
A Non-Parametric Test of Stochastic

Preferences

Bart Smeulders, Michel Regenwetter, Frits C.R. Spieksma

Abstract

In this paper we present algorithms to test a theory of stochastic preferences on
binary choice data. For the general case, where preferences can be any strict linear
order, a column generation algorithm is given. This algorithm can be easily adjusted
to test for specific classes of preferences or to account for different kinds of data. We
perform preliminary experiments showing the viability of this method. Furthermore,
we look at the special case of single-peaked preferences and show that for this class,
a test of stochastic preferences can be done in polynomial time by checking the data
for a simple condition.

1 Introduction

Throughout the scientific literature there is no shortage of models of choice behaviour.
Especially the notion of a rational person, who makes decisions based on his/her personal
utility function or preferences, has been very influential in economics. However, it has often
been observed that when a person is repeatedly given a choice between two alternatives a
and b, the choices made are not always consistent. During some repetitions, the person
will choose option a, while at other times choosing b. Obviously, such an observation is at
odds with the idea of a rational person choosing according to an unchanging preference
relation. One possible way to reconcile these observations with the idea of rationalali-
tyt is to drop the condition of unchanging preferences. Let us consider the following example.

Jim and Jane often meet for dinner. Each time they meet, Jim chooses two of their
three favourite restaurants and lets Jane decide at which of the two they will eat. After a
year, Jim notices that when the choices are a pizzeria (A) or a sushi restaurant (B), Jane
chooses the pizzeria two out of three times. Likewise, when the choice is between sushi (B)
and steak (C), Jane prefers sushi two thirds of the time. Finally, when choosing between
pizza (A) and steak (C), Jane picks the steak house two out of three times. An observer
might think that because Jane seems to prefer pizza over sushi, sushi over steak and steak
over pizza, she is irrational. However, a simple and rational explanation exists for her
choices. Before dinner, Jane is either at home, at the library or at the gym with equal
probability. From her house, the closest restaurant is A, then B and C is furthest. From
the library, B is closest, followed by C and A. Finally, from the gym she can quickly get to
C and then A, but B is far away. If she always pick the restaurant closest to her current
location, this completely explains her choices. Instead of a single unchanging preference,
she has multiple preference orderings, with each having an equal probability of determining
her choices at any given time.

Such a model, which explains choices by multiple internally consistent preferences is
referred to as a mixture model [10, 14, 15]. Notice that this model is equivalent to one that
explains choices by multiple persons, each with their own preferences. In this paper, we
will look at the situation where the decision maker is given pairs of objects and asked to
choose between them. The resulting data are frequencies, showing for each pair of objects
i, j, how often object i is chosen over j and vice versa. These frequencies can be interpreted

as the probablility that i is chosen over j. The main question is then whether observed data
are consistent with a mixture model. In this paper, we will compare two settings. First,
we will look at the general case of linear orders. For this case we describe an algorithm
which can be used to test rationalizability for small to medium size instances. In a second
part, we restrict preferences to so-called single-peaked preferences. In this case, objects
are ranked along an axis according to some characteristic. Preference orderings must have
the characteristic that one object is the peak and the preference relation over two objects
on the same side is determined solely by their relative proximity to the peak object along
the axis [2]. In this special case, we can show that the rationalizability question becomes
polynomially time solvable, even if the ranking of objects along the axis is unknown a priori.

1.1 Our contributions

We show that column generation is a viable technique for testing whether observed data
are consistent with the mixture model. The pricing problem involved amounts to solving
an instance of the linear ordering problem for which quite some knowledge is present in
the literature; preliminary computations show that instances with up to 20 items can be
solved in reasonable computing times. Furthermore, we show that when preferences are
restricted to so-called single peaked preferences, the testing procedure simplifies to verifying
a relatively simple condition.

