Discontinuity and Pied-Piping in Categorial
Grammar

Glyn Morrill*

Seccié d’Intel-ligencia Artificial
Departament de Llenguatges i Sistemes Informatics
Universitat Politecnica de Catalunya
Pau Gargallo, 5
08028 Barcelona

morrill@lsi.upc.es

Abstract

Discontinuity refers to the phenomena in many natural language con-
structions whereby signs differ markedly in their prosodic and semantic
forms. As such it presents interesting demands on monostratal compu-
tational formalisms which aspire to descriptive adequacy. Pied-piping, in
particular, is argued by Pollard (1988) to motivate phrase structure-style
feature percolation. In the context of categorial grammar, Bach (1984),
Moortgat (1988, 1990, 1991a) and others have sought to provide catego-
rial operators suited to discontinuity. These attempts encounter certain
difficulties with respect to model theory and/or proof theory, difficulties
which the current proposals are intended to resolve. These proposals are
accompanied by introduction of a new categorial proof format: labelled
Fitch-style natural deduction.

The associative Lambek calculus is complete with respect to interpreta-
tion by residuation with respect to the adjunction operation of semigroup
algebras (Buszkowski 1986). In Moortgat and Morrill (1991) is is shown
how to give calculi for families of categorial operators, each defined by
residuation with respect to an operation of prosodic adjunction (associa-
tive, non-associative, or with interactive axioms). The present paper treats
discontinuity in this way, by residuation with respect to three adjunctions:
+ (associative), (.,.) (split-point marking), and W (wrapping) related by

*This paper in its current form has benefited by the review of an earlier paper for Linguis-
tics and Philosophy; 1 thank an anonomous reviewer for a commentary half the length of the
submission itself.
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the equation (s1, s9)Ws3 = s1+ s3+ s2. The system is illustrated by refer-
ence to particle verbs, discontinuous idioms, quantifier scope and quantifier
scope ambiguity, pied-piping, gapping, and object-antecedent reflexivisa-
tion.

1 Introduction

In order to specify a model of the relation between forms and meanings in natural
language, it is necessary to list those associations in which a meaning is not
attributable to meanings of parts. In general we expect a lexical enumeration of
properties of “words”, but insofar as morphological semantics may be systematic,
and phrasal idioms may be truly idiomatic, lexical items may be smaller or larger
than an intuitive or lexicographic construal of “word”. When an element with
such an unanalysable meaning is not continuous in surface form the phenomenon
of discontinuity is exhibited. Examples are provided by phrasal verbs such as
those in (1) and discontinuous idioms such as those in (2).

(1)  a. Mary rang John/the man up.
b. Mary put John/the man down.

(2)  a. Mary gave John/the man the cold shoulder.
b. Mary gets John’s/the man’s goat.
c. Mary put John/the man down.

Such constructions present difficulties for any approach to grammar in which
expressions are to be generated just by concatenation in an algbra of strings (but
see e.g. Wasow, Sag and Nunberg 1983). Such phenomena are in fact just the
simplest examples of discontinuity that arise in a monostratal setting. Thus, if by
discontinuity we understand mismatch between surface form and logical form,*
the question arises as to how a quantifier is to obtain sentential semantic scope
in logical form, while the corresponding quantifier phrase is embedded:

(3) a. John likes everything.
b. Vz((like z) j)

Furthermore, at least on the standard view, there must be admitted the quantifier
scope ambiguity of (4a), and also that of (4b).

(4) a. Everyone loves something.
b. John believes someone walks.

1Such terms are used initially in view of their familiarity. We shortly refer systematically
to prosodic form and semantic form. Other terms for the former might be phonetic form,
phonological form, or syntax; the understanding is that it pertains to such properties as to
rhyme, rhythm, syllabification and word order that are under study. Likwise, semantics refers
to such properties as to presupposition, truth conditions, implicature and so on that are relevant.
For the current purposes prosodics is just word order, and semantics, truth conditions.
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For (4b) there is a de dicto or non-specific reading with “someone” within the
scope of “believes”, and a de re or specific reading with “someone” outside the
scope of “believes”; the latter necessitates quantifier “raising” to the level of a
superordinate sentence.

The particular difficulty that quantifier-raising represents is to some extent
evaded by appeal to non-monostratal architecture and/or relaxations of composi-
tionality. But what is essentially the same puzzle is presented with an inescapable
surface form realisation in pied-piping, that is relativisation in which additional
material accompanies the “fronted” relative pronoun:

(5)  a. (the man) for whom John works
b. (the contract) the loss of which after so much wrangling John

would finally have to pay for (with his job)
c. (the thesis) the height of the lettering on the cover of which
is prescribed by university regulations

In such a construction the relative pronoun needs to take semantic scope at the
level of the entire fronted constituent in order to bind the gap in the body of the
relative clause, i.e. some kind of raising is required, as for quantifiers. In addition,
the category of the gap (e.g. prepositional phrase or noun phrase) needs to match
that of the fronted constituent, creating, aside from semantics, a complex surface
form discontinuous dependency.

We consider two more kinds of discontinuity in the present paper. Firstly,
there is gapping, in which medial (as opposed to peripheral) material from a first
conjunt is understood in a second:

(6) John studies logic and Charles, phonetics.

Again, the semantic dependency is accompanied by a need to correlate the cate-
gory of the “deleted” material on the right with the category of material appearing
on the left.

The final case we consider is object-antecedent reflexivisation:

(7)  a. John showed Mary the book.
b. John showed Mary herself.
c. *John showed herself Mary.

Although perhaps a little strange (we could think of John showing Mary pictures
or photos of various people including herself) (7b) is acceptable, whereas (7c) is
not. In order for reflexivisation to occur in the semantics, it is necessary for a
reflexive to combine with, and reflexivise, a predicate, before the predicate applies
to the antecedent: the other way round, the antecedent semantics is not accessible
for duplication. The facts in (7) are thus precisely the opposite of those expected
if surface form is generated by concatenation of the verb first with the adjacent
complement, and then with the remote one. This motivates a “head-wrapping”
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analysis of such verbs (see e.g. Dowty 1979) in which they combine with the
surface-form remote complement first, and then “head-wrap” around the other
complement.

Discontinuity represents much that is problematic in natural language syntax,
and it is not the pretence of the present paper to provide a comprehensive account
of the instances cited above. However, it does aim to show how each is rendered
ammenable in its basic form in the context of categorial grammar in the logical
tradition, that is the tradition of Lambek calculus and extended Lambek calculus
(see e.g. Moortgat 1988, van Benthem 1991, Morrill 1992a). Moortgat (1988)
attempted to place on a more logical footing the earlier proposals for discontinu-
ous categorial operators of e.g. Bach (1981, 1984). But the logic was incomplete;
indeed the sequent proof format used seemed in principle incapable of support-
ing a full logic for discontinuity. We shall see ultimately that for the proposals
made here this turns out not to be the case after all. We shall present an al-
ternative algebraic interpretation, together with a labelled Gentzen-style sequent
proof theory, and a “user-friendly” labelled Fitch-style natural deduction proof
theory. Before turning to the content of these proposals, we shall review relevant
features of Montague’s semiotic programme, within which they are construed.

2 Methodology

Linguistic objectives, and hence methodologies, tend to differ depending upon
which of two conceptions of language are taken as central: what we may call
language-in-intension, and language-in-extension. Language-in-intension, the Chom-
skyan view, takes language to be a psychological state; roughly speaking, uni-
versal grammar is the initial, genetically determined, state of the psychological
language faculty which develops, under linguistic experience, to a stable or ma-
ture state of parochial knowledge. Language-in-extension, the semiotic or Mon-
tagovian view, takes language to be a set (or family of sets, for varying parts of
speech) of signs, where a sign is an association of prosodic and semantic proper-
ties. In this case universal grammar is the architecture or formalism within which
fragments are developed.

We will assume that the two conceptions may coexist comfortably under the
construal of language-in-intension as knowledge of language-in-extension. Our
concern is with language-in-extension, a concern ultimately motivated by inter-
est in language processing, in which a model of language-in-extension represents
a specification for computation. The study of language-in-intension, as practiced
within the Chomskyan tradition, has been attacked for lack of formalisation (e.g.
Pullum 1989), and defended (e.g. Ludlow 1992). In this case formalisation does
indeed seem largely irrelevant in that hypotheses can be formulated, falsified,
and refined in a manner to which increased “rigour” would be only a diversion.
In looking for properties of language-in-intension, it is possible that deep in-
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sights should be found without these constituting models of fragments; that is,
such characterisations may be partial with respect to computational concerns.
In relation to language-in-extension on the other hand, and its computational
motivation, it is in the nature of the objectives that models of fragments must be
developed which are formal and complete, in the sense that a relation between
prosodic and semantic properties is specified which is mechanically interpretable.

2.1 Architecture

Montague’s Universal Grammar (UG; Montague 1974) requires surface forms to
be freely generated in order that semantic denotation can be defined by recursion
on their structure, in the same way as for formal languages of logic. Of its nature,
such an approach cannot characterise ambiguity, so that a disambiguating relation
is needed to associate surface forms with actual expressions. In The Proper
Treatment of Quantification (PTQ; Montague 1973) ambiguity is accommoded
another way, though in a manner permitting systematic conversion to the “official
UG” format, defining by mutual recursion on syntactic types (or: categories) a
relation between expressions and terms of intensional logic.

We can orient ourselves for the present proposals by reference to a fragment
(which is only extensional) in the PTQ style, which we shall now present.

Prosodic terms P (o, 3,7, . . .) are generated from prosodic constants IC (writ-
ten in italics) and prosodic variables U (a,b,c,...) thus:

8 Pu=e|lU|K|P+P|(P,P)| (PWP).

Intuitively + represents concatenation and e the empty string, (.,.) represents
split string formation, and (.W.) represents wrapping, so that there are the fol-
lowing equations for prosodic terms:

9) at+te=ct+a=a
(0, )W) =a+y+p
Prosodic terms without variables are called prosodic forms.

Semantic terms are interpreted in type theory. A set 7 of semantic types is
freely generated from a set D of basic semantic types thus:

(10) T==D|T —>T

A semantic function hierarchy consists of a family {D,},c7 of sets (semantic
domains) such that D,, ,,, is the set of all functions from D,, to D,,. Typed
semantic terms are defined and interpreted as usual. Starting from a set C, of
constants (written in boldface) and a denumerably infinite set V), of variables for
each type 7, the set S, of typed semantic terms for each type 7 is freely generated
thus:

(11) S ==C, | Vo | (S Si)
Sfr’—w = )\VTIST



66

There are the standard equations of e.g. - and 7- conversion:

(12) (Azg o) = ¢[vp/z] Az(p z) = ¢ if = is not free in ¢
Semantic terms which are closed, i.e. which have no free variables, are called
semantic forms.

