A profile b = (b1, . . . , bn) ∈ L(C)n is a vector of votes,
one for each agent. As is common, we denote by b−i the profile of all votes except that of agent i,



so that b = (bi,b−i). A voting rule F : L(C)n → 2C takes a voting profile as input, and produces
an outcome—a nonempty subset of candidates, called the winners of the election. In this paper,
we focus on resolute voting rules F : L(C)n → C, which always return a single winner. That is,
given their irresolute version, we assume that ties are broken according to a fixed tie-breaking rule.
Specifically, in this work, we assume lexicographic tie-breaking—i.e., ties are broken in favour of
the candidate with the lowest index.

Examples of common voting rules include:

• Positional scoring rules (PSRs). Each such rule is associated with a scoring vector (s1, ..., sm)
where s1 > sm and s1 ≥ s2 ≥ . . . ≥ sm. If a voter ranks a candidate at the j-th position,
the candidate receives a score of sj from this vote. The total score of a candidate is the sum
of scores over all the votes, and the winner of the election is the candidate with the highest
score. This family of rules includes Plurality with the scoring vector (1, 0, 0, . . . , 0), Veto
with (1, 1, . . . , 1, 0), Borda with (m− 1,m− 2, ..., 0) and k-approval with (1, ..., 1, 0, ..., 0).

• Maximin. Under this rule, the score of a candidate c is the minimum number of voters who
prefer c over all pairwise comparisons with the other candidates. The candidate with the
highest such score wins the election.

• Copeland. The score of a candidate c is the number of pairwise comparisons he wins (i.e.,
the number of other candidates c′, for which the majority of voters prefers c to c′), minus the
number of pairwise comparisons he loses. The winner has the highest such score.

• Bucklin. In one of its versions, this rule first identifies for each candidate c, the minimum
number k for which the majority of voters rank c within their top k choices. Let kmin be the
minimum such number over all candidates. The election then proceeds as a kmin-approval
election.

Under the rules defined above, each candidate can be naturally associated with a score, derived from
a given voting profile. For rules where there is no obvious way to score the candidates, we can
also define an artificial score where the winner under a given profile receives 1 point, and other
candidates receive 0 points. Thus, w.l.o.g. we can assume that any voting rule corresponds to a
scoring algorithm with the property that the candidate with the highest score wins the election (after
possibly applying a tie-breaking rule as well). We may also assume that the scores are integer
numbers. Note that there can be several scoring rules corresponding to a voting rule; in the sequel,
whenever we are given a voting rule, we will also assume that it is accompanied by a fixed scoring
rule (the natural one when it comes to the voting rules that are defined above). For each candidate
c ∈ C, its score at profile b under voting rule F is denoted by sF (c,b) (we drop the indices when
clear from the context).

2.2 Iterative voting
Each voting rule F induces a natural game form, where the strategies available to each voter are
given by L(C), and the outcome of a joint action (i.e., a voting profile) b is wb = F(b). Voter i
prefers profile b′ over profile b if wb′ �i wb, and we say that bi

i→ b′i is an improvement move (or
a better reply) of agent i w.r.t. b if he prefers (b′i,b−i) over b.

A path in L(C)n is a sequence (b0 → b1 → · · · ) of voting profiles such that for every k ≥ 1
there exists a unique agent, say voter i, such that bk = (b′i,b

k−1
−i ) for some b′i 6= bk−1i in L(C). It

is an improvement path if for all k ≥ 1 it holds that bk−1i
i→ bki is an improvement move, where

i is the unique deviator at step k. The setting of iterative voting is based on myopic improvement
dynamics as above: the voters start by announcing some initial vote, and then proceed and change
their votes in turns, one at a time, up until no one has an objection to the current outcome. As often
in previous works, we make a natural assumption that the initial profile is the truthful one—that is,



b0 = (�1, . . . ,�n). We do not make any restrictions on the order in which the agents apply their
improvement moves.

Convergence of better replies is not guaranteed though, even for games induced by the simple
Plurality rule, hence another natural restriction of best response dynamics is usually made: the voters
are assumed to make only moves that yield the best possible candidate (w.r.t. the deviator’s prefer-
ences) among the potential winners at each step. While best responses always converge for Plurality
and Veto with linear tie-breaking [11, 10], they may cycle under other rules, such as Copeland [8],
Borda, and k-approval [10, 15].