1.2 A short review of literature

In the case of general linear orders, the question whether the observed data are consistent
with the mixture model is equivalent to the question whether a point representing the
data lies within the linear ordering polytope (LOP) [16]. This observation is interesting, as
it allows the knowledge of the polytope from mathematics and operations research to be
used for testing this model of choice behaviour on data. For example, known facet-defining
inequalities of the polytope can easily be seen as necessary conditions for the choice model
and full facet descriptions provide sufficient conditions. Several papers use this approach
and identify necessary and sufficient conditions in this way, see amongst others [11, 8].
However, the studies cited use relatively small datasets, with up to 5 objects. Up to this
size, the polytope is described by only two classes of facet-defining inequalities. However,
this number rises rapidly to over a thousand classes for eight objects, for a total of more
than 480 million facets [7, 12]. For more than eight objects, a full description is not known
and thus can not be used to test inclusion of the data point. It is thus clear that using
facet-defining inequalities as necessary and sufficient conditions becomes impractical very
quickly. A second way of testing whether a given point falls within the LOP is through
a vertex description, as every point within the polytope can be described as a convex
combination of the polytope’s vertices. Again this proves impractical, as the number of
vertices rises rapidly with the size of the dataset. Specifically, there are n! vertices for a
dataset with n objects, making full descriptions cumbersome for even small numbers of
objects.

McGarvey [13] describes a related problem in which only the majority decision is observed
and he proves that any pattern of majority decisions is rationalizable by a distribution over
individual preferences. The difference with the problem described in this paper is that the
exact ratio with which a is preferred over b need not be matched by the distribution over
preferences in McGarvey’s work. Debord describes a further variant, in which the difference
between the number of times a is preferred over b and the number of times b is preferred
over a is recorded, but not the number of trials. For this variant, he describes conditions

for rationalizability [5]. 1

1.3 Paper Organization

The rest of this paper is organized as follows. In section 2, we propose a method of testing
inclusion of the data point using only a partial vertex description of the LOP. Subsection
2.1 will formally lay out the problem, alongside the notation used in this paper. In Sub-
section 2.2, we will then describe a column generation algorithm which may be used to
solve instances of the problem. Subsection 2.3, is then used to discuss some preliminary
computational results. Next, Section 3 will formally introduce single-peaked preferences. In
this section, we will then give a condition for rationalizability by single-peaked preferences
which can easily be checked in polynomial time. Finally, section 4 concludes.

2 General Linear Orders

In this section, we propose a method of testing inclusion of the data point using only a
partial vertex description of the LOP. Obviously, any data point that can be described as a
convex combination of a subset of the LOP’s vertices is also included in the LOP. If the point
falls outside of this portion of the polytope, we will use column generation to identify new
vertices to expand the partial LOP in the direction of the data point. All this will be done
using a linear program which describes, if possible, the data point as a convex combination
of vertices in the partial description and a pricing problem, the linear ordering problem,
which is used to generate additional vertices. We note that this general scheme may be used
in many similar situations, both when preference orders are restricted to specific classes and
situations where the data differs from choices between two objects.

2.1 Problem Description

We consider a set N , consisting of n objects. We further consider strict linear orders over
these objects. In an individual strict linear order, objects are ranked as follows. For each
pair of objects, a, b ∈ N , we have either a � b or b � a. This relation is transitive, i.e. if
a � b and b � c, it is also the case that a � c. An individual strict linear order is denoted by
�m. The set of all possible strict linear orders is O, we note that |O| = n!. We furthermore
consider subsets Oij for each pair of objects i, j ∈ N , with �m∈ Oij if and only if i �m j.
Notice that Oij ∪ Oji = O and Oij ∩ Oji = ∅. The observed data is gathered from forced
binary choices and represented by pij , the probability that i is chosen over j. As in each
situation, either i or j must be chosen, pij + pji = 1. We are now in a position to formally
state the conditions for rationalizability of the observed data pij by a mixture model [8].

Definition 1. Observed data can be rationalized by a model of stochastic strict linear or-
dering preferences if and only if there exist numbers xm ≥ 0,m = 1, . . . , n! for which.

∑
m:�m∈Oij

xm = pij , ∀i, j ∈ N (1)

A test of rationalizability is thus to check whether a solution exists to this system of
equalities (1). A straightforward computation of this system is, as mentioned in the in-
troduction, difficult due to the number of preferences. It corresponds to using the vertex
description of the LOP to test inclusion of the observed data in the polytope.

1See Charon and Hudry [3] for these results in English

2.2 Column Generation Scheme

In this section, we will lay out a linear programming formulation of the problem and show
that it is equivalent to the system (1). This formulation uses an exponential number of
variables. It is well-known from LP-theory [4] that it is not necessary to consider all of
these variables simultaneously, in particular when the number of constraints is relatively
small. Indeed, column generation can be used to solve this LP.

2.2.1 Linear Programming Problem

In the previous section, we provided a system of equalities, which are both necessary and
sufficient for the data to be rationalizable by a model of stochastic strict linear ordering
preferences. This system can be easily rewritten as an linear programming problem as
follows.