Given a set of syntactic types, for parts of speech, a type map 7' is a function
from syntactic types to semantic types. We consider the following.

(13)  Part of Speech Syntactic Type Semantic Type
Referring nominal N e
Intransitive verb (phrase) VP e—t
Sentence S t
Ditransitive verb (phrase) TTV e—(e—(e—t))
Transitive verb (phrase) TV e—(e—t)
Definite article DEF (e—t)—e
Common noun (phrase) CN e—t
Object antecedent reflexive OBJRFLX (e—(e—(e—t)))— (e—(e—t))
Prepositional verb PV e—(e—t)
Prepositional phrase PP e
Quantifier Q (e—t)—((e—t) —t)
Quantifier phrase QP (e—t) —t
Preposition P e—e

Note that noun phrases are partioned into quantifier phrases QP (e.g. ‘every
man’, ‘a tall cook’) and referring nominals N (e.g. ‘John’, ‘the tall cook’), and
that, unlike Montague, we do not raise the semantic type of the latter to share
that of the former.

A statement of formation is a statement of the form:
(14) a3y —z1: Ay, ..ya, —Tpt Ay => a— ¢ A
Here, Aq,...,A,, A are syntactic types, ai,...,a, are prosodic variables, and
z1,...,Z, are semantic variables of types T(A;),...,T(A4,) respectively, such
that no variable is associated with two distinct syntactic types; a is a prosodic
term the variables of which are contained in {ay,...,a,}, and ¢ is a semantic
term of type T'(A) the free variables of which are contained in {zy,...,z,}.
We may now give a list of rules of formation which are statements of formation
under which a lexicon is to be closed to generate a formal language model:
(15) Rl. a—z:N,b—y: VP = a+b—(yx): S
R2. a—z:TTV,b—y: N = (a,b) — (z y): TV
R3. a—z:TV,b—y: N = aWb— (z y): VP
R4. a—2:DEF,b—y:CN = a+b—(zy): N
R5. a—z: TTV, b —y: OBJRFLX = (a,b) — (y z): TV
R6. a—z:PV,b—y: PP = a+b— (zy): VP
R7. a—z2:Q,b—y:CN = a+b—(zy): QP
R8. a—z:P,b—y:N =a+b—(zy): PP
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A lexicon is a list of assignments o — ¢: A where A is a syntactic type, « is a
prosodic form, and ¢ is a semantic form of type T(A). The formal language
model defined is the reflexive and transitive closure of the lexicon under the rules
of formation. Recursively supplying the output of one rule as input to another
corresponds to Cut:

(16)a. a-z:A=a-1x: A id
b. I'=sa-¢ A a-z A A= B(a)—¢(z): B
[,A = B(a) -9(¢): B

The parenthetic notation indicates a distinguished occurrence of a subterm, thus

Cut

the Cut rule shows that we may substitute the output of one rule for the input
of another. The id rule represents reflexivity; it is redundant though harmless at
the moment, but in Gentzen sequent presentations later it provides the base case
for recursive rules.

Let us illustrate by showing how this fragment deals with the object an-
tecedent reflexive paradigm already mentioned:

(17) a. John showed Mary the book.
b. John showed Mary herself.
c. *John showed herself Mary.

Derivations will be represented Dowty, Wall and Peters (1979)-style. For (17a)
there is the following:

(18) 1. John—j: N

2 showed — show: TTV

3. the — Axwy(z y): DEF

4. book — book: CN

5. Mary — m: N

6. the + book — (Azwy(z y) book): N 3,4 R4
7.  the + book — 1y(book y): N =

8.  (showed, the + book) — (show ty(book y)): TV 2,7 R2
9.  ((showed, the + book)W Mary) — ((show ty(book y)) m): VP 5, 8 R3
10. showed + Mary + the 4+ book — ((show wy(book y)) m): VP =9

1 John + showed + Mary + the + book—

(((show wy(book y)) m) j): S 1,10 R1

0
1

Lines 1 to 5 are lexical assignments. Lexical semantic forms may be atomic
or complex; in that for the determiner at line 3 an iota operator is used to
represent definite description. At each subsequent line a derived assignment is
given together with an indication of the rule and previous assignments from which
it is obtained. Thus line 6 is obtained by applying rule R4 to 3 and 4. When
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assignments are obtained by means of equations on terms this is indicated by
= together with the relevant earlier line number (sometimes such manipulations
will be carried out without being represented explicitly). Thus 7 is obtained
from 6 by [-conversion. At 8 a split string is formed in the prosodics, and at 9
the prosodic term is constructed by means of wrap.?2 10 is obtained from 9 by
evaluating the wrap of a split string.

In the generation of (17b) as follows, the reflexive combines at line 5 as se-
mantic functor with the ditransitive, forming a split string prosodically, and re-
flexivising the non-subject arguments of the predicate semantically. Combination
by wrap with the object argument yields the acceptable word order.

(19) 1. John —j: N
2. showed — show: TTV
3. herself — AzAy((z y) y): OBJRFLX
4. Mary —m: N
5. (showed, herself) — (AzAy((z y) y) show): TV 2,3R5
6. (showed, herself) — Ay((show y) y): TV =5
7. ((showed, herself YW Mary) — (Ay((show y) y) m): VP 4,6 R3
8. showed + Mary + herself — ((show m) m): VP =7
9. John + showed + Mary + herself — (((show m) m) j): S 1,8 R1

The unacceptable word order (17¢) is not obtained because although (showed,
Mary) is generated as a TV, the rule R3 combining a TV with its object requires
an N, not the object-antecedent reflexive pronoun syntactic type OBJRFLX.

By way of providing a familiarising stepping stone between the grammar pre-
sentations and derivations to appear later, and the standard ones seen so far, we
now exemplify the use of recursive rules in the PTQ-like fragment.

Montague treats quantification and relativisation by means of syntactic, or
what we shall call prosodic, variables and semantic variables. In his treatment
of quantification, a sentence built out of a prosodic variable and associated se-
mantic variable may be combined with a quantifier phrase by substituting the
latter’s prosodics for the prosodic variable; this step is accompanied by applica-
tion of the quantifier phrase semantics to the input sentence semantics abstracted
over the semantic variable associated with the prosodic variable. Semantically
this achieves sentencial scope for the quantifier, while binding the position occu-
pied by the quantifier phrase prosodically. Montague used the case where there
is more than one occurrence of the prosodic variable to define binding of pro-
nouns, by substituting for the first prosodic variable, and changing the others to
pronouns. If there was no occurrence, we would obtain a non-sensical vacuous
quantification. On the other hand, treating assignments to variables like regular
lexical declarations leads to the anonomolous generation of sentences containing
variables.

20f course, a regular transitive verb need not combine with its object by wrap, but we are
not considering these in the fragment.
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We make two observations: first, the analysis has a conditional form: if some-
thing formed out of a referring nominal would be a sentence, then that something
with a quantifier phrase in place of the referring nominal would be a sentence,
with semantics given by applying the quantifier phrase to the sentence abstracted
over the referring nominal semantics. Second, the derivational anomolies arise
because there is no management of the hypothetical referring nominal engaged.

The situation is similar with respect to relativisation. For Montague a sen-
tence built out of a prosodic variable may be prefixed by the relativiser ‘such
that’, and the variable occurrences changed to pronouns. The semantic applica-
tion of the relativiser to the sentencial abstraction binds an extraction site. In
the case that there are multiple occurrences a “parasitic resumptive” construc-
tion would be obtained (e.g. ‘the man such that he thinks Mary likes him’), and
in the case that there are none, a non-sensical vacuous form (e.g. ‘the man such
that Mary walks’).

The same design can be used for relativisers that have gaps rather than pro-
nouns at their extraction sites, by deleting the prosodic variables. Overall the
analysis again has a conditional structure: if something formed out of a referring
nominal would be a sentence, then that something with a reflexiviser prefixed
...(and so on). And again, as things stand the hypothetical is slipped in in a
way that does not control anomolies.

The essential content of these analyses is formulable in a robust way by means
of recursive rules. By recursive rules, or metarules (cf. Gazdar, Klein, Pullum and
Sag 1985), we mean rules generating an output statement of formation schema
from one or more input statement of formation schemata. Recursive rules may
be called proper rules of formation, and non-recursive rules (like those seen until
now) axiomatic rules of formation. Montague tried to get by with axiomatic
rules of formation; proper rules of formation for non-resumptive relativisation
and quantification, both binding exactly one position, are as follows (cf. Morrill

1990b).

(20) Aja—z:N=>a+a+v—x:S
A;b—y: RELPRO = b+ a+~v— (y Azx): R

R9

(21) Aja—z: N = fa) — ¢: S
Ab—y: QP = B(b) — (y Azg): S

R10

The relativisation rule R9 states that where some assumptions plus a referring
nominal with prosodic variable a and semantic variable z yield a sentence with
prosodics a+a-++ (a or v might be €), those assumptions plus a relative pronoun
yield a relative clause with prosodics « + 7 prefixed by the relative pronoun, and
semantics the application of the relative pronoun to the abstraction over z of
the input sentence semantics. And the quantification rule R10 states that where
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some assumptions plus a referring nominal with prosodic variable a and semantic
variable z yield a sentence, then those assumptions plus a quantifier phrase yield a
sentence with prosodics the result of substituting the quantifier phrase prosodics
for a, and semantics the application of the quantifier phrase to the abstraction
over z of the input sentence semantics.

Derivations including such metarules can be given in a quite accessible manner
by extending the PTQ-style derivation format to one akin to Fitch-style natural
deduction. That is, we have “smart” block-structure to manage hypotheses and
their scope and discharge. Derivations are obtained by five kinds of steps:

(22) a. n. a—¢: A for any lexical entry
b. n. | ap — z1: Ay H
E :
n+m. | an — Tm: A H
c. n. a— ¢ A
o — ¢ A =n,ifa=d & ¢ = ¢'
d. n. a—¢: N
m. B —: VP
a+p- (Y ¢):S Rl n,m
e. n B — 1¢: RELPRO H
m. la —z: N
P la+a+v—-x:S unique a as indicated

B+a+vy— (¥ Axx): R RIn,m,p

The rule (22a) states that we may introduce a lexical assignment at any point.
The hypothesis rule (22b) states that at any point a subderivation with some
number of hypotheses may be begun. Since we shall later want to have sub-
derivations with two hypotheses, we allow at once the general case with any
number. The variables in each hypotheses should be new, i.e. not occurring in
any other hypothesis in scope. The relabelling rule (22¢) states that terms may
be rewritten to equivalents. We have rules like (22d) for axiomatic rules of forma-
tion, and rules like (22e), exiting from subderivations and discharging hypotheses,
for proper rules of formation. Note that the condition limits the number of uses
of the hypothesis, i.e. the number of positions bound, to exactly one.
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An example of relativisation ‘which John talks about’ is obtained as follows.

