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Abstract

In this paper we study Lambek systems as grammar logics: logics for rea-
soning about structured linguistic resources. The structural parameters of
precedence, dominance and dependency generate a cube of resource-sensitive
categorial type logics. From the pure logic of residuation NL, one obtains L,
NLP and LP in terms of Associativity, Commutativity, and their combina-
tion. Each of these systems has a dependency variant, where the product is
split up into a left-headed and a right-headed version.

We develop a theory of systematic communication between these systems.
The communication is two-way: we show how one can fully recover the struc-
tural discrimination of a weaker logic from within a system with a more lib-
eral resource management regime, and how one can reintroduce the structural
flexibility of a stronger logic within a system with a more articulate notion of
structure-sensitivity.

In executing this programme we follow the standard logical agenda: the
categorial formula language is enriched with extra control operators, so-called
structural modalities, and on the basis of these control operators, we prove
embedding theorems for the two directions of substructural communication.
But our results differ from the Linear Logic style of embedding with S4-like
modalities in that we realize the communication in both directions in terms
of a minimal pair of structural modalities. The control devices <, 0% used
here represent the pure logic of residuation for a family of unary multiplica-
tives: they do not impose any restrictions on the binary accessibility relation
interpreting the unary modalities, unlike the S4 operators which require a
transitive and reflexive interpretation. With the more delicate control devices
we can avoid the model-theoretic and prooftheoretic problems one encounters
when importing the Linear Logic modalities in a linguistic setting.

1 Logics of structured resources

This paper is concerned with the issue of communication between categorial type
logics of the Lambek family. Lambek calculi occupy a lively corner in the broader
landscape of resource-sensitive systems of inference. We study these systems here
as grammar logics. In line with the ‘Parsing as Deduction’ slogan, we present the
key concept in grammatical analysis — well-formedness — in logical terms, i.e.
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Logic, Structures and Syntaz. We thank Johan van Benthem and Dick Oehrle for comments. All
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grammatical well-formedness amounts to derivability in our grammar logic. In the
grammatical application, the resources we are talking about are linguistic expres-
sions — multidimensional form-meaning complexes, or signs as they have come to be
called in current grammar formalisms. These resources are structured in a number
of grammatically relevant dimensions. For the sake of concreteness, we concentrate
on three types of linguistic structure of central importance: linear order, hierarchical
grouping (constituency) and dependency. The structure of the linguistic resources
in these dimensions plays a crucial role in determining well-formedness: one cannot
generally assume that changes in the structural configuration of the resources will
preserve well-formedness. In logical terms, we are interested in structure-sensitive
notions of linguistic inference.

Fig 1 charts the eight logics that result from the interplay of the structural
parameters of precedence, dominance and dependency. The systems lower in the
cube exhibit a more fine-grained sense of structure-sensitivity; their neighbours
higher up loose discrimination for one of the structural parameters we distinguish
here.

LP
NLP DLP L
DNLP DL
NL
DNL

Figure 1: Resource-sensitive logics: precedence, dominance, dependency

Let us present the essentials (syntactically and semantically) of the framework
we are assuming before addressing the communication problem. For a fuller treat-
ment of multimodal categorial architecture, the reader can turn to [Moortgat 95,
M& 094, M&MI1, M & O 93, Morrill 94]. Consider the standard language
of categorial type formulae F freely generated from a set of atomic formulae A:
Fu=A|F/F|FeF|F\F. The most general interpretation for such a language
can be given in terms of Kripke style relational structures — ternary relational
structures (W, R?) in the case of the binary connectives (cf. [Dogen 92]). W here
is to be understood as the set of linguistic resources (signs) and the accessibility
relation R as representing linguistic composition. From a ternary frame we obtain
a model by adding a valuation V' sending prime formulae to subsets of W and



satisfying the clauses below for compound formulae.

V(AeB) = {z|3zTy[Rzzy & z € V(A) &y € V(B)]}
V(C/B) {z |VyVz[(Rzzy & y € V(B)) = z € V(O)]}
V(A\C) {y |VzVz[(Rzzy & © € V(A)) = z € V(O)]}

With no restrictions on R, we obtain the pure logic of residuation known as NL.
RES(2) A—-C/B <= AeB—(C <<= B A\C

And with restrictions on the interpretation of R, and corresponding structural pos-
tulates, we obtain the systems NLP, L and LP. Below we give the structural
postulates of Associativity (A) and Permutation (P) and the corresponding frame
conditions F(A) and F(P). Notice that the structural discrimination gets coarser
as we impose more constraints on the interpretation of R. In the presence of Permu-
tation, well-formedness is unaffected by changes in the linear order of the linguistic
resources. In the presence of Associativity, different groupings of the linguistic
resources into hierarchical constituent structures has no influence on derivability.

(4) Ae(Be(C)+— (AeB)e(

F(A4) (Yzyz € W) 3t.Rzyt & Rtzu < Fv.Rvyz & Rzvu
(P) AeB > BeA

F(P) (Vzyz € W) Rzyz & Rzzy

What we have said so far concerns the upper face of the cube of Fig 1. To obtain the
systems at the lower face, we split the connective o in left-headed e; and right-headed
¢, taking into account the asymmetry between heads and dependents. It is argued
in [M & M 91] that the dependency dimension should be treated as orthogonal in
principle to the functor/argument asymmetry. The distinction between left-headed
¢; and right-headed e, (and their residual implications) makes the type language
articulate enough to discriminate between head/complement configurations, and
modifier /head or specifier /head configurations. A determiner, for example, could be
typed as np/,n. Such a declaration naturally accounts for the fact that determiners
act semantically as functions from n-type meanings to np-type meanings, whereas
in the form dimension they should be treated as dependent on the common noun
they are in construction with, so that they can derive their agreement properties
from the head noun.

In the Kripke models, the lower plane of Fig 1 is obtained by moving from
unimodal to multimodal (in this case: bimodal) frames (W, R}, R%), with a distinct
accessibility relation for each product. Again, we have the pure (bimodal) logic
of residuation DNL, with an arbitrary interpretation for R}, R3, and its relatives
DNLP, DL, DLP, obtained by imposing associativity or (dependency-preserving!)
commutativity constraints on the frames. The relevant structural postulates are
given below. The distinction between the left-headed and right-headed connectives
is destroyed by the postulate (D).

(Al) A e (B.l C) — (A.l B) o, C
(A,) Ae,.(Be.C)+— (Ae.B)e,.C
(Pr.r) Ae;B+—> Be,. A

) Ae;B+— Ae.B

It will be clear already from the foregoing that in presenting the grammar for a
given language, we will in general not be in a position to restrict ourselves to one
particular type logic — we want to have access to the combined inferential capacities
of the different logics, without destroying their individual characteristics. For this
to be possible we need a theory of systematic communication between type systems.



The structural postulates presented above do not have the required granularity for
such a theory of communication: they globally destroy structure sensitivity in one of
the relevant dimensions, whereas we would like to have lezical control over resource
management. Depending on the direction of communication, one can develop two
perspectives on controlled resource management. On the one hand, one would like
to have control devices to license limited access to a more liberal resource manage-
ment regime from within a system with a higher sense of structural discrimination.
On the other hand, one would like to impose constraints on resource management
in systems where such constraints are lacking by default. For discussion of linguistic
phenomena motivating these two types of communication, the reader can turn to
the papers in [Barry & Morrill 90] where the licensing perspective was originally
introduced, and to [Morrill 94] where apart from licensing of structural relaxation
one can also find discussion of constraints with respect to the associativity dimen-
sion. We give an illustration for each type of control, drawing on the references just
mentioned.

LICENSING STRUCTURAL RELAXATION. For the licensing type of communication,
consider type assignment to relative pronouns like that in the sentences below.

the book that John read
the book that John read yesterday
Lt r/(s/np),np,(np\s)/np=>r
Lt/ r/(s/np),np, (np\s)/np,s\s =>r
NLV/ (r/(s/np), (np, (np\s)/np)) = r

Suppose first we are dealing with the associative regime of L, and assign the relative
pronoun the type r/(s/np), abbreviating n\n as r, i.e. the pronoun looks to its right
for a relative clause body missing a noun phrase. The first example is derivable!
(because ‘John read np’ indeed yields s), the second is not (because the hypothetical
np assumption in the subderivation ‘John read yesterday np’ is not in the required
position adjacent to the verb ‘read’). We would like to refine the assignment to the
relative pronoun to a type r/(s/np*), where np* is a noun phrase resource which
has access to Permutation in virtue of its -f decoration. Similarly, if we change the
default regime to NL, already the first example fails on the assignment r/(s/np)
with the indicated constituent bracketing: although the hypothetical np in the
subcomputation ‘((John read) np)’ finds itself in the right position with respect to
linear order requirements, it cannot satisfy the direct object role for ‘read’ being
outside the clausal boundaries. A refined assignment r/(s/np*) here could license
the marked np* a controlled access to the structural rule of Associativity which is
absent in the NL default regime.

IMPOSING STRUCTURAL CONSTRAINTS. For the other direction of communication,
we take an example from [Morrill 94] which again concerns relative clause formation,
but this time in its interaction with coordination. Assume we are dealing with an
associative default regime, and let the conjunction particle ‘and’ be polymorphically
typed as (X\X)/X. With the instantiation X = s/np we can derive the first
example. But, given Associativity and an instantiation X = s, nothing blocks
the ungrammatical second example: ‘Melville wrote Moby Dick and John read
np’ derives s, so that withdrawing the np hypothesis indeed gives s/np, the type
required for the relative clause body.

the book that Melville wrote and John read

Lt r/(s/np),np,(np\s)/np, (X\X)/X,np, (np\s) /np=r (X = s/np)
*the book that Melville wrote Moby Dick and John read

L+ r/(s/np),np, (np\s)/np,np, (X\X)/X,np, (np\s)/np=>r (X =5s)

IThe Appendix gives axiomatic and Gentzen style presentation of the logics under discussion.