Minimize
∑

m:�m∈O
xm (2)

∑
m:�m∈Oij

xm ≥ pij ∀i, j ∈ N (3)

xm ≥ 0 ∀m = 1, . . . , n! (4)

Claim 1. The optimal solution value of (2)-(4) is equal to 1 if and only if a solution exists
to the system of equalities (1).

Proof. The claim can be easily checked as follows. First, we show that no feasible solution
to (2)-(4) can have a solution value lower than 1. Next, we show that if there exists a
solution with this value, it is also a solution to (1). Finally, we show that any solution to
(1) is also a solution to (2)-(4), with value 1.

Notice that O = Oij ∪ Oji and Oij ∩ Oji = ∅, which implies
∑

m:�m∈O xm =∑
m:�m∈Oij

xm +
∑

m:�m∈Oji
xm, so for any solution satisfying 3, we have obj =∑

m:�m∈O xm ≥ pij +pji = 1. Now suppose we have a solution to (2)-(4) with solution value
1. As 1 =

∑
m:�m∈O xm =

∑
m:�m∈Oij

xm +
∑

m:�m∈Oji
xm and

∑
m:�m∈Oij

xm ≥ pij and∑
m:�m∈Oji

xm ≥ pji, we must have
∑

m:�m∈Oij
xm = pij and

∑
m:�m∈Oji

xm = pji. The

values of xm are thus a solution to (1). Finally, suppose we have a solution to the system of
equalities(1). The values of xm can then be put into the linear programming problem. As
for each pair of i, j, we have

∑
m:�m∈Oij

xm = pij it is clear that the constraints are met.

Furthermore, as pij+pji = 1, we have 1 =
∑

m:�m∈Oij
xm+

∑
m:�m∈Oji

xm =
∑

m:�m∈O xm

and thus we have a feasible solution to the LP with solution value 1, thus an optimal solu-
tion.

Clearly this LP-formulation still has a large number of variables (n!), as each variable
represents one vertex in the vertex description of the LOP. However, this formulation has a
relatively small number of constraints (n2). Since an optimal solution to an LP can be found
with a number of non-zero variables less than or equal to the number of constraints, it is
clear that not all variables are needed. We will therefore use a column generation approach.
In this context, we will refer to the linear problem (2)-(4) as the primal or master problem.
As a starting point, the master problem is solved with only a subset of variables, if these
are sufficient to find a solution of value 1, we have proven rationalizability. If this is not
the case, we will use a pricing problem described below, which allows us to find additional
variables which may improve the solution. We use this process until we either find a solution
with value 1, or we conclude that the given data-point is not rationalizable.

2.2.2 Column Generation

The dual of the above LP-formulation is as follows.

Maximize
∑
i,j∈N

pijyij (5)

∑
ij:�m∈Oij

yij ≤ 1 ∀k = 1, . . . , n! (6)

yij ≥ 0 ∀i, j ∈ N (7)

Given a solution x = {x1, x2, . . . , xm} to the primal problem, a solution y =
{y1, y2, . . . , yn2} can easily be found. It is well-known that feasibility of the dual solution y
is equivalent to optimality of the primal solution x. Thus, if we want to test optimality of
x, we may test whether the dual solution y satisfies (6) and (7). This is done by solving a
pricing problem. In this case, there exists a violated inequality if and only if there exists a
linear order �m, for which

∑
ij:�m∈Oij

yij > 1. This gives us the following pricing problem.

Maximize
∑
i,j∈N

yij × aij (8)

aij + aji = 1 ∀i, j ∈ N, i 6= j (9)

aij + ajk + aki ≤ 2 ∀i, j, k ∈ N, i 6= j 6= k 6= i (10)

aij ∈ {0, 1} ∀i, j ∈ N, i 6= j (11)

A solution of the problem consists of the aij variables, which given the constraints (9)
- (11) encode a strict linear order. Any such solution for which the objective value (8) is
greater than 1, corresponds to a variable which when added can improve the solution of
the master problem. We notice that the pricing problem is the well known linear ordering
problem. This problem is known to be NP-Hard (Garey and Johnson [9]). However, it
is not necessary to solve the pricing problem using exact algorithms, as long as violated
constraints can be found using heuristic solution methods.

