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CHAPTER 12

Approximation Algorithms and
Hardness Results for Fair Division

with Indivisible Goods

Evangelos Markakis

12.1 Introduction

Fair division problems have attracted the attention of various scientific disci-
plines in the last decades, including among others, mathematics, economics,
computer science, and political science. Ever since the first attempt for a math-
ematical treatment by Steinhaus, Banach, and Knaster (Steinhaus, 1948), many
interesting and challenging questions have emerged. Over the years, a vast lit-
erature has developed, see e.g., Brams and Taylor (1996), Robertson and Webb
(1998), and Moulin (2003), considering several notions of fairness. For more
recent surveys, see also Bouveret et al. (2016), and Procaccia (2016).

The objective in fair division is to allocate a set of resources to a set of agents
in a way that leaves every agent satisfied, to the extent that is feasible. To model
the preferences of the involved agents, the standard assumption in the literature
is that every agent is associated with a valuation function on the set of resources.
In most settings, valuation functions are further restricted to be additive func-
tions, but non-additive scenarios are also discussed in some works. Under this
setup, various solution concepts have been proposed as to what constitutes a
fair allocation, including e.g., proportionality and envy-freeness, along with sev-
eral variants, strengthenings and relaxations.

The models that have been studied so far, can essentially be grouped into two
classes. The first one concerns continuous models, where it is assumed that the
resources are infinitely divisible. This is appropriate when items can be split
into arbitrarily smaller pieces, or in settings where the resources correspond to
the percentage of time an agent can use a shared good, or even further in land
division. The second class contains discrete models, where the resources are seen
as indivisible goods. This means that the items to be allocated cannot be divided
further; each item has to be entirely allocated to one agent. Although the same
solution concepts apply well to both models, the picture is quite different when it
comes to existence and computation of fair outcomes. Under continuous models,
we can guarantee existence of most standard fairness concepts, and in some
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cases, we can also have very efficient algorithms, such as the algorithm of Even
and Paz (1984) for proportional allocations. On the contrary, in the presence
of indivisible goods, we cannot guarantee existence anymore for most fairness
concepts, and it is even NP-hard to decide whether a given instance admits a fair
allocation.

Undoubtedly, establishing NP-hardness is not encouraging news. However,
as with many other optimization problems, one can still resort to algorithms that
produce approximation guarantees with respect to the criteria under consider-
ation. Clearly, the solution we would expect from an approximation algorithm
depends on the fairness concept that we try to approximate. As an example, if
envy is our fairness criterion, then our goal would be an algorithm that always
returns an allocation such that the pairwise envy is never more than a small
factor away from the optimal envy achievable. Such algorithms provide to us
solutions that we could be willing to settle with, given the difficulty of finding an
exact optimal solution.

Motivated by this discussion, the purpose of this chapter is to highlight the
role of approximation algorithms and inapproximability results for discrete mod-
els, towards understanding what we can hope to achieve by polynomial-time al-
gorithms. Consequently, the exposition will be based on presenting recent results
published within the last years, along with open problems and trends in allocat-
ing indivisible items.

The structure of the remaining chapter is as follows. In Section 12.2, we pro-
vide the necessary definitions and we present the fairness concepts that we are
interested in. In Section 12.3, we demonstrate problems that admit polynomial-
time algorithms and also establish why most interesting problems are NP-hard.
Finally in Section 12.4, we present approximation algorithms along with hard-
ness of approximation results, classified according to the fairness criteria under
consideration. We conclude with interesting open questions in Section 12.5.

12.2 Preliminaries

In this section, we first provide the general setup and the notation that we will be
using. We then define the notions of fairness that will form the backbone of this
exposition.

12.2.1 Notation and Terminology

We assume we have a set of n agents, N = {1, 2, . . . , n}, and a set of m indivisible
goods M = {1, 2, . . . ,m}. For every agent i ∈ N , the preferences for the items
are expressed through a valuation function vi(·). In its general form, this is
a monotone set function vi : 2M → R, defined on subsets of items, such that
for S ⊆ M , vi(S) denotes the value derived by agent i, when he obtains the set
S. Monotonicity simply means that for S ⊆ T ⊆ M , we have that vi(S) 6 vi(T ).
Following the usual assumptions in the majority of the fair division literature, and
unless otherwise stated, we consider that each agent has an additive valuation
function. Hence, for every S ⊆ M , vi(S) =

∑
j∈S vi({j}). For j ∈ M , we will use
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vij instead of vi({j}) for simplicity. Note that monotonicity for additive functions
implies that vij > 0 for every i ∈ N and j ∈M .

