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1 Introduction

The objective of this report is to provide sound and complete inference systems
for the systems of update semantics that were developed by Veltman in [11]. In
that paper an update semantics is given for three different languages. Moreover,
three more or less natural notions of logical consequence are defined, which
make sense for all three semantical systems, and, in fact, make sense for almost
any semantical system in which sentence interpretations are functions (or even
relations) between information states.

Of the three notions of consequence (details below), two are substructural in
the sense that they lack some structural inference rules of classical logic, most
prominently Permutation and Monotony. Besides the more language specific
details of the three semantical systems, these structural non-validities turn out
to be the most problematic part of the completeness theorems.

In section 2 we introduce a general setting of update semantics in which
the three notions of consequence can be defined. We determine their inter-
connections, and review their structural inferential properties (for Update-Test
Consequence these structural properties were determined by van Benthem in
[7]). We then devote a case study to the notion of Update-Test Consequence
(called Mixed Inference in [7] and [3]), the most natural notion of consequence
in an update framework. Inspired by work by van Benthem and Kanazawa, we
prove a general structural completeness theorem for Update-Test consequence
over update systems in which the updates are idempotent relations. All concrete
systems of [11] satisfy idempotency. The proof method exploits a connection
with Propositional Dynamic Logic that was observed in [3]. We also show that
the method can be specialized to the case of idempotent functions. Furthermore
we sketch a way in which the method may transfer to systems with connectives,
and as an example we treat a variant of Kanazawa’s calculus for Update-Test
consequence with relational composition (see [3]).

In section 3 the update semantics for might is treated. Sound and complete
inference systems are given for all three consequence relations.

In section 4 we treat the normally, presumably system. We explain the
semantics in section 4.1. In section 4.2 we show that for the fragment that only
contains the Booleans and normally the three consequence relations coincide.
Thus the logic of normaly is essentially static: a equivalent static semantics for
this fragment is developed, and axiomatized.

Finally, in section 5 we discuss some of the remaining problems.

Since the objective of this report is to prove some technical results about
the systems of update semantics in [11], we assume the reader to be familiar
with that work. Although we will state the necessary definitions, for motivation
we also refer to [11].

2 Abstract Update Semantics

What is update semantics? In [11] an update semantics is described as a system
that interprets some set of formulae £ as functions over some set of information

230



states . But as observed by van Benthem in [7], the three notions of con-
sequence that Veltman defines for these update systems are already definable
for a larger class of systems, namely those systems that interpret formulae as
binary relations. In this section we will take this relational perspective. The
functional systems can then be studied as a subclass.

Definition 1 Suppose £ is some set of formulae.

1. A frame for L is a structure F = (3, ([¢])gcc), where ¥ is a set (of
information states), and for each ¢ € £, [¢] C ¥ x ¥ is a binary relation
on .

2. A functional frame is a frame F = (X, ([¢])¢cc) where each relation [¢] is
a function on X. a

Thus frames are precisely the same structures that are called frames in
modal logic (for a family of modalities £), and that are called labeled transition
systems in computer science. And functional frames (called ‘update systems’
in [11]) just are special cases of frames.

2.1 Three Notions of Consequence in Update Semantics

If all you know about £, ¥, and the interpretations [¢] is that they form a
frame, two of the three notions of consequence introduced in [11] are already
definable. We first introduce some notations and terminology.

Definition 2 If £ is some language, a sequent for £ is an expression of the form
b1, .., Pn = 1, where ¢1,..., ¢, is a finite sequence of formulae of £, and v
is some formula of £. We allow n = 0, in which case the sequence ¢1, ..., ¢, is
empty, and use the symbol € to refer to the empty sequence. We use X,Y, Z,
possibly with subscripts, as meta variables for finite sequences over L. a

Notation 1 Let F = (%, ([¢])gpecc) be a frame, 0,7 € ¥ and ¢, ¢1,...,¢, € L.
Then

1. ¢ -5 7 means that (0,7) €[]

2. o "L L eans that (0,7) € [¢1] 0+ - 0 [py]; here o is relational compo-

sition.

