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Abstract

In this paper, we propose a new relaxation of the single-peaked property by con-
straining the net preference matrix instead of the preference profile. More precisely,
this new domain restriction holds for a given profile P if there exists a single-peaked
profile P ′ with the same net preference matrix as P. We provide a characterization of
net preference matrices that can be “implemented” by a single-peaked profile, and
propose a polynomial time algorithm to recognize these matrices. In cases where
preferences are not net single-peaked, we recall a dynamic programming approach
for obtaining an axis over candidates such that the net preference matrix respects
as much as possible (in some sense) our net single-peakedness condition. We also
formulate an integer linear program for partial net single-peakedness. Finally we
present the results of numerical tests on real election data.

1 Introduction

Research in social choice aims at studying collective decision problems from the viewpoint
of axiomatic properties and very often at promoting fairness and strategy-proofness. The
standard input data in a social choice problem are preference profiles, i.e., multisets of
rankings (representing the individual preferences of voters) over alternatives (candidates).
The main issue is then to provide rules able to aggregate the input rankings into a unique
“collective” ranking synthesizing the individual preferences. One important result in the
field is Arrow’s theorem establishing the impossibility to design an aggregation rule satisfying
a small set of desirable properties [20]. A popular way to circumvent this impossibility result
is to drop the universality property, stating that any preference profile is acceptable as input,
and instead requiring that the input preferences satisfy specific consistency conditions.

The most famous domain restriction is the single-peakedness condition introduced by
Black [3]. Intuitively, preferences are single-peaked if 1) all voters agree on a left-right
axis on the alternatives, and 2) the preferences of all voters decrease along the axis when
moving away from their preferred alternative to the right or left. If preferences are single-
peaked, then it prevents the appearance of cycles in the majority relation (i.e., a candidate
is preferred to another candidate if she is preferred by a majority of voters). Note this
property naturally holds if the alternatives are for instance taxation levels: the preferences
are very likely to be single-peaked with respect to the order over reals.

However, as emphasized by Feld and Grofman [13], it becomes an extremely strong
condition if the alternatives are candidates in an election. It requires indeed on the one
hand that all voters agree on a common axis over the candidates, on the other hand that
no individual preference -even slightly- deviates from the single-peaked condition. Given
a left-right axis A, the number of rankings consistent with A (i.e., such that condition 2
holds) is 2m−1, over m! possible rankings in total, where m is the number of alternatives.
The proportion of consistent rankings within all possible rankings thus quickly becomes tiny
(for instance, 2m−1/m! ≈ 0.01 for m = 7), as well as the likelihood that no voter deviates
from this subset of preferences.



This observation is corroborated by the experimentations carried out by Sui et al. [23]
on 2002 Irish General Election data in Dublin West and Dublin North, where the best axes
explain only 2.9% and 0.4% of voter preferences respectively. In other words, respectively
97.1% and 99.6% maverick voters1 have to be removed to make the profile single-peaked.
This can be viewed as a relaxation of single-peakedness, where the number k of removed vot-
ers measures the quality of the approximation. It was named k-maverick single-peakedness
by Faliszewski et al. [12], and is also known as partial single-peakedness in economics [21].
Several other relaxations of the single-peaked domain have been proposed in the compu-
tational social choice community [11, 10, 12], but even combinations of them with loose
approximation parameters are not able to explain more than 50% of voter preferences at
best. To adress this issue, Sui et al. proposed to consider multi-dimensional single-peaked
consistency [1] to explain a preference profile, a relaxation of single-peakedness involving
several axes over the candidates (each axis representing one political dimension). Focus-
ing on the two-dimensional case and considering the same Irish election data sets, their
experiments show that it explains 65.7% and 47.3% of voter preferences respectively.

We propose here a new relaxation of single-peakedness that we call net single-peakedness
and that involves only one dimension. We say that a preference profile P is net single-peaked
if there exists another profile P ′ that is single-peaked and exhibits the same net preference
matrix as P. The net preference matrix of P is the skew-symmetric matrix M = (Mij)
where Mij is the number of voters in P that prefers candidate i to j minus the number of
voters that prefers j to i. The key idea is that we do not require all individual preferences
to be single-peaked w.r.t. a common axis, merely that group majority choices are made
as if the preferences were single-peaked w.r.t. a common axis. In other words, we require
aggregate consistency regarding an axis and not individual consistency of each individual.

