Will my allocation be conflict-prone ?

A scale of properties for characterizing resource allocation instances

Sylvain Bouveret
LIG - Grenoble INP

Michel Lemaître
Formerly Onera Toulouse

COST Meeting
$15^{\text {th }}-17^{\text {th }}$ April, 2013

O(D) STeamer - LIG
Spatio-temporal information, adaptability, multimedia and knowledge representation

Fair division of indivisible goods...

We have:

- a finite set of objects $\mathcal{O}=\{1, \ldots, m\}$
- a finite set of agents $\mathcal{A}=\{1, \ldots, n\}$ having some preferences on the set of objects they may receive

Fair division of indivisible goods...

We have:

- a finite set of objects $\mathcal{O}=\{1, \ldots, m\}$
- a finite set of agents $\mathcal{A}=\{1, \ldots, n\}$ having some preferences on the set of objects they may receive

We want:

- an allocation $\vec{\pi}: \mathcal{A} \rightarrow 2^{\mathcal{O}}$
- such that $\pi_{i} \cap \pi_{j}=\emptyset$ if $i \neq j$ (preemption),
- $\bigcup_{i \in \mathcal{A}} \pi_{i}=\mathcal{O}$ (no free-disposal),
- and which takes into account the agents' preferences

Fair division of indivisible goods...

We have:

- a finite set of objects $\mathcal{O}=\{1, \ldots, m\}$
- a finite set of agents $\mathcal{A}=\{1, \ldots, n\}$ having some preferences on the set of objects they may receive

We want:

- an allocation $\vec{\pi}: \mathcal{A} \rightarrow 2^{\mathcal{O}}$
- such that $\pi_{i} \cap \pi_{j}=\emptyset$ if $i \neq j$ (preemption),
- $\bigcup_{i \in \mathcal{A}} \pi_{i}=\mathcal{O}$ (no free-disposal),
- and which takes into account the agents' preferences

Plenty of real-world applications: course allocation, operation of Earth observing satellites, ...

A classical way to solve the problem:

- Ask each agent i to give a score (weight, utility...) $w_{i}(o)$ to each object o
- Consider all the agents have additive preferences

$$
\rightarrow u_{i}(\pi)=\sum_{o \in \pi} w_{i}(o)
$$

- Find an allocation $\vec{\pi}$ that:

A classical way to solve the problem:

- Ask each agent i to give a score (weight, utility...) $w_{i}(o)$ to each object o
- Consider all the agents have additive preferences

$$
\rightarrow u_{i}(\pi)=\sum_{o \in \pi} w_{i}(o)
$$

- Find an allocation $\vec{\pi}$ that:

1. maximizes the collective utility defined by a collective utility function, e.g. $u c(\vec{\pi})=\min _{i \in \mathcal{A}} u\left(\pi_{i}\right)$ - egalitarian solution
[Bansal and Sviridenko, 2006]
2. or satisfies a given fairness criterion,

$$
\text { e.g. } u_{i}\left(\pi_{i}\right) \geq u_{i}\left(\pi_{j}\right) \text { for all agents } i, j \text { - envy-freeness }
$$

[Lipton et al., 2004].

The Santa Claus problem.
In Proceedings of STOC'06. ACM.
\square
Lipton, R., Markakis, E., Mossel, E., and Saberi, A. (2004).
On approximately fair allocations of divisible goods.
In Proceedings of EC'04.

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$.

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$. Preferences:

	1	2	3
agent 1	5	4	2
agent 2	4	1	6

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$.
Preferences:

	1	2	3
agent 1	5	4	2
agent 2	4	1	6

Egalitarian evaluation:
$\vec{\pi}=\langle\{1\},\{2,3\}\rangle \rightarrow u c(\vec{\pi})=\min (5,6+1)=5$

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$.
Preferences:

	1	2	3
agent 1	5	4	2
agent 2	4	1	6

Egalitarian evaluation:

$$
\begin{aligned}
& \vec{\pi}=\langle\{1\},\{2,3\}\rangle \rightarrow u c(\vec{\pi})=\min (5,6+1)=5 \\
& \vec{\pi}^{\prime}=\langle\{1,2\},\{3\}\rangle \rightarrow u c\left(\vec{\pi}^{\prime}\right)=\min (4+5,6)=6
\end{aligned}
$$

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$.
Preferences:

	1	2	3
agent 1	5	4	2
agent 2	4	1	6

Egalitarian evaluation:

$$
\begin{aligned}
& \vec{\pi}=\langle\{1\},\{2,3\}\rangle \rightarrow u c(\vec{\pi})=\min (5,6+1)=5 \\
& \vec{\pi}^{\prime}=\langle\{1,2\},\{3\}\rangle \rightarrow u c\left(\vec{\pi}^{\prime}\right)=\min (4+5,6)=6
\end{aligned}
$$

Envy-freeness:
$\vec{\pi}$ is not envy-free (agent 1 envies agent 2)

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$.
Preferences:

	1	2	3
agent 1	5	4	2
agent 2	4	1	6

Egalitarian evaluation:

$$
\begin{aligned}
& \vec{\pi}=\langle\{1\},\{2,3\}\rangle \rightarrow u c(\vec{\pi})=\min (5,6+1)=5 \\
& \vec{\pi}^{\prime}=\langle\{1,2\},\{3\}\rangle \rightarrow u c\left(\vec{\pi}^{\prime}\right)=\min (4+5,6)=6
\end{aligned}
$$

Envy-freeness:
$\vec{\pi}$ is not envy-free (agent 1 envies agent 2)
$\vec{\pi}^{\prime}$ is envy-free.