2.2.1 Restricted dynamics

In such settings, convergence can be achieved by restricting the sets of available improvement moves
even further. To this end, the following simple dynamics have been previously considered:

• Second Chance (SC)1 [8]: If the current winner is not the deviator’s best or second-best choice,
he moves his second-best alternative to the top position;

• k-pragmatist [2, 14]: The deviator moves his favourite among the k currently highest ranked
alternatives to the top position, without changing the relative ranking of the others;

• Best Upgrade (BU)1 [8]: The deviator moves to the top position his favourite alternative
among those who can win the election and are currently ranked in the deviator’s ballot above
the current winner.

We use the term iterative voting procedure (F , D) to define the process based on the improve-
ment dynamics D under the voting rule F . We say that a voting procedure converges if every
improvement path that contains moves allowed by D is finite under F .

3 Sufficient conditions for convergence
We identify two general conditions on iterative voting procedures, each of which guarantees conver-
gence from the truthful state. These conditions are powerful enough to incorporate all convergence
results for the restricted dynamics defined above. Finally, we also propose two natural yet significant
relaxations for the BU dynamics and show that they satisfy one of our conditions for most voting
rules.

3.1 Function monotonicity
The first condition is based on the potential argument [12]. That is, we define a real-valued function
G : L(C)n → R over the set of voting profiles, and require that it increases along any allowed
improvement path. In fact, it is sufficient to require only weak monotonicity, as function G(·)
changes its value at every step.

Condition 1 (C1). Let (F , D) be an iterative voting procedure. Given a voting profile b ∈ L(C)n,
let

G(b) = sF (wb,b) +
m− index(wb)

m+ 1
, (1)

where for any candidate c, index(c) indicates its position in the tie-breaking order. Then, for any
improvement path (b0 → b1 → · · · ), we have G(bk) ≥ G(bk−1), ∀k ≥ 1.

1Also referred to as M1 and M2 in [8].



As will become clear from Theorem 1 below, Condition 1 is existential with respect to the scoring
function (i.e., for our purposes we only need C1 to hold for some scoring function consistent with
a voting rule F). Nevertheless, as explained in Section 2, in this paper we will only consider the
natural score function that is associated with each of the rules we are studying.
In what follows, we abuse the notation and write wk = wbk and sk(·) = sF (·,bk) for a profile bk,
at step k of a path (b0 → b1 → · · · ), under a given (F , D).

Theorem 1. Any iterative voting procedure (F , D) that satisfies C1, converges in at most (smax
F +

1)(m+ 1) steps, where smax
F is the maximum possible attainable score under F .

Proof. Let (b0 → b1 → · · · ) be any improvement path in (F , D). Since m−index(c)
m+1 < 1 for any

c ∈ C, and C1 holds, we have that either sk(wk) > sk−1(wk−1) or sk(wk) = sk−1(wk−1) and
index(wk) < index(wk−1) for any k ≥ 1. Hence, the function G grows by at least 1

m+1 at each
step, and the bound follows since G(b) < smax

F + 1, ∀ b.

3.2 Set monotonicity
The second condition follows the idea of [15]. In their work, convergence of best response dynamics
for Plurality was (re)proved by showing inclusion monotonicity of the sets of potential winners along
the improvement path—that is, the sets of candidates for which there exists a voter that can make
them win the election by unilaterally applying an improvement move at a given step. The condition
we give below is stronger and requires monotone inclusion of individual sets of potentially winning
candidates for each voter separately. Moreover, our definition is recursive so that a current winner of
the election belongs to the set of potential winners of a voter i, only if it has or could have become
a winner due to voter i’s move.

Definition 1. Let (F , D) be an iterative voting procedure. For i ∈ V and an improvement path
(b0 → b1 → · · · ), let

PWi(b
0
) = {w0}

⋃{
c ∈ C

∣∣ ∃b′i : c = F
(
b
′
i,b

0
−i

)
∧ c �i w0

}
where b

′

i ∈ L(C) is consistent with D. For k ≥ 1, let

PWi(b
k
) =

{
c ∈ C

∣∣ ∃b′i : c = F
(
b
′
i,b

k
−i

)
∧ c �i wk

}
⋃ {

{wk} wk ∈ PWi(b
k−1)

∅ otherwise

Condition 2 (C2). Let (F , D) be an iterative voting procedure. Then, for any improvement path
(b0 → b1 → · · · ) in (F , D), we have, PWi(b

k) ⊆ PWi(b
k−1), ∀i ∈ V, k ≥ 1, and at least one

of the following holds:

(a) at each step k, there exists an agent i ∈ V for whom the inclusion is strict;

(b) there is a finite number q,2 such that for every voter i and candidate c, the maximum possible
number of consecutive moves, made by i in favor of c, is bounded by q.3

Theorem 2. Any iterative voting procedure (F , D) that satisfies C2, converges in at most qmn
steps.