Under additive valuations, it suffices to specify the value of an agent i for each
individual item, in order to fully specify the valuation function. Hence, we can
represent the relevant information for agent i by the vector vi = (vi1, vi2, . . . , vim).
The input then to any algorithm for fair division can be encoded by the matrix
V = (vij), where for each i ∈ N , the i-th row of V corresponds to the valuation of
agent i.

We are interested in solutions that allocate the whole set of goods M to the
agents. An allocation of the goods to the agents is therefore a partition denoted
by S = (S1, ..., Sn), where Si is the subset allocated to agent i, Si ∩ Sj = ∅ and⋃

i∈N Si = M . Given any set T , we denote by Πn(T ) the set of all partitions of
T into n bundles. Hence, all the solution concepts we will encounter, seek to
produce an element of Πn(M).

12.2.2 Fairness Concepts

Clearly, one cannot hope to have a unique, universally accepted notion of fairness
that can be equally applicable to all problems. Several notions have emerged
throughout the years as to what can be considered a fair allocation. As it is
infeasible to enumerate all these concepts in this exposition, we will only focus
on the notions that are most relevant to recent algorithmic research in this area.

We start with two of the most dominant solution concepts in fair division,
namely proportionality and envy-freeness.

Definition 12.1. An allocation S = (S1, ..., Sn) is

1. proportional, if vi(Si) > 1
nvi(M), for every i ∈ N .

2. envy-free, if for every i, j ∈ N , vi(Si) > vi(Sj).

Proportionality was considered in the very first work on fair division (Stein-
haus, 1948). Envy-freeness seems to have been initially suggested by Gamow
and Stern (1958), and was considered more formally later by Foley (1967) and
Varian (1974).

It can be easily seen that envy-freeness is a stricter notion than proportion-
ality, i.e., harder to achieve. But even for proportionality, existence cannot be
guaranteed under indivisible goods. This gives rise to considering relaxations of
these definitions, with the hope of obtaining more positive results.

One first such relaxation is the concept of envy-freeness up to one good, where
each player may envy another player, but only by an amount which does not
exceed the value of a single item in the other player’s bundle. Formally:

Definition 12.2. An allocation S = (S1, ..., Sn) is envy-free up to one good, if for
every pair of agents i, j ∈ N , there exists an item aj ∈ Sj , such that

vi(Si) > vi(Sj \ {aj})



234 E. Markakis

Note that envy-freeness up to one good is a relaxation of envy-freeness but not
of proportionality. There exist allocations that are proportional but not envy-free
up to one good, and vice versa.

A relaxation of proportionality, namely the notion of maximin share alloca-
tions, was recently proposed by Budish (2011), building on concepts by Moulin
(1990). Motivated by the question of what can we guarantee in the worst case
to the agents, the rationale of this concept is to think of a generalization of the
well-known cut-and-choose protocol to multiple agents as follows: suppose that
agent i is asked to partition the goods into n bundles and then the rest of the
agents choose a bundle before i. In the worst case, agent i will be left with her
least valuable bundle. Hence, a risk-averse agent would choose a partition that
maximizes the minimum value of a bundle in the partition. This value is called
the maximin share of agent i, and for n = 2, it is precisely what he could guar-
antee to himself in the discrete form of the cut-and-choose protocol, by being the
cutter. The objective then is to find an allocation where every agent receives at
least his maximin share.

Definition 12.3. Given a set of n agents, a set of goods M , and a valuation ma-
trix V ,

1. the maximin share of an agent i, is:

µi := µi(n,M, vi) = max
S∈Πn(M)

min
Sj∈S

vi(Sj) .

2. an allocation S = (S1, ..., Sn) ∈ Πn(M) is called a maximin share (MMS) alloca-
tion, if vi(Si) > µi, for every agent i ∈ N .

Note that the maximin share of an agent does not depend on the whole valu-
ation matrix V , but solely on vi.

A related approach on determining worst case guarantees was taken by Hill
(1987). His work examined the guarantee that a player can have as a function
of two parameters: the number of players and the maximum value of an item
across all players. As a result, the following function was identified, under the
assumption that the valuation functions are normalized such that

∑
j∈M vij = 1

for every i ∈ N .