(23) which — Az AyAz[(y z) A (z z)]: RELPRO
John — j: N
talked — talk: PV
about — about: P
la —z: N H
|about + a — (about z): PP 4,5 R8
|talked + about + a — (talk (about z)): VP 3, 6 R6
|John + talked + about + a — ((talk (about z)) j): S 2, 7R1
|John + talked + about + a + € — ((talk (about z)) j): S =
which + John + talked + about 4 e—
(AzAyAz[(z z) A (y z)] Az((talk (about z))) j)): R 1, 5,9 R9
11.  which + John + talked + about—

AyAz[(y z) A ((talk (about 2))) j)]: R =10

© XN E W=

—_
e

The manipulation between line 8 and 9 is needed in order to match the form of
the relativisation rule. In the case of medial extraction (i.e. with a non-peripheral
extraction site) the required form would already be present. We shall not spell
out such cases, and the embedding of subderivations for quantifier scoping, and
its recursion for quantifier scope ambiguity, since many essentially equivalent
examples appear later in the context of categorial grammar. Rather, we assume
that the architectural and technical space is established, and begin to consider
the way in which it is instanciated by categorial grammar.

3 Model Theory

The theory of presentation given until now is a “dumb” syntactic system, such
as is ubiquitous in formal grammar and the tradition of the Chomsky hierarchy.
The central tenet of categorial grammar in the logical tradition, as it is to be
assumed here, is that the theory of formation can be defined model theoretically.
This stance occupies an extreme minimalist lexicalist position in which there is no
syntactic component playing a definitional role in the specification of a language
model. There is just a lexicon and a universal theory of formation under which
the lexicon is to be closed to specify the language model, declaratively defined
by the interpretation of categorial types. Rules of syntax serve to calculate, but
not to define. Ultimately a computational and developmental gain is anticipated.
When a lexicon defines a language model in interaction with a variable syntac-
tic component, universal parsers and generators must accomodate the varying
syntactic parameter, and grammar development must constantly readdress the
possible tradeoff between lexical and syntactic variation. Such advantages cannot
be proved a prior: however, so we must be content now with the interest with
regards structure of a model theoretic perspective on grammar.
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3.1 Multiplicative Operators and Groupoid Prosodic In-
terpretation

Assume a set F of categorial syntactic types or (“category”) formulas freely
generated from a set A of atomic formulas thus:

(24) Fu=A| FeF | F\F | F/F

We consider interpretation with respect to model structures starting with a
groupoid algebra (L,+), which is simply a set L closed under a binary oper-
ation +. An interpretation is a mapping D of formulas into subsets of L such
that (cf. e.g. Lambek 1988):3

(25) D(AeB) = {s1+ sa2|s1 € D(A) Asy € D(B)}
D(A\B) = {s|Vs'e€ D(A),s'+s € D(B)}
D(B/A) = {s|Vs'e€ D(A),s+s € D(B)}

Such an interpretation for (in linear logic terminology; Girard 1987) multiplica-
tive operators e (product), \ and / (divisions) is referred to as interpretation
by residuation with respect to the groupoid operation +. Consider a semantic
consequence relation = between formulas:

(26) = A = B iff in all interpretations D(A) C D(B)

Then interpretation by residuation delivers the following (see Lambek 1958, 1961,
1988; Dunn 1991; Moortgat 1991b; Moortgat and Morrill 1991):*

(27) A= C/B == AeB = C == B = A\C

Keeping the interpretation clauses and adjusting the algebra gives us alternative
logics, in particular the non-associative Lambek calculus, and the associative
Lambek calculus. For groupoids we have the non-associative Lambek calculus
NL (Lambek 1961). If we impose the condition of associativity on the algebra of
interpretation, we are dealing with semigroup algebras (L, +):

(28) S1 + (82 + 33) = (81 + 82) + S3

This gives us associative Lambek calculus L (Lambek 1958), a version of non-
commutative linear logic.

The interpretation in groupoids and semigroups corresponds to the prosodic
dimension of signs (e.g. an algebra of binary trees is a groupoid, and an algebra
of strings is a semigroup). For description of language we are interested also in a
semantic dimension.

3Note that we keep to the categorial notation as originally used by Lambek.

4In fact the residuation laws are valid for an even more general interpretation scheme than
that which we need here: they apply for ternary “accessibility” relations in general, not just to
binary functions, i.e. deterministic, “total” ternary relations.



73

3.2 Type-logical Semantic Interpretation

Categorial product and division operators are to be semantically (as opposed to
prosodically) interpreted as spaces in type-theory. A set T of semantic types is
freely generated from a set D of basic semantic types thus:

29) T=D|T—=>T|TxT

A semantic algebra consists of a family {D, },c7 of sets (semantic domains) such
that D,, ., is the set of all functions from D,, to D,, (function space) and D, «.,
is the set of all ordered pairs of objects from D,, and D,, respectively (cross
product, or: Cartesian product). A type map is a function T from category
formulas to semantic types such that

(30) T(A\B)=T(B/A)=T(A) = T(B)
T(AeB) =T(A) x T(B)
Working in two dimensions, each formula A has an interpretation D(A) which is

a set of ordered pairs of prosodic objects from L and semantic objects from T'(A)
(cf. e.g. Morrill 1992a):

(31) D(AeB) = {(s1+ sa,(m1,ma))|(s1,m1) € D(A) A (s2,m2) € D(B)}
D(A\B) = {(s,m)|V(s',m') € D(A),(s' + s,m(m")) € D(B)}
D(B/A) = {(s,m)|V(s',m') € D(A),(s + s',m(m')) € D(B)}

4 Proof Theory

Lambek (1961) gives a Gentzen-style sequent proof theory for the non-associative
calculus. A sequent is of the form I' = A where the succedent A is a type formula
and the antecedent I' is what we shall call a configuration, which in this case is
a binary bracketed sequence of one or more type formulas. A sequent is read as
stating that for any objects in the antecedent types the result of applying the
operation implicit in the configuration is an object in the succedent type. The
calculus is as follows. The parenthetical notation I'(A) represents a configuration
containing a distinguished subconfiguration A.

(32)a. A=A id =4 A(A) =18
AT = B

Cut

b. T'= A A(B):>C’L [A,T] = B
A([l, A\B]) = C I' = A\B
c. I'=A A(B):>CL LAl = B
A([B/A,T)) = C I' = B/A
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. I(AB)=C T =4 A=B
T(AeB) = C T, A= AeB

A Gentzen sequent presentation has a left rule and a right rule for each connective.
The former introduces an occurrence of the connective on the left hand side of
the sequent, the latter on the right hand side. Or reading from conclusion to
premisses, the former removes a connective occurrence on the left, and the latter
removes a connective occurrence on the right. Apart from that, no new formula
occurrences are introduced in going from conclusion to premisses, accept by the
rule Cut. If a Cut-elimination result can be given, that is a demonstration that
all theorems have a proof without Cut, a Gentzen sequent presentation may thus
provide a decision procedure. Lambek (1961) proved Cut-elimination (a technical
error is corrected by Kandulski 1988).

Lambek (1958) gives a Gentzen-style sequent proof theory for the associative
calculus. For this a configuration is an unbracketed sequence of one or more type
formulas:

(33) a. A=A id '= A A(A):>Bh
Cut
A(l') = B

b. =4 A(B)=C AT =B
\L —\R
AT, A\B) = C I = A\B

c. I's=A AB)=C A= B

/L ———/R
A(BJA,T) = C I = B/A

d. F(A,B):>CL ' =4 A=B
[(AeB) = C [, A= AeB

Lambek proves Cut-elimination for this case also.

Rather than use these more standard formulations, we shall for the most part
use labelled deductive systems (LDSs) to present proof theory (Gabbay 1991; see
Moortgat 1991b for categorial application). The philosophy of labelled deduction
is “to bring semantics back into syntax”. What that will mean for grammar is
that prosodic terms and semantic terms, elements of term algebras of the alge-
bras of interpretation, are explicitly managed, providing a formulation maximally
comparable to the PT(Q perspective. In addition to a language of formulas inter-
preted as sets of objects, there are defined languages of terms (labels) interpreted
as particular objects.

We propose to formulate the labelling discipline as follows. Ignoring the dis-
tinction between prosodic and semantic variables, statements of formation are
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sequents of the form:
(34) Uit Ay, .ol Ay = plly, .. 0) A

Where [y, .. .1, are variables and Ay, ..., A, are formulas such that the antecedent
is a mapping from variables to formulas, and p(ly,...,l,) is a term with free
variables lq,...,l,. It is read as stating that the image of Ay,..., A, under the
operation p is contained in A, i.e. that under every interpretation D of formulas
as sets of objects, and every interpretation d of terms, if for each ¢ d(l;) € D(A;)
then d(u(ly,...,1,)) € D(A).

In our labelling for grammar, we maintain this convention that antecedent
formulas are labelled with prosodic and semantic variables (not arbitrary terms):

(35) a; —xy: Ay, ... 0y —Tpt Ay = a— ¢ A

As a result each theorem can be read as a Montagovian rule of formation with
input categories Ay, ..., A, and output category A and prosodic and semantic op-
erations a and ¢. Other versions of labelling allow labelling antecedent formulas
with prosodic and semantic terms in general. However such labelling constrains
the value of the elements to which the theorems apply by reference to the terms
that represent them. In relation to grammar, this would mean conditioning rules
on the semantic and/or prosodic form of the input. For instance, with respect to
semantics, this would constitute essential reference to semantic form in the way
which Montague grammar deliberately avoids. We advocate exactly the same
transparency in relation to the prosodic dimension.

A theory is a set of such statements closed under Cut and id. A theory is
sound iff all its statements are true. It is complete iff it contains every statement
formulable which is true. There is a dependence on languages of terms chosen
here, but by taking these to be term algebras it is intended that there is complete-
ness with respect to full classes of operations in the algebras of interpretation.

4.1 Prosodic and Semantic terms

For groupoid models, a set P of prosodic terms is freely generated from a set IC
of prosodic constants and a denumerably infinite set U of prosodic variables thus:

(36) Pu=U|K|P+P

Each prosodic term « has an interpretation d(a) as an object in a groupoid
algebraic model structure, given in the obvious way.

To include the semantic side, typed semantic terms are defined and interpreted
as usual, but including pairing and projection for the Cartesian product semantic
type. Starting from a set C, of constants and a denumerably infinite set V, of
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variables for each type 7, the set S; of typed semantic terms for each type 7 is
freely generated thus:

(37) S’T = C'r | V’r | (S’T"—)’T' ST’) ‘ 7‘-18'r><"r’ ‘ 7r287"><"r
Sy = AVHS,
STXT’ = (ST:ST’)

4.2 Labelled Proof Theory

We are now in a position to give labelled deductive systems for the Lambek
calculi. We do so in Gentzen sequent-style, and Fitch natural-deduction style.