Proof. Consider any improvement path (b0 → b1 → · · · ) in (F , D). If C2(a) holds, then at every
improvement step k, the set of potential winners for some voter i, PWi(b

k) decreases by at least 1,
compared to PWi(b

k−1). This implies that the process converges in at most mn steps.

2Usually, a simple funciton of m or n. For instance, as we will show, q = m− 1 for many positional scoring rules.
3We refer to moves that are consecutive in the subsequence of moves made by voter i only. They need not to be

consecutive in the whole improvement path.



For C2(b), fix a voter i, and consider the subsequence of steps where i makes a move. For a
candidate c, look at the moves in this subsequence that are in favor of c. We claim that there can be
at most one series of consecutive moves in this subsequence where i makes c a winner. Let t be the
last step in such a series of moves. Then, at step t + 1 (regardless of which agent is the deviator),
candidate c is excluded from the set of potential winners of voter i, and by the monotonicity of these
sets, it will not reappear in PWi(·) ever again. Hence, each voter makes at most q moves in total in
favor of each of the candidates, and the bound of qmn follows.

3.3 Non-equivalence between C1 and C2
Next, we observe that the function and the set monotonicity conditions do not imply each other. We
start with Example 1 of a voting procedure where C1 does not hold, but C2 does.

Example 1. There are 9 voters and m candidates for some large enough m. Figure 1 shows the
truthful preference profile, where all the missing candidates within the first 4 positions of each voter
are distinct dummy candidates, different from c1 and c2. In particular, c1 appears at position 5 or
lower for voters 1, 4 and 5. Ditto for c2 and voters 6–9. The voting rule is Bucklin, and the iterative

1 2 3 4 5 6 7 8 9
c2 c2 c2 . . . . . . . . . . . . . . . c1
. . . c1 c1 c2 . . . . . . . . . c1 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . c2 c1 c1 . . . . . .
...

...
...

...
...

...
...

...
...

Figure 1: Voters’ preferences in a game with C2 but not C1

improvement policy restricts each of the voters to a single swap where one candidate is moved one
position up in the current ranking, if this candidate becomes a new winner after such a move.

Under the truthful profile b0, the winner is c1, with a score of 6 (the Bucklin winning round is
4). Consider now the following sequence (b0 → b1 → b2 → b3 → b4) of updates under the
dynamics specified: first, voter 5 moves c2 upwards by one position, making c2 the new winner in
b1. Then, voter 6 changes his vote and ranks c1 in the 3rd position, making c1 the winner in b2.
Voter 5 responds by ranking c2 in the 2nd position. Finally, voter 6 again lifts c1 by one position.
One can check that no voter can change his vote in b4 to make c2 or any other candidate a winner.

To see that condition C1 is violated, note that in the truthful profile, the score of c1 is 6, and
observe that in b1, the winner’s score decreases to 5, implying G(b1) < G(b0).

We show now that condition C2 holds, in particular C2(b). First, look at the sets of po-
tential winners for voters 5 and 6, who are involved in the improvement path. For 5, we have
PW5(b

0) = {c1, c2} and PW5(b
1) = {c2}. Then this set remains unchanged until eventually we

get PW5(b
0) = ∅. For voter 6, his initial set, which is PW6(b

0) = {c1}, remains unchanged until
the last step. Now, agent 7 has the same preference order as voter 6 but does not make a move. He
has PW7(b

0) = PW7(b
1) = PW7(b

2) = {c1}, and then PW7(b
2) = ∅, which remains further

unchanged. Similarly, we check the monotonicity of these sets for the rest of the voters. Finally, it
is trivial that the number of possible consecutive moves of a voter in favor of a certain candidate is
at most m− 1, hence C2(b) holds.

Remark 1. The game in Example 1 satisfies C2(b), but it is easy to see that it does not satisfy C2(a).
One can make slight adjustments to this example, so that condition C1 still does not hold but C2(a)
does. We omit the details due to space limitations.