In this work, we consider the $2^{\text {nd }}$ approach: choose a fairness property, and find an allocation that satisfies it.

In this work, we consider the $2^{\text {nd }}$ approach: choose a fairness property, and find an allocation that satisfies it.

Problems:

1. such an allocation does not always exist
\rightarrow e.g. 2 agents, 1 object: no envy-free allocation exists
2. many such allocations can exist

In this work, we consider the $2^{\text {nd }}$ approach: choose a fairness property, and find an allocation that satisfies it.

Problems:

1. such an allocation does not always exist
\rightarrow e.g. 2 agents, 1 object: no envy-free allocation exists
2. many such allocations can exist

Idea: consider several fairness properties, and try to satisfy the most demanding one.
In this work we consider five such properties.

The problem

Five fairness criteria

Additional properties

Beyond additive preferences

Envy-freeness
An allocation $\vec{\pi}$ is envy-free if no agent envies another one.

Envy-freeness

An allocation $\vec{\pi}$ is envy-free if no agent envies another one.

Known facts:

- An envy-free allocation may not exist.
- Deciding whether an allocation is envy-free is easy (quadratic time).
- Deciding whether an instance (agents, objects, preferences) has an envy-free allocation is hard - NP-complete [Lipton et al., 2004].

B
Lipton, R., Markakis, E., Mossel, E., and Saberi, A. (2004).
On approximately fair allocations of divisible goods.
In Proceedings of EC'04.

Envy-freeness

An allocation $\vec{\pi}$ is envy-free if no agent envies another one.

Known facts:

- An envy-free allocation may not exist.
- Deciding whether an allocation is envy-free is easy (quadratic time).
- Deciding whether an instance (agents, objects, preferences) has an envy-free allocation is hard - NP-complete [Lipton et al., 2004].

B
Lipton, R., Markakis, E., Mossel, E., and Saberi, A. (2004).
On approximately fair allocations of divisible goods.
In Proceedings of EC'04.

Proportional fair share (PFS):

- Initially defined by Steinhaus [Steinhaus, 1948] for continuous fair division (cake-cutting)
- Idea: each agent is "entitled" to at least the $\mathrm{n}^{\text {th }}$ of the entire resource

E

```
Steinhaus, H. (1948).
The problem of fair division.
Econometrica, 16(1).
```


Proportional fair share (PFS):

- Initially defined by Steinhaus [Steinhaus, 1948] for continuous fair division (cake-cutting)
- Idea: each agent is "entitled" to at least the $\mathrm{n}^{\text {th }}$ of the entire resource

B
Steinhaus, H. (1948).
The problem of fair division.
Econometrica, 16(1).

Proportional fair share

The proportional fair share of an agent i is equal to:

$$
u_{i}^{\mathrm{PFS}} \stackrel{\text { def }}{=} \frac{u_{i}(\mathcal{O})}{n}=\sum_{o \in \mathcal{O}} \frac{w_{i}(o)}{n}
$$

An allocation $\vec{\pi}$ satisfies (proportional) fair share if every agent gets at least her fair share.

Easy or known facts:

- Deciding whether an allocation satisfies proportional fair share (PFS) is easy (linear time).
- For a given instance, there may be no allocation satisfying PFS
\rightarrow e.g. 2 agents, 1 object
- This is not true for cake-cutting (divisible resource)
\rightarrow Dubins-Spanier

Easy or known facts:

- Deciding whether an allocation satisfies proportional fair share (PFS) is easy (linear time).
- For a given instance, there may be no allocation satisfying PFS \rightarrow e.g. 2 agents, 1 object
- This is not true for cake-cutting (divisible resource)
\rightarrow Dubins-Spanier

New (?) facts:

- Deciding whether an instance has an allocation satisfying PFS is hard even for 2 agents - NP-complete [PARTITION].
- $\vec{\pi}$ is envy-free $\Rightarrow \vec{\pi}$ satisfies PFS.

Easy or known facts:

- Deciding whether an allocation satisfies proportional fair share (PFS) is easy (linear time).
- For a given instance, there may be no allocation satisfying PFS \rightarrow e.g. 2 agents, 1 object
- This is not true for cake-cutting (divisible resource)
\rightarrow Dubins-Spanier

New (?) facts:

- Deciding whether an instance has an allocation satisfying PFS is hard even for 2 agents - NP-complete [PARTITION].
- $\vec{\pi}$ is envy-free $\Rightarrow \vec{\pi}$ satisfies PFS.