4.2.1 Gentzen-style sequent rules

As a labelled deductive system the non-associative Lambek calculus with just
prosodics is as follows in a labelled Gentzen-style sequent presentation. As before,
the parenthetical notation indicates distinguished subterms. The prosodic terms
are constructed by a non-associative binary adjunction operation. Note that the
definition of statements of formation as being functional in their left-hand side
assignment of types to variables rules out as ill-formed binary metarule instances
where the same variable would receive different type assignments in the conclusion
from the different premisses.

(38)a. aA=aA id

b. I'=s=aA aAA= () B
I''A = f(a): B

Cut

c. I'sa:A b B,A=~(b):C
[d: AAB,A = y((a+d)): C

d. T,a: A= (a+~v): B
T = 4: A\B

\R

e. I's>aA b:B,A=>’y(b):C’L
I'd: BIAJA = v((d+ «)): C
f. T,a:A= (y+a): B
T = v: B/A
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g. a:Ab B A=~v(a+b):C
c: AeB,A = v(c): C

h I'ssaA A=p1B
[,A = (a+f): AeB

In (38g) the succedent of the premise must contain the complex subterm (a + b),
which is replaced by c in the conclusion sequent. As is normal in sequent calculus,
each operator has a L(eft) rule of use and a R(ight) rule of proof. Cut-free
backward chaining proof search is terminating since in every proof step going from
conclusion to premisses, the total number of operator occurrences is reduced by
one. And such proof search constructs in the succedent label of a sequent proved
a term representing the operation mapping the antecedent type inhabitants into
the succedent type.

An example of a Gentzen proof deriving “subject lifting” of a referring nom-
inal is thus:

(39) aN =aN S =cS
a: N, b: N\S = (a+b): S
a: N = a: S/(N\S)

\L
/R

Including also the semantic dimension, the labelled Gentzen sequent presen-
tation is (40). In (40g) the parenthetical notation with commas indicates two
distinguished subterm occurrences in the semantics.

(40) a. a-z:A=a-1x: A id

b. I'=sa-¢ A a-z AA= Ba)—¢(z): B
[, A = B(e) ~4(4): B

Cut

c. I'=sa-¢A b—y:B,A:>’y(b)—X(y):C\L
Id—w: A\B,A = v((a+d)) - x((w ¢)): C
d. F,a—x:A:>(a+’y)—1/J:B\R
I'= v - Azyp: A\B
e. I'ssa-—¢ A b—y:B,A:>’y(b)f¢(y):C’/L
I'd—w: B/JAA = y((d+a)) - ¢((w ¢)): C
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f. Ta-z: A= (y+a)—-9: B

/R
I'= v - Azyp: B/A

g. a-z:Ab-y: B,A=~v((a+b)) - x(z,y): C
c—z: AeB, A = vy(c) — x(mz,mz): C

ol

h. T=a-¢A A=B-¢:B .
LA = (atf) - (¢,9): AeB

With semantics the previous derivation becomes the following.
41) a-x:N =a-x:N c¢-2:S =>c—-2zS
a-z:N,b-y:N\S = (a+b) - (yx): S
a-z:N = a- My(y z): S/(N\S)

/R

4.2.2 Fitch-style Natural Deduction

For labelled Fitch-style categorial derivation, the lexical assignment, subderiva-
tion hypothesis, and term label equation rules are as given earlier:

(42) n. a—¢: A for any lexical entry

n. la; —z1: Ay H

n+m. | am—Tm 4, H

n. a—¢: A
o — ¢ A =n,ifa=ad & ¢ = ¢

As for a Gentzen formulation, there are two rules for each operator: a rule of elim-
ination (corresponding to the Gentzen left rule) showing how to use a formula
with that operator as principal connective, and a rule of introduction (corre-
sponding to the Gentzen right rule) showing how to prove a formula with that
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operator as principal connective.

(43)

(44)

(45)

n. a—¢: A

m. v - x: A\B
(a+7)_(X¢)B E\n,m

n. la—x: A H

m. |(a+7v)—-¢: B unique a as indicated
v — Azg: A\B I\ n,m

n. a—¢: A

m. v - x: B/A

(v+a)-(x¢):B E/nm

3
B
\
8
BN

H

m. |(y+a)-¢: B unique a as indicated

S

Azp: B/A I/ n,m

v —x: AeB

la —xz: A H

b—y: B H

|0[(a +b)] — w[z,y]: D unique a,b as indicated
5[7] o w[ﬂ-1X7 7T2X]: D Ee n,m,m+1,p
a—¢: A

B - B

(a+B) — (¢,v): AeB Te n,m

The previous theorem is now derived:

(46)

-

a—x: N
b-
l(a+b) — (y x): S E\ 1, 2
a—Ay(y z): S/(N\S) 1/2,3

y: N\S H

4.3 LDS for Associative Lambek Calculus

A Gentzen-style labelled calculus for the associative Lambek calculus L can be

obtained from that for the non-associative calculus by adding a structural rule of

associativity:
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(47)

' = Oé(((Oll + 012) + 013))2 A

A

I'= a((a; + (e + a3))): A

For the Fitch-style we may add a prosodic equation:
(48) ((ou + o) + a5) = (on + (02 + as))

Alternatively, the associative Lambek calculus can be given by dropping paren-
theses in prosodic labels. Illustrating in Fitch-style, this gives the following:

(49)

(50)

(51)

n. o-—
m. Y —

¢: A
x: A\B

at+y-(x¢):B E\nm

n. la—x: A H
m. la+vy—-¢: B unique a as indicated
v — Azg: A\B I\ n,m
n. a-—¢: A
m. v - x: B/A
Yt+a-(x¢):B E/nm
n. |la-—xz: A H
m. |y+a-¢: B unique a as indicated
v - Az¢: B/A I/ n,m
n. v —x: AeB
m. la —z: A H
m+1. |b—y: B H
. |0(a+b) — w(z,y): D unique a,b as indicated
5(7) o w(’”lXa 7T2X): D Ee n,m,m + ]-7p
n. a—¢: A
m. B —1: B

a+pB-(¢,¢): AeB Ten,m

This allows derivation of e.g. composition theorems not valid in the non-associative

case.

(52)

1. d—-w: VP/PP

2. e—u: PP/N

3. |e=z:N H

4. le+c— (e z): PP E/ 2,3
5. |[d+e+c— (w(ez)): VP E/ 1,4
6. d+e— Xz(w (e 2)): VP/PP 1/3,4
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We now have all we need in order to give linguistic illustration.

5 Linguistic Application

5.1 Left extraction: relativisation and topicalisation

We have already seen the relativisation example (53a) (exhibiting the same kind
of dependencies as other left extraction constructions such as topicalisation (53b)
and interrogativisation (53c)) in the context of the PTQ-style grammar.

(53) a. which John talked about
b. Mozart John talked about
c. What did John talk about?

The relativisation can be derived as follows in Fitch-style natural deduction L
without parentheses:

(54) 1.  which — AzAyAz[(y z) A (z z)]: (CN\CN)/(S/N)
2 John — j: N
3.  talked — talk: (N\S)/PP
4.  about — about: PP/N
5. Ja—z: N H
6. |about + a — (about z): PP 4,5 E/
7. |talked 4 about 4+ a — (talk (about z)): N\S 3,6 E/
8.  |John + talked + about + a — ((talk (about z)) j): S 2, 7 E\
9.  John + talked 4+ about — Az((talk (about z)) j): S/N 5,81/
10.  which + John + talked + about—

(AzdyAz[(z 2) A (y 2)] Az((talk (about z)) j)): CN\CN 1,9 E/
11.  which 4 John + talked + about—
AyAz[(y z) A ((talk (about 2)) j)]: CN\CN =10

The topicalisation is generated if Ne(S/N) is included as a distinguished type (for
details see Morrill and Gavarré 1992):

(55) 1. Mozart — mozart: N
2. John + talked 4+ about — Az((talk (about z)) j): S/N
3. Mozart + John + talked + about —
(mozart, A\z((talk (about z)) j)): Ne(S/N) le 1,2

And also without going into details (but see e.g. Carpenter 1992), the wh-question
can be obtained by assignment of the interrogative pronoun to 1/(M/(S/N)) where
M represents subject-auxiliary inverted sentences, and I interrogatives.

Elegant as such categorial grammar may be, it is more suggestive of an ap-
proach to computational linguistic grammar formalism, than actually represen-
tative of such. The present approach to left extraction for example is limited
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to peripheral, as opposed to medial extractions, since S/N represents sentences
lacking nominals at the right periphery. For resolution of such matters by means
of structural operators, e.g. A for permutation, whence S/N may become S/AN;,
see Morrill, Leslie, Hepple and Barry (1990) and Barry, Hepple, Leslie and Morrill
(1991). Various other enrichments are proposed in e.g. Moortgat (1988, 1990,
1991a), van Benthem (1989), Morrill (1990a, 1990b, 1990c, 1992a, 1992b) and
Moortgat and Morrill (1991). Moortgat (1988) advanced earlier discussion of
discontinuity in e.g. Bach (1981, 1984) with a proposal for infixing and wrapping
operators. The operators not only provide scope over these particular phenomena
but also, as indicated in e.g. Moortgat (1990), seem to provide an underlying
basis in terms of which operators for binding phenomena such as quantification
and reflexivisation should be definable. The coverage of pied-piping in Morrill
(1992b) would also be definable in terms of these primitives, but all this depends
on the resolution of certain technical issues which have been to date outstanding.

6 Groupoid Prosodic Interpretation with Iden-
tity Element

We already saw use of the empty string in treatment of discontinuity in the
PTQ-style fragment. To prepare ground for the treatment of discontinuity, we
now incorporate an identity element in associative categorial grammar. Category
formulas are freely generated from a set A of atomic category formulas thus:

(56) F=A|FeF |F\F|F/F|I

The formula formed by the nullary operator I is a unit for product. We interpret
in a monoid (L*, +, €), i.e. a semigroup (L*,+) with an element ¢ € L* such that:

(57) s+e=€e+s=s

See e.g. Lambek (1988). Then I is made a unit for product by defining its
interpretation thus:

(58) D(I) = {e}

If we interpret the other multiplicatives in L* we will have e € D(A/A), D(A\A)
which, for linguistic reasons (Morrill 1990a), we do not want. Thus we interpret
types as subsets of L defined to be L* — {e¢}:

(59) D(AeB) ={s;+s, € L|s; € D(A) A s, € D(B)}
D(A\B) ={s € L|¥s' € D(A),s' +s € D(B)}
D(BJA) ={s€ L|¥s' € D(A),s+s' € D(B)}

We will not actually use I here, and will not trouble to formulate rules in such a
way as to block assignment to . What will be important for discontinuity is the
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presence of € in the algebra of interpretation. The additional apparatus employed
will be that of heterogeneous systems of types, that is systems with not just one
family of multiplicatives, but with a community of such families.