Our work has been partly inspired by results of Feld and Grofman [13] who have examined
conditions on the net preferences over triples of candidates (i.e., the frequency of ordering
i � j � k minus the frequency of ordering k � j � i, where i, j, k denote candidates).
Besides the fact that their conditions differ from the one we propose (we consider net
preferences over pairs of candidates), their goal is different: they did not aim at identifying
an axis over the candidates, but at guaranteeing the transitivity of the majority relation.
The idea of considering conditions on aggregate preferences instead of individual preferences
was also present in the notion of semi single-peakedness introduced by Rasch [22]. The semi
single-peakedness condition consists in relaxing condition 2 above by only requiring that the
preferences of a majority of the voters decrease along the axis on the left of a given candidate
c, and the preferences of a majority (but not necessarily the same voters) decrease on the
right of c. Note that our net single-peakedness condition is much weaker.

We provide a characterization of net preference matrices M that can be “implemented”
by a single-peaked profile (in the sense that there exists a single-peaked profile whose corre-
sponding net preference matrix is M). Thanks to this characterization result, we propose an
algorithm to recognize net single-peakedness. For the sake of completeness, we also briefly
recall an already known dynamic programming procedure to compute best axes regarding
several relaxations of net single-peakedness and we present a method based on integer linear
programming for computing the best axis for partial net singled-peakedness. These proce-
dures will allow us to perform numerical tests on real election data to evaluate to which
extent the net single-peakedness assumption holds (in a sense to be made precise later). The
main motivation behind this work is to try to identify a domain restriction (here, net single-
peakedness) that could be more realistic than the impartial culture assumption (stating that
all input rankings are equally likely). This would be of great interest, for instance, in the
average-case complexity analysis of winner determination or manipulation algorithms.

1The maverick voters do not vote according to a societal axis, but according to their own biases.



2 Background and Notations

For any i, j ∈ N, let [[i, j]] denote the set {i, i+ 1, . . . , j} if i ≤ j, and the empty set if i > j.
Let V = {v1, v2, . . . , vn} be a set of n voters and C = {c1, c2, . . . , cm} a set of m candidates.
Let P denote the (multi-)set of preference relations �v over C for every v ∈ V . This set is
called a preference profile if the preference relations �v are linear orders.

For a permutation σ of index set [[1,m]], we denote by (σ1, . . . , σm) the sequence
(σ−1(1), . . . , σ−1(m)). We call this sequence the axis of σ (or σ-axis for short).

A preference profile P is single-peaked for a σ-axis if for all v ∈ V there exists p ∈ [[1,m]]
such that: if p > j > i or i > j > p, then cσp �v cσj �v cσi . For any voter v, index σp is
called the peak of the σ-axis for v. A preference profile P is single-peaked if it is single-peaked
for some σ-axis.

For a matrix M ∈ Mm×m(Z), we denote by M t its transpose, and by Mij its entry at
position (i, j). Let A(P) ∈ Mm×m(Z) be the matrix, called the weighted majority matrix,
such that A(P)ij is equal to the number of voters preferring candidate ci to candidate cj in
profile P. The net preference matrix B(P) of profile P is defined by B(P) = A(P)−A(P)t.
Note that this matrix is skew-symmetric. A matrix M ∈ Mm×m(Z) is said to be a net
preference matrix if there exists a preference profile P such that M = B(P).

We recall a result by Debord [8], which characterizes net preference matrices and will
help prove Theorem 2:

Theorem 1 (Debord 1987) Let M ∈ Mm×m(Z) be a skew-symmetric matrix. The fol-
lowing two propositions are equivalent:

• Matrix M is a net preference matrix.

• All off-diagonal entries of M are of the same parity.

In the next section, we present our relaxed condition of single-peakedness, called net
single-peakedness.