Definition 12.4. Given any integer n > 2, let Vn : [0, 1] →
[
0, n−1

]
be the nonin-

creasing function satisfying Vn(α) = 1/n for α = 0, and for α > 0:

Vn(α) =

{
1− k(n− 1)α if α ∈ I(n, k)

1− (k+1)(n−1)
(k+1)n−1 if α ∈ NI(n, k)

where for k > 1, I(n, k) =
[

k+1
k((k+1)n−1) ,

1
kn−1

]
, and NI(n, k) =

(
1

(k+1)n−1 ,
k+1

k((k+1)n−1)

)
.

Although this function seems complicated and hard to motivate at first sight,
we will establish that it has a very interesting interpretation, and plays an im-
portant role in understanding what is feasible to achieve with indivisible goods.
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Figure 12.1: The function Vn(·) for n = 2 (upper curve) and n = 3 (lower curve).

Definition 12.5. We will call an allocation S = (S1, ..., Sn) Vn-fair, if for every agent
i, it holds that vi(Si) > Vn(αi), where αi = maxj∈M vij .

In Figure 12.1, one can see the function Vn(·) for n = 2 and n = 3. For larger
n, it has a similar form. The function alternates between segments where it is
strictly decreasing (and the decrease is linear in α), and segments where it is
constant and equal to the value at the left endpoint of the previous decreasing
segment. For example, for n = 2, looking at the function from right to left, we can
see that the rightmost decreasing segment is [2/3, 1], and the function is equal
to 1 − α within this interval. This means that for two agents, if there exists an
item with value α > 2/3 for an agent, we can only guarantee to him an allocation
with value 1 − α, since in worst case the other person will receive that item. In
a similar manner, we see that V2(1/3) = 1/3. This means that as long as the
maximum value of a good for an agent is at most 1/3, we can always find an
allocation guaranteeing at least 1/3 to him. The worst case for this is when we
have 3 items of value 1/3 each for both players.

It is not hard to see that this function forms a lower bound for µi. Therefore,
Vn-fairness is a relaxation of maximin share fairness, which is itself a relaxation
of proportionality.

Lemma 12.1. For every additive valuation function vi for which αi = maxj∈M vij , it
holds that

1

n
vi(M) > µi(n,M, vi) > Vn(αi)

More recently, Gourvès et al. (2015) introduced a refined version of the func-
tion Vn(·), which leads to slightly stronger guarantees in some cases. As this
definition is even more complex, we refer the reader to Gourvès et al. (2015) for
the exact definition of their refinement.
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An Example. To illustrate some of these concepts, let us consider an example.
Suppose we have the following instance with three agents and five items:

a b c d e

Agent 1 1/2 1/2 1/3 1/3 1/3
Agent 2 1/2 1/4 1/4 1/4 0
Agent 3 1/2 1/2 1 1/2 1/2

If M = {a, b, c, d, e} is the set of items, one can see that µ1(3,M, v1) = 1/2,
µ2(3,M, v2) = 1/4, µ3(3,M, v3) = 1. E.g., for agent 1, no matter how she parti-
tions the items into three bundles, the worst bundle will be worth at most 1/2 for
her, and she achieves this with the partition ({a}, {b, c}, {d, e}). Similarly, agent 3
can guarantee a value of 1 (which is best possible as it is equal to v3(M)/n) by
the partition ({a, b}, {c}, {d, e}). This instance admits a maximin share allocation,
e.g., ({a}, {b, c}, {d, e}), and in fact this is not a unique such allocation.

Let us look now into an allocation with better fairness properties, namely
S = ({a, e}, {b, d}, {c}). Obviously this is also a MMS allocation. But furthermore,
it is also a proportional and envy-free allocation. It is easy to check that each
agent is happy with her bundle and would not envy any of the other two bundles.

12.3 Boundaries of Polynomial Time Tractability

In this section, we first examine which fairness criteria admit efficient algorithms.
As we will see, two of the concepts defined in Section 12.2 fall into this class.
We then proceed to understand the source of computational difficulty for the
remaining criteria, and establish NP-hardness for a variety of problems. The
main conclusion of this section is that the majority of the problems being studied
in the literature are computationally hard.

12.3.1 Efficient Algorithms

One of the easiest criteria that we can satisfy is envy-freeness up to one good.
There are several algorithms that produce such allocations. Perhaps the most
intuitive one is a simple round robin algorithm (see Algorithm 1). In describing
algorithms, we assume that they take as input the set of players N , the set of
goods M , and the valuation matrix V that encodes the valuation functions.