To block this violation of the so-called Coordinate Structure Constraint, while al-
lowing Across-the-Board Extraction as exemplified by our first example, we would
like to refine the type assignment for the particle ‘and’ to (X\X”)/X, where the
intended interpretation for the marked X” now would be the following: after com-
bining with the right and the left conjuncts, the -* decoration makes the complete
coordination freeze into an island configuration which is inaccessible to extraction
under the default associative resource management regime.

MINIMAL STRUCTURAL MODALITIES. Our task in the following pages is to give
a logical implementation of the informal idea of decorating formulas with a label
(-)* or (-)°, licensing extra flexibility or imposing a tighter regime for the marked
formulae. The original introduction of the licensing type of communication in
[Barry & Morrill 90] was inspired by the modalities ‘!,?” of Linear Logic — unary
operators which give marked formulae access to the structural rules of Contraction
and Weakening, thus making it possible to recover the full power of Intuitionis-
tic or Classical Logic from within the resource sensitive linear variants. On the
proof-theoretic level, the ‘,?’ operators have the properties of S4 modalities. It is
not self-evident that S4 behaviour is appropriate for substructural systems weaker
than Linear Logic — indeed [Venema 93] has criticised an S4 ‘I’ in such settings
for the fact that the proof rule for ‘" has undesired side-effects on the meaning of
other operators. On the semantic level it has been shown in [Versmissen 93] that
the S4 regime is incomplete with respect to the linguistic interpretation which was
originally intended for the structural modalities — a subalgebra interpretation in a
general groupoid setting, cf. [Morrill 94] for discussion.

Given these model-theoretic and proof-theoretic problems with the use of Linear
Logic modalities in linguistic analysis, we will explore a different route and develop
an approach attuned to the specific domain of application of our grammar logics —
a domain of structured linguistic resources.

[Moortgat 95] proposes an enrichment of the type language of categorial logics
with unary residuated operators, interpreted in terms of a binary relation of ac-
cessibility. These operators will be the key devices in our strategy for controlled
resource management. If we were talking about temporal organization, ¢ and O%
could be interpreted as future possibility and past necessity, respectively. But in our
grammatical application, R? just like R® is to be interpreted in terms of structural
composition. Where a ternary configuration (zyz) € R? interpreting the product
connective abstractly represents putting together the components y and z into a
structured configuration z in the manner indicated by R2, a binary configuration
(zy) € R? interpreting the unary < can be seen as the construction of the sign =
out of a structural component y in terms of the building instructions referred to by
R2.

RES(1) ©A—> B<= A—- OB

V(OA) ={z | Jy(R’zy A y € V(A)}
V(O¥A) = {z | Vy(R*yz =y € V(4)}
From the residuation laws RES(1) one directly derives the monotonicity laws below

and the properties of the compositions of ¢ and OV:

A— B impliess 0A— OB and OVYA — OB
OvA - A A= DOv0A

In the Appendix, we present the sequent logic for these unary operators. It is
shown in [Moortgat 95] that the Gentzen presentation is equivalent to the axiomatic
presentation, and that it enjoys Cut Elimination. For our examples later on we will
use decidable sequent proof search.



Semantically, the pure logic of residuation for &, 0% does not impose any restric-
tions on the interpretation of R2. As in the case of the binary connectives, we can
add structural postulates for ¢ and corresponding frame constraints on k2. With a
reflexive and transitive R2, one obtains an S4 system. Our objective here is to show
that one can develop a systematic theory of communication, both for the licensing
and for the constraining perspective, in terms of the minimal structural modalities,
i.e. the pure logic of residuation for <, 0%,

COMPLETENESS. The communication theorems to be presented in the following
sections rely heavily on semantic argumentation. The cornerstone of the approach
is the completeness of the logics compared, which guarantees that syntactic deriv-
ability F A — B and semantic inclusion V(A4) C V(B) coincide for the classes of
models we are interested in. For the F(/,e,\) fragment, [DoSen 92] shows that NL
is complete with respect to the class of all ternary models, and L, NLP, LP with
respects to the classes of models satisfying the frame constraints for the relevant
packages of structural postulates. The completeness results are obtained on the
basis of a simple canonical model construction which directly accomodates bimodal
dependency systems with F(/;,e;,\;) (¢ € {I,r}). And it is shown in [Moortgat 95]
that the construction also extends unproblematically to the language enriched with
<&, 0% as soon as one realizes that < can be seen as a ‘truncated’ product and O+
its residual implication.

Definition 1.1 Define the canonical model for mixed (2,3) frames as M = (W, R%, R?),
where

W is the set of formulae F(/;, e;, \;, &, 0%)
R}A,B,C) iff - A Be;C, R*(A,B) iff - A - OB
AeV(p)iff- A p.

The Truth Lemma then states that, for any formula ¢, M, A E ¢ iff - A — ¢.
Now suppose V(4) C V(B) but if A — B. Iflf A — B with the canonical valuation
on the canonical frame, A € V(A) but A € V(B) so V(A) € V(B). Contradiction.

We have to check the Truth Lemma for the new compound formulae GA, OV A.
Below the direction that requires a little thinking.

(©) Assume A € V(OB). We have to show - A - OB. A € V(<¢B) implies
JA’ such that RZAA’ and A’ € v(B). By inductive hypothesis, - A’ — B. By
Isotonicity for < this implies - ©GA’ — OB. We have - A — O A’ by (Def R?) in
the canonical frame. By Transitivity, - A = ¢B.

(O¥%) Assume A € V(O'B). We have to show - A — OYB. A € V(O'B) implies
that VA’ such that R2A’A we have A’ € V(B). Let A’ be ©A. R?A’'A holds in the
canonical frame since - 04 — OA. By inductive hypothesis we have - A’ — B,
i.e. F ©A — B. By Residuation this gives - A — O'B.

Apart from global structural postulates we will introduce in the remainder of this
paper ‘modal’ versions of such postulates — versions which are relativized to the
presence of & control operators. The completeness results extend to these new
structural postulates. Syntactically, they consist of formulas built up entirely in
terms of the e operator and its truncated one-place variant <. This means they
have the required shape for a generalized Sahlqvist-van Benthem theorem and frame
completeness result which is proved in [Kurtonina 95]:



If R, : A— B is a modal version of a structural postulate, then there
exists a first order frame condition effectively obtainable from R, and
any logic £ + R, is complete if £ is complete.

EMBEDDING THEOREMS: THE METHOD IN GENERAL. In the sections that follow,
we consider pairs of logics Lg,£; where Lg is a ‘southern’ neighbour of £;. Let
us write £O for a system £ extended with the unary operators <, 0% with their
minimal residuation logic. For the 12 edges of the cube of Fig 1, we define embedding
translations (-)* : F(Lo) = F(£1<) which impose the structural discrimination of
Lo in £, with its more liberal resource management, and (-)* : F(£1) = F(Lo<)
which license relaxation of structure sensitivity in Ly in such a way that one fully
recovers the flexibility of the the coarser L;.

Our strategy for obtaining the embedding results is quite uniform. It will be
helpful to present the recipe first in abstract terms, so that in the following sections
we can supply the particular ingredients with reference to the general scheme. The
embedding theorems have the format shown below. We call £ the source logic, £’
the target.

LFA—=B iff L'O(+R,)F A% — Bt

For the constraining perspective, (-)? is (-)> with £ = Lo and £' = £;. For the
licensing type of embedding, ()¢ is (-)* with £ = £; and £’ = Ly. The embedding
translation (-)¥ decorates critical subformulae in the target logic with the operators
©,0%. The translations are defined on the product e of the source logic: their
action on the implicational formulas is fully determined by the residuation laws.
A e configuration of the source logic is mapped to the composition of & and the
product of the target logic. The elementary compositions are given below (writing
o for the target product). They mark the product as a whole, or one of the subtypes
with the < control operator.

Ol=0=)  ((®=)e-)  (=0(¢-))

Sometimes the modal decoration in itself is enough to obtain the required struc-
tural control. We call these cases pure embeddings. In other cases realizing the
embedding requires the addition of R, — the modalized version of a structural
rule package discriminating £ from £'. Typically, this will be the case for commu-
nication in the licensing direction: the target logics lack an option for structural
manipulation that is present in the source.

The proof of the embedding theorems comes in two parts.

(=) Soundness of the embedding.  The (=) half is the easy part. Using the
Lambek-style axiomatization of A.1 we obtain this direction of the embedding by a
straightforward induction on the length of derivations in L.

(<) Completeness of the embedding. For the proofs of the (<) part, we reason
semantically and rely on the completeness of the logics compared. To show that
F A" - B% in £'¢O implies F A — B in £ we proceed by contraposition. Suppose
LI/ A — B. By completeness, there is an £ model M = (F,V) falsifying A — B,
i.e. there is a point a such that M, a = A but M, a [£ B. We obtain the proof for
the (<) direction in two steps.

Model construction. From M, we construct an £'<& model M' = (F',V').
For the valuation, we set V'(p) = V(p). For the frames, we define a map-
ping between the R?® configurations in F' and corresponding mixed R2I,R3I
configurations in F'. We make sure that the mapping reflects the properties
of the translation schema, and that it takes into account the different frame
conditions for F' and F"'.



Truth preservation lemma. We prove that for any a € W NW', M,a = A iff
M’ a |= A%, ie. that the construction of M’ is truth preserving.

Now, if M is a countermodel for A — B, so is M’ for A* — Bf. Soundness then
leads us to the conclusion that £'O I A% — BY.

With this proof recipe in hand, the reader is prepared to tackle the sections that
follow. Recovery of structural discrimination is the subject of §2. In §3 we turn to
licensing of structural relaxation. In §4 we reflect on general logical and linguistic
features of the proposed architecture, signaling some open questions and directions
for future research.