PFS is nice, but sometimes too demanding for indivisible goods \rightarrow e.g. 2 agents, 1 object

PFS is nice, but sometimes too demanding for indivisible goods \rightarrow e.g. 2 agents, 1 object

Max-min fair share (MFS):

- Introduced recently [Budish, 2011]; not so much studied so far.
- Idea: in the cake-cutting case, PFS = the best share an agent can hopefully get for sure in a "I cut, you choose (I choose last)" game.
- Same game for indivisible goods \rightarrow MFS.

E
Budish, E. (2011).
The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes.
Journal of Political Economy, 119(6).

PFS is nice, but sometimes too demanding for indivisible goods
\rightarrow e.g. 2 agents, 1 object

Max-min fair share (MFS):

- Introduced recently [Budish, 2011]; not so much studied so far.
- Idea: in the cake-cutting case, PFS = the best share an agent can hopefully get for sure in a "I cut, you choose (I choose last)" game.
- Same game for indivisible goods \rightarrow MFS.

Budish, E. (2011).
The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes.

```
Journal of Political Economy, 119(6).
```


Max-min fair share

The max-min fair share of an agent i is equal to:

$$
u_{i}^{\mathrm{MFS}} \stackrel{\text { def }}{=} \max _{\vec{\pi}} \min _{j \in \mathcal{A}} u_{i}\left(\pi_{j}\right)
$$

An allocation $\vec{\pi}$ satisfies max-min fair share (MFS) if every agent gets at least her max-min fair share.

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$.
Preferences:

	1	2	3
agent 1	5	4	2
agent 2	4	1	6

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$.
Preferences:

	1	2	3
agent 1	5	4	2
agent 2	4	1	6
	$\rightarrow u_{1}^{\mathrm{MFS}}=5$		
$\rightarrow u_{2}^{\mathrm{MFS}}=5$			

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$.
Preferences:

	1	2	3
agent 1	5	4	2
agent 2	4	1	6

MFS evaluation:
$\vec{\pi}=\langle\{1\},\{2,3\}\rangle \rightarrow u_{1}\left(\pi_{1}\right)=5 \geq 5 ; u_{2}\left(\pi_{2}\right)=7 \geq 5 \Rightarrow$ MFS satisfied

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$.
Preferences:

	1	2	3
agent 1	5	4	2
agent 2	4	1	6

MFS evaluation:
$\vec{\pi}=\langle\{1\},\{2,3\}\rangle \rightarrow u_{1}\left(\pi_{1}\right)=5 \geq 5 ; u_{2}\left(\pi_{2}\right)=7 \geq 5 \Rightarrow$ MFS satisfied
$\vec{\pi}^{\prime \prime}=\langle\{2,3\},\{1\}\rangle \rightarrow u_{1}\left(\pi_{1}^{\prime \prime}\right)=6 \geq 5 ; u_{2}\left(\pi_{2}^{\prime \prime}\right)=4<5 \Rightarrow$ MFS not satisfied

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$.
Preferences:

	1	2	3
agent 1	5	4	2
agent 2	4	1	6

MFS evaluation:

$$
\begin{aligned}
& \vec{\pi}=\langle\{1\},\{2,3\}\rangle \rightarrow u_{1}\left(\pi_{1}\right)=5 \geq 5 ; u_{2}\left(\pi_{2}\right)=7 \geq 5 \Rightarrow \text { MFS satisfied } \\
& \vec{\pi}^{\prime \prime}=\langle\{2,3\},\{1\}\rangle \rightarrow u_{1}\left(\pi_{1}^{\prime \prime}\right)=6 \geq 5 ; u_{2}\left(\pi_{2}^{\prime \prime}\right)=4<5 \Rightarrow \text { MFS not satisfied }
\end{aligned}
$$

Example: 2 agents, 1 object.

Example: 3 objects $\{1,2,3\}, 2$ agents $\{1,2\}$.
Preferences:

	1	2	3
agent 1	5	4	2
agent 2	4	1	6

MFS evaluation:
$\vec{\pi}=\langle\{1\},\{2,3\}\rangle \rightarrow u_{1}\left(\pi_{1}\right)=5 \geq 5 ; u_{2}\left(\pi_{2}\right)=7 \geq 5 \Rightarrow$ MFS satisfied
$\vec{\pi}^{\prime \prime}=\langle\{2,3\},\{1\}\rangle \rightarrow u_{1}\left(\pi_{1}^{\prime \prime}\right)=6 \geq 5 ; u_{2}\left(\pi_{2}^{\prime \prime}\right)=4<5 \Rightarrow$ MFS not satisfied

Example: 2 agents, 1 object.

$$
u_{1}^{\mathrm{MFS}}=u_{2}^{\mathrm{MFS}}=0 \rightarrow \text { every allocation satisfies MFS! }
$$

Not very satisfactory, but can we do much better?

Facts:

- Computing $u_{i}^{\text {MFS }}$ for a given agent is hard \rightarrow NP-complete [PARTITION]
- Hence, deciding whether an allocation satisfies MFS is also hard.
- $\vec{\pi}$ satisfies $\mathrm{PFS} \Rightarrow \vec{\pi}$ satisfies MFS.

Facts:

- Computing $u_{i}^{\text {MFS }}$ for a given agent is hard \rightarrow NP-complete [PARTITION]
- Hence, deciding whether an allocation satisfies MFS is also hard.
- $\vec{\pi}$ satisfies PFS $\Rightarrow \vec{\pi}$ satisfies MFS.