3 Net Single-peakedness

We say that a profile P is net single-peaked for a σ-axis if there exists a profile P ′, single-
peaked for this σ-axis, such that P and P ′ have the same net preference matrix, i.e., B(P) =
B(P ′). In other words, in net single-peakedness, one does not take into account pairwise
preferences that are outvoted. Furthermore, a profile is said to be net single-peaked if it is
net single-peaked for some axis.

Example 1 Let m = 4 and n = 5. The profile P can be read in Table 1 where each column
represents the preference relation of a voter (decreasing preference from the top). The net
preference matrix is written:

B(P) =


0 1 1 −1
−1 0 3 −1
−1 −3 0 −1
1 1 1 0


Noting that three distinct candidates are ranked in the last positions for at least one voter, we

conclude that the profile is not single-peaked (at most two candidates can be ranked in the last
position in a single-peaked profile [11]). However, P is net single-peaked as B(P) = B(P ′)
for profile P ′ defined in Table 1, which is single-peaked for axis (1, 4, 2, 3).



v1 v2 v3 v4 v5
c1 c2 c3 c4 c1
c4 c3 c4 c2 c2
c2 c4 c1 c1 c4
c3 c1 c2 c3 c3

v′1 v′2 v′3
c1 c2 c4
c4 c3 c1
c2 c4 c2
c3 c1 c3

Table 1: Profiles P (left) and P ′ (right) in Example 1.

In order to give a characterization of net single-peakedness, we introduce the classM≤ of
skew-symmetric integer matrices whose entries above the main diagonal are nondecreasing
when moving to the right or down in the matrix, i.e., M≤ = {M ∈ Mm×m(Z) | ∀i < j <
k,Mij ≤Mik and Mik ≤Mjk}.

For any permutation σ and matrix M , Mσ denotes the matrix whose rows and columns
have been permuted according to the σ-axis, i.e., Mσ

i,j = Mσi,σj
.

A profile is canonical if it consists of one single preference relation. For any x, y ∈ Z such
that x < y, let M≤(x, y) be the subset of M≤ consisting of matrices whose off-diagonal
entries are either x or y. We first give a characterization of single-peaked canonical profiles.

Lemma 1 A canonical preference profile P is single-peaked for a given σ-axis if and only
if B(P)σ ∈M≤(−1, 1).

We do not present its proof due to lack of space.

Example 2 Let m = 3 and σ be the identity permutation. The net preference matrices of
canonical profiles that are single-peaked for the σ-axis are: 0 1 1

-1 0 1
-1 -1 0

  0 -1 1
1 0 1
-1 -1 0


P = {c1 � c2 � c3} P = {c2 � c1 � c3} 0 -1 -1

1 0 1
1 -1 0

  0 -1 -1
1 0 -1
1 1 0


P = {c2 � c3 � c1} P = {c3 � c2 � c1}

Our characterization result can now be formulated.

Theorem 2 A preference profile P is net single-peaked for a given σ-axis if and only if
B(P)σ ∈M≤.

Proof. Assume that P is net single-peaked for σ. By definition, there exists a profile
P ′ single-peaked for σ such that B(P) = B(P ′). Profile P ′ can be seen as the union of
canonical profiles P1, . . . ,Pn, all single-peaked for σ. Therefore, B(P ′) =

∑
iB(Pi). By

Lemma 1, all matrices B(Pi)σ are inM≤(−1, 1) ⊆M≤. As the addition operation is closed
in M≤, we deduce that B(P ′)σ ∈M≤, and thus B(P)σ ∈M≤ because B(P)σ = B(P ′)σ.

Conversely, suppose that for a profile P, we have B(P)σ ∈M≤ for a given permutation
σ. Let M = B(P)σ. Note that the skew-symmetric matrix I1 (resp. I−1) consisting of 1’s
(resp. −1) in the strictly upper triangular part belongs to M≤(−1, 1) and that adding I1
to all matrices ofM≤(−1, 1) yieldsM≤(0, 2). By Theorem 1, the off-diagonal entries of M
are of the same parity. W.l.o.g., assume that they are even (otherwise add I−1). It is easy
to see that the matrices inM≤(0, 2) define a generating set of the subset of matrices inM≤
whose off-diagonal entries are even. In other words, matrix M writes M =