Theorem 12.2. The allocation produced by Algorithm 1 is envy-free up to one good.

Proof. This is quite easy to establish. Fix an agent i, and let j 6= i. We will upper
bound the difference vi(Sj) − vi(Si). If j comes after i in the order chosen by the
algorithm, then agent i cannot envy j, since i always picks an item at least as
desirable as the one j picks. Suppose that j precedes i in the ordering. The
algorithm proceeds in ` = dm/ne rounds. In each round k, let rk and r′k be the
items allocated to j and i respectively. Then

vi(Sj)− vi(Si) = (vi,r1 − vi,r′1) + (vi,r2 − vi,r′2) + · · ·+ (vi,r` − vi,r′`) .
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ALGORITHM 1: Greedy Round-Robin(N,M, V )

1 Set Si = ∅ for each i ∈ N
2 Fix an arbitrary ordering of the agents
3 while ∃ unallocated items do
4 Let i ∈ N be the next agent to be examined in the current round

(proceeding in a round-robin fashion)
5 Let j ∈M be the most desired item for i, among the currently

unallocated items
6 Si = Si ∪ {j}
7 return (S1, ..., Sn)

Note that there may be no item r′` in the last round if the algorithm runs out of
goods but this does not affect the analysis (simply set vi,r′` = 0).

Since agent i picks her most desirable item when it is her turn to choose, this
means that for two consecutive rounds k and k+1 it holds that vi,r′k > vi,rk+1

. This
directly implies that vi(Sj)−vi(Si) 6 vi,r1−vi,r′` 6 vi,r1 . But then, if we remove item
r1 from the bundle of j, agent i will not be envious.

As we will see, the round-robin algorithm can be useful for other criteria as
well. Interestingly, there are more algorithms that also achieve envy-freeness up
to one good. For example, see the algorithm by Lipton et al. (2004), based on a
graph-theoretic modeling of the problem.

We now move to the notion of Vn-fairness. As already mentioned, the function
Vn(·) defined in the previous section, expresses the worst possible guarantee for
an agent as a function of the maximum value across all items. Even though it
was proved by Hill (1987) that there always exists an allocation providing such
guarantees, the proof does not yield an efficient algorithm. Later on, a greedy al-
gorithm was proposed by Markakis and Psomas (2011), which provides an inter-
esting interpretation; the function Vn(·) describes precisely the value guaranteed
to an agent by the simple greedy process stated in Algorithm 2.

This algorithm tries to greedily find an agent i who can exceed Vn(αi) with the
least number of items. After doing so, it removes agent i with the goods allocated
to her, it normalizes the reduced valuation matrix and continues in the same
fashion. The following result about the preformance of the algorithm was proved
by Markakis and Psomas (2011).

Theorem 12.3. Algorithm 2 produces an allocation S = (S1, . . . , Sn) such that, for
each player i, vi(Si) > Vn(αi), where αi = maxj vij .

Further improvements have been obtained regarding such greedy outcomes,
summarized in the following discussion.

Remark 12.4. The result of Theorem 12.3 is tight on the decreasing segments of
the function Vn(·) (see Figure 12.1). In Gourvès et al. (2015), a refined version
of Vn(·) was defined and it was established that one can have a slightly higher
guarantee when αi lies in the segments of [0, 1] where Vn(·) is constant.
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ALGORITHM 2: Vn-FAIR(N,M, V )

1 Set Si = ∅ for each i ∈ N , and let n = |N |, αi = maxj∈M vij
2 while for every i ∈ N, vi(Si) < Vn(αi) do
3 for each i ∈ N do
4 Si = Si ∪ {next most desired item in M }

5 //we add one item at a time to each person’s bundle till we find an
agent satisfiable with the least number of items

6 Pick an agent i with vi(Si) > Vn(αi) //arbitrarily in case of ties
7 Allocate Si to agent i
8 if n = 2 then
9 Allocate all other items to the remaining agent

10 else
11 for k ∈ N , k 6= i do
12 vkj = vkj/(1− vk(Si))
13 //normalization before going to next round

14 V ′ = new matrix after removing row i and columns corresponding to Si

15 run Vn-FAIR(V ′, N \ {i},M \ Si)

12.3.2 Hardness Results

The results in the previous subsection hit essentially the boundaries of what is
feasible to achieve by polynomial time algorithms. Most other algorithmic prob-
lems regarding fair allocations turn out to be NP-hard. The reason is that a
special case of all these problems is the well known PARTITION problem. This
has been observed already, among others, by Demko and Hill (1988), and by
several other works.