Next, we give an example where C1 holds but neither version of condition C2 does.



Example 2. The construction is based on the (Borda, BU) procedure. We construct an instance
where voter 1 has the preference order c1 �1 c2 �1 c3 �1 . . ., and the ranking of voter 2 is
c1 �2 c3 �2 c4 �2 . . . �2 c2. The preferences of the other voters are such that in the full truthful
profile, b0, the following conditions hold:

• candidate c3 is the winner; we denote its score by s;

• candidate c2 has s− 1 points in b0;

• candidates c4, c5, . . . , cm have s points in b0 (but they all lose due to tie-breaking);

• candidate c1 has less than s− 1 points.

We first exhibit that C2 does not hold. Under BU, voter 1 can swap the positions of c1 and c2,
resulting in candidate c2 having a score of s and winning the election by the tie-breaking. Let b1

be this new profile, and consider voter 2. At b0, he had PW2(b
0) = {c2, c3}. But then at b1 the

current winner is the last choice of voter 2, hence under BU there are many candidates that he can
turn into a winner. Thus, PW2(b

1) = {c2, c3, ..., cm}, so C2 is violated.
Finally, C1 holds by the results of [8], falling under the first case of Proposition 3 below.

The following Proposition demonstrates that our framework incorporates the convergence results
for the restricted dynamics previously proposed in the literature [14, 8].

Proposition 3. The function monotonicity holds for all following iterative voting procedures: (i)
k-pragmatist under PSRs; (ii) SC and BU under PSR, Copeland or Maximin. Furthermore, SC also
satisfies C2.

Proof. We provide a sketch of the proof since most of the main arguments can be extracted by the
works of [14, 8].

For BU, essentially the proof of Theorem 2 in [8], establishes C1. The main idea is that since
the only candidates who are already ranked higher than the current winner, say c, can be moved,
this implies that the score of c remains unchanged. If this score was equal to s, then the new winner
must either win with a score higher than s, or he wins with a score equal to s but is favored by the
tie-breaking rule, i.e., he has a lower index than c. This implies the monotonicity of the function G,
given its dependence on the score and the index, as defined in (1). Hence, C1 holds.

For SC, again, a similar argument applies. By the definition of the move, each voter will change
his vote at most once from the truthful profile. And his move is to place on top his second favourite
candidate, when the current winner is not his best or second-best alternative. Hence again, the
score of the current winner never decreases and the function G is monotone. To see why C2 holds,
observe that in the beginning of the process the set of potential winners for a voter contains the
current (truthful) winner and possibly the second best alternative. If a voter i moves to make the
second best alternative a winner, the truthful winner no longer belongs to PWi(·). If any move is
made afterwards by another voter, then PWi(·) becomes empty and i cannot make his second best
candidate a winner again in the future. Hence, the set monotonicity holds. It is also then trivial to
verify that both of its versions C2(a) and C2(b) hold in this case.

Finally, regarding k-pragmatist, by the proof of Lemma 2 in [14], we know that along any
improvement path, the set of the k highest ranked candidates does not change. Let S be this set.
Now, since a deviator moves his favourite candidate among S to the top and keeps the relative
ranking of the others the same, this means that no candidate from S loses any points under a PSR.
Thus again, the score of the current winner does not decrease.

3.4 Relaxations of Best Upgrade dynamics
Here, we observe that the previously discussed BU dynamics can be significantly relaxed, while
preserving convergence. In particular, consider the following relaxations:



• BU-1: As in BU, the deviator moves to the top position in his vote his favourite alternative
among those who can become a new winner and are currently ranked in the deviator’s ballot
above the current winner, c. He can also freely shuffle among themselves all the candidates
ranked above c. The same applies for all the candidates below c (again among themselves).
He is not allowed to change the ranking of c.

• BU-2: As before, the deviator moves to the top position in his vote his favourite alternative
among those who can become a new winner and are currently ranked in the deviator’s ballot
above the current winner, c. He is again restricted to keep the rank of c unchanged, but can
now shuffle the remaining candidates absolutely freely.

We can show the following result.

Theorem 4. Both BU-1 and BU-2 satisfy C1 under PSRs. Furthermore, BU-1 satisfies C1 under
Copeland and Maximin.

