The Problem of the Divided Majority

Preference Aggregation and Uncertainty
Đura-Georg Granić, University of Cologne, Germany

georg.granic@uni-koeln.de

The Divided Majority

The Divided Majority

- Three Candidates: Red, Blue and Green
- Electorate (group, committee, state, etc.) is characterized by the following preference profile

Type of Voter	\sharp Voters	Preferences
Grues	2	Green \succ Blue \succ Red
Reds	3	Red \succ Blue \sim Green
Bleens	2	Blue \succ Green \succ Red

- Reds voters constitute a weak majority
- Red is the worst outcome for an absolute majority of voters
- Coordination Problem: Grues and Bleens can avoid the 'bad' outcome if they coordinate

The Divided Majority

Type of Voter	\sharp Voters	Preferences
Grues	2	Green \succ Blue \succ Red
Reds	3	Red \succ Blue \sim Green
Bleens	2	Blue \succ Green \succ Red

- Central to the analysis of electoral systems since at least Jean Charles de Borda (1781), Marie Jean Nicolas Caritat Marquis de Condorcet (1785)
- Condorcet-Winner (Loser) is defined as an alternative that can beat (that is beaten by) any other alternative in pairwise comparison:
$\diamond 4$ voters prefer Green over Red, 4 voters prefer Blue over Red, Red is a Condorcet-Loser
- Infamous real world examples exist...

The Divided Majority

Type of Voter	\sharp Votes received	Preferences
Gore	48.84%	Gore \succ Nader \succ Bush
Bush	48.85%	Bush \succ Gore \sim Nader
Nader	1.64%	Nader \succ Gore \succ Bush

- Central to the analysis of electoral systems since at least Jean Charles de Borda (1781), Marie Jean Nicolas Caritat Marquis de Condorcet (1785)
- Condorcet-Winner (Loser) is defined as an alternative that can beat (that is beaten by) any other alternative in pairwise comparison:
\diamond An absolute majority of voters prefer Gore over Bush and Nader over Bush, Bush is a Condorcet-Loser
- Infamous real world examples exist... like the United States presidential election in Florida, 2000

Research questions

RQ1: Coordination Failures and Condorcet-Efficiency?

RQ2: Informational Structure?

RQ3: Individual level of sophistication?

Research questions

RQ1: Coordination Failures and Condorcet-Efficiency?

- Do multi-vote systems facilitate coordination in divided majority problems?
Is coordination efficient, i.e., does coordination take place on the Condorcet-Winner?

RQ2: Informational Structure?

RQ3: Individual level of sophistication?

Research questions

RQ1: Coordination Failures and Condorcet-Efficiency?

- Do multi-vote systems facilitate coordination in divided majority problems?
Is coordination efficient, i.e., does coordination take place on the Condorcet-Winner?

RQ2: Informational Structure?

- Do coordination failures increase if we consider more realistic situations with less information?

RQ3: Individual level of sophistication?

Research questions

RQ1: Coordination Failures and Condorcet-Efficiency?

- Do multi-vote systems facilitate coordination in divided majority problems?
Is coordination efficient, i.e., does coordination take place on the Condorcet-Winner?

RQ2: Informational Structure?

- Do coordination failures increase if we consider more realistic situations with less information?

RQ3: Individual level of sophistication?

- How strategic do voters act?

What is the impact of the underlying information structure on these results?

Why Lab experiments?

- Field Experiments:
\diamond Offer invaluable data and evidence for the actual feasibility, and show that changes in voting methods alter the results, and that the methods are well accepted by voters (see Alós-Ferrer and Granić (2012), Baujard and Igersheim (2009) and Laslier and Van der Straeten (2008))
\diamond Suffer from potential self-selection biases and lack of fully identifying participants' preferences
- Laboratory Experiments:
\diamond Controlled environment allows us to test certain properties that cannot be tested in the field
\diamond Design of the experiment is based on Forsythe et al. (1993) and Forsythe et al. (1996)
\diamond Experiments with single-peaked preferences and spatial representation: Dellis et al. (2010), Van der Straeten et al. (2010)

Design of the Experiment

Design

- 336 participants in 12 sessions. The experiment follows a 3 (Voting method) $\times 2$ (Information structure) between subjects design