Theorem 12.5. Even for two agents, it is NP-complete to decide if there exists an
envy-free allocation. It is also NP-complete to decide the existence of a proportional
allocation.

Proof. Deciding the existence of fair allocations clearly belongs to the class NP. To
establish NP-hardness, consider an instance I of the PARTITION problem. Such
an instance is described by a set of n numbers A = {a1, ..., an} and we are asked
whether we can split A into two sets of equal value, i.e., whether there exists a
set S ⊆ A such that

∑
i∈S ai =

∑
i∈A\S ai.

Starting from I, we can define now an instance of our problem, with two
agents and n goods. Each number ai in the PARTITION instance corresponds to
a good in our instance with value ai for both agents. Hence, a proportional or an
envy-free allocation exists if and only if both players can receive a bundle of value
at least

∑
i∈A ai/2. But since the total value of the goods is exactly

∑
i∈A ai, we

conclude that a proportional allocation exists if and only if there exists a solution
to the PARTITION problem.

One might initially feel more hopeful for the notion of MMS allocations, since
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this is a relaxation of proportionality. Indeed, for two agents, the existence of
MMS allocations is a trivial problem, since they always exist (we note though
that the status of existence for higher values of n and m is not completely clear,
see Kurokawa et al. (2016)). However, when it comes to computing the actual
allocations, even for the case of two agents, we still have an NP-hard problem to
solve. The same reduction as in the previous theorem can show the following.

Theorem 12.6. Even for two agents, finding a MMS allocation is an NP-hard prob-
lem.

12.4 Approximation Guarantees: Algorithms and
Impossibility Results

Motivated by the hardness results, we will now examine ways to construct ap-
proximately fair allocations. As it is not a priori clear what it would mean to be
approximately fair, we examine each fairness concept separately and argue about
possible approximation versions of each criterion. We summarize in each of the
following subsections both positive (in terms of approximation algorithms) and
negative (in terms of inapproximability) results that have been established.

12.4.1 Allocations with Maximin Share Guarantees

Apart from the computational difficulty, we know that for n > 3, there exist ex-
amples showing that MMS allocations do not always exist (Procaccia and Wang,
2014; Kurokawa et al., 2016). Although these examples are rather extreme, they
show that even if we disregard time complexity, we cannot construct algorithms
that always compute a MMS allocation.

It is then natural to explore what would be the best guarantee we can give.
I.e., how close to a MMS allocation can we come? Can we construct an allocation
where every agent receives a bundle of goods with a total value that is "close" to
her MMS value? In order to quantify the distance from an actual MMS allocation,
we use the notions of additive and multiplicative approximation. By an additive
ρ-approximation, we mean an allocation (S1, . . . , Sn), where vi(Si) > µi − ρ, for
some ρ 6 µi. As for multiplicative approximations, which is the most common
approach used in approximation algorithms, we will mean that we demand an
allocation such that vi(Si) > ρµi, for some ρ 6 1.

Let us first look for an additive approximation. We claim that the round robin
algorithm presented in Section 12.3 provides such a guarantee. In particular,
recall that we have defined αi to be the maximum value of any good for agent i.
Let also α = maxi,j vij = maxi αi.

Theorem 12.7. If (S1, ..., Sn) is the output of Algorithm 1, then for every i ∈ N ,

vi(Si) >
vi(M)

n
− αi > µi − αi > µi − α .

Proof. By Theorem 12.2, we know that the round robin algorithm is envy-free up
to one good. This implies that for any i, j ∈ N , we have vi(Si) > vi(Sj)− αi.
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If we now sum up these inequalities over every j ∈ N , we get: nvi(Si) >∑
j vi(Sj)− nαi, which implies

vi(Si) >
∑

j vi(Sj)

n
− αi =

vi(M)

n
− αi > µi − αi ,

where the last inequality holds since the maximin share guarantee is a relaxation
to proportionality.

This is already a positive result, as it reveals that when no item has a very
high value for any agent, we can get an approximately fair allocation.