3. In a functional frame F, we will also use the postfix notation o[¢] for the
result of applying the update function [¢] to the state . Thus in func-

tional frames, o[¢] = 7 means the same as ¢ —% 7; and o[¢1]- - [pn] = T
¢1 ----- ¢'n.
means the same as 0~ =" 7. O

Definition 3 (Acceptation) Let F = (%, ([¢])¢cc) be a frame, 0 € , ¢ € L.

Then o accepts ¢, or ¢ is accepted in o, whenever o 5 0.
Notation: o | ¢. O
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Definition 4 (Truth and Validity of Sequents) Let F = (3, ([¢])g¢cc) be
a frame for £, o € 3 a state of F. Then we define the truth of a sequent of £
in o inductively on the number of premisses of the sequent as follows:

e F.okE(e=1y)iff o |-
o F.o (¢, X = o) iff V7 F: if 0 -5 7 then F,7 = (X = v)

Sequent validity in F means true in all states of F; notation: F = (X = 1).0

Definition 5 (Update-Test Consequence) Let F = (3, ([¢])scc) bea frame.
Then \=2f, or Update-Test Consequence,' is defined as: ¢1, ..., ¢, |=§ 1 iff for
allo: F,oE (d1,-..,bn = ). O

Definition 6 (Test Consequence) On any frame F, the relation &5 is de-
fined as: ¢1,...,0, |=§: ¢ iff for all o, if o | ¢1 and ... and o | ¢, then
o | 1. This relation is called Test Consequence. O

For the third we need an extra concept, that of a ‘minimal’ information
state. This is just the standard notion of generator of a generated frame in
modal logic.

Definition 7 A frame F = (5, ([¢])per) is generated if there is a unique state

0 € X such that for each o € 3, 0 = 0 or there are ¢1,...,¢, € L such that

B1ssdn
0N 5.2 U

Now the third consequence relation can now be defined as follows.

Definition 8 (Ignorant Consequence) Let F be a generated frame with

generator 0. Then ¢y,...,¢n =7 Y if F,0E (¢1,...,¢n = ). O
In relational frames, our definition of F3 is equivalent to

P15 fn Fo o iff rge([pr] o o [¢a]) € fix([¢])

which is the notation of van Benthem (here o is relational composition, rge
is the operation that assigns to each binary relation its range, and fix assigns
to each binary relation its set of fixed points). And in functional frames, the
definition of F5 simplifies to

D1y Pn Fop iff for all o, of¢1]--- [dn] | ¥

which is Veltman’s notation in.
The three relations are related as follows.

1This notion of logical consequence is called ‘Mixed Inference’ by van Benthem and
Kanazawa. Here we have chosen for the more informative name that is due to van Eijck
and de Vries ([9]). Notice that the subscripts of the consequence relations are chosen in such
a way as to agree with the subscripting in [11].

2The functional generated frames are called ‘expressivley complete update systems’ in the
revised version of [11].
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Proposition 1 (Connections)
1. On any any generated frame F, if ¢1,..., ¢y \=§: 1 then ¢1,..., o, |='17: .
2. On any frame F, if ¢1,..., ¢, |:,2F 1 then ¢1,...,¢, \=§ 1.

3. For any other (non-trivial) combination of 4,j € {1,2,3} there is a func-
tional frame F which distinguishes I=; from I=;.

Proof: Straightforward. a

On the other hand, under some special circumstances the three relations do
coincide.

Proposition 2 (Restricted Connections) Let F = (3, ([¢])gcc) be a gen-
erated frame. Suppose the following two conditions hold in F:

e Idempotency: for all 0,7, ¢: if 0 -2 7 then 7 -2 7
e Permutation: for all ¢, 1, [¢] o [p] = [¢] o [#]

Then the relations =1, F» and =3 coincide in F.