2.3 Implementation

To illustrate some characteristics of the problem, we provide preliminary computational
results for a number of instances with 20 objects. These instances are split into 2 classes,
for the first class, all pij values were chosen completely at random. Due to the small size
of the LOP in comparison to the unit hypercube of which it is a part, all instances of this
class fall outside of the LOP. For the second class, a number of preference orderings were
randomly generated and randomly assigned weights which sum to 1. In this way, a convex
combination of these vertices is found, providing a point within the LOP. Table 1 provides
an overview of computation times needed and number of vertices generated by the column
generation algorithm to answer the rationalizability question. Instances of the first class
are denoted by ”R”, those of the second class by the number of preference generated from
which the convex combination was taken.

All computation times were obtained on a dual core 2.5 GHz computer with 4 GB RAM.
Starting columns for the linear programming problem were obtained in a heuristic fashion.
Both the linear programming and pricing problems were solved using CPLEX 12.4, called
from a custom built program. Average computation times in Table 1 show large variations
between different sets of instances. Showing that instances are not rationalizable, as is done
for the first class, can be done very quickly. On the other hand, proving that observed data

Instance # Instances Av. Comp. Time (sec) # vertices
R 10 6.2 77
5 5 1249 1409
10 5 63 400
20 5 32 248

Table 1: Summary of computational results

is rationalizable takes longer. Of interest are the large differences in computation time for
seemingly similar instances. These differences can be explained by the location of the data
point within the LOP. If generated using a larger number of vertices, the resulting point is
likely to be closer to the centre of the LOP, thus describable as a convex combination by far
more combinations of vertices. The instances generated by a smaller number of preference
orderings are closer to the convex hull and thus need more specific sets of vertices. This
can be seen in that far more vertices need to be generated and used in the LP formulation
to prove inclusion in the LOP.

We again note that results as described in Table 1 are very preliminary. Speed-ups
are possible for many parts of the algorithm. Especially the pricing problem is a target of
further research, a large literature exists on algorithms for the linear ordering problem [12].
Faster exact algorithms can be used to drive down the time needed to find new vertices.
Additionally, it is not necessary to find the optimal solution to the pricing problem, only a
solution which corresponds to a violated dual constraint. This allows usage of heuristics to
quickly find new vertices without utilizing less performant exact algorithms.

3 Single-Peaked Preferences

In this section, we will look at single-peaked preferences, which are of considerable interest
to the social choice community. They provide a very natural restriction to preferences if
alternatives can be ordered on a line according to some property. The structure imposed by
these preferences also have important theoretical consequences, for example, single-peaked
preferences avoid Condorcet’s paradox [2]. Related to the rationalizability question in this
paper, Bartholdi and Trick [1] provide a polynomial time test of consistency of given (full)
preference orderings with single-peaked preferences, which was improved upon by Escoffier
et al. [6]

Formally, we distinguish single-peaked preferences from the general linear orders as fol-
lows. Each object i ∈ N is given a position along an axis, pos(i), with pos(i) ∈ {1, 2, . . . , n}
and if i 6= j, pos(i) 6= pos(j). Consider some ordering �m with a most preferred item a,
i.e., a �m i for each i ∈ N \ a. For �m to be a single-peaked preference, it must hold that
for each pair of objects i, j ∈ N , if pos(i) < pos(j) < pos(a) or pos(i) > pos(j) > pos(a),
then it must be the case that j �m i. The set of single-peaked, preference orderings given
these positions is denoted by Osp(pos); notice that, for reasons of convenience, we will
write Osp for short. Notice also that Osp contains an exponential number of orderings. The
rationalizability question is now as follows.

Definition 2. Observed data can be rationalized by a model of stochastic strict single peaked
linear ordering preferences if and only if there exist positions pos(i),∀i ∈ N and numbers

xm ≥ 0,∀ �m∈ Osp for which:∑
m:�m∈Osp

ij

xm = pij , ∀i, j ∈ N (12)

We will now claim that the existence of a solution to this system of equalities (with
an exponential number of variables), is equivalent to the pij values satisfying a certain
condition. We will show this is the case by providing a constructive algorithm, which shows
that if the condition on pij is met, values for xm which satisfy (1) exist and vice versa.
Finally, we will provide a proof that given the values of pij , the condition can be checked in
polynomial time.