7 Groupoid Prosodic Interpretation and Com-
munities of Multiplicatives

The essential idea is presented in its generality in Moortgat and Morrill (1991).
There it is shown how to give calculi for families of multiplicatives each with
their own structural properties, and perhaps with structural interactions. For
example, we may juxtapose L and NL (for anticipation of this particular case
see Oehrle and Zhang 1989 and Morrill 1990b). More generally, we can define
formulas F for n families of multiplicatives thus:

(60) F=A|ForF | F\\F | F/1F | FooF | F\;F | F/2F

| ... | Fo, F | F\,F | F/uF

7.1 Model Theory for Communities of Multiplicatives
Prosodic interpretation is by residuation of each multiplicative with respect to
its associated adjunction in an algebra (L, +1, 42, ..., +n):

(61) D(Ae;B) = {s +; so|s1 € D(A) A sy € D(B)}
D(A\,B) ={s|Vs' € D(A),s' +; s € D(B)}
D(B/:A) ={s|Vs' € D(A),s+; s' € D(B)}

As a consequence the residuation laws hold for each family:
(62) A= C/;B = Ae;,B = C = B = A\,C

The semantic interpretation takes place with respect to cross product and
function formation exactly as would be expected.

7.2 Proof Theory for Communities of Multiplicatives

The Fitch-style labelled deduction rules are as before for, but with each connective
correlated with its adjunction constructor in the labels.

(63) n. a—¢: A for any lexical entry

n. la; —z1: Ay H
| :

n+m. |a, %, A, H

n. a—¢: A
o — ¢ A =n,ifa=ad & ¢ = ¢
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(64) n.

(a+iv) — (x ¢): B E\i n,m

n. |la—xz: A H
m. |[(a+;v) - ¢: B unique a as indicated
v — Azg: A\,B I\; n,m
(65) n. a—¢: A
m. v - x: B/;A

(v+ia) - (x¢): B E/in,m

n. la—x: A H
m. |(y+ia) - ¢: B unique a as indicated
v - Az¢: B/;A I/i n,m
(66) n. v — x: Ae;B
m. la —xz: A H
m+1. |b—y: B H
Pp. |0[(a +:b)] — w[z,y]: D unique a,b as indicated

6[7] B OJ[7T1X, WZX]: D E.i n,m,m + ]-ap

S
\

The Gentzen-style labelled sequent rules likwise as before, but with each con-
nective correlated with its adjunction constructor in the prosodic labels.

(67 a. a-r:A=>a-1z: A
b. I'=sa-¢ A a-z: A A= Ba)—¢(z): B
0,8 = Bla) - (¢): B

c. I'sa-¢:A b-y: B,A=~v(b)-x(y):C
I''d —w: A\,B,A = y((a+; d)) — x((w ¢)): C

Cut

\iLL

d. Tya-z: A= (a+:iv) - y: B
' = v - Azyp: A\,B

\iR



F'=a-¢:A b-y: B A= v(0b)-v¢(y):C
I'd - w: B/i,A/A = v((d+; @) — ¢((w ¢)): C

/il

Na-z: A= (y+ia) -¢: B
I'= v - Azy: B/, A

/iR

a-z: A,b—y: B,A = y((a+i b)) — x(z,y): C
c—z: Ae;B, A = v(c) — x(mz,mz): C

GZ'L

F=a-¢: A A=>ﬁf¢:B‘
T,A = (a+; 8) - (6,9): Ae;B
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We set all this out explicitly in order to facilitate observation that the labelled
proof theory for discontinuity will have precisely this pattern of implementation
in labelled deduction.

8 Discontinuity

Binary operators 1 and | are proposed in Moortgat (1988) such that B A signifies
functors that wrap around their A arguments to form Bs, and (in our notation)
Al B signifies functors that infix themselves in their A arguments to form Bs.

Assuming the semigroup algebra of associative Lambek calculus, there are two

possibilities in each case, depending on whether we are free to insert anywhere
(universal), or whether the relevant insertion points are fixed (existential). We
leave semantics aside for the moment.

(68) Existential

(69)

D(B13A) = {s|3s1, 82[s = s1+sa AVs' € D(A),s1+ s +
s2 € D(B)l}

Universal

D(B1yA) = {s|Vsy,s2[s = s1+ 83 = Vs' € D(A),s; +
s'+ s, € D(B)]}

Existential

D(Bl;A) = {s|Vs' € D(A),3s1,s2[s' = s1+saAs1+5 +
s2 € D(B)]}

Universal

D(BlyA) = {s|Vs' € D(A),Vs1,s3[s" = 51+ s2 = 51 +
s'+ s, € D(B)]}

Inspecting the possibilities of ordered sequent presentation, of the eight possible
rules of inference (use and proof for each of four operators), only 15R and | L
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are expressible:

(70) a. ',Al's=~0B
T,,Ty = BlaA

TSR

b. Fl,Fg = A Al,B,A2:>C
AlaFIaAJ/VB,F2aA2 = C

LvL

This is the partial logic of Moortgat (1988). Note that the absence of a rule of
use for existential wrapping means that we could not generate from discontinu-
ous elements such as ‘ring up’ and ‘give the cold shoulder’ which we should like
to assign lexical category (N\S)T3N. (Evidently 1y would permit incorrect word
order such as *Mary gave the John cold shoulder’.) The problem with ordered
sequents appears to be that the implicit encoding of prosodic operations is of
limited expressivity. Accordingly, Moortgat (1991b) seeks to improve the situa-
tion by means of explicit prosodic labelling. This does enable both rules for e.g.
ly but still does not enable the useful {5L: the remaining problem is, as noted
by Versmissen (1991), that we need to have an insertion point somehow determi-
nate from the prosodic label for an existential wrapper in order to perform a left
inference.

In Moortgat (1991a) a discontinuity product is proposed, again implicitly
assuming just a semigroup algebra:®

(71) D(A® B) = {s1 + s2+ s}|s1 + s, € D(A),s, € D(B)}

As for the discontinuity divisions, ordered sequent presentation cannot express
rules of both use and proof: only ®R can be represented:

(72) Fl,rg = A A=B
', A\, =A06BH8

OR

Even using labelling, the problem for ®L remains and is the same as that before:
there is no proper management of separation points. See Hepple (1993) for an
attempt to give full logic for Moortgat interpretations via a complex system of
labelling.

In Moortgat (1991a) it is observed how the quantifying-in of infix binders such
as quantifier phrases seems almost definable as (STN){S: they infix themselves at
N positions in Ss (and take semantic scope at the S level — that is why they
must be quantified in). None of the interpretations above however enable the
expression of the requirement that the positions referred to by the two operator

5The version given is actually just the existential case of two possibilities, existential and
universal, as before. No rules for the universal version can be expressed in ordered sequent
calculus, or labelled sequent calculus.
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occurrences are the same. The present proposals will facilitate this definability,
and also admit of a full logic. In subsequent sections we deal with examples
including the following instances of discontinuity.

(73) a. Mary rang John up. Particle verb
Mary gave John the cold shoulder. Discontinuous idiom
c. John likes everything Quantifier raising
Everyone loves something
John believes someone walks
d. for whom John works. Pied-piping
the loss of which after so much
wrangling John would finally have

to pay for
e. John studies logic and Charles, Gapping
phonetics.
f.  John showed Mary herself. Object antecedent reflexivisation

9 Model Theory for Discontinuity

To formulate discontinuity we have a community comprising three families of
multiplicatives: the usual associative operators, ‘split-point’ non-associative op-
erators, and discontinuity operators. The category formulas are:

(74) F = A | FoF | F\F | FJF | FoF | F>F | F<F
| FOF | FAF | FAF

The present proposals differ from Morrill and Solias, and also the original inter-
pretations proposed by Moortgat (1988), in treating wrapping adjunction as a
primitive, rather than defined, operation in the prosodic algebra. Corresponding
to the three families of multiplicatives there are three adjunctions, and there is an
identity element for the associative adjunction +. Thus prosodic interpretation
is in an algebra (L*,+,¢,(.,.), W) where (L*,+,¢) is a monoid and in addition
to the associativity and identity conditions we have:

(75) (51, 83)W82 = 81 + 89 + 83

Spelt out in full the interpretation is as follows by residuation with respect to
each adjunction:

(76) D(AeB) ={s;+ss € L|s; € D(A) Asy €D
D(A\B) ={se L|Vs'€ D(A),s'+se€ D(B

(B/A) ={se L|Vs'e€ D(A),s+s € D(B
(A°B) ={(s1,82) € L|s; € D(A) Nsy €D
( B
( B

)}

(77) )}
= {s € L|Vs' € D(A), (s',s) € D(

(B
)}
)}
(B
\B) )}

B/A) ={s€ L|Vs'€ D(A),(s,s') € D(B)}
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(78) D(A®B) = {sWs; € L|s, € D(A) A s € D(B)}
D(ALB) ={se€ L|Vs' € D(A),s'Ws € D(B)}
D(BtA) ={s € L|Vs' € D(A),sWs' € D(B)}

As above, L is L* — {¢}.

This is a refinement of the proposal in Morrill and Solias (1993) which is
to interpret discontinuous operators in a prosodic algebra (L*, +,¢€,(.,.),1,2)
where (.,.) is a pairing operator (introduced in Solias 1992) and so has asso-
ciated projection functions 1 and 2. This defines an algebra of the present form
by (s,s") = (s,s') and sWs' = 1s+ 5"+ 2s, but not vice-versa, so that the present
form has more general models. The refinement is motivated by the incomplete-
ness of non-associative Lambek calculus for interpretation as ordered trees (see
Venema 1993). Since tree formation is isomorphic to pairing, the same incom-
pleteness would arise in the treatment of discontinuity using tupling. The more
general models do not impose the structure that validates the non-NL-theorems
considered by Venema.

10 Proof Theory for Discontinuity

To avoid having to list too many rules we give just the Fitch-style proof theory
in full. The Gentzen formulation is likewise immediately obtained according to
the heterogeneous design. Since + is the only associative constructor, we can
represent this by ommitting its parentheses. There are the following term label
equations:

(79) (0, M)WPB) =a+ B+

at+e=€eta=«

The lexical assignment, subderivation hypotheses, and term rewriting rules are
as usual:

(80) mn. a—¢: A for any lexical entry

n. la; —z1: Ay H

n+m. | am—Tm A4, H

n. a—¢: A
o — ¢ A =n,ifa=ad & ¢ =¢'
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The logical rules are as follows.