2 Imposing structural constraints

Let us first look at the embedding of more discriminating logics within systems
with a less fine-grained sense of structure sensitivity. Modal decoration, in this
case, serves to block structural manipulation that would be available by default.
The section is organised as follows. In §2.1, we give a detailed treatment of a
representative case for each of the structural dimensions of precedence, dominance
and dependency. This covers the edges connected to the pure logic of residuation,
NL. With minor adaptions the embedding translations of §2.1 can be extended to
the remaining edges, with the exception of the four associative logics at the right
back face of the cube. We present these generalisations in §2.2. This time we refrain
from fully explicit treatment where extrapolation from §2.1 is straightforward. The
remaining systems are treated in §2.3. They share associative resource management
but differ in their sensitivity for linear order or dependency structure. We obtain
the desired embeddings in these cases via a tactical manoeuvre which combines the
composition of simple translation schemata and the reinstallment of Associativity
via modally controlled structural postulates.

2.1 Simple embeddings
NLP L

Prop 2.6: Prop 2.2:
Commutativity Associativity
NL
Prop 2.4:
Dependency
DNL

Figure 2: Imposing constraints: precedence, dominance, dependency

Associativity

Consider first the pair NL versus L<$. Let us subscript the symbols for the connec-
tives in NL with 0 and those of L with 1. The L family /1, e1,\; has an associative
resource management. We extend L with the operators ©, 0% and recover control
over associativity by means of the following translation.

10



Definition 2.1 Translation -* : F(NL) = F(L<) as below.
P=p
(AegB)” = (A" e; B”)
(A/oB)’ =DOvA°/, B
(B\oA)’ = B"\, 00+ 4"

Proposition 2.2

NL+FA—S B if LOR A= B

Proof. (=) Soundness of the embedding. For the left-to-right direction we
use induction on the length of derivations in NL on the basis of the Lambek-
style axiomatization given in the Appendix, where apart from the identity ax-
iom and Transitivity, the Residuation rules are the only rules of inference. As-
sume A eg B — C' is derived from A — C/oB in NL. By inductive hypothesis, L -
A* = (C/1B)’, ie. (1) A* — O¥C?/, B*. We have to show () L I (4 e; B)> = C”,
i.e. O(A" e B®) = C”. By RES(2) we have from () A” ; B” — O+C” which derives
(1) by REs(1). For the other side of the residuation inferences, assume A — C/oB
is derived from A ey B — C. By inductive hypothesis, L - (4 oy B*) = C, i.e. (})
O(A” o) B*) = C”. We have to show L - A” = C/1B", i.e. (1) A* = OVC"/,B.
By RES(1) we have from (f) A” e; B” — O'C” which derives (1) by RES(2). The

residual pair (eq, \q) is treated in a fully symmetrical way. O

(<) Completeness of the embedding. We apply the method outlined in §1. From a
falsifying model M = (W, R3, V) for A — B in NL we construct M’ = (W', R3, R2, V).
We prove that the construction is truth preserving, so that we can conclude from

Soundness that M’ falsifies A — B’ in LO.

Model construction. Let Wi be a set such that WNW; = @ and f : Rg — Wi a
bijection associating each triple (abc) € R3 with a fresh point f((abc)) € Wy. M’
is defined as follows:

W o= Wuw;
Ry = {(d'bc) | Ja.Roabe A f((abc)) = a'}
R, = {(ad)|3bc.Roabe A f((abc)) = a'}

V'(p) V(p)

The following picture will help the reader to visualize how the model construction
relates to the translation schema.

AegB % O(A’ e BY)

We have to show that M’ is an appropriate model for L, i.e. that the construction
of M’ realizes the frame condition for associativity:

F(A) Vzyzw € W' (Ft(Riwzt A Rityz) <= It (Riwt'z A Rit'zy))

11



F(A) is satisfied automatically because, by the construction of M’, there are no
z,y,z,w € W' that fulfill the requirements: for every triple (zyz) € R3, the point
x is chosen fresh, which implies that no point of W' can be both the root of one
triangle and a leaf in another one.

Lemma: Truth Preservation. By induction on the complexity of A we show that
for any a € W

Myal=A iff M,alE A

We prove the biconditional for the product and for one of the residual implications.

(=). Suppose M, a = AegB. By the truth conditions for g, there exist b, ¢ such
that (i) Roabc and (ii) M,b = A, (iii) M, c = B. By inductive hypothesis, from
(ii) and (iii) we have (ii’) M',b = A" and (iii’) M’,c | B®. By the construction
of M', we conclude from (i) that there is a fresh a’ € W; such that (iv) R,aa’ and

M a = O(A% ey BY) .

(«=). Suppose M' a = (A" oy B”). From the truth conditions for ey, &, we
know there are z,y, 2 € W' such that (i) Reaz, (ii) Ryzyz and (iii) M’,y |= A” and
M,z |= B®. In he construction of M’ the function f is a bijection, so that we can
conclude that the configuration (i,ii) has a unique preimage, namely (iv) Rpayz.
By inductive hypothesis, we have from (iii) M,y = A, and M, z | B, which then
with (iv) gives M,a = A o B.

(=). Suppose (i) M,a = A\oB. We have to show M',a |z A*\;0+B". Suppose
we have (ii) Ryyza such that M’z |= A”. Tt remains to be shown that M’y =
O+B”. Suppose we have (iii) Rozy. It remains to be shown that M’,z = B”.
Rozza. By inductive hypothesis from (ii) we have M,z |= A which together with
(i) leads to M, z |= B and, again by inductive hypothesis M’, 2z |= B®, as required.

(<=). Suppose (i) M',a = A°\;O+B®. We have to show M, a = A\oB. Suppose
we have (ii) Rocba such that M,b = A. To be shown is whether M, ¢ = B. By the
model construction and inductive hypothesis we have Rocc’, Ric'ba and M',b |= A
Hence by (i) M’, ¢ = OV B® and therefore M, ¢ |= B®. By inductive hypothesis this
leads to M, c |= B as required. 0O

ILLUSTRATION: ISLANDS. For a concrete linguistic illustration, we return to the
Coordinate Structure Constraint violations of §1. The translation schema of Def 2.1
was originally proposed by [Morrill 92], who conjectured on the basis of this schema
an embedding of NL into L extended with a pair of unary ‘bracket’ operators closely
related to ¢, 0%, Whether the conjecture holds for the bracket operators remains
open. But it is easy to recast Morrill’s analysis of island constraints in terms of
<, 0. We saw above that on an assignment (X\X)/X to the particle ‘and’, both
the grammatical and the illformed examples are L derivable. Within L, we can
refine the assignment to (X\OVX)/X. The relevant sequent goals now assume the
following form (omitting the associative binary structural punctuation, but keeping
the crucial (-)°):

the book that Melville wrote and John read

r/(s/np), (np, (np\s)/np, (X\O*X)/X, np, (np\s) /np)° = r (X = s/np)
*the book that Melville wrote Moby Dick and John read

r/(s/np), (np, (np\s) /np,np, (X\O*X)/X,np, (np\s)/np)° = r (X =s)

The (X\O'X)/X assignment allows the particle ‘and’ to combine with the left and
right conjuncts in the associative mode. The resulting coordinate structure is of type

.I.
i

T T

(

L

(
Lo
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O+ X. To eliminate the O connective, we have to close off the coordinate structure
with & (or the corresponding structural operator (-)° in the Gentzen presentation)
— recall that ©O0+X — X. The Accross-the-Board case of extraction (f) works out
fine, the island violation (}) fails because the hypothetical gap np assumption finds
itself outside the scope of the (-)° operator.

Dependency

For a second straightforward application of the method, we consider the dependecy
calculus DNL of [M & M 91] and show how it can be emdedded in NL. Recall
that DNL is the pure logic of residuation for a bimodal system with asymmet-
ric products e;, e, for left-headed and right-headed composition respectively. The
distinction between left- and right-headed products can be recovered within NL<,
where we have the unary residuated pair <, 0% next to a symmetric product e and
its implications. For the embedding translation (-)I’, we label the head subtype of a
product with <. The residuation laws then determine the modal decoration of the
implications.

Definition 2.3 The embedding translation (-)* : F(DNL) — F(NLO) is defined
as follows.
P=p
(Ae;B)) =0CA"eB’ (Ae,.B)"=A"eOB
(4/1B) = CHA/B") (/. B) = 4'/OB"
(B\A) = 0B\A*  (B\.A) = O4(B"\4)

Proposition 2.4

DNL+-A— B if NLOF A" B

Proof. (=) Soundness of the embedding. The soundness half is proved by induc-
tion on the length of the derivation of A — B in DNL. We trace the residuation
inferences under the translation mapping for the pair (e;, /;). The remaining cases
are completely parallel.

OA"e B’ - C”
A" 5 C°/B® NL
A’ — OYC?/B)

Ae,B—C (Ae; B’ —» C”
_ ———— >
A—C/,B A — (C/B)

DNL

(<) Completeness of the embedding. Suppose DNL I/ A — B. By completeness,
there is a model M = (W, R}, R, V) falsifying A - B. From M, we want to
construct a model M’ = (W' R3 R2 V') which falsifies 4> = B’. Then from
soundness we will be able to conclude NLO 1 A” — B,

Model construction. Let W, W;, W, be disjoint sets and f : R} — W, and g : R? —
W, bijective functions. M’ is defined as follows:

W' = WUW,uUW,
R, = {(ab\c)|Tb.Riabc A f((abc)) =b'} U
{(abc’) | Je.R.abc A g((abc)) = '}
R, = {(dc)|3ab.R,.abc A g((abc)) =c'} U
{(t'b) | Jac.Ryabe A f((abc)) =b'}
Vip) = V(p)

13



We comment on the frames. For every triple (abc) € R}, we introduce a fresh b’ and
put the worlds a, b,b',c € W', (b'b) € R2 and (ab'g) Bilttlarly, for every triple

(abc) € R2, we introduce a fresh ¢’ and put the worlds a,b,c,c’ € W', (c'c) € R?

and (abc’) € R3. In a picture (with dotted lines for the dependent daughter for

R, R,):

b
b ¢ |
M \ ~ b ¢ M
a \/
a
c
b ¢ |
M /) ~ b M
SN

Lemma: truth preservation. By induction on the complexity of A, we show that
for any @ € W, M,a |= A iff M',a = A’. We prove the biconditional for the
left-headed product. The other connectives are handled in a similar way.