Proof: For functional frames this was proven in [11] (see propositions 1.4 and
1.5 of that paper). But that proof doesn’t depend on functionality, as can be
seen as follows. By proposition 1.2 above we always have that X 5 1 implies
that X F3 1. So we only need to show that X Fq 1) implies that X =5 v, and
that X k3 ¢ implies X = 9. To see the former, suppose that X =y 1 and
suppose that ¢ =+ 7; we want to show that 7 Y 7. Since F is generated
there must be some finite sequence Y such that 0 == o0; so 0 - o =5 7.
By Permutation there must be a ¢’ with 0 =%+ ¢/ 5 7. By our assumption,
o 25 o', so o % o' 5 7, so again by Permutation, there is a 7' with
o Xy o L 7, so by Idempotency, 7 LN 7, which we were after. The
implication from X F3 1) to X =1 1) is proven in a similar vein. O

A kind of converse of this proposition can also be proven. Clearly, if the three
consequence relations coincide in F, then Idempotency holds, since always ¢ F3
¢, s0 ¢ Eo ¢, and the latter is just a rephrasal of Idempotency. Permutation will
hold ‘up to equivalence’: it need not hold in F, but it is possible to construct
an equivalent frame ' (equivalent in the sense that =] I:|=if fori=1,2,3) in
which Permutation does hold, but we won’t go into the details of this.

Moreover, F; and s are clearly connected via the construction of generated
subframes.

Proposition 3 If K is a class of frames that is closed under generated sub-
frames, then =X and =J are identitical.
Proof: This follows from the generated subframe lemma of section 2.3. ]
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2.2 Structural Properties

The structural properties of Update-Test consequence were determined by van
Benthem in [7]>. We produce a variant of his proof below. First notice the
following. For any fixed set of formulae £, consider the class K of all frames for

L. Then for any ¢1,...,¢n, Y € L, d1,...,¢n I#IQC 1, which is witnessed by the

following counterframe on the natural numbers {0,...,n}:

¢ n
051 ... —sn—12%n

Here all transitions are shown, so in particular it is not the case that n s n.
Since the frame pictured is generated and refutes the sequent ¢1,...,¢, = ¢
at the root 0, this also shows that ¢1,..., ¢, l#’lc .

Hence F; and Fs have no valid sequents, in contrast to =3, for which we do
have valid sequents. The latter form a fairly trivial set: ¢1,..., ¢, E3 ¢ if and
only if ¢ is one of the ¢1,..., ¢, (consider a frame with one state 0 such that
0 —%5 0 if and only if 4 € {p1,---, Pn}).

This is all as it should be: under the perspective that £ is the set of meta
variables that refer to the formulae of some concrete language, we don’t want
that any sequent of the form ¢ = 1 with different symbols ¢ and 1 is valid,
since that would yield a trivial logic. We should of course focus on sequent-rules
that preserve validity of structural sequents.

We consider Update-Test consequence first.

Definition 9 (Local and Global Sequent Consequence) Let Sy,...,S5,,5
be sequents for some language £ and K a class of frames for £. Then

1. T |=’2Cl S if for all F € K, and all states o in F , if 7,0 E S7 and ... and
F,o E Sy, then F,0 = S. (Local Consequence).

2. T |=2K Sifforall F e K, ifforalloin F: F,o E Sy and ... and F,0 F S,
then for all o in F: F,o E S. (Global Consequence). O

The perspective in [7] is global, and that also seems to be the right perspec-
tive for actual completeness proofs for some specific system of update semantics.
There we are interested in the set of sequents Val(K) = {(X = ¢) |F2 X = ¢}
for some class K. Of course, =o; and 5 are the same if there are no premiss-
sequents, that is , =9y X = ¢ if and only if F2 X = ¢. But if we use a sequent
calculus to axiomatize Val(K), then this calculus will normally consists of ax-
ioms that must valid sequents, and rules that must preserve sequent validity,
rather than sequent truth. So we take a global perspective.