∑
i aiMi, where

ai ∈ N and {M1,M2, . . .} =M≤(0, 2). We therefore have M =
∑
i ai(Mi + I−1) +

∑
i aiI1

because I−1 + I1 is the zero matrix. Note that Mi+ I−1 ∈M≤(−1, 1) and I1 ∈M≤(−1, 1).
Let Pi denote the canonical profile such that B(Pi) = Mi+I−1, and P0 denote the canonical
profile such that B(P0) = I1. The profile P ′ defined as the union of

∑
i ai profiles P0, a1



profiles P1, a2 profiles P2, . . . is single-peaked for σ because P0,P1, . . . are all single-peaked
for σ. Furthermore, B(P ′)σ = M = B(P)σ and therefore B(P ′) = B(P). �

Example 3 (Example 1 cont’d) For the σ-axis (1, 4, 2, 3), one can check that

B(P)σ =


0 −1 1 1
1 0 1 1
−1 −1 0 3
−1 −1 −3 0


belongs to M≤, and therefore P is net single-peaked by Theorem 2. Thus, our characteri-
zation result makes it possible to check if a profile P is net single-peaked without searching
for a single-peaked profile P ′ such that B(P) = B(P ′).

Furthermore, our characterization result is related to a statement made (without jus-
tification) in an article by Greenberg [14] dealing with 1-Euclidean preferences, also called
Coombs’ unfolding model [6, 7]. Preferences are 1-Euclidean if the voters and candidates
can be mapped to points on the real line so that each voter prefers a candidate that is closer
to her to the one that is further away. The statement in the article by Greenberg is that
if preferences are 1-Euclidean, then B(P)σ ∈ M≤ for permutation σ corresponding to the
ordering of the candidates on the real line. Our result is stronger in two ways:

• the validity domain is enlarged because 1-Euclidean preferences are clearly single-
peaked,

• the sufficient condition is turned into a necessary and sufficient condition.

Having a characterization result, a natural subsequent question is now to investigate its
algorithmic implications in order to recognize a net single-peaked profile.

4 Algorithms for Net Single-Peakedness

4.1 Recognizing Net Single-peakedness

Our characterization result states that recognizing a net single-peaked profile P is equivalent
to detecting if there exists a permutation σ such that the permuted net preference matrix
B(P)σ belongs to M≤. This problem resembles the seriation problem. We first describe a
known solution method for the seriation problem before explaining how it can be adapted
in order to recognize net single-peakedness.

Given a symmetric m×m matrix M whose entries are nonnegative (and whose diagonal
entries are null), the seriation problem asks if there exists a permutation σ such that Mσ is
anti-Robinson, i.e., the entries of Mσ are monotonically nondecreasing when moving away
from the main diagonal (along a row or a column).

A polynomial-time algorithm for the seriation problem consists in considering all balls
Ballα(i) = {j : Mij ≤ α} for i ∈ [[1,m]]. The idea is that Mσ is anti-Robinson if and only
if every ball consists of consecutive elements in permutation σ. (Note that it is sufficient to
only consider balls on rows because the symmetry of the matrix implies that the property
also holds on columns if it holds on rows.) This enables to solve the seriation problem by
reducing it to the consecutive ones problem [19].

The consecutive ones problem is stated as follows: given a binary matrix A, does there
exist a permutation of its columns such that the consecutive ones property holds, i.e., the
1’s are consecutive in every row? In a seminal paper, Booth and Lueker [4] provides a
polynomial time algorithm to decide if a binary matrix A has the consecutive ones property
and, if yes, compute a PQ-tree for A. A PQ-tree is a concise data structure which gives an
implicit representation of all the consecutive-ones orderings of the columns of A.



From a symmetric matrix M , one generates a binary matrix A as follows. For each
index j ∈ [[1,m]], the matrix A contains a corresponding column. For each ball Ballα(i),
the matrix A contains a corresponding row with value 1 in column j if j ∈ Ballα(i). The
consecutive-ones orderings of the columns of A (if it exists) correspond to the permutations
σ for which Mσ is anti-Robinson.