(=). Suppose M, a |= Ae; B. By the truth conditions for e;, there exist b, ¢ such
that (i) Rjabc and (ii) M,b = A, (ili) M, c |E B. By the construction of M', we
conclude from (i) that there is a fresh b’ € W' such that (iv) R2b'b and (@p'R3

By inductive hypothesis, from (ii) and (iii) we have M’,b = A* and M',c = B".
Then, from (iv) we have M', b’ = ©A” and from (v), M',a |z OA® e B.

(«=). Suppose M',a = ©A” e B°. From the truth conditions for e, <, we know
there are d',d,e € W' such that (i) R2d'd, (ii) R3ad'e and (iii) M’,d |= A” and
M' e = B®. From the construction of M’ we may conclude that d' = b',d =
b,e = ¢, since every triple (abc) € R} is keyed to a fresh world b’ € W'. So we
actually have (") R2b'b, (ii’) R2ab'c and (iii’) M',b = A® and M',c = B®. (i’)
and (ii’) imply R}abc. By inductive hypothesis, we have from (iii’) M,b = A, and
M,c = B. But then M,alzAe;B. O

ILLUSTRATION. Below two instances of lifting in DNL. The left one is derivable,
the right one is not.

AP = A°
(AP)° = 0A° °F pop I ?
((Ab)o,OAb\Bb). = Bb \ ((Ab)o, D‘L(Ab\Bb )o = Bb
(A")° = B"/(©0A"\B") /R (A")° = B®/O%(A°\B") /R
b T/ nb oy OVR b b oy, OVR
A’ = O¥(B"/(CA"\B)) A® = Ov(B°/O+(A”\B?))
A= B/i{(A\;B) ’ A= B/i(A\.B)

Commutativity

We can exploit the strategy for modal embedding of the dependency calculus to
recover control over Permutation. Here we look at the pure case: the embedding
of NL into NLP<. In §2.2 we will generalize the result to the other cases where
Permutation is involved. For the embedding, choose one of the (asymmetric) depen-
dency product translations for e in NL. Permutation in NLP spoils the asymmetry
of the product. Whereas one could read the < label in the cases of Def2.3 as a head
marker, in the present case < functions as a marker of the first daughter.

14



Definition 2.5 The embedding translation -* : F(NL) = F(NLPO) is defined as

follows. \
=

(AeB)’ :_<>pA" ® B
(A/B) = O"(A">-B")
(B\A)> = OB’ A°

Proposition 2.6

NL+FA—= B if NLPOFR A" B

Proof sketch. The (=) part again is proved straightforwardly by induction on the
length of the derivation of A — B in NL. We leave this to the reader. For
the (<) direction, suppose NL I/ A — B. By completeness, there is a model M =

(W, ) falsifying A — B. From M, we now have to construct a commutative
model M' = (W', R, R2, V') which falsifies A — B’. From soundness we will
conclude that NLP< i A” — B,

The construction of the frame for M’ in this case proceeds as follows. For
every triple (abc) € R3, we introduce a fresh b’ and put the worlds a,b,b',c € W',
(b'b) € RZ and both (ab'c),(ach’) € RE. The construction makes the frame for
M' commutative. But because every commutative triple (ab’'c) depends on a fresh
b € W' — W, the commutativity of M’ has no influence on M. For the valuation,
we set V'(p) = V(p). Now for any a € W N W', we can show by induction on the
complexity of A that M,a = A iff M',a | A% which then leads to the proof of the

main proposition in the usual way.

ILLUSTRATION.  Below first a theorem of NL, followed by a non-theorem. We
compare their image under - in NLP<. And we notice that the second example is

derivable in NLP.
B'= B A=A
(A*o—B°,B")® = A°
(O%(A°=B"))°, B")® = A’
(O0F(A*0-B"))° = A’o—B"
O+ (A’o—B") = O+ (A’ B")
(O4(A°o—B*))° = oO+(A"o—B") O AP = A
((O4(A"0-B"))°, 0% (A’0-B")—oA")® = A
(OH(A’0—B"))° = A’o— (OO (A’ 0—B’)—A%)
OV (A"o—B®) = O¥(A%o— (OO% (40— B*) 0 4"))
NLF A/B = A/((A/B)\A)

o—L
OvL

‘R

o—R
R

0

(O (A7 0-B"))°, O (A 0 (OB°—4")))® = A’

(O4(Ao—B"))* = APo—(O+(A"o—(OB"—A"))

O+ (A"o—B®) = O (AP0~ (OH (A% o— (O B* -0 A%)))
NL I/ A/B = A/(A/(B\A))

o—R
‘R
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B=B A=A
(A—B,B)® => A
(B,A—B)® = A
Ao BoBod % asa
(Ao—(B—0A), Ao—B)® = A
(Ao—B, Ao—(B—A))® = A
NLP F Ao—B = Ao—(Ao—(B—0A))

o—L

o—L

o—R

2.2 Generalisations

The results of the previous section can be extended with minor modifications to the
five edges that remain when we keep the Associativity face for §2.3.

What we have done in Prop 2.4 for the pair DNL versus NL< can be adapted
straightforwardly to the commutative pair DNLP versus NLP<. Recall that
in DNLP, the dependency products satisfy head-preserving commutativity (P ),
whereas in NLP we have simple commutativity (P).

P,: A®B+— B®, A
P: A®B—-+B®A

Accomodating the commutative products, the embedding translation is that of Prop
2.4: < marks the head subtype.

Definition 2.7 Translation (-)* : F(DNLP) i F(NLPO):
P=p
(A B’ =0A4"®B" (A®,B)=A"Q¢0B
(Ao—;B)” = O0%(A’0—B*) (Ao—,B)’ = A"—OB’
(B—ojA)” = OB"— A" (B—o,A)? = O¥(B"—A")

Proposition 2.8

DNLP+A -3 B iff NLPOHR A" — Bb

For the proof of the (<) direction, we combine the method of construction of Prop
2.4 with that of Prop 2.6. For a configuration R?abc in M, we take fresh b’ and
put the configurations R,b'b, Rgab'c, Rgach' in M’. Similarly, for a configuration
R®abc in M, we take fresh ¢’ and put the configurations R.c'c, Rgabc', Rgac'b in
M'. The commutativity property of ® is thus realized by the construction.

b b
b ¢ | |

M NS ~ b ¢ + ¢ vV M
a \/ \/
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Let us check the truth preservation lemma. This time a configuration (%) in M’
does not have a unique pre-image: it can come from Rl®myz or R®zzy. But because
of head-preserving commutativity (DP), these are both in M.

‘ﬁ’
x oz Y
\ /

Similarly, the embedding construction presented in Prop 2.6 for the pair NL ver-
sus NLP< can be generalized directly to the related pair DNL versus DNLP <.
This time, we want the embedding translation to block the structural postulate
of head-preserving commutativity in DNLP. The translation below invalidates the
postulate by uniformly decorating with <, say, the left subtype of a product.

Definition 2.9 Define (-)* : F(DNL) = F(DNLPO) as follows.
P =p
(Ae; B =0A"®, B (Ae, B =0A"®, B
(A/;B)’ =0%(A°—B")  (A/.B)” = O0+(A"0—,.B")
(B\1A)” = OB*—;A”  (B\,A)’ = 0B, A"

We then have the following proposition. The proof is entirely parallel to that of
Prop 2.6 before.

Proposition 2.10
DNL+A— B if DNLPOF A® — B°

The method of Prop 2.2 generalizes to the following cases with some simple
changes.

Definition 2.11 Translation (-)* : F(NLP) = F(LP <) as below.

pb

=p
(A® B)® = ©(A" ® B®)
(Ao-B)* = O+ A"o-B"
(B—A)" = B*—oD+ A°

Proposition 2.12
NLP+FA—> B if LPOR A B

The only difference with Prop 2.2 is that the product in input and target logic
are commutative. Commutativity is realized automatically by the construction of
M.

Proposition 2.13

DNL+-A - B if DLOR A" - B

Proposition 2.14
DNLP+-A - B if DLPOFR A" - B

17



2.3 Composed translations

The remaining cases concern the right back face of the cube, where we find the
systems DL, L, LP, and DLP. These logics share associative resource manage-
ment, but they differ with respect to one of the remaining structural parameters —
sensitivity for linear order (L versus LP, DL versus DLP) or for dependency struc-
ture (DL versus L, and DLP versus LP). We already know how to handle each
of the structural dimensions individually. We use this knowledge to obtain the em-
beddings for systems with shared Associativity. Our strategy has two components.
First we neutralize direct appeal to Associativity by taking the composition of the
translation schema blocking Associativity with the schema responsible for control in
the structural dimension which discriminates between the source and target logics.
This first move does not embed the source logic, but its non-associative neighbour.
The second move then is to reinstall associativity in terms of ¢ modally controlled
versions of the Associativity postulates.