Design

- 336 participants in 12 sessions. The experiment follows a 3 (Voting method) $\times 2$ (Information structure) between subjects design
- Voting methods:
\diamond Approval Voting (AV): Each voter can approve of as many alternatives as he/she likes. The alternative with the most approvals wins the election
\diamond Borda Count (BC): Each voter distributes 3, 2, 1, and 0 points among the alternatives. The alternative with the most points wins
\diamond Plurality Voting (PV): Each voter can cast one vote, a simple majority is enough to win the election

Design

- 336 participants in 12 sessions. The experiment follows a 3 (Voting method) $\times 2$ (Information structure) between subjects design
- Voting methods:
\diamond Approval Voting (AV)
\diamond Borda Count (BC)
\diamond Plurality Voting (PV)
- Information structure:
\diamond Full information (FI): Participant know the payoffs (not the identities) of their group members
\diamond Incomplete information (II): Participant know their own payoff only (more on this later)

Design contd

- Each session: 28 participants, randomly divided into 4 groups (7 participants each)
- Each group participates in 8 elections with 4 available alternatives
- Participants are informed about the election results and their corresponding payoffs
- After 8 elections: randomly reassign the participants into 4 new groups and another series of 8 elections starts
- Each participant plays 3 series of 8 elections (96 elections per session in total)
- The experiment was conducted in the University of Konstanz' own computer laboratory (Lakelab) using the computer software z-Tree (Fischbacher, 2007)

Induced Preference Profile

	Payoffs in ECU				
Number of Participants	A	B	D	Induced Preferences	
2	100	40	60	80	$A \succ D \succ C \succ B$
3	40	100	60	80	$B \succ D \succ C \succ A$
2	60	40	100	80	$C \succ D \succ A \succ B$

- Condorcet-Winner and Condorcet-Loser
$\diamond D$ is the unique Condorcet-Winner, it beats every other alternative in a pairwise comparison
$\diamond B$ is the unique Condorcet-Loser, it loses against every other alternative in a pairwise comparison

Induced Preference Profile

	Payoffs in ECU				
Number of Participants	A	B	C	D	Induced Preferences
2	100	40	60	80	$A \succ D \succ C \succ B$
3	40	100	60	80	$B \succ D \succ C \succ A$
2	60	40	100	80	$C \succ D \succ A \succ B$

- Condorcet-Winner and Condorcet-Loser
$\diamond D$ is the unique Condorcet-Winner, it beats every other alternative in a pairwise comparison
$\diamond B$ is the unique Condorcet-Loser, it loses against every other alternative in a pairwise comparison

Induced Preference Profile

	Payoffs in ECU				
Number of Participants	A	B	C	D	Induced Preferences
2	100	40	60	80	$A \succ D \succ C \succ B$
3	40	100	60	80	$B \succ D \succ C \succ A$
2	60	40	100	80	$C \succ D \succ A \succ B$

- In light of RQ1:
\diamond Coordination failures arise if B wins an election, B should win less often under AV and BC than under PV
\diamond Coordination should take place on the Condorcet-Efficient alternative D

Results

Aggregate Data: Election Outcomes

Aggregate Data: Coordination Failures

Aggregate Data: Condorcet Efficiency

Aggregate Data: AV

(a) AVFI

Aggregate Data: BC

Aggregate Data: PV

Ties, Close Races, Duverger's Law

	No Ties	Two-Way Ties	Three-Way Tie	Four-Way Tie
AVFI	139	39	11	3
AVII	124	45	20	3
BCFI	159	20	11	2
BCII	159	27	6	0
PVFI	118	38	4	0
PVII	132	55	5	0

- AV creates more ties than BC and PV (Kruskal-Wallis, weakly significant for FI , p -value $=0.082$, highly significant for NI, p-value $=0.001$)
- Change from FI to II increases Ties for AV (WRS, p-value=0.087)

Ties, Close Races, Duverger's Law

Individual Voting Behaviour

- AV does not degenerate to PV : irrespective of information treatment, average approvals » 1
- Strategic voting:
\diamond Under FI, fraction of sincere ballots cast under AV: 83.26%. Under PV: 51.30%. Under BC: 41.96%
\diamond Under NI, fraction of sincere ballots cast under AV: 93.01\%. Under PV: 75.82\%. Under BC: 46.5\%
- No impact on information structure on sincere voting for AV and BC. As in other studies, under PV and uncertainty sincerity increases