Conjecture

For each instance there is at least one allocation that satisfies max-min fair share.

Facts:

- Computing $u_{i}^{\text {MFS }}$ for a given agent is hard \rightarrow NP-complete [PARTITION]
- Hence, deciding whether an allocation satisfies MFS is also hard.
- $\vec{\pi}$ satisfies PFS $\Rightarrow \vec{\pi}$ satisfies MFS.

Conjecture

For each instance there is at least one allocation that satisfies max-min fair share.

Intuition:

- the situation where all agents have the same preferences is the worst possible situation
- in that situation, an allocation satisfying MFS exists (see definition)
- all other situation makes every agent better off.

Special cases: conjecture proved for:

- Agents having same preferences (see definition)

Special cases: conjecture proved for:

- Agents having same preferences (see definition)
- 2 agents: "I cut, you choose"

Special cases: conjecture proved for:

- Agents having same preferences (see definition)
- 2 agents: "I cut, you choose"
- $m<n$ (strictly less objects than agents) or $m=n$ (matching)

Special cases: conjecture proved for:

- Agents having same preferences (see definition)
- 2 agents: "I cut, you choose"
- $m<n$ (strictly less objects than agents) or $m=n$ (matching)
- Preferences represented by scoring functions:

Special cases: conjecture proved for:

- Agents having same preferences (see definition)
- 2 agents: "I cut, you choose"
- $m<n$ (strictly less objects than agents) or $m=n$ (matching)
- Preferences represented by scoring functions:
- Each agent i ranks all the objects $\left(e . g 3 \succ_{i} 1 \succ_{i} 2 \succ_{i} 4\right)$

Special cases: conjecture proved for:

- Agents having same preferences (see definition)
- 2 agents: "I cut, you choose"
- $m<n$ (strictly less objects than agents) or $m=n$ (matching)
- Preferences represented by scoring functions:
- Each agent i ranks all the objects $\left(e . g 3 \succ_{i} 1 \succ_{i} 2 \succ_{i} 4\right)$
- A common scoring function maps ranks to scores

$$
g:\{1, \ldots, m\} \rightarrow \mathbb{N}
$$

Special cases: conjecture proved for:

- Agents having same preferences (see definition)
- 2 agents: "I cut, you choose"
- $m<n$ (strictly less objects than agents) or $m=n$ (matching)
- Preferences represented by scoring functions:
- Each agent i ranks all the objects (e.g $3 \succ_{i} 1 \succ_{i} 2 \succ_{i} 4$)
- A common scoring function maps ranks to scores

$$
g:\{1, \ldots, m\} \rightarrow \mathbb{N}
$$

- The weight of object o for agent i is computed using this function:

$$
w_{i}(o)=g\left(\operatorname{rank}_{i}(o)\right)
$$

Special cases: conjecture proved for:

- Agents having same preferences (see definition)
- 2 agents: "I cut, you choose"
- $m<n$ (strictly less objects than agents) or $m=n$ (matching)
- Preferences represented by scoring functions:
- Each agent i ranks all the objects (e.g $3 \succ_{i} 1 \succ_{i} 2 \succ_{i} 4$)
- A common scoring function maps ranks to scores

$$
g:\{1, \ldots, m\} \rightarrow \mathbb{N}
$$

- The weight of object o for agent i is computed using this function:

$$
w_{i}(o)=g\left(\operatorname{rank}_{i}(o)\right)
$$

Special cases: conjecture proved for:

- Agents having same preferences (see definition)
- 2 agents: "I cut, you choose"
- $m<n$ (strictly less objects than agents) or $m=n$ (matching)
- Preferences represented by scoring functions:
- Each agent i ranks all the objects (e.g $3 \succ_{i} 1 \succ_{i} 2 \succ_{i} 4$)
- A common scoring function maps ranks to scores

$$
g:\{1, \ldots, m\} \rightarrow \mathbb{N}
$$

- The weight of object o for agent i is computed using this function:

$$
w_{i}(o)=g\left(\operatorname{rank}_{i}(o)\right)
$$

Experiments: no counterexample found on thousands of random instances.

Special cases: conjecture proved for:

- Agents having same preferences (see definition)
- 2 agents: "I cut, you choose"
- $m<n$ (strictly less objects than agents) or $m=n$ (matching)
- Preferences represented by scoring functions:
- Each agent i ranks all the objects (e.g $3 \succ_{i} 1 \succ_{i} 2 \succ_{i} 4$)
- A common scoring function maps ranks to scores

$$
g:\{1, \ldots, m\} \rightarrow \mathbb{N}
$$

- The weight of object o for agent i is computed using this function:

$$
w_{i}(o)=g\left(\operatorname{rank}_{i}(o)\right)
$$

Experiments: no counterexample found on thousands of random instances.