ASSOCIATIVE DEPENDENCY CALCULUS. We work out the ‘rear attack’ manoeuvre
first for the pair DL versus L. In DNL we have no restrictions on the interpretation
of e;,,. In DL we assume e;, e, are interpreted on (bimodal) associative frames,
and we have structural associativity postulates A(l), A(r) on top of the pure logic
of residuation for e;,e,.. In L. we cannot discriminate between e; and e, — there
is just one e operator, which shares the associative resource management with its
dependency variants. The objective of the embedding is to recover the distinction
between left- and right-headed structures in a system which has only one product
connective.

A(Z)Z(AOIB)OIC(—)AOI (BOIC)
A(r): Ae.(Be,.C)«— (Ae,.B)e.C

For the embedding translation, we compose the mappings of Def 2.3 embedding
DNL into NL and Def 2.1 embedding NL into L.

Definition 2.15

b =
(Ae;B)’ = <>(<>A'>.Bf) (i o, B)’ =0(A" e OB
(A/;B)> =O+(OvA"/B®) (A/.B)" =0'A"/OB°
(B\|A) = OB°\O¥A* (B\,A)’ = O¥(B"\O'4")

From the proof of the embedding of NL into L. we know that & neutralizes the effects
of the associativity of e in the target logic L: the frame condition for Associativity
is satisfied vacuously. To realize the desired embedding of DL into L, we reinstall
modal versions of the associativity postulates.

A()° : O(CO(CAeB)eC +— O(CAeO(OBe ()
A(r)°: O(A e OO(BeOC)) +— O(C(AeOB) e OC)

Figure 3 is a graphical illustration of the interplay between the composed translation
schema and the modal structural postulate. f is the translation schema (-)° of Def
2.1, g that of Def 2.3.

Modalized structural postulates: frame completeness. The modalized structural pos-
tulates A(l,7)° introduce a new element in the discussion. Semantically, these
postulates require frame constraints correlating the binary and ternary relations
of structural composition. Fortunately we know, from the generalized Sahlqvist-
van Benthem Theorem and frame completeness result discussed in §1, that from
A(l,r)° we can effectively obtain the relevant first order frame conditions, and that
completeness of L extends to the system augmented with A(l,7)°. We check
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h=fog, A(la'r)<>

DNL

Figure 3: Rear Attack Embedding DL into L.

completeness for A()° here as an illustration — the situation for A(r)° is entirely
similar. Fig 4 gives the frame condition for A(1)°.

The models for L< are structures (W, R2, R3, V). Now consider (=) in Figure 4
below. Given the canonical model construction of Def 1.1 the following are derivable

by the definition of RZ, R3:

a— b, e—>Of,
b—ced, f—geh,
c—> e, g— Q.

From these we can conclude - a = O(OO(Ci e h) ed)), ie. a € V(O(OO(Oieh) e
d))), given the definition of the canonical valuation (x). For (}) we have to find
b,c,d, e, f' such that
a— O, d — Oé,
b= cded, e — fled,
c' = <1, f' = ©Oh.
Let us put
fr'=0<h,
e'=fled=Ched,
d =0e' = O(Ched),
c = <1,
b =ced =Cied(Ched).
Together they imply F a = G(Oie O(Ohed)), ie. a € V(O(Oi e O(Ohed))) can

be shown to follow from (%). Similarly for the other direction.

Now for the embedding theorem.
Proposition 2.16

DL+ A— B iff LO4+A(l,r)°F A" = B

Model construction. Suppose DL If A — B. Then there is a model M =
(W, Ry, R, V) where A — B fails. From M we construct M’ as follows. For every
triple (abc) € R; we take fresh a',b' and put (aad') € R,,(a'b'c) € R,,(b'd) € R,.
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a

F(A(D)°): Tbcefg(Roab A Rebed A Roce A Roef A Refgh A Rogi) <
A'dd'e f'(Roab A Reb'c'd A Roc'i A Rod'e' A Ree' f'd A R, f'h)

Figure 4: Frame condition for A(l)®

Similarly, for every triple (abc) € R, we take fresh a’, ¢’ and put (aa’) € R,, (a'bc') €
R,,(c'c) € R,.

We have to check whether M’ is an appropriate model for L& + A(l, 7)., specif-
ically, whether the frame condition of Fig 4 is satisfied. Suppose (}) holds, and let
us check whether (). Note that a configuration R.ab', Reb'c'd’, R.c'i can only hold
in M' if in M we had Rjaid' (*). And a configuration R.d'e', Ree'f'd, R, f'h can
be in M’ only if in M we had R;d'hd (xx). The frame for M is associative. There-
fore, from (%, *x) we can conclude M also contains a configuration R;aed, Rjeih for
some e € W. Applying the M’ construction to that configuration we obtain ().
Similarly for the other direction.

From here on, the proof of Prop 2.16 follows the established path.

GENERALISATION. The rear attack strategy can be generalized to the remaining
edges. Below we simply state the embedding theorems with the relevant composed
translations and modal structural postulates. We give the salient ingredients for
the construction of M’, leaving the elaboration as an exercise to the reader.
Consider first embedding of L into LP. The discriminating structural parameter
is Commutativity. For the translation schema, we compose the translations of Def
2.11 and Def 2.5. Associativity is reinstalled in terms of the structural postulate

A2
AG: O(OO(CAR®B)RC +— O(CARO(CB® ()
Definition 2.17 Embedding translation (-)* : F(L) = F(LPO).
P=p
(Ae B)’ = O(CA" @ BY)
(A/B)> = O+ (Ot A*o—B")
(B\A)> = ©B"—o0+ 4

Proposition 2.18

L-A—B iff LPO+ A+ A" - B
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Semantically, the commutativity of Rg is realized via the construction of M’,
as in the case of Prop 2.6:

| |
b ¢ o c b
M N/ ~ N/ + \N/ M
a a a
) )

For the pair DL versus DLP, again Commutativity is the discriminating struc-
tural parameter, but now in a bimodal setting. We compose the translations for the
embedding of DNLP into DLP and DNL into DNLP The structural postulates
A%, and Ag are the dependency variants of Ag above.

A 0 O(OO(CA® B) @ C +— O(CA® O(OB®; C))
A3 0 O(OO(CA®, B) @, C +— O(CA®, O(OB®, C))

Definition 2.19 Embedding translation (-)* : F(DL) + F(DLP).

b
p=p
(Ao B =0(CA*®; B”)  (Ae,.B) =0(0A" ®, B
(A/iB)> = oY (O*4°0—B")  (A/,.B)” =O¥(O%A’0—,B")
(B\14)" = OB*—«,0¢4*  (B\,A4)" = OB’—,0%4"

Proposition 2.20

DL+ A— B iff DLPO+ (43,43 )F A" - B

Finally, for the pair DLP versus LP, the objective of the embedding is to
recapture the dependency distinctions. We compose the translations of Def 2.11
and Def 2.7. The modal structural postulates A(l,r)$, are obtained from A(l,r)°
by replacing ¢ by ®.

Definition 2.21 Embedding translation -* : F(DLP) — F(LP).
P =p
(A®; B’ =0(©0A*®B") (A®,B)’=0(4"® OB

(Ao—;B)’ = O¥(O+A°0—B*) (Ao—,B)’ = O+A*—OB’
(B—oA)’ = OB’ o+ A® (B—o,A)" = O¥(B"—o¢ A)

Proposition 2.22

DLP+A— B iff LPO+A(l,r)yF A® - B

2.4 Constraining embeddings: summary

We have completed the tour of the landscape and shown that the connectives
O,0O% can systematically reintroduce structural discrimination in logics where on
the level of the binary multiplicatives such discrimination is destroyed by global
structural postulates. In Fig 5 we label the edges of the cube with the numbers of
the embedding theorems.
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2.8 2.16

DNLP DL

DNL

Figure 5: Embedding translations: recovering resource control

3 Licensing structural relaxation

In the present section we shift the perspective: instead of using modal decorations
to block structural options for resource management, we now take the more dis-
criminating logic as the starting point and use the modal operators to recover the
flexibility of a neighbouring logic with a more liberal resource management regime
from within a system with a more rigid notion of structure-sensitivity.

Licensing of structural relaxation has traditionally been addressed (both in logic
[Dosen 92] and in linguistics [Morrill 94]) in terms of a single universal O modality
with S4 type resource management. Here we stick to the minimalistic principles set
out at the beginning of this paper, and realize also the licensing embeddings in terms
of the pure logic of residuation for the pair <, 0% plus modally controlled structural
postulates. In §3.1 we present an external strategy for modal decoration: in the
scope of the & operator, products of the more discriminating logics gain access to
structural rules that are inaccessible in the non-modal part of the logic. In §3.2
we develop a complementary strategy for internal modal decoration, where modal
versions of the structural rules are accessible provided one or all of the immediate
substructures are labelled with &. We present linguistic considerations that will
affect the choice for the external or internal approach.

3.1 Modal labelling: external perspective

Licensing structural relaxation is simpler than recovering structural control: the
target logics for the embeddings in this section lack an option for structural ma-
nipulation which can be reinstalled straightforwardly in terms of a modal version
of the relevant structural postulate. We do not have to design specific translation
strategies for the individual pairs of logics, but can do with one general translation
schema.
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Definition 3.1 General translation schema (-)* : F(£;) — F(Lo<¥) embedding a
stronger logic £; into a weaker logic Lo extended with <, 0%,

pP=p
(A e B)f = O(A¥ oy BY)
(A/1B)* =0OvA*/,B*
(B\1A)* = B¥\,O+ A*

The embedding theorems we are interested in now have the general format shown
below, where R, is (a package of) the modal translation(s) A* — B* of the structural
rule(s) A — B which differentiate(s) £, from Ly.

LiFA— B iff LoO+R,HF A — B

We look at the dimensions of dependency, precedence and dominance in general
terms first, discussing the relevant aspects of the model construction. Then we
comment on individual embedding theorems.