Proof. The main argument is similar to Proposition 3. Let c be the winner at some profile along
an improvement path. Under BU-1, the score of c does not change. This implies that the score of
the new winner is at least as high. This holds both for PSRs but also for Maximin and Copeland
(because the part of the majority graph involving c remains unchanged). Hence, as in Proposition 3,
it is easy to see that the function G is monotone.

With BU-2, if we freely shuffle all the candidates apart from c, then the score of c will still remain
the same under a PSR. Hence the same arguments apply. We can no longer guarantee convergence
for Maximin and Copeland though, since the score of c may change (the part of the majority graph
regarding c now changes).

4 More monotone classes of iterative procedures
In this section, we demonstrate more iterative voting procedures, for which both the function mono-
tonicity and the set monotonicity conditions hold. Our first example is for the Maximin rule with
a natural improvement dynamic, termed upgrade, where a deviating voter moves a new winner to
a higher position, while the relative ranking of the remaining candidates is kept unchanged. Our
second family of rules concerns a subclass of integer PSRs, termed unit gap scoring rules, where the
difference in any two consecuitive scores sj , sj+1 in the integer scoring vector of the rule is bounded
by 1 (among others, this class contains all common PSRs such as Plurality, Veto, k-approval and
Borda). We show that C1 and C2 hold under the iterative process, called unit upgrade, where a new
winner is moved by exactly one position higher in the ballot of the deviating voter, without changing
the relative ranking of other candidates. Importantly, restricting the voters to not move higher any
candidates other than the new winner, is necessary for convergence for both Maximin and unit gap
scoring rules.

4.1 Maximin with upgrade
Consider the following policy for improvement moves:

• upgrade (U): at each step, the deviator moves his favorite alternative among those who can
win the election, to a higher (but not necessarily top) position in his vote, and keeps the relative
ranking of the rest of the candidates unchanged. The upgraded candidate is the new winner.

Theorem 5. The iterative procedure (Maximin, U) is function monotone and set monotone—
specifically, C2(a) holds.

The following lemma demonstrates a useful property.



Lemma 1. Let (b0 → b1 → · · · ) be an improvement path under Maximin. For each candidate
c ∈ C, let TOc(b

k) be the set of his toughest opponents—i.e., candidates against which c has
minimal support in all pairwise comparisons:

TOc(b
k) = arg min

x∈C\{c}
nk(c, x)

where nk(c, x) is the number of voters that prefer c over a candidate x in a profile bk. For any
k ≥ 1, if sk(c) > sk−1(c) then TOc(b

k−1) ⊆ TOc(b
k).

Proof. Since minx∈C\{c} nk(c, x) = sk(c) > sk−1(c) = minx∈C\{c} nk−1(c, x), at step k the
deviating voter awards candidate c an additional point against each of his toughest opponents at step
k − 1 (by moving c from under x ∈ TOc(b

k−1) above them). Thus, all of them must remain his
toughest opponents at step k.

Proof of Theorem 5. Assume on the contrary that C1 or C2 do not hold. Let t ≥ 1 be the first step
on the upgrade path (b0 → b1 → · · · ) where monotonicity breaks—that is, G(bk) ≥ G(bk−1)
and PWi(b

k) ⊆ PWi(b
k−1), for every 1 ≤ k ≤ t− 1, i ∈ V .

Case 1: Assume first that G(bt) < G(bt−1). This is only possible if the Maximin score of
the winner at step t − 1 decreases at step t: that is, st(wt−1) < st−1(wt−1). If this was not the
case, then by the definition of G it follows that wt−1 has at least the same score and a lower index
than wt, a contradiction. By the upgrade policy, this means that the deviator at step t (say, voter
i) moves candidate wt from under wt−1 above wt−1 in his ballot. Since i prefers wt to wt−1 (as
he is improving at step t), there was a step k < t at which voter i made wt−1 a winner. This is
due to the upgrade policy, the fact that the process starts from the truthful state, and the fact that
wt−1 was ranked higher than wt at bt−1i . That is, wt−1 was the most preferable candidate among
potential winners of i at step k−1, and hence wt−1 ∈ PWi(b

k−1) but wt /∈ PWi(b
k−1). However,

wt ∈ PWi(b
t−1), in contradiction to the set monotonicity until step t− 1.