81) n. a-¢: A
m. v —x: A\B
at+y-(x¢):B E\nm

n. |la-—xz: A H
m. la+vy—-¢: B unique a as indicated
v — Azg: A\B I\ n,m

(82) n. a—¢: A
m. v - x: B/A
Yt+a-(x¢):B E/nm

n. la—x: A H
m. |y+a-¢: B unique a as indicated

v - Az¢: B/A I/ n,m

(83) n. v - x: AeB
m. la —xz: A H
m+1. |b—y: B H
Pp. |6(a +b) —w(z,y): D unique a,b as indicated

6(7) B w(ﬂ-IXa 7T2X): D Ee n,m,m + 1ap

n. a—¢: A
m. B —1: B
a+p - (4,¢): AeB  len,m
(84) n. a-¢: A
m. v-—-x: A>B
(¢,7) - (x ¢): B E>n,m
n. la—x: A H
m. |(a,y) - ¢: B unique a as indicated

v —Ax¢p: A>B I>n,m

(85)

3
!
e

(v,a) — (x ¢): B E<n,m

. H
m. |(y,a) - ¢: B unique a as indicated
v - Ax¢p: B<A  I<n,m

3
e
|
8
BN
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(86)

(87)

(88)

(89)

n.

m+ 1.

S

v — x: A°B

a—1x: A H
|

b—y: B H

10((a,b)) — w(z,y): D unique a,b as indicated
5(7) 7w(7T1Xa7T2X): D Ee n, m:m+1ap

—¢: A

—Y: B

(o, B) — (¢,9): AeB Ten,m

™ R

(aWy) - (x ¢): B Eln,m

3
B
\
8
BN

H

m. [(aWw) - ¢: B unique a as indicated

Ax¢p: ALB Il n,m

(YWa) - (x ¢): B Et n,m

3
e
\
8
BN

H

m. |[(yWa) - ¢: B unique a as indicated

o

m—+ 1.

S

Ax¢p: BTA ITnm

v—x: A®B

la —z: A H

|b—y: B H

|0((aWb)) — w(z,y): D unique a,b as indicated
5(7) - (.4)(7T1X, 71-ZX): D E® n,m,m + 1ap
a—¢: A

p-y:B

(aWp) - (¢,¢): AOB 1® n,m

The examples in the next section are derived using this format.
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11 Linguistic Application

11.1 Particle Verbs

The example ‘Mary rang John up’ is derived as follows. The particle verb has a
complex lexical form constructed out of the splitting adjunction, and its lexical
type is that of a wrapping functor. After combination with the object at line 3,
prosodic evaluation at line 4 give the discontinuous word order.

(90) 1. (rang,up)— phone: (N\S)tN
2. John —j: N
3. Mary —m: N
4. ((rang,up)W John) — (phone j): N\S 1,2 Et
5. rang + John + up — (phone j): N\S =
6. Mary + rang + John + up — ((phone j) m): S 3,5 E\

11.2 Discontinuous Idioms

A discontinuous idiom construction such as ‘Mary gave John the cold shoulder’
is treated in exactly the same way:

(91) (gave, the + cold + shoulder) — give-tcs: (N\S)TN
John — j: N
Mary —m: N

((gave, the + cold + shoulder)W John) — (give-tcs j): N\S 1,2 Et
gave + John + the + cold + shoulder — (give-tcs j): N\S =
Mary + gave 4+ John + the + cold 4+ shoulder—

((gave-tcs j) m): S 3,5 E\

AN S

11.3 Quantifier Raising

In Moortgat (1990) a binary operator which we write here as 1} is defined for which
the rule of use is essentially quantifying-in, so that a Montagovian treatment of
quantifier-scoping is achieved by assignment of a quantifier phrase like ‘something’
to Nf}S, and assignment of determiners like ‘every’ to (N{}S)/CN. As we already
noted, in Moortgat (1991a) it is suggested that a category such as Af}B might
be definable as (BtA)] B, but Moortgat observed that this definability does not
hold for the given interpretation, for which, furthermore, the logic is problematic.
On the present formulation however, these intuitions are realised. The category
(STN)JN is a suitable category for a quantifier phrase such as ‘everything’ or
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‘some man’, achieving sentential quantifier scope, and quantificational ambiguity.
Consider first ‘Every man walks’:

(92) every — Az yVz((z z) — (y 2)): ((STN)]S)/CN

man — man: CN

walks — walk: N\S

every + man — (AzAyVz((z z) — (y z)) man): (STN)|S E/ 1,2
every + man — A\yVz((man z) — (y 2)): (STN)|S =4

la —z: N H

la + walks — (walk z): S E\ 3,6
le + a + walks — (walk z): S =7
|((e, walks)Wa) — (walk z): S =8

(€, walks) — Ax(walk z): STN I16,9
((€, walks)W every + man) —

(AyVz((man z) — (y 2)) Az(walk z)): S El 5, 10
12. €+ every + man + walks — Vz((man z) — (walk z)): S =11
13. every + man + walks — Vz((man z) — (walk z)): S =12

© XN O W

[ —
— O

The generation up to line 5 of ‘every man’ with the standard semantics and type
(STN)IN is straightforward. In lines 7 to 9 a sentence is constructed on the
basis of the nominal @ — z hypothesised at line 6. Prosodic equations are used
to show that the prosodics can be expressed in a form in which W is the main
constructor, and in which, furthermore, a is the right hand operand. The left
hand operand is thus a split string term in which a is to be interpolated. Now
because the wrap connective is the divisional residuation with respect to the right
hand operand of W, this split string term is derivable at line 10 as of the wrap
type STN, by If. Since ‘every man’ is an infix functor over STN, it can combine
by EJ (line 11), and on prosodic evaluation interpolates itself at the position in
which the hypothesised nominal was used in the subderivational sentence. Thus
the quantifier phrase binds semantically a semantic variable for the position in
which it occurs prosodically.

There can be no deviance from this pattern, that is, a quantifier phrase cannot
bind the wrong position, for there can be no way that the last line of the relevant
subderivation can have the form required for If, that is (aWa) — ¢ where a — z is
the hypothesis, without « being a split string marking the interpolation position
for the prosodics that corresponds to semantics ¢ in terms of z: the equations
do not allow anything else. So when a quantifier phrase infixes itself, it will
semantically bind the position it occupies prosodically.
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The following derivation shows the object position binding of ‘John likes ev-

erything’.
(93) 1
2
3
4
5.
6.
7
8
9.
10.
11.

John — j: N

likes — like: (N\S)/N

everything — AzVy(z y): (STN){S

la —z: N

|likes + a — (like z): N\S

|John + likes + a — ((like z) j): S

|John + likes + a + € — ((like z) j): S
|((John + likes, e)Wa) — ((like z) j): S
(John + likes, €) — Az((like z) j): STN
((John + likes, €)W everything) — (AzVy(z y) Az((like z) j)): S
John + likes + everything — Yy ((like y) j): S

H
2,4E/
1,5 E\
=6

=7
4,8 It
3,9 E|
=10

The next two derivations deliver the subject wide scope and object wide scope
readings of ‘Everyone loves something’.

(94)

5 © XN oE W=

11.
12.
13.
14.

everyone — \zVz[(person z) — (z z)]: (STN)|S

loves — love: (N\S)/N

something — Az3w[(thing w) A (z w)]: (STN)IS

b—y: N

lla—z: N

||loves + a — (love z): N\S

||b + loves + a — ((love z) y): S

[|((b + loves,e)Wa) — ((love z) y): S

|(b + loves, €) — Az((love z) y): STN

|((b + loves, €)W something) —

(Az3w[(thing w) A (z w)] Az((love z) y)): S

|b + loves + something — Jw[(thing w) A ((love w) y)]: S

|((e, loves + something)Wa) — Jw[(thing w) A ((love w) y)]: S
(€, loves + something) — AyFw[(thing w) A ((love w) y)]: STN
everyone + loves + something —

Vz[(person z) — Jw|[(thing w) A ((love w) 2)]]: S

H
H
E/2,5
E\ 4, 6
=7
1 5, 8

El 3,9
=10
=11
It 4, 12

El 3, 13

In (94) a nominal hypothesis for the subject is made at line 3, and another
subderivation hypothesis for the object at line 4. Since subderivations are first-
in-last-out, the subject position is bound last, that is the subject wide scope
reading is obtained. The sentence already with the object quantifier phrase is
obtained at line 11 just like ‘John likes everything’ in the previous example, but
the subject is a hypothesis variable not a lexical form, and we have worked nested
one level down.
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In (95) the hypothesis of the wider scope subderivation is used in object
position, so that the object wide scope reading is obtained.

(95) 1.  everyone — AzVz[(person z) — (z z)]: (STN){S
2. loves — love: (N\S)/N
3. something — Az3w|[(thing w) A (z w)]: (STN){S
4. |la—=x:N H
5. |b—y: N H
6. ||loves + a — (love z): N\S E/ 24
7. ||b+ loves + a — ((love z) y): S E\ 5, 6
8. ||((, loves + a)Wb) — ((love z) y): S =7
9. |(e, loves + a) — Ay((love z) y): STN I15,8
10.  [((€, loves + a)W everyone) —
(AzVz[(person z) — (z z)] Ay((love z) y)): S El 1,9
11.  |everyone + loves + a — Vz[(person z) — ((love z) z)]: S =10

12.  |((everyone + loves,e)Wa) — Vz|(person z) — ((love z) z)]: S =11
13.  (everyone + loves, €) — AzVz[(person z) — ((love z) z)]: STN  I1 4, 12
14. everyone + loves + something —

Jw|(thing w) A Vz|[(person z) — ((love w) 2)]]: S El 3,13

In the examples so far the quantifier is peripheral in the sentence and (in asso-
ciative calculus) a category (S/N)\S could have been used for a quantifier phrase
to appear in object position and S/(N\S) for the quantifier phrase to appear in
subject position. But further assignments still would be required for a quantifier
phrase to appear in sentence-medial positions. Some generality with respect to
the latter can be achieved by assuming second-order polymorphic categories (see
Emms 1990), but two assignments, one forward-looking and another backward
looking are nevertheless uniformly required by all quantifiers. The single assign-
ment we have given allows appearance in all N positions without further ado, and
allows all the relative quantifier scopings at S nodes. Thus for the example ‘John
believes someone walks’, the first derivation to follow gives the narrow scope,
non-specific, quantifier reading, but the second, the wide scope, specific reading,
which involves the quantifier raising to the superordinate sentence, in which it is



95

medial.
(96) 1. John —j: N
2. believes — believe: (N\S)/S
3. someone — AxJy(z y): (STN)IS
4.  walks — walk: N\S
5. Ja—=x: N H
6. |a+ walks — (walk z): S E\ 4,5
7. |((e, walks)Wa) — (walk z): S =
8. (e walks) — Az(walk z): STN I15,7
9. someone + walks — Jy(walk y): S El 3,8
10.  believes + someone + walks — (believe dy(walk y)): N\S E/ 2,9
11.  John + believes + someone + walks —
((believe Jy(walk y)) j): S E\ 1, 10
(97) 1. John —j: N
2. believes — believe: (N\S)/S
3. someone — AzJy(z y): (STN)IS
4.  walks — walk: N\S
5. Ja—=z:N H
6. |a+ walks — (walk z): S E\ 4,5
7.  |believes + a + walks — (believe (walk z)): N\S E/ 2,6
8.  |John + believes + a + walks — ((believe (walk z)) j): S E\ 7,1
9. [((John + believes, walks)Wa) — ((believe (walk z)) j): S =
10.  (John + believes, walk) — Az((believe (walk z)) j): STN 11 5,9
11.  John + believes + someone + walks —

Jdy((believe (walk y)) j): S El 3,10

11.4 Pied-Piping

Historically, pied-piping has played a crucial réle in the promotion of feature
percolation and phrase structural approaches (Gazdar, Klein, Pullum and Sag
1985; Pollard and Sag 1988, 1992) over categorial grammar. Pollard (1988, p.412)
for example regards it as exposing a critical inadequacy:

(98) “Evidently, there is no principled analysis of pied pip-
ing in an extended categorial framework like Steedman’s
without the addition of a feature-passing mechanism for
unbounded dependencies.”