If we now try to obtain a multiplicative rather than an additive guarantee, we
see that we would need somehow to handle carefully the goods that are valued
highly, even by one agent. Obviously, such goods should end up at one of the
agents who have a high value for them. What is interesting here is that if we do
take care of highly valuable goods in this manner, we end up with an instance,
where running the round robin algorithm provides a multiplicative guarantee
since the maximum value now is quite small. Quantifying "highly valuable" to
mean at least half of the total value of an agent for the set of available goods, we
obtain Algorithm 3, for which we can establish a 1/2-approximation.

ALGORITHM 3: APX-MMS1/2(N,M, V )

1 Set S = M
2 for i = 1 to |N | do
3 Let βi =

∑
j∈S vij

|N |

4 while ∃i, j s.t. vij > βi/2 do
5 Allocate j to i.
6 S = S \ {j}
7 N = N \ {i}
8 Recompute the βis

9 Run Algorithm 1 on the remaining instance

Theorem 12.8. Let N be a set of n agents, and let M be a set of goods. Algorithm 3
produces an allocation (S1, ..., Sn) such that

vi(Si) >
1

2
µi , ∀i ∈ N

Proof. The important ingredient of the proof is a simple monotonicity property,
which says that we can allocate a single good to an agent without decreasing
the maximin share of other agents. Recall that µi is defined with respect to the
number of agents, the set of goods and the valuation function of i, i.e., µi :=
µi(n,M, vi). This means that an analogous quantity can be defined for any sub-
instance of an initial instance, hence, for any S ⊆ M or for a smaller number of
agents. The following property is then very easy to establish.

Claim 12.9 (Monotonicity property). For any agent i and any good j, it holds
that

µi(n− 1,M \ {j}, vi) > µi(n,M, vi) .
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We will distinguish two cases. Consider an agent i who was allocated a single
item during the first phase of the algorithm (lines 4 - 8). Suppose that at the time
when i was given her item, there were n1 active agents, n1 6 n, and that S was
the set of currently unallocated items. By the design of the algorithm, this means
that the value of what i received is at least

∑
j∈S vij
2n1

> 1

2
µi(n1, S, vi) .

But now if we apply the monotonicity property n − n1 times, we obtain that
µi(n1, S, vi) > µi(n,M, vi) = µi, and we are done.

Consider now an agent i, who gets a bundle of goods according to Greedy
Round-Robin, in the second phase of Algorithm 3. Let n2 be the number of active
agents at that point, and S be the set of goods that are unallocated before Greedy
Round-Robin is executed. We know that the maximum value of any remaining
good at that point is less than half the current value of βi for agent i. Hence by the
additive guarantee of Greedy Round-Robin, i.e., the first inequality in Theorem
12.7, we have that the bundle received by agent i has value at least

∑
j∈S vij
n2

− βi
2

=

∑
j∈S vij
2n2

> 1

2
µi(n2, S, vi) .

Again, after applying Claim 12.9 repeatedly, we get that µi(n2, S, vi) >
µi(n,M, vi) = µi, which completes the proof.

In trying to obtain a better approximation for this problem, one needs to take
a different approach. This direction was investigated first by Procaccia and Wang
(2014), and followed up by Amanatidis et al. (2015). By using matching argu-
ments in a bipartite graph representation of the problem, and exploiting a more
involved monotonicity property underlying the maximin shares, a better approx-
imation factor was obtained, initially in exponential time by Procaccia and Wang
(2014), and later in polynomial time by Amanatidis et al. (2015). The following
statement summarizes the results of these two works.

Theorem 12.10. For any n and m, and any constant ε > 0, there exists a polyno-
mial time algorithm producing an allocation (S1, ..., Sn) such that vi(Si) > ( 2

3 − ε)µi.

It is interesting to note that up to now it is still an open question whether
a better approximation guarantee is possible for this notion. The impossibility
results that have been established by Kurokawa et al. (2016), and Procaccia and
Wang (2014) do not rule out even an approximation very close to 1.

Finally, the problem is also nontrivial to understand even with a small num-
ber of agents. For n = 2, it is pointed out by Bouveret and Lemaître (2014) that
maximin share allocations always exist via an analog of the cut-and-choose pro-
tocol. Using the result of Woeginger (1997), we can then have a Polynomial Time
Approximation Scheme (PTAS), i.e., a (1 − ε)-approximation in polynomial time,
for any constant ε > 0. Hence, despite the NP-hardness, we can still have the best
possible positive result we could hope for, when n = 2. In contrast, as soon as we
move to n = 3, it has been proved that there exist instances where no maximin
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share allocation exists (Procaccia and Wang, 2014). The best known approxi-
mation guarantee is roughly 8/9 and was very recently obtained by Gourvès and
Monnot (2017). Surprisingly, it is still unclear what is the best we can achieve
for 3 agents. All these findings are summarized in the following statement.