Case 2: Suppose now that G(bt) ≥ G(bt−1), but PWi(b
t) 6⊆ PWi(b

t−1) for some i ∈ V .
Let c ∈ C and i ∈ V such that c ∈ PWi(b

t) \ PWi(b
t−1). First assume that the set of c’s

toughest opponents decreased at step t: that is, TOc(b
t−1) 6⊆ TOc(b

t), so there is a candidate
c′ ∈ TOc(b

t−1) with c′ 6∈ TOc(b
t). By Lemma 1, we have that st(c) ≤ st−1(c). In fact, equality

is not possible here. To see this, note that c is not the winner at step t, otherwise c would belong to
PWi(b

t−1), by the definition of PWi(·). Hence c does not receive any additional points from the
deviating voter at step t. But then, the only way that candidate c′ can stop being a toughest opponent
of c at step t, is if some other toughest opponent is moved by the deviator from beneath c, to a
position above c, implying that the Maximin score of c decreases by 1: st(c) = st−1(c) − 1. Now,
since G(bt) ≥ G(bt−1), and hence, st(wt) ≥ st−1(wt−1) (with equality only if wt beats wt−1 in
tie-breaking), it turns out that c cannot belong to the set of potential winners of any of the voters at
step t, a contradiction. Thereby, we have established that TOc(b

t−1) ⊆ TOc(b
t).

Since c ∈ PWi(b
t), and c is not the winner at step t, voter i can increase the score of c—that is,

in his ballot all toughest opponents of c are ranked above c. However, since c /∈ PWi(b
t−1), this

was not the case at step t− 1. This means that one of the toughest opponents of c at step t− 1 was
ranked below c in voter i’s ballot—and by moving this candidate above candidate c, the score of
candidate c decreased by 1. But this excludes c from the sets of potential winners for all the voters,
again a contradiction.

Finally, note that at the first step, all the voters who cannot make the truthful winner, w0, a
winner again (that is, all those who rank w0 above at least one of its toughest opponents—certainly,
there is at least one such vote), lose w0 from their set of potential winners. Similarly, at each step
k, the voter who deviated at the previous step will lose the previous winner, wk−1, from his set of
potential winners. Hence, C2(a) holds.

Next, we argue that the requirement of upgrading (i.e., moving up) only the winning candidate
is necessary for convergence under many voting rules. For instance, cycles have been shown for



Copeland [8], k-approval and Borda [10, 15], even when lexicographic tie-breaking is used. For
Maximin, [10] provide a cycling example with deterministic, but not lexicographic, tie-breaking.
We strengthen this negative result, by giving an example where ties are broken lexicographically.

Example 3. There are 2 voters {1, 2} and 4 candidates {a, b, c, d}, with d � b � c � a as the
tie-breaking rule. At first step, the agents vote sincerely, seen below, which results in a tie between
all the candidates, and d wins. Now, as voter 1 perefers candidate b over candidate d, he deviates
from his true preference order abdc and votes abcd, which makes b win the election (note that this is
a best response for voter 1, and it involves moving a non-winning candidate). Next, voter 2 deviates
to make candidate c a winner, and so on. We describe the improvement path below, with a cycle
starting at the fourth step:

(abdc, cdba){d} 1→ (abcd, cdba){b} 2→ (abcd, cadb){c}
1→ (bcda, cadb){b} 2→ (bcda, adcb){d}

↑1 ↓1
(abdc, cadb){c} 2← (abdc, adcb){a}

4.2 Unit gap scoring rules with unit upgrade
Let F be a PSR given by a scoring vector (s1, ..., sm). We say that F is a unit gap scoring rule if
sj − sj+1 ≤ 1 for any j = 1, . . . ,m− 1. This includes the most common PSRs, such as, Plurality,
Veto, k-approval and Borda.

For such rules, we restrict the upgrade policy even further:

• unit upgrade (UU): at each step, the deviator moves his favorite alternative among those who
can become a winner, by exactly one position up, and keeps the relative ranking of the others
unchanged. The upgraded alternative wins.

Theorem 6. LetF be a unit gap scoring rule. Then, the iterative procedure (F , UU) is both function
monotone and set monotone—specifically, it satisfies C2(b).