On the phrase structural view, a relative pronoun introduces information which
may percolate up normal constituent structure to endow larger phrases with the
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relativisation property of occurring fronted and binding a gap of the same cate-
gory as the entire fronted constituent. Cases in which there is no pied-piping are,
convincingly, obtained as the special case where the fronted constituent comprises
only the relative pronoun. That is, a single categorisation covers both pied-piping
and non-pied-piping cases such as (99).

(99) a. (the contract) the loss of which after so much wrangling John

would finally have to pay for
b. (the contract) which John would finally have to pay for the
loss of

In Moortgat (1991a) a three-place operator is considered which is like Af}B,
except that quantifying-in changes the category of the context expression. Morrill
(1992b) shows that this enables capture of pied-piping. It follows from the nature
of the present proposals that (B1C)J] A presents the desired complicity between
the operators. As a result, the treatment of Morrill (1992b) can be presented in
these terms.

As a first example, note how the following pied-piping assignment generates
‘about which John talked’ with the same semantics as ‘which John talked about’,
considered earlier.

(100) 1. about — about: PP/N
2. which — AzAdyrz w|[(z w) A (y (z w))]: (PPTN)L(R/(S/PP))
3 John —j: N
4.  talked — talk: (N\S)/PP
5. Ja—z: N H
6. |about + a — (about z): PP 1,5E/
7.  |about + a + € — (about z): PP =6
8.  |((about,e)Wa) — (about z): PP =7
9. (about,e) — Az(about z): PPtN 5, 8 I
10.  ((about, €)W which)—

(Azdydz w[(z w) A (y (z w))] Az(about z)): R/(S/PP) 2,9 E|
11.  about + which — AyAzAw[(z w) A (y (about w)): R/(S/PP) =10
12. |a—xz: PP H

13. |talked + a — (talk z): N\S 4,12 E/
14. |John + talked + a — ((talk z) j): S 3, 13 E\
15. John + talked — Az((talk z) j): S/PP 12,14 1/
16. about + which + John + talked—

(Ayrzdw[(z w) A (y (for w)) Az((work z) j)): R 11, 15 E/
17.  about + which 4+ John + talked—

AzAw([(z w) A ((talk (about w)) j)]: R =16

This example is potentially manageable in any categorial grammar with compo-
sition, by assignment of type (PP/N)\((CN\CN)/(S/N)). Such assignments are
an obvious possibility in the light of Szabolsci (1987) for example, who discusses
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pied-piping of reflexives, such as to render them direct functors over verbs. Such
an assignment must be additional to the regular one, a situation to be improved
if possible. But furthermore an example like (99a) where the relative pronoun is
not, peripheral in the pied-piped material would be problematic. It would need
to be arranged by a further lexical assignment that ‘after so much wrangling’
modifies ‘loss’.

In fact, for unclear reasons, it is not easy to find highly acceptable examples
of the crucially problematic medial pied-piping cases, but see e.g. (101).

(101) (a statue) for the transport of which by rail John would
have to pay $10,000

In other cases the pied-piped constituent occupies subject position:

(102) a. (a supermarket) the opening of which by the queen/in June

was heralded a moving and historical occassion
b. (awoman) the painting of whom by Matisse fetched a fortune

c. (aboy) the yelling of whom outside could be heard through-
out the sermon

If in reality there were no such cases, which would be to say that pied-piping noun
phrases always occur right-peripherally in the fronted constituent, a rudimentary
treatment like that deriving from Szabolcsi would suffice for categorial grammar.
Furthermore all existing phrase structure accounts would be erroneous in that
none predict such right-peripherality. Thus for phrase structural approaches there
would be “no principled analysis of pied piping” possible without the addition of
directional constraints on feature inheritance. Since we regard the examples in
the text as acceptable however, we do not take this conditional as going through.

The solution, in terms of infixing and wrapping, is much the same as that for
quantification. There is the following derivation for ‘the loss of which after so
much wrangling John would finally have to pay for’, given the relative pronoun
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assignment at line 4.

(103) 1.  the — Azwy(z y): N/CN
2. loss —loss: CN
3. of —of: (CN\CN)/N
4 which —
AzdyAzdw((z w) A (y (z w))]: (NTN)L((CN\CN)/(S/N))

5. asmw — asmw: CN\CN
6. John —j: N
7. wfhipf — wthtpf: (N\S)/N
8. Ja—x:N H
9. Jof +a— (of z): CN\CN E/ 3,8
10. |loss + of + a — ((of z) loss): CN E\ 2,9
11.  |loss + of + a + asmw — (asmw ((of z) loss)): CN E\ 5, 10
12.  |the + loss + of + a + asmw —

wy((asmw ((of z) loss)) y): N E/ 1,11
13.  |(the + loss + of , asmw)Wa — wy((asmw ((of z) loss)) y): N =12

14. (the + loss + of , asmw) — Azwy((asmw ((of z) loss)) y): NtN It 8, 13
15.  the + loss + of + which + asmw —
AyAzAw[(z w) A (y wu((asmw ((of w) loss)) u))]:

(CNACN)/(S/N)
16. |a—z: N H
17.  |wfhtpf + a — (wihtpf z): N\S E/ 7,16
18. |John + wfhtpf + a — ((wfhtpf z) j): S E\ 6, 17
19.  John + wfhtpf — Az((wfhtpf z) j): S/N I/ 16, 18

20. the + loss + of + which + asmw + John + wfhtpf —
Azdw([(z w) A ((wihtpf cu((asmw ((of w) loss)) u)) j)]:
CN\CN E/ 15, 19

In addition, this same assignment generates non-pied-piping cases, such as ‘which
John would finally have to pay for the loss of’. Lines 7 to 11 of the following
show that the regular relative pronoun category is derivable from the nominal
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pied-piping one because (¢, €) € D(NTN).

(104) 1.  which —
AzdyAzdw((z w) A (y (z w))]: (NTN)L((CN\CN)/(S/N))
John —3: N
wfhtpf — wihtpf: (N\S)/N
the — Azwy(z y): N/CN
loss — loss: CN
of — of: (CN\CN)/N
la —z: N H
l(e,e)Wa —x: N =7
(€,€) — Azz: NTN ItT78
0. ((e,e)Wwhich) —

(AzdyAzdw[(z w) A (y (z w))] Azz): (CN\CN)/(S/N) El 1,9
11.  which — AyAz w|(z w) A (y w)]: (CN\CN)/(S/N)

5L X No otk W

12. |a—2: N H
13. |of +a — (of z): CN\CN E/ 6, 12
14. |loss + of + a — ((of z) loss): CN E\ 5, 13
15. |the + loss + of + a — wy(((of z) loss) y): N E/ 4, 14
16.  |(wfhtpf + the + loss + of + a —

(wihtpf ty(((of z) loss) y)): N\S E/ 3,15
17.  (John + wfhtpf + the + loss + of + a —

((wihtpf ty(((of z) loss) y)) j): S E\ 2, 16
18.  John + wfhtpf + the + loss + of + a —

Az ((wthtpf wy(((of z) loss) y)) j): S/N I/ 12, 17

19. which + John + wfhtpf + the 4 loss + of —
Azdw([(z w) A ((wihtpf cu(((of w) loss) u)) j)]: CN\CN E/ 11, 18

Thus prepositional pied-piping, nominal pied-piping, and no-pied-piping exam-
ples are all obtained by assignment to just the following two types:

(105) (NTN)J((CN\CN)/(S/N))
(PPIN)L((CN\CN)/(S/PP))

The semantics is the same in each case, so all the examples considered are ob-
tained by a single restricted second-order quantification assignment as in (106).

(106) which — AzAydz w[(z w) A (y (z w))]:
V2X N, PP}H(XTN)L((CN\CN)/(S/X)))

The relative pronoun ‘that’ cannot pied-pipe, and so should be assigned the
regular type:

(107) that — AxdyAz[(y z) A (z z)]: (CN\CN)/(S/N)
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With interrogatives, there is prepositional, but not nominal, pied-piping:

(108) a. Who did John buy the ticket for?
b. For whom did John buy the ticket?
c. *The ticket for whom did John buy?

Thus each interrogative pronoun should have assignment to some combination of
(109), but none a nominal pied-piping assignment.

(109) I/ (M/N)
(PPIN)L((1/(M/PP))

Categorial grammar is well-known to provide possibilities for “non-constituent”
coordination (see Steedman 1985; Dowty 1988) less accessible in the phrase struc-
ture/feature percolation approach. We consider next a coordination construction
which is highly problematic from all perspectives, gapping. It is entirely unclear
how feature percolation could engage such a construction; but as we shall see the
discontinuity apparatus succeeds in doing so.

11.5 Gapping

The proposal to be made here was introduced in Morrill and Solias (1993); see
Solias (1993) for an alternative treatment. The kind of example to be considered
is:

(110) John studies logic and Charles, phonetics.

Discussion is presented by reference to such a minimal example gapping a transi-
tive verb T'V. The construction is characterised by the absence in the right hand
conjunct of a verbal element, the understood semantics of which is provided by
a corresponding verbal element in the left hand conjunct. Clearly, instanciations
of a coordinator category schema (X\X)/X will not generate gapping.

The phenomenon receives categorial attention in Steedman (1990). The ap-
proach of Steedman aims to reduce gapping to constituent coordination; further-
more it aims to do this using just the standard division operators of categorial
grammar. This involves special treatment of both the right and the left conjunct.