- Max-min fair share: "I cut, you choose (I choose last)"
- Max-min fair share: "I cut, you choose (I choose last)"
- Idea: why not do the opposite ("Someone cuts, I choose first") ?
\rightarrow Min-max fair share
- Max-min fair share: "I cut, you choose (I choose last)"
- Idea: why not do the opposite ("Someone cuts, I choose first") ?
\rightarrow Min-max fair share

Min-max fair share (mFS)

The min-max fair share of an agent i is equal to:

$$
u_{i}^{\mathrm{mFS}} \stackrel{\text { def }}{=} \min _{\vec{\pi}} \max _{j \in \mathcal{A}} u_{i}\left(\pi_{j}\right)
$$

An allocation $\vec{\pi}$ satisfies min-max fair share (mFS) if every agent gets at least her min-max fair share.

- Max-min fair share: "I cut, you choose (I choose last)"
- Idea: why not do the opposite ("Someone cuts, I choose first") ?
\rightarrow Min-max fair share

Min-max fair share (mFS)

The min-max fair share of an agent i is equal to:

$$
u_{i}^{\mathrm{mFS}} \stackrel{\text { def }}{=} \min _{\vec{\pi}} \max _{j \in \mathcal{A}} u_{i}\left(\pi_{j}\right)
$$

An allocation $\vec{\pi}$ satisfies min-max fair share (mFS) if every agent gets at least her min-max fair share.

- $\mathrm{mFS}=$ the worst share an agent can get in a "Someone cuts, I choose first" game.
- In the cake-cutting case, same as PFS.

Facts:

- Computing u_{i}^{mFS} for a given agent is hard \rightarrow coNP-complete [PARTITION]
- Hence, deciding whether an allocation satisfies mFS is also hard.
- $\vec{\pi}$ satisfies $\mathrm{mFS} \Rightarrow \vec{\pi}$ satisfies PFS.
- $\vec{\pi}$ is envy-free $\Rightarrow \vec{\pi}$ satisfies mFS .

Facts:

- Computing u_{i}^{mFS} for a given agent is hard \rightarrow coNP-complete [PARTITION]
- Hence, deciding whether an allocation satisfies mFS is also hard.
- $\vec{\pi}$ satisfies $\mathrm{mFS} \Rightarrow \vec{\pi}$ satisfies PFS.
- $\vec{\pi}$ is envy-free $\Rightarrow \vec{\pi}$ satisfies mFS .

Competitive Equilibrium from Equal Incomes (CEEI)

- Set one price $p_{o} \leq £ 1$ for each object 0 .
- Give $£ 1$ to each agent i.
- Let π_{i}^{\star} be (among) the best share(s) agent i can buy with her $£ 1$.
- If $\left(\pi_{1}^{\star}, \ldots, \pi_{n}^{\star}\right)$ is a valid allocation, it forms, together with \vec{p}, a CEEI.

Allocation $\vec{\pi}$ satisfies CEEI if $\exists \vec{p}$ such that $(\vec{\pi}, \vec{p})$ is a CEEI.

Competitive Equilibrium from Equal Incomes (CEEI)

- Set one price $p_{o} \leq £ 1$ for each object 0 .
- Give $£ 1$ to each agent i.
- Let π_{i}^{\star} be (among) the best share(s) agent i can buy with her $£ 1$.
- If $\left(\pi_{1}^{\star}, \ldots, \pi_{n}^{\star}\right)$ is a valid allocation, it forms, together with \vec{p}, a CEEI.

Allocation $\vec{\pi}$ satisfies CEEI if $\exists \vec{p}$ such that $(\vec{\pi}, \vec{p})$ is a CEEI.

- Classical notion in economics [Moulin, 1995]
- Not so much studied in computer science - [Othman et al., 2010] is an exception

B
Moulin, H. (1995).
Cooperative Microeconomics, A Game-Theoretic Introduction.
Prentice Hall.

B
Othman, A., Sandholm, T., and Budish, E. (2010).
Finding approximate competitive equilibria: efficient and fair course allocation.
In Proceedings of AAMAS'10.

Example: 4 objects $\{1,2,3,4\}, 2$ agents $\{1,2\}$.

Example: 4 objects $\{1,2,3,4\}, 2$ agents $\{1,2\}$.
Preferences:

	1	2	3	4
agent 1	7	2	6	10
agent 2	7	6	8	4

Example: 4 objects $\{1,2,3,4\}, 2$ agents $\{1,2\}$.
Preferences:

	1	2	3	4
agent 1	7	2	6	10
agent 2	7	6	8	4

Allocation $\langle\{1,4\},\{2,3\}\rangle$, with prices $\langle 0.8,0.2,0.8,0.2\rangle$ forms a CEEI.

Example: 4 objects $\{1,2,3,4\}, 2$ agents $\{1,2\}$.
Preferences:

	1	2	3	4
agent 1	7	2	6	10
agent 2	7	6	8	4

Allocation $\langle\{1,4\},\{2,3\}\rangle$, with prices $\langle 0.8,0.2,0.8,0.2\rangle$ forms a CEEI.
Open problems (?):

- Complexity of deciding whether ($\vec{\pi}, \vec{p}$) is a CEEI (in coNP) ?
- Complexity of deciding whether $\vec{\pi}$ satisfies CEEI ?
- Complexity of deciding whether an instance has a CEEI ?