3 Also see [5] and [6] for observations on various other dynamic notions of consequence.

4These observations carry over quite easily if we only consider the functional frames. Take
the frame of the text and notice that al relations there are partial functions. Then add one
new state, say the natural number n + 1, to the frame, and make the relations fucntions by
adding transitions to this new state.

® Again, this argument carries over to functional frames with only a minor variation.
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In [7] van Benthem showed that on the class of all frames 3 is completely
determined by the rules Left Monotony and Cautious Cut:

X =

7¢X:>¢LM

X=¢ XoY =
XY =9

cC

This was proven as follows. For any set of sequents I' define a frame F(T') =

(S,[]) as follows:
e S = L< (the set of all finite sequences of variables in £)
o [B] ={(X, X) |TFX = ¢} U{(X,X¢) | X € L=}

where I' - S means that S is derivable from I' with only LM and CC. Com-
pleteness then follows from the observation that F(I'), X FY = 4 if and ony
HI'E XY = 4.

And on the restricted class of functional frames we get one extra rule, Cau-
tious Monotony:

X=¢ XY=
XQY =1

CM

Completeness can then be proven via the representation
[¢] ={(X,X) [TF X = ¢} U{(X,X¢) [T/ X = ¢}

along similar lines as the previous case.

It turns out that the reason why van Benthem has different representa-
tions for the LM, CC case and the LM, CC, CM case was accidental. If we
consider a larger class of frames than just the functions, we can use the same
representation.

Definition 10

1. Let F be a frame, and s and ¢ states in F. Then s <t if for all sequents
X =p,if F,sF (X = p) then F,tF (X = p).

2. LC is the class of models F that satisfy the following ‘loops condition’,
for all variables p: if s —/+ s and s — ¢ then s < t. O

Proposition 4 CM preserves sequent-truth in F if and only if F € LC.
Proof: suppose F € LC, and let x be a state of F such that

1. F,e FEX =p
2. Foe EXY = ¢

3. F,z ¥+ XpY = ¢
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By the last condition there must be states s,t,y such that
rX sty

and not y — y. By the first condition, s — s, so by the fact that F € LC,
s < t. Since F,t #Y = q this implies that F,s # Y = q, so F,z £ XY = ¢q
, but this contradicts the second condition. So no state in F satisfies all three
conditions, so CM is true in F.
Conversely, suppose F & LC. Then there are states s and ¢ in F and a
variable p such that
s—vs, s—t and s £t

so for some Y = ¢, F,s EY = g but F,t ¥ Y = ¢. But then we have that:
F,sEFe=p F,sEY = q, but F,s #pY = ¢, so CM is not true in F. O

We can now show that {LM,CC,CM} is sound and complete for the £C-

frames. This is a consequence of the following more general proposition.

Proposition 5 Let R be any set of sequent rules that includes LM and CC.
For a set of sequents A define the model Mz (A) by

e |[Mp(A)| is the set of all finite sequences of variables

e variables are interpreted by:

¢ ={V,Y)|AtrY = ¢t U{(Y,Yq) | Y € IM(A)[}

Then Abg X = p iff Mz(A) F X = p.
Proof: We first show that

foral YgX : Mzr(A),X |FY =qiff Arg XY =q (C)

by induction on the number of symbols in Y. If Y is empty this follows from
the definition of *. So suppose (C) holds for all Y of lentgh n, and all ¢, X.
If X | pY = g then Xp | Y = ¢ since (X,Xp) € p*, so by the IH,
AtFr XpY =gq.