Theorem 12.11. For any number of items m, and

• for n = 2, there exists a PTAS, i.e, we can produce in polynomial time an
allocation (S1, S2) such that vi(Si) > (1− ε)µi, for any constant ε > 0.

• for n = 3, there exists a polynomial time algorithm producing an allocation
(S1, S2, S3), such that vi(Si) > (8/9− ε)µi, for any constant ε > 0.

12.4.2 Proportionality

As soon as we move away from maximin shares towards proportionality, the
problems become computationally much harder.

For the concept of proportionality, let us start again with additive approxima-
tions. One way to define here such a notion of approximation would be as follows:
we can say that an algorithm achieves an additive ρ-approximation if it produces
an allocation where every agent i receives a bundle worth at least 1

nvi(M)− ρ.
By Theorem 12.7, we directly have the following corollary.

Corollary 12.12. Algorithm 1 achieves an additive α-approximation for proportion-
ality, where α = maxi,j vij .

It can be easily seen that this guarantee is tight and cannot be further im-
proved.

In analogy to the approximate versions of maximin share allocations, we will
say that an algorithm achieves a multiplicative ρ-approximation for proportional-
ity if it produces a partition (S1, S2, . . . , Sn) such that vi(Si) > ρ · 1

n · vi(M).
In the previous subsection we saw that combining the round-robin algorithm

with a careful handling of the most valuable goods, we obtained an approximation
ratio of 1/2 for the maximin share guarantees. Unfortunately, this does not carry
over to approximate proportionality. In fact, it has been established that we
cannot hope to have any decent approximation. The following result, proved by
Markakis and Psomas (2011) shows that we cannot even decide in polynomial
time, if an instance admits an allocation that achieves a constant approximation,
hence we cannot possibly compute one for every instance. The proof is based on
a reduction from the 3D-Matching problem.

Theorem 12.13. For any constant ρ 6 1, it is NP-complete to decide if there exists
an allocation where every player receives a bundle worth at least ρ · 1

n · vi(M).

Theorem 12.13 reveals that proportionality is a much stronger concept to sat-
isfy (even approximately), than maximin share fairness under indivisible goods.
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12.4.3 Envy-freeness

Coming now to the strongest among the concepts we have considered so far, one
might not be so optimistic about obtaining algorithmic results. Nevertheless, we
will see that in certain cases, some positive results are feasible.

In order to define approximate versions, let us start with some notation. Given
an allocation S = (S1, S2, . . . , Sn), let eij(S) = max{0, vi(Sj) − vi(Si)} be the envy
experienced by agent i towards agent j. When i does not envy j, we have eij(S) =
0. Let also envy(S) = maxi,j∈N eij(S) be the envy of the allocation S, i.e., we care
for the maximum envy between any pair of agents.

Given an instance I, let OPT(I) denote the minimum possible envy that can
be achieved over all possible partitions,

OPT(I) = min
S∈Πn(M)

envy(S)

If we look at the notion of envy from an optimization viewpoint, we can define
the minimum envy problem as the problem of finding OPT(I) for every instance
I. We can now define approximate versions of our problem. Namely, we will say
that an algorithm achieves an additive ρ-approximation for the minimum envy
problem, if it produces a partition S such that envy(S) 6 OPT(I) + ρ. We can now
easily have the following observation.

Corollary 12.14. Any algorithm that is envy-free up to one good achieves an addi-
tive α-approximation to the minimum envy problem.

This is true since any algorithm that is envy-free up to one good produces
envy at most equal to α. Hence Algorithm 1 in particular obtains this guarantee,

Suppose now that we try to get a multiplicative guarantee. This would mean
that we want an allocation such that the envy within this allocation should be
at most ρOPT(I), at a given instance I. We claim that this particular type of
multiplicative approximation is problematic for the minimum envy problem. To
illustrate this, consider an instance I that admits an anvy-free solution. Hence
OPT(I) = 0. An algorithm with a multiplicative ρ-approximation in this case
means that it would produce an allocation S such that envy(S) 6 ρOPT(I) = 0.
Hence the algorithm is forced to compute an envy-free allocation whenever there
exists one, i.e., this algorithm can be used to decide if an envy-free allocation
exists. But since we showed in Theorem 12.5 that deciding existence of envy-free
allocations is NP-complete, we then immediately have the following corrolary:

Theorem 12.15. Unless P = NP, there is no finite multiplicative approximation al-
gorithm for the minimum envy problem.