Example: 4 objects $\{1,2,3,4\}, 2$ agents $\{1,2\}$.
Preferences:

	1	2	3	4
agent 1	7	2	6	10
agent 2	7	6	8	4

Allocation $\langle\{1,4\},\{2,3\}\rangle$, with prices $\langle 0.8,0.2,0.8,0.2\rangle$ forms a CEEI.
Open problems (?):

- Complexity of deciding whether ($\vec{\pi}, \vec{p}$) is a CEEI (in coNP) ?
- Complexity of deciding whether $\vec{\pi}$ satisfies CEEI ?
- Complexity of deciding whether an instance has a CEEI ?

Fact: $\vec{\pi}$ satisfies CEEI $\Rightarrow \vec{\pi}$ is envy-free.

Example: 4 objects $\{1,2,3,4\}, 2$ agents $\{1,2\}$.
Preferences:

	1	2	3	4
agent 1	7	2	6	10
agent 2	7	6	8	4

Allocation $\langle\{1,4\},\{2,3\}\rangle$, with prices $\langle 0.8,0.2,0.8,0.2\rangle$ forms a CEEI.
Open problems (?):

- Complexity of deciding whether ($\vec{\pi}, \vec{p}$) is a CEEI (in coNP) ?
- Complexity of deciding whether $\vec{\pi}$ satisfies CEEI ?
- Complexity of deciding whether an instance has a CEEI ?

Fact: $\vec{\pi}$ satisfies CEEI $\Rightarrow \vec{\pi}$ is envy-free.

1. For all allocation $\vec{\pi}$:

$$
(\vec{\pi} \vDash \mathrm{CEEI}) \Rightarrow(\vec{\pi} \vDash \mathrm{EF}) \Rightarrow(\vec{\pi} \vDash \mathrm{mFS}) \Rightarrow(\vec{\pi} \vDash \mathrm{PFS}) \Rightarrow(\vec{\pi} \vDash \mathrm{MFS})
$$

\rightarrow the highest property $\vec{\pi}$ satisfies, the most satisfactory it is.

1. For all allocation $\vec{\pi}$:

$$
(\vec{\pi} \vDash \mathrm{CEEI}) \Rightarrow(\vec{\pi} \vDash \mathrm{EF}) \Rightarrow(\vec{\pi} \vDash \mathrm{mFS}) \Rightarrow(\vec{\pi} \vDash \mathrm{PFS}) \Rightarrow(\vec{\pi} \vDash \mathrm{MFS})
$$

\rightarrow the highest property $\vec{\pi}$ satisfies, the most satisfactory it is.
2. If $\mathcal{I}_{\mid \mathcal{P}}$ is the set of instances s.t at least one allocation satisfies \mathcal{P} :

$$
\begin{aligned}
\mathcal{I}_{\mid \mathrm{CEEI}} \subset \mathcal{I}_{\mid \mathrm{EF}} & \subset \mathcal{I}_{\mid \mathrm{mFS}} \subset \mathcal{I}_{\mid \mathrm{PFS}} \subset \mathcal{I}_{\mid \mathrm{MFS}}(=\mathcal{I} ?) \\
& \rightarrow \text { the lowest subset, the less "conflict-prone". }
\end{aligned}
$$

1. For all allocation $\vec{\pi}$:

$$
(\vec{\pi} \vDash \mathrm{CEEI}) \Rightarrow(\vec{\pi} \vDash \mathrm{EF}) \Rightarrow(\vec{\pi} \vDash \mathrm{mFS}) \Rightarrow(\vec{\pi} \vDash \mathrm{PFS}) \Rightarrow(\vec{\pi} \vDash \mathrm{MFS})
$$

\rightarrow the highest property $\vec{\pi}$ satisfies, the most satisfactory it is.
2. If $\mathcal{I}_{\mid \mathcal{P}}$ is the set of instances s.t at least one allocation satisfies \mathcal{P} :

$$
\begin{aligned}
\mathcal{I}_{\mid \mathrm{CEEI}} \subset \mathcal{I}_{\mid \mathrm{EF}} & \subset \mathcal{I}_{\mid \mathrm{mFS}} \subset \mathcal{I}_{\mid \mathrm{PFS}} \subset \mathcal{I}_{\mid \mathrm{MFS}}(=\mathcal{I} ?) \\
& \rightarrow \text { the lowest subset, the less "conflict-prone". }
\end{aligned}
$$

Two extreme examples:

- 2 agents, 1 object \rightarrow only in $\mathcal{I}_{\mid \mathrm{MFS}}$
- 2 agents, 2 objects, with

	1	2
agent 1	1000	0
agent 2	0	1000

The problem

Five fairness criteria

Additional properties

Beyond additive preferences

Conclusion

$$
\mathcal{I}_{\mid \mathrm{CEEI}} \subset \mathcal{I}_{\mid \mathrm{EF}} \subset \mathcal{I}_{\mid \mathrm{mFS}} \subset \mathcal{I}_{\mid \mathrm{PFS}} \subset \mathcal{I}_{\mid \mathrm{MFS}}(=\mathcal{I} ?)
$$

Are these inclusions strict?

$$
\mathcal{I}_{\mid \mathrm{CEEI}} \subset \mathcal{I}_{\mid \mathrm{EF}} \subset \mathcal{I}_{\mid \mathrm{mFS}} \subset \mathcal{I}_{\mid \mathrm{PFS}} \subset \mathcal{I}_{\mid \mathrm{MFS}}(=\mathcal{I} ?)
$$

Are these inclusions strict?