Theorem 1. Observed data can be rationalized by a model of stochastic strict single-peaked
linear ordering preferences if and only if there exist pos(i) for all objects i in N , such that
for each triple of pairwise distinct objects i, j, k in N

If pos(i) > pos(j) > pos(k) or pos(i) < pos(j) < pos(k) then, pij ≤ pik (13)

The proof for the above theorem will be split in several parts. We will first describe an
algorithm. This algorithm utilizes variables p̃ij , which are initially equal to pij . The main
part of the algorithms is a loop that outputs single-peaked linear orders. For this loop we
will prove three properties, which all depend on the condition (13) being satisfied for p̃ij
for all i, j ∈ N . First, that the loop can always run to completion, i.e. it finds a strict
single-peaked linear order �m. Second, that this �m can be given a weight xm, and for
all i, j ∈ N for which i �m j, we have xm ≤ p̃ij and that there exist some i, j ∈ N for
which i �m j and xm = p̃ij . Finally, that throughout the algorithm, the values of p̃ij satisfy
condition (13). Given these three conditions, we will be able to prove that the algorithm
provides values xm such that they satisfy the system (12).

Algorithm 1 Finding Single-Peaked Preferences

1: INPUT: pij for all i, j ∈ N and pos(i) for all i ∈ N .
2: Set p̃ij := pij , m := 1 and create �m:= ∅, M := ∅ and I := ∅.
3: while p̃ij + p̃ji > 0 do
4: for |M | < n do
5: Set I := {i : p̃ij > 0,∀j ∈ N\M}
6: If I = ∅, STOP.
7: Set i∗ := arg mini∈I pos(i).
8: Add i∗ to M and to the order in �m in last position (i.e. ∀j ∈M, j �m i∗)
9: end for

10: Set xm := mini,j∈N p̃ij for which i �m j.
11: Set p̃ij := p̃ij − xm,∀i, j ∈ N for which �m∈ Osp

ij .
12: Set m := m + 1
13: end while
14: OUTPUT: For all i ∈ {1, . . . ,m} a value xi and order �i.

Claim 2. If the values p̃ij meet condition (13), the loop will run to completion.

Proof. If at any point there does not exist an i such that p̃ij > 0,∀j ∈ N\M , the algorithm
will halt. Suppose this is the case, then for mini pos(i), i ∈ N\M , there is some j for
which pos(i) < pos(j) and p̃ij = 0. Now let i′ be the immediate neighbour of i (i′ =
mini′pos(i

′), i′ ∈ N\M ∪{i}). Then by condition (13), we have p̃ii′ = 0. Again by the same

condition, this implies p̃i′k > 0,∀k ∈ N\M for which pos(k) < pos(i′). Furthermore, for
i′, there also exists some j ∈ N\M for which p̃i′j = 0, this j must have pos(j) > pos(i′).
By the same argument as for i, we can see that p̃i′i′′ = 0 and so on until we reach the
final object n, which has pnj > 0,∀j ∈ N\M , a contradiction. In each step of the for loop
there must exist an object which can be added to M and the algorithm finds a strict linear
order.

Claim 3. xm is such that xm ≤ p̃ij for all i, j ∈ N for which �m∈ Osp
ij and that there exist

some i, j ∈ N for which �m∈ Osp
ij , such that xm = p̃ij and xm > 0.

Proof. This is true by construction, an object i is only added to M if ∀j ∈ N\M, p̃ij > 0. As
i �m j is only the case if j was added to M after i, then all p̃ij over which the minimization
are done are strictly positive. By nature of the minimization, there is also at least one p̃ij
to which xm is equal and xm is no larger than any of the p̃ij .

Claim 4. If condition (13) is met, the p̃ij values will satisfy condition (13) throughout the
algorithm.