Conclusion

- Multi-votes methods ('One Man, many Votes') like AV and BC facilitate coordination among the divided majority groups
- Coordination failures are not only reduced effectively, multi-votes methods also increase coordination efficiently as indicated by the corresponding large winning frequencies of the Condorcet-Winner
- Coordination on the Condorcet-Winner is much harder to establish under a single-vote method than under a multiple-vote method. The limited amount of information that is transmitted through a Plurality Voting ballot hinders coordination
- Informational structure (i.e., responsiveness towards it) may serve as another dimension to evaluate the merits of voting methods

Thank you for your attention

0.1 Bibliography

C. Alós-Ferrer and Đ. G. Granić. Two Field Experiments on Approval Voting in Germany. Social Choice and Welfare, forthcoming, 2012.
A. Baujard and H. Igersheim. Expérimentation du vote par note et du vote par approbation le 22 avril 2007. Premiers résultats. Revue Economique, 60:189-201, 2009.
S. J. Brams and P. C. Fishburn. Approval Voting. The American Political Science Review, 72(3):831-847, 1978.
S. J. Brams and P. C. Fishburn. Going from Theory to Practice: The Mixed Success of Approval Voting. Social Choice and Welfare, 25(2):457-474, 2005.
A. Dellis, S. Da'Evelyn, K. Sherstyuk, et al. Multiple Votes, Ballot Truncation and the Two-Party System: An Experiment. Social Choice and Welfare, pages 1-30, 2010.
U. Fischbacher. z-Tree: Zurich Toolbox for Ready-Made Economic Experiments. Experimental Economics, 10(2):171178, 2007.
P. C. Fishburn. Axioms for Approval Voting: Direct Proof. Journal of Economic Theory, 19(1):180-185, 1978a.
P. C. Fishburn. Symmetric and Consistent Aggregation with Dichotomous Voting. In J.-J. Laffont, editor, Aggregation and Revelation of Preferences. North-Holland, 1978b.
R. Forsythe, R. B. Myerson, T. A. Rietz, and R. J. Weber. An Experiment on Coordination in Multi-Candidate Elections: The Importance of Polls and Election Histories. Social Choice and Welfare, 10(3):223-247, 1993.
R. Forsythe, T. A. Rietz, R. B. Myerson, and R. J. Weber. An Experimental Study of Voting Rules and Polls in ThreeCandidate Elections. International Journal of Game Theory, 25(3):355-383, 1996.
J. F. Laslier and K. Van der Straeten. A Live Experiment on Approval Voting. Experimental Economics, 11(1):97-105, 2008.
K. Van der Straeten, J.F. Laslier, N. Sauger, and A. Blais. Sincere, Strategic, and Heuristic Voting Under Four Election Rules: An Experimental Study. Social Choice and Welfare, 35:435-472, 2010.
A. Wolitzky. Fully Sincere Voting. Games and Economic Behavior, 67:720-735, 2009.

Approval Voting

- Approval Voting (AV): Proposed by Steven J. Brams and Peter C. Fishburn (1977)
- Each voter can assign 1 or 0 votes to each candidate. That is, "approve of" as many candidates as wished. The candidate with the most approvals wins
- Arguments in the literature: AV provides an accurate reflection of voters' wishes and is not vulnerable to voter manipulation (see Brams and Fishburn, 1978; Fishburn, 1978a,b; Brams and Fishburn, 2005; Wolitzky, 2009)

Preliminary Work: Field Experiments

- Get permission from State and Federal Authorities This was funny.
- Inform all involved registered voters per mail prior to the election, explain the method. This was expensive
- Election day: established one experimental polling station in each of the preselected constituencies (same building, different room). This was a lot of work

Use official ballot boxes and voting urns.

- After casting a ballot in the official polling stations, a "certificate" was handed over to the voters by the polling clerks which qualified them for participation in the experiment

Guarantees undisturbed official election and that we only got actual voters; but allows for a serious drop-off and maybe self-selection effects

2008 State election in Hesse

1909 eligible voters went to the polls, of which, in turn, 967 participated in our experiment (participation rate 50.7%). With 6 invalid votes, the data set consists of 961 AV ballots.

2008 State election in Hesse

| Party | | Approvals | AV Rank | Official Votes |
| :--- | :--- | :--- | :--- | :--- | PV Rank