With respect to the right hand conjunct, the initial problem is to give a cate-
gorisation at all. Steedman does this by reference to a constituent formed by the
subject and object with the coordinator. This constituent is essentially TV\S
but with a feature both blocking ordinary application, and licensing coordination
with a left hand conjunct of the same category. The blocking is necessary because
‘and Charles, phonetics’ is clearly not of category TV\S: ‘Studies and Charles,
phonetics’ is not a sentence. Now, with respect to the left hand conjunct, Steed-
man invokes a special decomposition of ‘John studies logic’ analysed as S, into
TV and TV\S. There is then constituent coordination between TV\S and TV\S.



101

Finally the coordinate structure of category TV\S combines with TV on the left
to give S.

Although this treatment addresses the two problems that any account of gap-
ping must solve, categorisation of the right hand conjunct and access of the verbal
semantics in the left hand conjunct, it attempts to do so within a narrow concep-
tion of categorial grammar (only division operators) that necessitates invocation
of distinctly contrived mechanisms. The radical reconstruals of grammar impli-
cated by this analysis are not necessary given the general framework including
discontinuity operators we have set out.

Within the context of categorial grammar we have established, the right hand
conjunct is characterisable as STTV.® It remains to access the understood verbal
semantics from the sentence that is the left hand conjunct. In order to recover
from the left hand side the information we miss on the right hand side, we would
like to say that this information, the category and semantics of the verb, is made
available to the coordinator when it combines with the left conjunct. In accor-
dance with the spirit of Steedman, we can observe that the left hand conjunct
contains a part with the category STTV of the right hand constituent, but it is
discontinuous, being interpolated by TV. But this is precisely what is expressed
by the discontinuous product category (STTV)®TV. Furthermore, an element of
such a category has as its semantics a pair the second projection of which is the se-
mantics of the TV, making the verb semantics accessible. Consequently gapping

is generated by assignment of ‘and’ to the category (((STTV)®TV)\S)/(STTV)

6This is not the only possibility; a structural modality could be used as for extraction:

S/ATV.
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with semantics AzAy[(m1y moy) A (z may)].

(111) 1.  John —j: N

2.  studies — study: TV
3. logic —logic: N
4. and — Azdy[(my may) A (z my)]: (STTV)QTV)\S)/(STTV)
5. Charles —c: N
6.  phonetics — phonetics: N
7. Jla—z: TV H
8.  |a + phonetics — (z phonetics): N\S 6,7E/
9. |Charles + a + phonetics — ((z phonetics) c): S 5, 8 E\
10. |((Charles, phonetics)Wa) — ((z phonetics) c): S =9
11. (Charles, phonetics) — Az((z phonetics) c): STTV 7,10 It
12. |a—z: TV H
13. |a + logic — (z logic): N\S 3, 12E/
14.  |John + a + logic — ((z logic) j): S 1, 13 E\
15.  |[((John,logic)Wa) — ((z logic) j): S =14
16. (John, logic) — Az((z logic) j): STTV 12, 15 It
17. ((John, logic)W studies)—

(Az((z logic) j),study): (STTV)OTV 2,1710

18. John + studies + logic — (Az((z logic) j),study): (S1TV)eTV =17
19. and + (Charles, phonetics)—

Ay[(my my) A ((m2y phonetics) c)]: ((STTV)OTV)\S 4,11 E/
20. John + studies + logic + and + (Charles, phonetics)—

(Ay[(m1y m2y) A ((moy phonetics) (Az((z logic) j),study)): S 18, 19 E\
21.  John + studies + logic + and + (Charles, phonetics)—

((study logic) j) A ((study phonetics) c): S =20

11.6 Object-Antecedent Reflexivisation

Leaving aside locality (but see Morrill 1990a), a subject-oriented reflexive will be
able to occur medially if it is assigned the type ((N\S)TN)J/(N\S) (see Moortgat
1990, 1991a). But we started by noting a difficulty in relation to ordering for
object-oriented reflexives. We return finally to the example with which we began.
In the following the ditransitive ‘show’ is given a “head-wrapping” assignment
(cf. Solias 1993) which forms a split string with its first argument (what will be
the remote complement) and then wraps around its second argument (what will
be its adjacent complement). Now an object-oriented reflexive can be assigned
a category as shown in line 3: i.e. a splitting functor mapping “head-wrapping”
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ditransitives into wrapping transitives.

(112) 1. John —j: N
2. showed — show: ((N\S)tN)<N
3 herself — Aody((@ ) ): (N\SIN)<N)>(N\S)1N)
4. Mary —m: N
5. (showed, herself) — (AzAy((z y) y) show): (N\S)TN 2,3 E>
6. (showed, herself) — Ay((show y) y): (N\S)TN =
7. ((showed, herself YW Mary) — (Ay((show y) y) m): N\S 4, 6 Ef
8. showed + Mary + herself — ((show m) m): N\S =7
9. John + showed + Mary + herself — (((show m) m) j): S 1, 8 E\

Note that the duplication of assignments needed for subject-orientation and
object-orientation is to some extent redeemed by the distinction in some lan-
guages of pronoun forms for the two cases; in English also there is perhaps a
difference in feel. Here, as in all the constructions considered, there is a great
deal of empirical depth to be considered, as indeed there is technical depth to be
considered.

12 Conclusion

Our aim has been to balance logic and linguistics, letting neither get further ahead
than the other, to show how the apparatus presented provides the basic tools for
a range of discontinuity phenomena. In such an interdisciplinary area it is out of
bounds to study more logic than is good for linguistics, or more linguistics than
the logic is good for. We hope to have done neither. In relation to computation,
little has been said, so let us conclude with these observations on decidability of
discontinuity.

The labelled Gentzen sequent proof theory for the three-family discontinuity
is, assuming completeness and Cut-elimination, a decision procedure for theo-
remhood in that for any given conclusion type and multiset of antecedent types,
exhaustive backward chaining proof search is terminating. Furthermore each
proof constructs the derivational prosodic and semantic terms into which lexical
forms are to substituted. For a given input sequence of words, there will be, from
a finite lexicon with no assignments to the null element, only a finite number of
multisets of lexical assignments the prosodic constant occurrences of which add
up exactly to equal the occurrences in the input sequence of words. Thus for pars-
ing, understood as the computation of all meanings for a given word sequence,
it suffices as a decision procedure to search in this way and output the semantic
forms associated with the prosodic forms evaluating to the right word order.

For generation, understood as the computation of all word sequences for a
given semantic form, certain conditions can be observed to similarly suffice for
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decidability. If all lambda terms are single-bind and none are pure (i.e. constant-
free), we can again just try the finite number of multisets of assignments the
semantic constant occurrences of which add up exactly to equal those of the input
semantic form. With no pure terms and no lexical vacuous abstractions, we still
need consider only the finite number of multisets of assignments no semantic
constant occurrence count of which exceeds that of the input semantic form.
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Appendix: Ordered Sequent Calculus for Dis-
continuity

The general form for heterogeneous ordered sequent calculus from Moortgat and

Morrill (1991) is:

(113) id '=A A(A)=2-B
A= A Cut
A(l') = B
(114)a. I'=A A(B)=C A, T| = B
\n L — R
A([,I', A\,B]) = C I'= A\,B
b. T=4 AB)=C . [.T, A] = B
A([.B/.AT]) = C " I'= B/,A""
c. [([,A4,B])=C . ' =4 A=B
[(Ae,B) = C T, A] = Ae,B

In order to deal with with the three-family discontinuity system with identity, we
define sequents as of the form I' = A where A is a formula and T is a configura-
tion, where configurations O are as follows.

(115) O=c¢ ‘ f' [aov O] | [n(’), O] ‘ [woa O]

(116) ['([aA1,[aQ2,A5]])) = A
[([a[aA1, A2], As]) = A

Aq

(117)  T([wA1, [nA2,As)]) = A
WN
[([alal1, As], Ag]) = A

(118) T(LA,d) = A
PA) = A

(119) T([uA,]) = 4

D(A) = A



(120)

(121)a.

(122)a.

(123)a.

A=A

id =4 A4)=B_

Cut

'= A A(B):>CL

A([ I, A\B]) = C

'=A A(B):>CL

A([.B/AT]) = C

(lA, B) = C

T(AeB) = C

I'=A AB)=C .
>
A([.I';A>B]) = C

'=A4 AB)=C .

AT) = B

l.A, T]= B

I = A\B \R

[.[, A]= B

I' = B/A /R

' = A A=B

A([B<A,T)|) = C

I'([.A,B)) = C
['(A°B) = C

= A A(B):>CL

A([.I, ALB)) = C

'= A A(B):>CL

A([-BTA,T]) = C

I'([.A,B]) = C
['(A®B) = C

oL

l.T, A] = AeB

A, T] = B
I'= A>B

>R

[, A]= B
I'= B<A

<R

' = A A=2B
I, A] = A°B

.4, T] = B
I = AlB
., A]= B
I' = BA

' =4 A=2EB
[, Al = AGB

OR

111
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Appendix: Generalisation

For generalisation to multiple wrapping we add to the associative binary product
and implications n-ary splitting and wrapping multiplicatives for each n > 2 (cf.
Buszkowski 1988 for such n-ary generalisations):

(120) F = A | F\F | F/F | FoF | on(F1,....,F,) |
—N (fl,...,fn)i,i S n | .W(fla---afn) | —WwW
(fl,...,fn)i,l'én

Prosodic interpretation is in a monoid with n-ary splitting and wrapping adjunc-
tions for each n > 2:

(125) (L*a +7 €, {Nn}n6{2,3,...}: {Wn}n6{2,3,...})

There are the following axioms:

(126) S1 + (82+S3) = (81 +82) +83
Wi(Np($1y--2y8n), Sy voysh) =81+ 85+ ...+ 8, + s,

Interpretation is a subsets of L = L* — {€} by n-ary generalisation of residuation:

(127) D(B/A) = {s|Vs' € D(A),s + ¢ € D(B)}
D(A\B) = {s|Vs' € D(A).s' + s € D(B)}
D(AeB) — {51+ sals1 € D(A) A sy € D(B)}
Dion(An-. - A)) = {Nu(str....8)|s1 € D(A) A ... A s € D(A)}
D(—}N (Al, cee An)z) = {S|\V/81 € D(Al), ey 81 € D(Ai_l),

Si+1 € D(Ai+1), ..., 8, € D(An),

No(81y- -3 8i 1,8, Sit1,---,5n) € D(A)}
D(ow (A1, ..., A) = {W(s1,...,s0)|s1 € D(A) A ... A s, € D(A,)}
D(—)W (Al, .o ,An),) = {S|V81 € D(Al), e, 8.1 € D(Ai_l),

Si+1 € D(AH—I), ..., 8, € D(An),

Wn(Sl, e, 81, S, Si+1,...,8n) € D(A,)}