RELAXATION OF DEPENDENCY SENSITIVITY. For a start let us look at a pair of
logics Lg,L1, where Lo makes a dependency distinction between a left-dominant and
a right-dominant product, whereas £; cannot discriminate these two. There is two
ways of setting up the coarser logic £;. Either we present £; as a bimodal system
where the distinction between right-dominant e, and left-dominant e; collapses as
a result of the structural postulate (D).

Ly : Ae.B+— Ae B (D)

Or we have a unimodal presentation for £; and pick an arbitrary choice of the
dependency operators for the embedding translation. We take the second option
here, and realize the embedding translation as indicated below.

pP=p
(Ao B)t = &(At o, BY)
(A/B)t = O+ A%/, B
(B\A)! = B¥\,O% At

Relaxation of dependency sensitivity is obtained by means of a modally controlled
version of (D). Corresponding to the structural postulate (D,) we have the frame
condition F'(D,) as a restriction on models for the more discriminating logic.

Lo: O(Ae.B)+— (Ao B) (D)

F(D,): (Vzyz € Wo) Ft(Roxt A R, tyz) & It (Roxt' A R, t'yz)
Model construction. To construct an Lo model (Wo, R2, R}, R, V,) from a model

(Wy, R3, V1) for L1 we proceed as follows. For every triple (zyz) € R; we take fresh
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points z1, z2, put z,z1,Z2,y, 2z in Wy with (zz1) € R, (z1yz) € R; and (zz3) € R.,
(z2yz) € R,.

y :
Mi: \ / ~ T 4+ T2 : Mo

To show that the generated model M, satisfies the required frame condition
F(D,), assume there exists b € Wy such that R.,ab and R,.bed. Such a configuration
has a unique preimage in M; namely Rjacd. By virtue of the construction of M
this means there exists b' € Wy such that R.ab' and R;b'cd, as required for F(D,).

Truth preservation of the model construction is unproblematic. The proof of
the following proposition then is routine.

Proposition 3.2

NL+A— B iff DNLO + D, - A* — B*

RELAXATION OF ORDER SENSITIVITY. Here we compare logics £1 and Lo where
the structural rule of Permutation is included in the resource management package
for £, but not in that of Ly. Controlled Permutation is reintroduced in Lg in the
form of the modal postulate (P,). The corresponding frame condition on £y models

Mo is given as F(P,).
Ly: AeyB+—Be A (P)

Lo: O(AegB)+— O(BegA) (P,)

F(P,): (Vzyz € Wy) t(Roxt A Rotyz) = ' (Roaxt’ A Rot'zy)

To generate the required model My from M; we proceed as follows. If (zyz) €
R; we take fresh z1,z5 and put both (zz1) € R, and (z1yz) € Ry and (zz2) € R,
and (z22y) € Ro.

We have to show that the generated model M, satisfies F'(P,). Assume there
exists b € Wy such that R.ab and Rgbcd. Because of the presence of Permutation
in £, this configuration has two preimages, Rjacd and Rjadc. By virtue of the
construction algorithm for My each of these guarantees there exists ' € Wy such

that R.,ab' and Ryzdc.
Proposition 3.3

NLP+- A - B iff NLO+ P, A* - Bf

RELAXATION OF CONSTITUENT SENSITIVITY. Next compare a logic £; where
Associativity obtains with a more discriminating logic without global Associativity.
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We realize the embedding by introducing a modally controlled form of Associativity
(A,) with its corresponding frame condition F'(A,).

[/13 A.l (B.l C)(—)(A.lB) .10 (A)
Lo: O(AegO(Beg()) «— O(C(AegB)eg C) (Ao)

y\ /z \t’/
¢ |
1|A w = Y o’
N,/ \ /

| v
T |

F(Ay): (Vzyzw € Wy)

Ftuv(Rozv A Rovuw A Rout A Rotyz) < t'u'v' (Rezv' A Rov'yu’ A Rou't' A Rot' zw)

The My model is generated from M;j in the familiar way. For every triple
(zyz) € Ry, we take a fresh point ', and put z,z',y,z € Wy, with (zz') € R, and
(z'yz) € Ry.

We have to show that the frame condition F'(A4,) holds in the generated model.
Suppose (f) Roab and Rgbed and (1) R,ce and Roefg. We have to show that there
are z,y, z € Wy such that R,ax and Rz fy and R.yz and Rpzgd. Observe that the
configurations (f) and (}) both have unique preimages in M;, Rjacd and Ricfg
respectively. Because R; is associative, there exists y € W; such that Rjafy and
Rjygd. But then, by the construction of My, also y € Wy and there exist z,z € W
such that Reaz, Roxfy, Rsyz and Rgpzgd, as required.

Proposition 3.4
L-A— B iff NLO+ A F A* — B!

GENERALISATIONS. The preceding discussion covers the individual dimensions of
structural organisation. Generalizing the approach to the remaining edges of Fig 1
does not present significant new problems. Here are some suggestions to assist the
tenacious reader who wants to work out the full details.

The embeddings for the lower plane of Fig 1 are obtained from the parallel em-
beddings in the upper plane by doubling the construction from a unimodal product
setting to the bimodal situation with two dependency products.

Embeddings between logics sharing associative management, but differing with
respect to order or dependency sensitivity require modal associativity A, in addition
to P, or D, for the more discriminating logic: as we have seen in §2, the external
<& decoration on product configurations pre-empts the conditions of application for
the non-modal associativity postulate. We have already come across this interplay
between the translation schema and modal structural postulates in §2.3. For the
licensing type of embedding, concrete instances are the embedding of LP into L&+
Ay + P,, and the embedding of L into DL + A, + Ds.

EXTERNAL DECORATION: APPLICATIONS. Linguistic application for the exter-
nal strategy of modal licensing will be found in areas where one wants to induce
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NLP L

Prop 3.3: Prop 3.4:
Commutativity Associativity
NL
Prop 3.2:
Dependency
DNL

Figure 6: Licensing structural relaxation: precedence, dominance, dependency

structural relaxation in a configuration from the outside. The complementary view,
where a subconfiguration induces structural relaxation in its context, is explored
in §3.2 below. For the outside perspective, consider a non-commutative default
regime with P, for the modal extension. Collapse of the directional implications is
underivable, I/ A/B <+— B\ A, but the modal variant below is. In general terms: a
lexical assignment A/0O0+<$ B will induce commutativity for the argument subtype.

B=B (A)=90A

(A/B.B)) = o4 'F

(B, A/B)")° =04

(B,A/B)* = Otoa 1
A/B = B\OVoA

Similarly, in the context of a non-associative default regime with A, for the modal
extension, one finds the following modal variant of the Geach rule, which remains
underivable without the modal decoration.
C=C (O0‘B)°=1B /L
(O0+B/C,C)*)° = B (A =<4
(A/B.(D*BJC,C)")*)")" > ©A
(4B, B*B/C)")",C)°)° = 04
(((A/B,0+B/C)*)°,0)* = O+0A

((A/B,0+B/C)*)° = O+GA/C

(A/B,0+¥B/C)* = O¥(O+0A/C)

A/B = OHD+0A/C)/(O4B/C)

/L

O

/R

3.2 Modal labelling: the internal perspective

The embeddings discussed in the previous section license special structural be-
haviour by ezternal decoration of product configurations: in the scope of the <
operator the product gains access to a structural rule which is unavailable in the
default resource management of the logic in question. In view of the intended
linguistic applications of structural modalities we would like to complement the ex-
ternal modalization strategy by an internal one where a structural rule is applicable
to a product configuration provided one of its subtypes is modally decorated. In
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fact, the examples of modally controlled constraints we gave at the beginning of
this paper were of this form. For the internal perspective, the modalized versions
of Permutation and Associativity take the form shown below.

(P!) ©AeB ¢ BeOA
(AL) Aje(Aze A3)+— (A; e Ay)e Ay (provided 4; = CA,1<1<3)

We prove embedding theorems for internal modal decoration in terms of the
following translation mapping, which labels positive (proper) subformulae with the
modal prefix OOV and leaves negative subformulae undecorated.

Definition 3.5 Embedding translations ()%, ()™ : F(£Ly) — F(Le<) for positive

and negative formula occurrences.

ot = P (- = P
(Aey B)Yt = oOHA)T ¢q OO¥(B)T (Ae; B~ = (A)~ oo (B)~
(ALB)Y = oOYA)t/o(B)” (4/1B)” = (A)~ /ooO¥(B)*
(B\iA)" = (B)" \o0OOH(A)*t (B\14)~ = 0o0%(B)*\o(4)"

The theorems embedding a stronger logic £; into a more discriminating system
Lo now assume the following general form, where R’ is the modal version of the
structural rule package discriminating between £; and Lo.

Proposition 3.6
LiFA— B iff LeO+RFAT — B~

As an illustration we consider the embedding of L into NL< which involves licensing
of Associativity in terms of the postulate (A4/). The frame construction method we
employ is completely general: it can be used unchanged for the other cases of
licensing embedding one may want to consider.
The proof of the (=) direction of Prop 3.6 is by easy induction. We present
a Gentzen derivation of the Geach rule as an example. The type responsible for
licensing A’ in this case is ©O(B/C)*.
_Cr=>C”
(O+CcH)°e = C-
o ...
ootCct = C- OOVYBY = B~ L/
omBt/Cc-,o0¢Ct = B~
(O+(oO¥B*/C7))°,o04Ct) = B~ OtAT = A~
(OOVA* /B—, (0¥ (OB /C7))°, 004 CH)) = A~
(ODVA* /B~ (04 (00 B¥ /C))°), 00V CH) = A-
((0O¥At/B~, o004 (OO¥B*/C7)), 00 CH) = A~
OOVYAT /B~ = (A~ /oO+CT) /o0 (OOYBY /C ™)
(A4/B)* = ((4/C)/(B/C))~

Lo

Lot

L/

o
R), B/
0.0

For the (<) direction, we proceed by contraposition. Suppose L I/ A — B. Com-
pleteness tells us there exists an L model My = (Wi, Ry, V1) with a point a € W
such that M1,a = A but My, a £ B. From M; we want to construct an NLO + AL
model Mgy = (Wy, R, Ro, Vo) such that AT — B~ fails. Recall that Ry has to sat-
isfy the frame conditions for the modal versions A! of the Associativity postulate.
We give one instantiation below.