The discussion above is an artifact of the nature of the problem. In par-
ticular, it is a consequence of the fact that the objective function in the opti-
mization problem we try to solve can take the value zero. This is what prevents
us from having a multiplicative approximation. We claim that a more suitable
objective function for approximating envy is the envy-ratio, defined as taking
the ratio rather than the difference between a pair of bundles. More formally,
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given an allocation S = (S1, S2, . . . , Sn), the envy-ratio of S is defined as the quan-
tity maxi,j∈N{1, vi(Sj)

vi(Si)
}. The minimum envy-ratio then asks for a partition that

achieves the best such ratio.
Obviously this problem is still NP-complete. It is however more amenable to

multiplicative approximations. Even though we are not aware of any good positive
result for general additive valuation functions, it has been established that when
the agents have identical preferences, any constant approximation is achievable.
The following was established by Lipton et al. (2004).

Theorem 12.16. Under identical additive valuation functions, there exists a PTAS
for the minimum envy-ratio problem.

It is still an open problem whether we can have positive results for a richer
class of additive valuation functions.

12.5 Conclusions and Future Research

In this chapter, we have provided an overview of algorithmic and hardness re-
sults, with an emphasis on approximation algorithms. We believe this will con-
tinue to be a very active research area over the coming years, as there are still
several unexplored problems that are worth further investigation.

To begin with, there are still some challenging open problems regarding the
solution concepts we presented. We find the approximability status for MMS
allocations one of the most intriguing questions. Is there a better than a 2/3-
approximation to the maximin share guarantee of each agent? This question
seems to require radically new ideas. Another interesting question concerns a
stronger version of envy-freeness up to one good. Suppose that we require an
allocation that would be envy-free up to any single good, meaning that an agent i
does not envy any other agent j, after throwing away any item from the bundle
of j. Recall that the standard definition of envy-freeness up to one good only
requires that there exists a good that we can throw away from the bundle of
agent j, so that i does not envy her. Can we always guarantee the existence of
this stronger notion or can we disprove that?

Coming to other notions, there has recently been a surge of interest in the
Maximum Nash Welfare (MNW) solution, which denotes an allocation that max-
imizes the product of the agents’ valuations. It has been argued in Caragiannis
et al. (2016) that the MNW solution provides certain fairness guarantees, i.e., it
yields an allocation that is envy-free up to one good and is also an approximate
MMS allocation. Computing this solution is a hard problem and approximation
algorithms have also been suggested (Cole and Gkatzelis, 2015). Unfortunately,
as soon as we move to approximations, we lose the fairness guarantees. Hence,
the question of interest is whether one can have new approximation algorithms
that can retain some of the fairness properties of the MNW solution.

Another approach on fair division is to combine fairness with incentive com-
patibility. Typically in the fair division literature, monetary payments are not
allowed when studying strategic settings. Hence, this becomes a mechanism de-
sign problem without money. It has been quite challenging to understand which
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are the truthful mechanisms in such a setting. Up until recently, the only char-
acterization result that was known concerned two agents and two items, due
to Caragiannis et al. (2009). Lately, some further results have been obtained
by Amanatidis et al. (2016), and a complete characterization of truthful mecha-
nisms for two agents and any number of items was provided by Amanatidis et al.
(2017). These results imply several consequences on the interplay between fair-
ness and incentive compatibility. Undoubtedly, the main open question here is
to understand and characterize truthful mechanisms for more than two agents.

Finally, over the years, the vast majority of the related literature has focused
on additive valuation functions. In many cases, this assumption is crucial for
obtaining positive results. It is true, however, that in some scenarios additiv-
ity is not the right assumption, since the goods may exhibit complementarities
or substitutabilities. Very recently, new results for finding MMS allocations un-
der submodular valuation functions have been obtained by Barman and Murthy
(2017). We believe that further extensions to non-additive valuation functions
would be very valuable for making this field even more credible and applicable.
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