The PQ-tree algorithm by Booth and Lueker solves the consecutive ones problem in
O(x+ y + z) time, where x and y are the numbers of columns and rows, and z is the total
number of 1’s in matrix A. For each i ∈ [[1,m]], there are at most m distinct nonempty
balls and therefore rows in A, involving at most m(m + 1)/2 values 1. In total, A has
x = m columns, at most y = m2 rows and at most z = m2(m + 1)/2 values 1. Hence, an
anti-Robinson matrix can be recognized in O(m + m2 + m2(m + 1)/2) = O(m3) time. By
using the previous transformation, a concise representation of all permutations σ for which
Mσ is anti-Robinson can therefore be recovered in O(m3) time.

We now describe how to adapt this approach for recognizing a net preference matrix that
belongs to M≤. Clearly, a skew-symmetric matrix Mσ belongs to M≤ if and only if the
entries are monotonically nondecreasing when moving away from the main diagonal2 along
a row. (By skew-symmetry of the matrix, if this property holds on rows, then the entries are
monotonically nonincreasing when moving away from the main diagonal along a column.)
To adapt the solution method used for the seriation problem, the only requirement is to
redefine a ball so that it always includes the main diagonal entry. Note that this property
mechanically holds in the seriation problem because Mii = 0 and Mij ≥ 0 ∀j, which is not
the case for a net preference matrix. We therefore consider all balls Ballα(i) = {i} ∪ {j :
Mij ≤ α} for i ∈ [[1,m]]. Similarly to the seriation problem, the idea is that Mσ belongs
to M≤ if and only if every ball consists of consecutive elements in permutation σ. It is
therefore possible to obtain a concise representation of all permutations σ for which Mσ

belongs to M≤ in O(m3) time.

Example 4 (Example 1 cont’d) Consider the net preference matrix of Example 1:

B(P) =


0 1 1 −1
−1 0 3 −1
−1 −3 0 −1
1 1 1 0


When generating matrix A from B(P), the balls that contain all indices in [[1, 4]] can be

omitted, as well as those that are singletons, because they do not matter for the consecutive
ones property to hold. The only balls that matter are thus Ball−1(1) = {1, 4}, Ball−1(2) =
{1, 2, 4} and Ball−3(3) = {2, 3}. The obtained binary matrix A is indicated below, where the
first (resp. second, third) row corresponds to Ball−1(1) (resp. Ball−1(2), Ball−3(3)):

A =

 1 0 0 1
1 1 0 1
0 1 1 0


There are four permutations (two different ones and their symmetric) σ of the columns of
A for which the 1’s are consecutive in each row, namely (1, 4, 2, 3), (4, 1, 2, 3), (3, 2, 4, 1)
and (3, 2, 1, 4). One can easily check that B(P)σ belongs to M≤ for those permutations (see
Example 3).

When a profile P is not net single-peaked, a natural question to ask is whether it is close
to a profile that is net single-peaked. We present two approaches for measuring how close a
profile is from net single-peakedness.

2Regardless of the main diagonal entry itself.



4.2 Reorganizing the Net Preference Matrix

Even if the preferences are not net single-peaked, it can be informative to reorganize the net
preference matrix (i.e., permute the indices) so that the entries are “as much as possible”
nondecreasing within a row moving to the right from the main diagonal, and “as much as
possible” nonincreasing within a column moving up from the main diagonal. This can be
formalized by defining an objective function that reflects these gradient conditions.

For several natural objective functions, an optimal reorganization (i.e., permutation)
can be performed by a dynamic programming procedure proposed by Hubert and Golledge
[16] (see also Hubert et al. [17]). For the paper to be self-contained, we describe here this
procedure. As noted by Hahsler et al. [15], the typical objective function is written as
follows for a permutation σ of the candidates:

f(σ) =
∑
i<k<j

d(Mσ
i,k,M

σ
i,j) +

∑
i<k<j

d(Mσ
i,j ,M

σ
k,j) (1)

where d(x, y) is a function which defines how a violation or satisfaction of a gradient condi-
tion for a triple (i, k, j) is counted. Hubert et al. [17] suggest two possible counting functions
d1 and d2:

d1(x, y) =

 1 if x < y
0 if x = y
−1 if x > y

d2(x, y) = y − x

Function d1 counts the number of satisfactions of the gradient conditions minus the number
of violations. Function d2 weighs each satisfaction or violation by its magnitude given by
the absolute difference between the values. An optimal reorganization is obtained for a
permutation σ∗ such that f(σ∗) = maxσ f(σ). The optimal value of the objective function
can be computed by using the following recursion:

g(∅) = 0,
g(C ′) = max

k∈C′
[g(C ′ \ {k}) + dr(C

′, k) + dc(C
′, k)]

for C ′ ⊆ C, where g(C ′) is the contribution to the final value of the objective function for
the candidates in C ′, placed in some order in the first |C ′| rows and columns, and:

dr(C
′, k) =

∑
i∈C′\{k}

∑
j∈C′ d(Mi,k,Mi,j),

dc(C
′, k) =

∑
j∈C′

∑
i∈C′\{k} d(Mi,j ,Mk,j).

where C ′ = C \ C ′ and d is set to d1 or d2.
Note that g(C) = f(σ∗). The principle of the recursion is illustrated in Figure 1.

Horizontal and vertical symbols “≤” indicate the tests of gradient conditions that have
already been carried out in previous recursions. While computing dr(C

′, k) + dc(C
′, k),

only the gradient conditions between the grey blocks are considered, corresponding to the
question marks in the figure.

Given that the candidates in C ′ \ {k} (resp. C ′) are placed in the first |C ′| − 1 (resp.
last |C ′|) rows and columns, the marginal contribution to the final value for the objective
function of candidate k, placed at the |C ′|th position, depends neither on how the candidates
in C ′\{k} are ordered nor on how the candidates in C ′ are ordered. This is the key property
that enables the dynamic programming solution procedure.

There are 2m subsets C ′ of C, and the computation of each g(C ′) requires to look
up |C ′| values g(C ′ \ {k}) (note that |C ′| ≤ m), with O(m2) time for computing each
dr(C

′, k)+dc(C
′, k). The procedure is therefore clearly not polynomial time, more precisely



C’\{k} k C’

C’\{k}

k

C’

≤ ≤ ?

≤ ≤≤

?

Figure 1: Illustration of the dynamic programming procedure.

it runs in O(2mm3) time. The number m of candidates is nevertheless often small in
political election contexts, thus the procedure is efficient enough to quickly compute the
best permutations in our experiments on real election data.

4.3 Partial Net Single-peakedness

Another approach to define nearly net single-peakedness is based on determining the largest
subset of voters in the profile that induce a net single-peaked matrix. The largest subset
of a profile P for a permutation σ of candidates can be found by solving an integer linear
program (ILP):

max
∑
v xv

s.t.
∑
v B(v)σxv ∈M≤

xv ∈ {0, 1} ∀v
(2)

where boolean variable xv states if voter v is in the maximal subset or not and B(v) denotes
B({�v}) the net preference matrix of the canonical profile containing only the preference
relation of voter v.

The largest subset of a profile P that induces a net single-peaked matrix can be found
by considering every permutation of candidates. As this computation may be quite CPU
intensive, two techniques can be used to make it faster. First, we can add the following
constraint to the ILP:

∑
v xv ≥ b where b is the best value found so far. Second, we can

start the search for the best axis with a potentially good axis. We propose to start with
a permutation σ that minimizes h(σ) = minM∈M≤

∑
i,j |B(P)σi,j −Mi,j |. This requires to

solve m! linear programs (LP). Given a permutation σ, one can indeed compute h(σ) by
solving the following LP:

min
∑
i,j e

+
i,j + e−i,j

s.t.
(
B(P)σi,j + e+i,j − e−i,j

)
1≤i≤m,1≤j≤m ∈M≤

e+i,j ≥ 0 e−i,j ≥ 0 ∀i, j
(3)

5 Numerical Experiments

We carried out experiments on data sets taken from the 2007 Glasgow City Council election
as well as the 2002 Irish general election. These data sets are available in the PrefLib library,
that collects preference data assembled by Mattei and Walsh [18].