Proof. Assume on the contrary that C1 or C2 do not hold. Let t ≥ 1 be the first step on the UU
path (b0 → b1 → · · · ) where monotonicity breaks—i.e., G(bk) ≥ G(bk−1) and PWi(b

k) ⊆
PWi(b

k−1), ∀1 ≤ k ≤ t− 1, i ∈ V .
Case 1: Assume first that G(bt) < G(bt−1). This implies that st(wt) < st−1(wt−1), and

hence: st(wt−1) ≤ st(wt) < st−1(wt−1), i.e., the score of the winner at step t − 1 has decreased.
By the unit upgrade policy, this means that at step t − 1 some voter (say, i) ranks candidate wt−1
right above candidate wt, and he swaps them at step t. Since i prefers wt to wt−1 (as he is improving
at step t), there was a step k < t at which voter i made wt−1 a winner (as the process starts from
the truthful state). That is, wt−1 was the most preferable candidate among potential winners of i at
step k − 1, and hence wt−1 ∈ PWi(b

k−1) but wt /∈ PWi(b
k−1). However, wt ∈ PWi(b

t−1), in
contradiction to the set monotonicity until step t− 1.

Case 2: Suppose now that G(bt) ≥ G(bt−1), but PWi(b
t) 6⊆ PWi(b

t−1) for some i ∈ V .
Let c ∈ C and i ∈ V such that c ∈ PWi(b

t) \ PWi(b
t−1). Since G(bt) ≥ G(bt−1), and hence,

st(wt) ≥ st−1(wt−1), this is only possible if candidate c was in the top position in the ballot of
voter i at step t − 1 and is not in the top position in his ballot at step t. That is, c must have lost a
point at step t: st(c) = st−1(c) − 1. Now, this means that the candidate c cannot belong to the set
of potential winners of any of the voters at step t, a contradiction.

Finally, since by the unit upgrade policy the number of consequtive moves that a voter can make
in favour of a particular candidate is naturally bounded by m − 1, the procedure (F , UU) satisfies
C2(b).



We note that both reducing the class of PSRs to the unit gap rules and the further restriction of
the upgrade policy to allow only unit upgrades are necessary for each of the monotonicity conditions
to hold. The following Example shows that both C1 and C2 may not hold for (Borda, U).

Example 4. There are 5 candidates {a, b, c, d, e} and 13 voters {1, 2, 3, . . . , 13}, but only the first
three will be involved in the improvement process. The voting rule is Borda with the tie-breaking
order a � b � c � d � e, and the improvement dynamic is upgrade.

Let agents 4–8 vote (sincerely) cabde, agents 9–11 vote bcaed, agent 12 vote cabed and agent
13 baced. Thus, from these voters the candidates get the initial scores of (27, 28, 35, 5, 5). Consider
the following improvement path by the voters 1–3, voting truthfully at the first step:

(abdec, deabc, debac){c} 1→ (badec, deabc, debac){b}
2→ (badec, adebc, debac){a} 3→ (badec, adebc, bdeac){b}
1→ (badec, adebc, bdeac){a}

Note that the score of the winner at the first three steps is 35, it goes up to 37 at step 4 and down
to 36 at step 5; hence, C1 does not hold. Consider now the sets of potential winners for voter 1: at
the first two steps it contains candidates b and c, when voter b leaves the set at the 3rd step. Now, at
the 4th step, candidate a, who never was present in PW1(·), joins the set, thus violating condition
C2.

Remark 2. The previous example can be easily modified to show that both C1 and C2 can be
violated under positional scoring rules with non-unit gap scores, even if the agents apply only unit
upgrades. For instance, it is sufficient to consider (F , UU) where F is given by a scoring vector
(5, 4, 2, 1, 0) with only one non-unit gap.

5 Conclusions
We provided a framework for studying convergence properties of iterative voting procedures under
restricted dynamics. We established two general sufficient conditions that guarantee convergence
of such myopic improvements. We then identified several classes of voting rules, along with their
corresponding iterative processes, for which at least one of these conditions hold. Our work puts
under the same framework recent results, it generalizes some of them by relaxing some restrictive
assumptions, and also provides further positive results for more families of rules and dynamics.

Besides gaining a better understanding of what makes an iterative voting procedure converge,
it is also interesting and important to evaluate the quality of outcomes obtained by iterative voting
procedures. Which of the restricted dynamics can guarantee convergence to a Nash equilibrium and
under what conditions? Analyzing the Dynamic Price of Anarchy and analogous measures for the
quality of outcomes of such iterative procedures, along the lines of [3], is certainly a topic worth
pursuing.
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