- From MFS to PFS: two agents, one object.
- From PFS to mFS: an example with 3 agents, 3 objects found.
- From mFS to EF: not straightforward, but one example with 3 agents, 4 objects found.
- From EF to CEEI: no example found ${ }^{1}$, but very likely to be strict by computational complexity arguments.
${ }^{1}$ because it seems algorithmically hard to compute a CEEI...

Other approach to fairness... Find an allocation $\vec{\pi}$ that:

1. maximizes the collective utility defined by a collective utility function, e.g. $u c(\vec{\pi})=\min _{i \in \mathcal{A}} u\left(\pi_{i}\right)$ - egalitarian solution

Other approach to fairness... Find an allocation $\vec{\pi}$ that:

1. maximizes the collective utility defined by a collective utility function, e.g. $u c(\vec{\pi})=\min _{i \in \mathcal{A}} u\left(\pi_{i}\right)$ - egalitarian solution

To which extent is it compatible with the property-based approach?

Other approach to fairness... Find an allocation $\vec{\pi}$ that:

1. maximizes the collective utility defined by a collective utility function, e.g. $u c(\vec{\pi})=\min _{i \in \mathcal{A}} u\left(\pi_{i}\right)$ - egalitarian solution

To which extent is it compatible with the property-based approach?

- Envy-freeness: question studied in [Brams and King, 2005]Brams, S. J. and King, D. (2005).
Efficient fair division - help the worst off or avoid envy?
Rationality and Society, 17(4).

Other approach to fairness... Find an allocation $\vec{\pi}$ that:

1. maximizes the collective utility defined by a collective utility function, e.g. $u c(\vec{\pi})=\min _{i \in \mathcal{A}} u\left(\pi_{i}\right)-$ egalitarian solution

To which extent is it compatible with the property-based approach?

- Envy-freeness: question studied in [Brams and King, 2005]
- Max-min fair share: egalitarian optimal allocations almost always satisfy max-min fair share.

	1	2	3	4	
agent 1	58	$\dagger 15$	$\dagger^{*} 19$	8	$\rightarrow{ }^{*} 19 / \dagger 34$
agent 2	$\dagger 63$	*5	25	*7	$\rightarrow{ }^{*} 12 / \dagger 63$
agent 3	37	10	*27	$\dagger 26$	$\rightarrow * 27 / \dagger 26$

B
Brams, S. J. and King, D. (2005).
Efficient fair division - help the worst off or avoid envy?
Rationality and Society, 17(4).

Note:

- Egalitarianism requires the preferences to be comparable:
- either expressed on a same scale (e.g. money)...
- ...or normalized (e.g. Kalai-Smorodinsky)
- The five fairness criteria introduced do not (independence of the individual utility scales).
\rightarrow This is a very appealing property.

The problem
 Five fairness criteria

Additional properties

Beyond additive preferences

- Additive preferences are nice but have a limited expressiveness.
- Additive preferences are nice but have a limited expressiveness.
- Examples:
- the pair of skis and the pair of ski poles (complementarity)
- the pair of skis and the snowboard (substitutability)
- Additive preferences are nice but have a limited expressiveness.
- Examples:
- the pair of skis and the pair of ski poles (complementarity)

$$
\rightarrow u(\{\text { skis, poles }\})>u(\text { skis })+u(\text { poles })
$$

- the pair of skis and the snowboard (substitutability)
- Additive preferences are nice but have a limited expressiveness.
- Examples:
- the pair of skis and the pair of ski poles (complementarity)

$$
\rightarrow u(\{\text { skis, poles }\})>u(\text { skis })+u(\text { poles })
$$

- the pair of skis and the snowboard (substitutability)

$$
\rightarrow u(\{\text { skis, snowboard }\})<u(\text { skis })+u(\text { snowboard })
$$

- Additive preferences are nice but have a limited expressiveness.
- Examples:
- the pair of skis and the pair of ski poles (complementarity)

$$
\rightarrow u(\{\text { skis, poles }\})>u(\text { skis })+u(\text { poles })
$$

- the pair of skis and the snowboard (substitutability)

$$
\rightarrow u(\{\text { skis, snowboard }\})<u(\text { skis })+u(\text { snowboard })
$$

k-additive preferences

A weight $w(\mathcal{S})$ to each subset \mathcal{S} of objects (not only singletons) of size $\leq k$. Note: additive $=1$-additive

- Additive preferences are nice but have a limited expressiveness.
- Examples:
- the pair of skis and the pair of ski poles (complementarity)

$$
\rightarrow u(\{\text { skis, poles }\})>u(\text { skis })+u(\text { poles })
$$