(Aé) CAeg (B L1} C) — (<>A o B) o C
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(1) (Voyzw € Wo)
Ftu(Roztu A Roty A Rouzw) < Ft'u' (Rozu'w A Rou't'z A Rot'y)

The model construction proceeds as follows. We put the falsifying point a € Wy,
and for every triple (zyz) € R; we put z,y,z € Wy and (zyz) € Ry, (yy) € R.,
(22) € R,.

Yy z
|
z

\/

T

Y z
My \m/ ~ Mo

We have to show that the model construction realizes the frame condition (}) (and
its relatives) in My. Suppose Jzy(Roazy A Roxb A Royced). By the model construc-
tion, z = b, so Ropaby which has the pre-image R;aby. The pre-image of Roycd is
Ryycd. The combination of these two R; triangles satisfies the Associativity frame
condition of L, so that we have a point ¢t such that Riatd A Ritbc. Again by the
model construction, this means in Mo we have 3z,t(Rotzc A R,zb A Roatd), as
required.

b
b ¢ |

c d
\ / \t b ¢

/
Mo 0V e i N M
Voo N

The central Truth Preservation Lemma now is that for any a € Wy N Wy,
Mi,aE A iff Mo,al= AT iff Mo,aE A™
We concentrate on the (-)* case — the (-)~ case is straightforward.

(=) Suppose My, a = A e; B. We have to show that My, a = OOYAt ¢ OOVBT.
By assumption, there exist b, ¢ such that Rjabe, and My,b = A, M;y,c |E B. By

inductive hypothesis and the model construction algorithm, we have in M

o — O

&
|
(&

\/

a

Mo, b= A* Mo,cl= B*

Observe that if z is the only point accessible from z via R, (as is the case in M),
then for any formula ¢, z = ¢ iff z | O¢ iff z = O%¢ iff z = OO%4. Therefore,
from the above we can conclude Mg,b = OOVYAT and Mg, c | OOYBT, hence
Mo, a = OOVAT o OOVBT.
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(<) Suppose Mg, a | OOVAT ¢q OOYBT. We show that M;,a = A ¢; B. By as-
sumption, there exist b, ¢ such that Ryoabe, and Mg, b = OOYAY, Mg, c = OOVBT.
In M all triangles are such that the daughters have themselves and only them-
selves accessible via R,,. Using our observation again, we conclude that Mg, b = AT,
Mo, c = BY, and by inductive assumption Mj,a |= A e B.

We leave the implicational formulas to the reader.

COMMENT: FULL INTERNAL LABELING. Licensing of structural relaxation is im-
plemented in the above proposal via modal versions of the structural postulates re-
quiring at least one of the internal subtypes to be & decorated. It makes good sense
to consider a variant of internal licensing, where one requires all relevant subtypes
of a structural configuration to be modally decorated — depending on the appli-
cation one has in mind, one could choose one or the other. Embeddings with this
property have been studied for algebraic models by [Venema 93, Versmissen 93]. In
the terms of our minimalistic setting, modal structural postulates with full internal
labeling would assume the following form.

(P CAe OB +— CBe A
(A7) ©CAe(CBeOC) +— (CAeOB)e OC

One obtains the variant of the embedding theorems for full internal labeling on the
basis of the modified translation (-)** which marks all positive subformulae with
the modal prefix OO*. (Below we abbreviate OO% to p.) In the model construction,
one puts (zz) € R, (and nothing more) for every point z that has to be put in W.

(p)** = 1P (p)~ = P
(Ae; B)tt = p(u(A)TH e u(B)*)  (Ae1B)™ = (A)” e (B)~
(ALB)TT = p(u(A)*T/o(B)7) (A/1B)= = (A)” fopu(B)t*
BuAtt = u((B)"\op(A)TH) (B\14)~ = w(B)t\o(4)~

Proposition 3.7
LiFA— B iff LoO+R'SFAYT - B

ILLUSTRATION: EXTRACTION. For a concrete linguistic illustration of ¢OV la-
beling licensing structural relaxation, we return to the example of extraction from
non-peripheral positions in relative clauses. The example below becomes derivable
in NLO + (A%, P!) given a modally decorated type assignment r/(s/<0%np) to
the relative pronoun, which allows the hypothetical OO%np assumption to find its
appropriate location in the relative clause body via controlled Associativity and
Permutation. We give the relevant part of the Gentzen derivation, abbreviating

(np\s)/np as tv.

...that ((John read) yesterday)
NLO + (AL, P)) - (r/(s/<©O%np), ((np, (np\s)/np),s\s)) = r

((np, (tv,np)), s\s) = s
np, (tv, (O%¥np)®)), s\s) = s
(np, tv), (O*np)°),s\s) = s

((
((
((np, tv), (O*np)°, s\s)
((
((

Lot
Ay
A
P

!

= S

np,tv), (s\s, (Ttnp)°)) = s
(np, tv), s\s), (O*np)°) = s

(((np, tv), 5\s), OB*np) = s
((

np,tv), s\s) = s/O0%np

~ | — | — | —

<
Lo
R/
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Comparing this form of licensing modal decoration with the treatment in terms
of a universal O operator with S4 structural postulates, one observes that on the
proof-theoretic level, the GO% prefix is able to mimick the behaviour of the S4 O
modality, whereas on the semantic level, we are not forced to impose transitivity
and reflexivity constraints on the interpretation of R,. With a translation (0A)~ =
OO4(A)™, the characteristic T' and 4 postulates for O become valid type transitions
in the pure residuation system for ¢, 0%, as the reader can check.

T: OA— A ~ OYA 5 A
4: OA—= 004 ~ OOVA - o+ovA

4 Discussion

In this final section, we reflect on some general logical and linguistic aspects of the
proposed architecture, and raise a number of questions for future research.

Linear Logic and the sublinear landscape. In order to obtain controlled access
to Contraction and Weakening, Linear Logic extends the formula language with
operators which on the proof-theoretic level are governed by an S4-like regime.
The ‘sublinear’ grammar logics we have studied show a higher degree of structural
organization: not only the multiplicity of the resources matters, but also the way
they are put together into structured configurations. These more discriminating
logics suggest more delicate instruments for obtaining structural control. We have
presented embedding theorems for the licensing and for the constraining perspective
on substructural communication in terms of the pure logic of residuation for a set
of unary multiplicatives <&, 0%, In the frame semantics setting, these operators
make more fine-grained structural distinctions than their S4 relatives which are
interpreted with respect to a transitive and reflexive accessibility relation. But they
are expressive enough to obtain full control over grammatical resource management.
Our minimalistic stance is motivated by linguistic considerations. For reasons quite
different from ours, and for different types of models, a number of recent proposals
in the field of Linear Logic proper have argued for a decomposition of the ‘!,7’
modalities into more elementary operators. For comparison we refer the reader to

[Bucalo 94, Girard 95].

The price of diamonds. We have compared logics with a ‘standard’ language of
binary multiplicatives with systems where the formula language is extended with
the unary logical constants <, 0. The unary operators, one could say, are the price
one has to pay to gain structural control. Do we really have to pay this price, or
could one faithfully embed the systems of Fig 1 as they stand? For answers in a
number of specific cases, one can turn to [van Benthem 91].

A question related to the above point is the following. Our embeddings compare
the logics of Fig 1 pairwise, adding a modal control operator for each translation.
This means that self-embeddings, from £ to £’ and back, end up two modal levels
higher, a process which reaches equilibrium only in languages with infinitely many
<, 0% control operators. Can one stay within some finite modal repertoire? We
conjecture the answer is positive, but a definitive result would require a deeper
study of the residuation properties of the ¢, 0% family.

Pure embeddings versus modal structural rules. The embedding results presented
here are globally of two types. One type — what we have called the pure embeddings
— obtains structural control solely in terms of the modal decoration added in the
translation mapping. The other type adds a relativized structural postulate which
can be accessed in virtue of the modal decoration of the translation. For the licensing
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type of communication, the second type of embedding is fully natural. The target
logic, in these cases, does not allow a form of structural manipulation which is
available in the source logic: in a controlled form, we want to regain this flexibility.
But the distinction between the two types of embedding does not coincide with
the shift from licensing to constraining communication. We have seen in §2.3 that
imposing structural constraints for logics sharing associative resource management
requires modalized structural postulates, in addition to the modal decoration of the
translation mapping. In these cases, the & decoration has accidentally damaged
the potential for associative rebracketing: the modalized associativity postulates
repair this damage. We leave it as an open question whether one could realize pure
embeddings for some of the logics of §2.3. A related question can be raised for the
same family of logics under the licensing perspective: in these cases, we find not just
the modal structural postulate for the parameter which discriminates between the
logics, but in addition modal associativity, again because the translation schema
has impaired the normal rebracketing.

Uniform versus customized translations. Another asymmetry that may be noted
here is our implementation of the licensing type of communication in terms of a
uniform translation schema, versus the constraining type of embeddings where the
translations are specifically tailored towards the particular structural dimension one
wants to control. Could one treat the constraining embeddings of §2 also in terms
of a uniform translation scheme? And if so, would such a scheme be cheaper or
more costly than the individual schemes in the text?

Complexity. A final set of questions relates to issues of computational complexity.
For many of the individual logics in the sublinear cube complexity results (pleas-
ant or unpleasant) are known. Do the embeddings allow transfer of such results to
systems where we still face embarrassing open questions (such as: the issue of poly-
nomial complexity for L)? In other words: what is the computational cost of the
translations and modal structural postulates proposed? We conjecture that modal-
ized versions of structural rules have the same computational cost as corresponding
structural rules themselves.