Proof. First, let us consider the situation pos(i) < pos(j) < pos(k), which implies p̃ij ≤ p̃ik.
Only if an order j �m i �m k is found, can the algorithm decrease p̃ik but not p̃ij . j �m i
implies that there exists l ∈ N , such that p̃il = 0 and p̃jl > 0. We will consider three separate
situations. First, pos(l) < pos(i), then pos(l) ≥ pos(j) and finally pos(i) < pos(l) < pos(j).
Let us consider pos(l) < pos(i). Then p̃li = y, which implies p̃lj = y and p̃jl = 0 as
pos(l) < pos(i) < pos(j) gives p̃li ≤ p̃lj . Therefore, pos(l) can not smaller than pos(i), as
it would also prevent j from being added to the order. In the case of pos(l) ≥ pos(j), it is
clear that because p̃il = 0, we must also have p̃ij = 0. Finally, if pos(i) < pos(l) < pos(j),
we must have j �m l, if this were not the case i could be added to M after l but before j.
By the earlier arguments in the paragraph j �m l while pos(l) < pos(j) is only possible
if there is some other object l′ ∈ N , with pos(l) < pos(l′) and p̃ll′ = 0. pos(j) < pos(l′)
gives p̃lj = 0 and therefore p̃ij = 0. If on the other hand pos(l) < pos(l′) < pos(j), we
can repeat the same argument until we find some l′′ with pos(i) < pos(l′′) < pos(j) and
p̃jl′′ = y, implying p̃ji = y and p̃ij = 0. In conclusion, if pos(i) < pos(j) < pos(k), we
can only have j �m i �m k if p̃ij = 0. If this is the case, than p̃ij ≤ p̃ik is satisfied, as p̃ik ≥ 0.

The second situation is pos(i) > pos(j) > pos(k), in which case we also have p̃ij ≤ p̃ik.
Here, only an order with j �m i �m k can lead to the condition being violated after
the algorithm. In the previous paragraph, we established that if pos(i) < pos(j) and the
algorithm places j �m i, we have p̃ij = 0. Here, pos(k) < pos(i) and i �m k, so p̃ki = 0. As
p̃ji + p̃ij = p̃ik + p̃ki, we have p̃ji + p̃ij = p̃ik and p̃ij ≤ p̃ik.

We are now in a position to prove theorem 1.

Proof. We have shown, by claim 2, that given a set of values p̃ij which satisfy condition
(13), we can find a strict single-peaked linear order. By claim 3 we have also seen that we
can attach a weight to this order which is non-negative. Even stronger, we have shown
that this weight is equal or less than the value p̃ij for some i, j ∈ N , for which xm ∈ Osp

ij .
As the final step of the loop will decrease these p̃ij values, at least one of these values is set
to zero in each run. After at most O(n2) iterations of the loop, each value p̃ij will then be
zero. It can be easily checked that at this point, the values xm form a solution to (12). As
this proof requires the loop to be run multiple times, and the loop requires condition (13)
to hold, claim 4 is crucial, as it shows that if the input of the loop exhibits the necessary

characteristic, the output will as well.

This establishes the sufficiency of the condition for rationalizability. The necessity can
easily be verified by a three object example. Suppose a, b, c, with pos(a) < pos(b) < pos(c)
and pab > pac. By definition of single-peaked linear orders, each order for which a � b it is
also the case a � c. This means Osp

ab ⊂ Osp
ac and

∑
k:�m∈Osp

ab
xm ≤

∑
k:�m∈Osp

ac
xm.

By the previous arguments, we have shown that the system of equalities 12 and the
condition 13 are equivalent. We now claim this condition can be checked in polynomial
time. In the proof, we will exclude one very specific case, in which there is some subset of
objects N ′, such that pij = pik for every i in N\N ′ and all j, k in N ′. In other words, if all
objects in the subset are identical when compared to objects outside of the subset. It can
be verified that if such a subset is encountered, Algorithm 2 can be run for this subset to
establish relative positions within the subset. These relative positions can then be used to
assign positions within the complete set.

Theorem 2. Algorithm 2 can be used to check whether there exists positions for which
Condition 13 holds in polynomial time.

Proof. Suppose that for a given object i, positions exist, such that pos(i) = 1 and for which
the condition (13) is satisfied. We claim that Algorithm 2 returns these positions. First,
given that pos(i) = 1, pij < pik implies pos(j) < pos(k), by construction, the algorithm
chooses the only option that satisfies this property, because of line 6. In case of ties and
multiple positions satisfying the property for i, j, k, lines 7-14 ensures that the positions
are chosen so as to be the only option that satisfies the conditions of some other triple of
objects. In this way, every object that is given a position is placed in the only feasible
position. Thus, if there exists an ordering that satisfies condition 13 with pos(i) = 1, it will
be found. As the algorithm runs through every object as a starting object, it is ensured
that an ordering is found with some starting object, it it exists. It can easily be checked
that this algorithm runs in polynomial time.