- the pair of skis and the snowboard (substitutability)

$$
\rightarrow u(\{\text { skis, snowboard }\})<u(\text { skis })+u(\text { snowboard })
$$

k-additive preferences

A weight $w(\mathcal{S})$ to each subset \mathcal{S} of objects (not only singletons) of size $\leq k$.
Note: additive $=1$-additive

Examples:

- $w($ skis $)=10 ; w($ poles $)=0 ; w(\{$ skis, poles $\})=90$

$$
\rightarrow u(\{\text { skis, poles }\})=100>10+0
$$

- $w($ skis $)=100 ; w($ snowboard $)=100 ; w(\{$ skis, snowboard $\})=-100$

$$
\rightarrow u(\{\text { skis, snowboard }\})=100<100+100
$$

MFS and k-additive preferences

Reminder: For additive preferences:
Conjecture
For each instance there is at least one allocation that satisfies max-min fair share.

Reminder: For additive preferences:

Conjecture

For each instance there is at least one allocation that satisfies max-min fair share.

For k-additive preferences $(k \geq 2)$ this is obviously not true:
Example: 4 objects, 2 agents
4
3
\times
\times

1
\times
2

\times

Reminder: For additive preferences:

Conjecture

For each instance there is at least one allocation that satisfies max-min fair share.

For k-additive preferences $(k \geq 2)$ this is obviously not true:
Example: 4 objects, 2 agents

$$
\text { Agent 1: } w(\{1,2\})=w(\{3,4\})=1 \rightarrow u_{1}^{\mathrm{MFS}}=1
$$

Reminder: For additive preferences:

Conjecture

For each instance there is at least one allocation that satisfies max-min fair share.

For k-additive preferences $(k \geq 2)$ this is obviously not true:
Example: 4 objects, 2 agents

$$
\begin{aligned}
& \text { Agent 1: } w(\{1,2\})=w(\{3,4\})=1 \rightarrow u_{1}^{\mathrm{MFS}}=1 \\
& \text { Agent 2: } w(\{1,4\})=w(\{2,3\})=1 \rightarrow u_{2}^{\mathrm{MFS}}=1
\end{aligned}
$$

Reminder: For additive preferences:

Conjecture

For each instance there is at least one allocation that satisfies max-min fair share.

For k-additive preferences $(k \geq 2)$ this is obviously not true:
Example: 4 objects, 2 agents

$$
\begin{aligned}
& \text { Agent 1: } w(\{1,2\})=w(\{3,4\})=1 \rightarrow u_{1}^{\mathrm{MFS}}=1 \\
& \text { Agent 2: } w(\{1,4\})=w(\{2,3\})=1 \rightarrow u_{2}^{\mathrm{MFS}}=1
\end{aligned}
$$

Worse. . . Deciding whether there exists one is NP-complete [PARTITION].

> The problem

> Five fairness criteria

> Additional properties

> Beyond additive preferences

Conclusion

A scale of properties (for numerical additive preferences)...

A scale of properties (for numerical additive preferences)...
\square Max-min fair share
Conjecture: always possible to satisfy it

A scale of properties (for numerical additive preferences)...

Proportional fair share
Cannot be satisfied e.g. in the 1 object, 2 agents case
Max-min fair share
Conjecture: always possible to satisfy it

A scale of properties (for numerical additive preferences)...

Min-max fair share

Proportional fair share
Cannot be satisfied e.g. in the 1 object, 2 agents case
Max-min fair share
Conjecture: always possible to satisfy it

A scale of properties (for numerical additive preferences).

Envy-freeness
Requires somewhat complementary preferences
Min-max fair share
Proportional fair share
Cannot be satisfied e.g. in the 1 object, 2 agents case
Max-min fair share
Conjecture: always possible to satisfy it

A scale of properties (for numerical additive preferences).

Competitive Equilibrium from Equal Incomes
Requires complementary preferences
Envy-freeness
Requires somewhat complementary preferences

Min-max fair share
Proportional fair share
Cannot be satisfied e.g. in the 1 object, 2 agents case
Max-min fair share
Conjecture: always possible to satisfy it

A scale of properties (for numerical additive preferences)...

Competitive Equilibrium from Equal Incomes
Requires complementary preferences
Envy-freeness
Requires somewhat complementary preferences

Min-max fair share
Proportional fair share
Cannot be satisfied e.g. in the 1 object, 2 agents case
Max-min fair share
Conjecture: always possible to satisfy it
A possible approach to fairness in multiagent resource allocation problems:

1. Determine the highest satisfiable criterion.
2. Find an allocation that satisfies this criterion.
3. Explain to the upset agents that we cannot do much better.

- Close the conjecture and missing complexity results.
- Develop efficient algorithms (possibly in conjunction with approximation of fairness criteria)
- Experiments: Build a cartography of resource allocation problems.
- Extend the results to more expressive preference languages.
- Close the conjecture and missing complexity results.
- Develop efficient algorithms (possibly in conjunction with approximation of fairness criteria)
- Experiments: Build a cartography of resource allocation problems.
- Extend the results to more expressive preference languages.
- The five criteria do not require interpersonal comparison of utilities.
- Moreover: Four of them are purely ordinal (PFS is not)
- Do the results extend to (separable) ordinal preferences ?