Conversely, suppose A Fr XpY = ¢, then by the IH, Xp |- Y = ¢q. If
(X, X) & p*, then the only p-move from X is the one to Xp, so X |- pY = gq.
If on the other hand (X, X) € p*, A kg X = p. Since by assumption A Fg
XpY = qand CC € R, At XY = ¢, so by the IH X |- Y = q. Since there
only two p-moves from X in this case, to X and Xp, and at both X and Xp,
Y = q is true, it follows that X | pY = gq.

By (C) we have that for all Y, ¢

Mp(A)e|mY=qif AFRY = ¢

Notice that at this stage we already have a sufficiently strong result for com-
pleteness for Ignorant Consequence, as well as for local Update -Test conse-
quence. For global consequence, we must us Left Monotonicity, of course. Now
it easily follows from LM that

AFRY = qiff forall X : Mz(A),X |-Y =¢
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so Mz(A) E A. And if Al/g Y = g then Mz(A),e =Y = g so Mr(A) |~
Y =gq. o

So this contruction is quite general after all: we only need LM and CC in
the proof. And also, in the part that is sufficient for Ignorant Consequence, we

need only CC.

Corollary 1 The structural rules of Ignorant Consequence are completely de-
termined by Cautious Cut. O

Now back to our claim about Cautious Monotony. If we now want to show
completeness for {LM,CC,CM} with respect to the class of frames L£C, the
only thing that is left to show is that Mry ccc M}(A) satifies the loops con-
dition. That is, we have to show that

if (X,X)€p*and (X,Y)€p*thenVZq: f X |- Z=qgthenY |- Z=g¢q

Now by definition of p* we know that A+ X = p and that Y = XporY = X.
The case Y = X is trivial, so suppose Y = Xp. From the truth lemma we’ve
just proven it follows that if X | Z = ¢ then A - XZ = q. So by CM,
At XpZ = ¢, so again by the truth lemma, Xp | Z = q.

It now follows from this, and van Benthem’s completeness result, that the
class of fucntional frames and the class £C have the same Update-Test logic. In
the next section we will take a modeltheoretic perspective on this equivalence.

Van Benthem'’s result on Update Test-Consequence was extended by Ka-
nazawa (in [3]) for a language that contains a binary connective e that is ex-
plained semantically as relational composition (we discuss this system in sec-
tion 2.4.3). Kanazawa also observed that the truth conditions of sequents as
given by Update-Test Consequence enable a very simpe translation into Propo-
sitional Dynamic Logic, namely

Fy8 Epryeespn = q Ml Fys Spar [p1] -+ - [pa] fiz(q)

where fiz is an operator that maps an action p to its set of fixed points.
This may come as no surprise to the reader, since this observation motivated
several of the definitions of the present paper, especially the very ‘modal’ like
definition of sequent truth. In fact we will try to take the correspondence with
modal logic a bit further, and see the above semantic correspondece with PDL
as motivation for a way of proving completeness in a fashion that is similar to
the Henkin construction in modal logic. This will be the subject of section 2.4.

2.3 Functional Frames

In this section we pay some special attention to functional frames. As we noted
above, there are some much weaker contraints on the relations that nevertheless
have the same structural logic as the funtional frames. We first introduce some
simple and familiar modeltheoretic constructions.

There are two natural notions of subframe in the present setting: the notion
of generated subframe from modal logic, and the notion of submodel from first
order logic.
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Definition 11 Let F; = (S1,[]1) and Fa = (S2,[-]2) be frames. Then F; is a
generated subframe of F» provided:

1. 51 CS,

2. there is a unique state 0 € Sy such that for all s € S, s € 57 if and only
if there are ¢, ..., ¢, € L such that 0 “5" s in Fo

3. for all ¢, [¢]1 =[]z [ S1- O
So a generated subframe is a generated frame in the sense of section 2.1.