Embeddings: linguistic relevance. We close with a remark for the reader with a
linguistics background. The embedding results presented in this paper may seem
somewhat removed from the daily concerns of the working grammarian. Let us try
to point out how our results can contribute to the foundations of grammar devel-
opment work. In the literature of the past five years, a great variety of ‘structural
modalities’ has been introduced, with different proof-theoretic behaviour and dif-
ferent intended semantics. It has been argued that the defects of particular type
systems (either in the sense of overgeneration, or of undergeneration) can be over-
come by refining type assignment in terms of these structural modalities. The
accounts proposed for individual linguistic phenomena are often ingenious, but one
may legitimately ask what the level of generality of the proposals is. The embed-
ding results of this paper show that the operators ¢, 0% provide a general logic of
constraints in the dimensions of order, dominance and dependency.
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A Appendix

A.1 Axiomatic and Gentzen presentation

In this section we juxtapose the axiomatic presentations and the Gentzen formula-
tion of the logics under discussion. The Lambek and Dosen style axiomatic presen-
tations are two equivalent ways of characterizing ¢, 0%, e,/ and e, as residuated
pairs of operators. For the equivalence between the axiomatic and the Gentzen pre-
sentations, we refer to [Moortgat 95]. This paper also establishes a Cut Elimination
result for the language extended with ¢, O%.

Definition A.1 Lambek-style axiomatic presentation.

A—-B B-C

A= 4 A—>C

CA—+ B<+=A—0O'B
A—-C/B <= AeB—(C <= B-—A\C

Definition A.2 Dosen style axiomatization.

A—-B B-—C

A— A 150
oA —» A Ao CA
A/BeB — A A— (AeB)/B
BeB\A— A A — B\(BeA)

A— B A— B
OCA - OB ‘A — OVB

A—-B C—=D
AeC - BeD

A—-B C—-D A—-B C—-D
A/D — B/C D\A - C\B

The formulations of Def A.1 and Def A.2 give the pure residuation logic for the
unary and binary families. The logics of Fig 1 are then obtained by adding different
packages of structural postulates, as discussed in §1.

Definition A.3 Gentzen presentation. Sequents I' = A with I a structured database
of linguistic resources, A a formula. Structured databases are inductively defined
as terms T == F | (T, 7)™ | (T)°, with binary (-,-)™ or unary (-)° structural con-
nectives corresponding to the (binary, unary) logical connectives. We add resource
management mode indexing for logical and structural connectives to keep families
with different resource management properties apart. This strategy goes back to
[Belnap 82] and has been applied to modal display logics in [Kracht 93, Wansing 92],
two papers which are related in a number of respects to our own efforts.

=4 A[A]=>C
[Ax]
A=A AT =C

[Cut]
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=4 I[(A)°]=B .
T)° = A T[CA]= B

[RO] Lo

= A TA]= B LoY

4
e ey I[(0f4)°]= B '

(T,B)™ = A I'=B Ald=C

R/ml=v347. 8 “A[@/.BD)7 =0 L/
(B, )™= A I'=B AlA] = C
B\l + 5B 4 A BT 50 L
Lon] [[(A,B)"]=C =4 A= B [Rep]

[[Ae,, B]=C (T,A)™ = Ae, B

Structural postulates, in the axiomatic presentation, have been presented as tran-
sitions A — B where A and B are constructed out of formula variables pi,...,p,
and logical connectives e,,, &. For structure variables Aj,...,A, and structural
connectives (+,-)™, (-)°, define the structural equivalent o(A4) of a formula A as

indicated below (cf [Kracht 93]):
o(pi) =Ai o(Aen B) =(0(4),0(B))™ o(CA4) = (0(4))°

The transformation of structural postulates into Gentzen rules allowing Cut Elim-
ination then is straightforward: a postulate A — B translates as the Gentzen rule

I[o(B)] = C
T[o(A)] = C

In the cut elimination algorithm, one shows that if a structural rule precedes a Cut
inference, the order of application of the inferences can be permuted, pushing the
Cut upwards. See [Dosen 89] for the case of global structural rules, [Moortgat 95]
for the < cases.

In the multimodal setting, structural rules are relativized to the appropriate
resource management modes, as indicated by the mode index. An example is given
below (for k a commutative and ! an associative regime). Where no confusion is
likely to arise, in the text we use the conventional symbols for different families of
operators, rather than the official mode indexing on one generic set of symbols.

T[((A1, A2) , Ag) ] = A

F[(Ag,Al)k] = A r .
T[(A1, (A2, A3)) = A~

T[(Ar. As)f = A 1]

Al

CfAOkB—)B.kA CfA.l(B.lC)—)(A.lB).lC

A.2 Trading ternary relations for binary ones

The embedding results developed above suggest the question whether Lambek sys-
tems can be embedded into standard modal logic with unary modalities. Moreover,
it is at least of purely modal interest to see if the work of a ternary accessibility rela-
tion can be done by binary ones. So far, we have analyzed the Lambek Calculus NL
and its neighbours as a modal logic with binary modalities. Can we also analyze it
as a modal logic with only unary modalities? The answer is positive: we prove that
NL can be faithfully embedded into minimal temporal logic K. The job will be
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done in two steps: first, we show how NL can be embedded into bimodal temporal
logic K {,2’ and then we use Thomason’s result on embedding bimodal systems into
unary ones.

Definition A.4  Minimal Bi-Tense Logic. Let Kf,z be a minimal tense logic
having two ‘forward looking operators’ Oy, Oz (with existential duals ¢1, ¢3) and
two corresponding ‘backward looking’ operators IZI%7 Dé (with existential duals 0%,

0%) The modal language of K* -2 has its formulas built up from propositional letters
according to the rule:

¢ = plg|o&)|018]026| 014 O36|01 4| D20] 16| T3
By standard methods, Kf,2 can be axiomatized using
Axioms

— all tautologies of classical propositional logic
— all modal distribution axioms
0:(A D B) D (0;A D 0;B) and OY(A D B) D (OYA D O B)
— all tense-logical conversion axioms
©;00/AD Aand AD O}0;4
Rules

— modus ponens
— necessitation A/0;A and A/D;LA , where i=1,2.
A K}, model is an ordinary bimodal model M = (W, R}, R3,V) with truth
definition (i=1,2)
M,a =04 S Vb(R;ab = M,b|= A)
Myal=0'A <  Vb(Riab = M,b}= A)

A faithful embedding of the non-associative Lambek Calculus into K7, runs as
follows:

P = p
(A\B)! = O}(¢,4! > O BY)
(BJA)} = DOf(0,A! D OIBY)

Theorem A.5 First Embedding Theorem. The following assertions are equivalent:

(i) AF B is derivable in NL
(i) A*F BYis derivable in K} ,

Proof. The direction (i) = (ii) can be proved by an easy induction on the length
of the NL-derivation for A F B. For example, consider the axiom

Al B\(Be A)

Its translation
A O (0B 5 010 (01 BH& O, AY))

is derivable in the minimal bi-tense logic Kiz. For the converse direction (ii) =
(1), we use a semantical representation argument. Let A F B be underivable in NL.
By the above completeness of NL with respect to ternary semantics, there exists a
ternary model M where A - B fails. So, there exists a world k € W which verifies
A, but falsifies B. We construct a K{ , model M = (W*, Ry, Ry, V*) where At Bt

fails, as follows:
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e put kin W*

e if (a,bc) € R, then take a fresh object z, and put (az) and {zb) in R; , (zc)
in Ry, a,b,c,zin W*

e setforallae WNW* aeV*(p)iff ae€ V(p)

Claim A.6 For all categorial formulas A, and all a € W N W™,
M*aE A" < MaEA

Proof. Induction on the length of A. The basic case is a direct consequence of the
definition of M*. We demonstrate only one typical clause of the inductive step, to
illustrate this kind of elementary semantic argument over ternary models.

(1) Suppose M* a |= O}(¢1AY D O} BY)
We need to show that M,a = A — B.

(2) Suppose (a) R3c,ba and (b) M,bkE A
We need to show that M,c = B

(3) By the inductive hypothesis : M* b = A*.
By the above construction of M*, (2(a)) yields

(4) (a) Ricz (b) Rizb (c) Raza

(5) By the truth definition:
M*, ¢ | O A
From (1) and (4(c))
M*,z = O, Af D O} Bt
Thus M*, z |= O} B*

(6) From (4(a)) we get M*,c |= B
and by inductive hypothesis M, ¢ |= B.

Here is the converse argument. Again, we start by successively unpacking what
needs to be shown.

(1) Suppose M,a = A — B.
We need to shaw that M*,a = O} (O, A D O BY)

(2) Suppose (a) Roza (b) M*,z = C1A* (c) Ribz
We need to show that M*,b = B*

(3) By (2(b)) there exists ¢ such that
(a) Ryzc and (b) M*,c|= A
By inductive assumption :

(¢c) M,c= A

(4) Note, that by the construction of M*,
Ribz, Rixzc, Ryxa
must ‘come from’ a unique triangle, namely Rb, ca.
Then, from (1) and (3(c)), M |= B, and therefore
M*b = Bt m|

The preceding Claim implies that any ternary NL-counter-model M for a se-
quent A - B can be transformed into Kf’Z model M* where A* - B* fails. Hence

A* |- B* is not derivable in Kf’2. This proves the faithful embedding. a
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Theorem A.7 Second Embedding Theorem. The following assertions are equiva-
lent:

(i) AF B is derivable in NL
(ii) A* - B* is derivable in Kt

Proof. This is a direct consequence of S.K. Thomason’s results on embeddings of
bimodal systems into unary modal ones, see [Thomason 72]. O
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