Both the 2007 Glasgow election and the 2002 Irish election were separated by voting
districts: 21 wards for the Glasgow election; 42 constituencies for the Irish election, among
which we investigate here only the 3 constituencies where electronic voting machines were



voting district votes cand axes PNSP unweighted weighted
opt prob opt prob

2007 Glasgow City Council election
1. Linn 494 10/11 72 34.9693% 0.1535% 0.1047 0.0117% 0.0084
2. Newlands 648 9/9 24 31.0016% 0.0502% 0.012 0.075% 0.0178
3. GreaterPollock 818 9/9 72 32.0463% 0.0022% 0.0016 0.0028% 0.002
4. Craigton 718 10/10 144 26.7806% 0.0028% 0.004 0.1253% 0.1652
5. Govan 411 10/11 144 36.7246% 0.0031% 0.0045 0.0057% 0.0081
6. Pollokshields 767 7/9 12 33.6927% 0.2778% 0.0329 0.119% 0.0142
7. Langside 1040 8/8 24 35.6902% 0.2679% 0.0624 0.0942% 0.0224
8. SouthsideCentral 726 9/9 72 – 0.0006% 0.0004 0.0006% 0.0004
9. Calton 363 9/10 96 36.4903% 3.2595% 0.9585 5.7881% 0.9967
10. Anderston 593 8/9 24 34.6416% 0.2083% 0.0488 0.7589% 0.1672
11. Hillhead 630 9/10 96 – 0.2072% 0.1806 0.075% 0.0695
12. PartickWest 962 9/9 48 36.2460% 0.1207% 0.0563 0.0022% 0.0011
13. Garscadden 559 10/10 144 46.5580% 0.0497% 0.0691 0.0557% 0.0771
14. Drumchapel 556 10/10 144 41.1009% 0.022% 0.0312 0.0319% 0.0448
15. Maryhill 1071 8/8 24 24.6914% 0.0694% 0.0165 0.0248% 0.0059
16. Canal 419 10/11 144 – 0.013% 0.0185 0.1019% 0.1365
17. Springburn 365 10/10 48 36.1345% 0.1238% 0.0577 2.6594% 0.7258
18. EastCentre 284 12/13 1728 – 0.0107% 0.1682 – –
19. Shettleston 405 11/11 144 39.3484% 0.0355% 0.0498 0.1368% 0.179
20. Baillieston 535 11/11 576 47.3282% 0.0001% 0.0005 0.0172% 0.0945
21. NorthEast 690 9/10 48 30.8846% 0.0457% 0.0217 0.0006% 0.0003

2002 Irish general election
1. Dublin North 4259 9/12 12 56.3765% 5.1279% 0.4683 8.6172% 0.6609
2. Dublin West 4810 8/9 4 – 9.6379% 0.3333 11.3641% 0.3828
3. Meath 3166 9/14 36 49.7937% 0.0006% 0.0002 0.0006% 0.0002

Table 2: Results of numerical tests on data sets taken from 2007 Glasgow City Council
election and 2002 Irish general election. Column “voting district” contains the name of each
considered ward or constituency, column “votes” (resp. “axes”) the number of complete
ranking ballots (resp. the number of Wikipedia axes). Couple x/y in column “cand” gives
the number x of candidates affiliated to a party and the total number y of candidates
(including independent candidates). Symbol “–” means that the computation exceeded the
time limit or ran out of memory.

used (Dublin North, Dublin West and Meath). Each ward (resp. constituency) involved
different candidates and voters, and elected 3 or 4 councillors (resp. between 3 and 5
deputies) using the single transferable vote system. This implies that some political parties
had several candidates for the same voting district. A ballot consists in the k most preferred
candidates of a voter, for varying values of k. In order to fit the data with our setting, we
restricted ourselves to the ballots for which k = m (complete rankings of the candidates).

Partial net single-peakedness. The first question that comes to mind while carrying
out numerical tests is to evaluate if net single-peakedness is significantly more likely than
classical single-peakedness. The first notable result is that for none of the tested data sets
the preference profile is net single-peaked. In order to deepen the analysis, we evaluated
the maximum percentage of voters that constitutes a single-peaked electorate. The results
are given in column “PNSP” (that stands for “partial net single-peakedness”) of Table 2. It
can be observed that the percentage obtained in the Irish general election are much greater
than those obtained with the classical single-peakedness assumption (we recall that, for the
classical single-peakedness assumption, the best axes explain only 2.9% and 0.4% of voter
preferences in Dublin West and Dublin North).