4 Conclusion

In this paper, we have described ways of testing a stochastic theory of choice behaviour. A
broadly applicable algorithm was presented which, given proper adjustments, can be used
for tests with different kinds of data or preference classes. Computational results show that
this algorithm can be used to test datasets of sizes which can not be tackled using current
techniques. We also show that computationally, much work can still be done given the large
literature of heuristics and exact methods for solving linear ordering problems which can be
employed in our column generation approach. Furthermore we have provide a polynomial
time test for a special case of preferences which is widely used in social choice theory by
exploiting the structure of this special class.

Algorithm 2 Ordering Algorithm

1: Set i = 1.
2: for i ≤ n do
3: Set R := N , C := L := ∅, a := 1.
4: Set pos(i) := 1 and R := R\i, L := L ∪ i, a = a + 1.
5: for R 6= ∅ do
6: ∀j ∈ R for which mink∈R pik = pij , set C := C ∪ j, R := R\j.
7: for |C| > 1 do
8: if ∃j, k ∈ C and l ∈ L, for which plj < plk then
9: Set C := C\k and R := L ∪ k.

10: end if
11: if ∃j, k ∈ C and l ∈ R, for which plj > plk then
12: Set C := C\k and R := L ∪ k.
13: end if
14: end for
15: For j ∈ C, set pos(j) := a, L := L ∪ j, C := C\j, a := a + 1.
16: end for
17: Given the resulting positions, check condition 13, if satisfied, STOP, output YES-

INSTANCE.
18: Set i = i + 1.
19: end for
20: Output NO-INSTANCE

References

[1] J. Bartholdi III and M. Trick. Stable matching with preferences derived from a psy-
chological model. Operations Research Letters, 5(4):165–169, 1986.

[2] D. Black. On the rationale of group decision-making. The Journal of Political Economy,
56(1):23, 1948.

[3] I. Charon and O. Hudry. A survey on the linear ordering problem for weighted or
unweighted tournaments. 4OR, 5(1):5–60, 2007.

[4] V. Chvátal. Linear programming. WH Freeman and Company, New York, 1983.

[5] B. Debord. Caractérisation des matrices des préférences nettes et méthodes
d’agrégation associées. Mathématiques et Sciences humaines, 25(97):5–17, 1987.

[6] B. Escoffier, J. Lang, and M. Öztürk. Single-peaked consistency and its complexity. In
ECAI, volume 8, pages 366–370, 2008.

[7] S. Fiorini. Determining the automorphism group of the linear ordering polytope. Dis-
crete applied mathematics, 112(1):121–128, 2001.

[8] P. Fishburn and J. Falmagne. Binary choice probabilities and rankings. Economics
Letters, 31(2):113–117, 1989.

[9] M.R. Garey and D.S. Johnson. Computers and intractability, volume 174. Freeman
San Francisco, CA, 1979.

[10] G. Loomes and R. Sugden. Incorporating a stochastic element into decision theories.
European Economic Review, 39(3):641–648, 1995.

[11] J. Marschak. Binary-choice constraints and random utility indicators. In Proceedings
of a Symposium on Mathematical Methods in the Social Sciences, 1960.

[12] R. Mart́ı and G. Reinelt. The Linear Ordering Problem: Exact and Heuristic Methods in
Combinatorial Optimization, volume 175 of Applied Mathematical Sciences. Springer-
Verlag Berlin Heidelberg, 2011.

[13] David C McGarvey. A theorem on the construction of voting paradoxes. Econometrica:
Journal of the Econometric Society, 21:608–610, 1953.

[14] M. Regenwetter, J. Dana, and C.P. Davis-Stober. Testing transitivity of preferences
on two-alternative forced choice data. Frontiers in psychology, 1(148):1–15, 2010. doi:
10.3389/fpsyg.2010.00148.

[15] M. Regenwetter, J. Dana, and C.P. Davis-Stober. Transitivity of preferences. Psycho-
logical Review, 118(1):42, 2011.

[16] R. Suck. Geometric and combinatorial properties of the polytope of binary choice
probabilities. Mathematical Social Sciences, 23(1):81–102, 1992.

Bart Smeulders
Faculty of Economics and Business - ORSTAT
KU Leuven
Leuven, Belgium
Email: bart.smeulders@kuleuven.be

Michel Regenwetter
Psychology Department - Quantitative Division
University of Illinois
Urbana-Champaign, USA
Email: regenwet@illinois.edu

Frits C.R. Spieksma
Faculty of Economics and Business - ORSTAT
KU Leuven
Leuven, Belgium
Email: frits.spieksma@kuleuven.be

