
Institute of Theoretical Informatics (ITI)
Application-oriented Formal Verification

Automated Verification for Functional and Relational
Properties of Voting Rules [COMSOC 2016]

Bernhard Beckert, Thorsten Bormer, Michael Kirsten, Till Neuber, and Mattias Ulbrich

KIT – The Research University in the Helmholtz Association www.kit.edu

Motivation
Voting rules often required (e.g., by constitution) to fulfil axiomatic properties
Design of voting rules with desired properties non-trivial and error-prone
Growing complexity with rise of electronic voting increases vulnerability
Solution: Computer-aided verification for trustworthy voting rules

Relational Specification: Coupling Evaluations

Technique for proving relational (inter-profile) properties, e.g., anonymity
Relational properties consider two ballot profiles and election outcomes

Separate Evaluations

X

B∼ X
B′

V V

V (B) ≈ V (B′)
Example

maxc
∑N
i=0 Bi,c = maxc

∑N
i=0 B′i,c

Coupling Evaluations

X

B ∼ X
B′

≈

≈

≈

. . . ≈ . . .

Example
result1 = result2

Often enables short and concise specifications (only differences)
Critical point for making verification feasible!

Relational Verification: Examples
Verification using Bounded Model Checking (Tool: CBMC)

1 3 6 9 12 15 18 21 230

300

600

900

1,200

1,500

1,800
t /o

Ballots

R
un

-ti
m

e
[s

]

Run-times for 9 candidates in seconds

Separate / coupling eval.
Achieved higher bounds!

Anonymity Prop.: Indifference to renaming and permutation of voters
Plurality Rule: Single choice, candidate with plurality of votes is elected
Concise specifications useable for BMC⇒ Guidance for SAT-solver

Verification using Deductive Theorem Proving (Tool: KeY)

Plurality Rule Approval Rule Range Rule Borda Count
Anonymity 33 43 44 44
Neutrality 42 56 57 57
Monotonicity 46 47 48 52
Participation 28 50 51 50
Homogeneity 53 70 71 71

Verified various properties (numbers are required lines of specification)
Proof construction almost fully automatic (< 10 user interactions)
Verification using separate evaluations often not feasible

Verifying Voting Rules

Formalisation: Rules as imperative algorithms (C / Java), properties in FOLN

Established verification techniques: KeY and CBMC
⇒ Deductive Theorem Proving and Bounded Model Checking (BMC)

Functional Specification: Exploiting Symmetries

Already established symmetry, target: functional (intra-profile) property
Functional property considers elections individually, e.g., majority criterion
Symmetry example: Anonymity, operation is ballot permutation

Symmetric profiles have
minimal elements

X

X

X
X

S

S

S

X

X

X

S

S

X

X

S

Verify only elements in X

X

X

X
X

X

X

X

X

X

X
X X

X

Minimal elements form a set X

All possible profiles reachable from X

Symmetry properties infer symmetry-breaking predicates (SBPs)
Reduces search space (to X) using SBP as precondition
Example for anonymity: Check only sorted (by candidate) profiles

Functional Verification: Example
Verification using Bounded Model Checking (Tool: CBMC)

20 40 60 80 1000

300

600

900

1,200

1,500

1,800
t /o

Ballots

R
un

-ti
m

e
[s

]

Run-times for 9 candidates in seconds

With / without SBP (anon.)
Pushed the boundaries!

Majority Criterion: If candidate c has majority, c must be elected
Plurality Rule: Single choice, candidate with plurality of votes is elected

General Approach for Functional Verification
Verification Task: Does voting rule V satisfy property P ?
Conjecture: V satisfies symmetry property S.

General Approach
1. Verify S for V using relational techniques
2. Verify V satisfies property P only for subset X

3. Prove that X spans all possible profiles (independent of V!)
4. Prove that S-operations preserve property P (independent of V!)

Conclusion
General approach: Verification of functional axiomatic properties
Feasibility demonstrated on multiple well-known results