Comparison with a reference axis. Another concern is to determine how a reference
left-right axis over the candidates (obtained from an external source) compares with per-
mutation σ∗ optimizing objective function f . In order to build a reference axis that can be



recovered by any experimenter, we used Wikipedia as external source. The free encyclopedia
provides indeed a political position (of course debatable) for each political party (e.g., left
wing, right wing, centre, centre right, etc.). We assumed that the political position of an
affiliated candidate corresponds to that of the belonging party, and we built an axis over
the candidates based on these positions. Actually, the “Wikipedia axis” is not unique since
several parties can share the same political position. For instance, a Wikipedia axis reads
((1, 3), 2, (4, 5)), where the numbers are the indices of candidates and candidates {1, 3} as
well as {4, 5} share the same political position. This corresponds to the following set of
2× 2 = 4 axes: (1, 3, 2, 4, 5), (1, 3, 2, 5, 4), (3, 1, 2, 4, 5), (3, 1, 2, 5, 4). For this reason, we talk
of Wikipedia axes in the following. Furthermore, we excluded the independent candidates
from the data sets because we were not able to define a political position for them.

The numerical results are synthesized in Table 2. We compared the feasible axes by
using the objective function in Equation 1 with counting functions d1 (columns labeled by
“unweighted”) and d2 (columns labeled by “weighted”). For both counting functions, it
rarely happens that one of the Wikipedia axes is optimal for the corresponding objective
function (twice for d1, three times for d2). To have further insights on the quality of the
Wikipedia axes regarding the objective function, we also measured the percentage of axes
(called top axes hereafter) that are better or equivalent to the best Wikipedia axis with
respect to the considered objective function (column “top”). This can be done efficiently
by slightly adapting the dynamic programming procedure described in Section 4.2: the
computation took less than a minute (often a few seconds) on a modern personal computer
for each voting district, except for ward 18 in Glasgow for which the computation took
much longer (resp. ran out of memory) for d1 (resp. d2). To assess the significance of
this percentage, we provide the probability that a randomly drawn sample of axes includes
(at least) one of the top axes (column “prob”), where the size of the sample is exactly the
number of Wikipedia axes. This probability is equal to 1−Πa−1

i=0 (1− t
m!/2−i ), where a is the

number of Wikipedia axes (value in column “axes”), t is the number of top axes (obtained
from column “top”) and m is the number of affiliated candidates (first value in column
“cand”).

The conclusions that can be drawn from the results using one or the other of the objective
functions are very similar. For almost all wards in the Glasgow election there is a Wikipedia
axis that belongs to the very best axes regarding the objective function, and this is significant
given the very low probability that it occurs, while for the Irish general election in Dublin
North and Dublin West there is no significantly good axis among the Wikipedia axes. These
latter results are consistent with those obtained by Sui et al. [23], that found very tiny
single-peaked subelectorates for these constituencies. Overall, the numerical results seem to
show that the net preference matrix provides some good hints about the way the electorate
views the relative positions of the candidates on the left-right axis, but the nature of the
information handled (net preferences) does not make it possible to fully learn an axis from
it.

6 Conclusion

We introduced in this paper a new domain restriction, that we call net single-peakedness,
derived from single-peakedness and based on the net preference matrix. We showed that a
net single-peaked profile can be recognized in polynomial time thanks to a characterization
result we established, and we performed numerical tests to assess the occurrence of net
single-peakedness on real election data. While none of the tested profiles are net single-
peaked, it appears that one can find axes that are compatible with a significant percentage
of the voters. Furthermore, for almost all data sets, there exists a plausible left-right axis



that is among the top axes regarding an objective function reflecting the fulfillment of the
net single-peakedness conditions (the further from net single-peakedness, the worse the value
of the objective function).

Nevertheless, as indicated above, it seems that the net preference matrix does not make
it possible to fully learn an axis, while on the contrary the brute information given by the
preference profile is “too rich”, as shown by the results of Sui et al. [23]. An interesting
research direction would be to study another type of aggregated information from which to
try to learn a political axis.
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