Proposition 6 (Generated Subframe Lemma) Suppose Fj is a generated
subframe of F5. Then for all states s in F; and all sequents X = p:

Fi,s|FX=>pift Fo,s|FX=>p
Proof: Offers no problems. O

For the right to left direction of the lemma, the conditions on generated
subframes can actually be weakened. The reason for this is that the only
‘formulas’ we have to look at are sequents, which are semantically explained
by a universal quantification over possible futures. Hence leaving out some
of the possible futures cannot make a true sequent false. Thus the notion of
submodel from first order logic is also useful.

Definition 12 Let F; = (S1,[']1) and F2 = (S2,[-]2) be frames. Then F; is a
subframe of Fy provided:

1. 81 C Sy
2. for all ¢ € L, [¢|1 = [#]2 | 51 O

Proposition 7 (Subframe Lemma) Suppose F; is a subframe of F». Then
for all states s in 7 and all sequents X = p:

if Fo,s F X = pthen F1,s F X =p
Proof: straightforward. O
The subframe relation has some useful applications.

Definition 13 Let F = (S,[.]) be a frame. Define the frame F| = (S,,[].)

as follows:

1. S| = SU{Ll}, for some object L & S
2. (b1 = [P U{(s, 1) | s & do[p]} U{(L, 1)}, for all p € £ .

This is similar to the familiar trick for making a partial function total by
adding a value ‘undefined’.
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Proposition 8
1. Forallsin F: F,sEX=pif F|,sFX=p
2. FEX=pif FIEX=p

Proof: since F is a subframe of F | , the right to left direction of (1) is immediate
from the Subframe Lemma. For the converse, use induction on the length of
the sequent. Suppose F,s F € = p, then s — 5,505 — | 5,50 F|,5 F €= p.
Next suppose we have a sequent ¢X = p with n+1 premiss occurrences, and
suppose F,s F qX = p. Suppose s — | t. If t € F then by our assumption
F,t = X = p, so by the induction hypothesis F,,t E X = p. But ift = L
then also F|,t = X = p, since all sequents are true at F,, L. The latter fact
also suffices to derive (2) from (1). O

This proposition has an interesting corollary.

Definition 14

1. LE is the class of frames in which every [¢] meets the following ‘loops are
endpoints’ condition: if s %y sand s -2 ¢ then s = ¢.

2. PFnc is the class of frames in which each ¢ is interpreted as a partial
function.

3. F'nc is the class of functional frames. O

Corollary 2 =5 and =L coincide.

Proof: One direction is immedate from the fact that Fnc C PFnc. For the
other direction, observe that if 7 € PFnc then F| € Fnec, so any counter
frame in PFnc can be turned into a counter frame in Fnc, by the previous
proposition. O

The operation of taking subframes also provides a simple technique of find-
ing small counterframes. Suppose A %5 p1,...,pn = ¢, then for some F, s we
have F,s ¥ p1,...,pn = q. Then there must be a trace in F that is a witness
of the falsity of p1,...,pn = ¢, that is there must be states sq, ..., s, such that
S =80 =% §1...8p_1 =2 Sn, but not s, — s,. Take this trace as a separate
subframe, then this is a subframe of the original frame, so A is still valid, but
Ply- .. Pn = q is still false in .5
With minor modification, this idea also enables us to show that the class of

partial functions can even be enlarged to LE without any loss:

Proposition 9 =57 and ELF coincide.
Proof: Since PFnc C LE, one half of this claim is obvious. We give a sketch
of the other half. Suppose I' #%E Ply---,Pn = q. Then there is an LE-frame

5Thus there are in principle good decidability prospects for =,. By contrast, for the
standard modal simlarity type {—, V,0}, =2 (‘global frame consequence’) is undecidable. See
[4, page 38].
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F with F E T, but for some state s in F, F,s # p1,...,Pn = q. Consider the
subframe F; generated by s, then F; =T, but F,, s fruepi,...,pn = q. Now
use a minor variant of the technique of unravelling in modal logic: unravel this
subframe in such a way that fixed points are not unravelled. Then pick out
the falsifying trace in the unraveled frame. This will be a partial functional
model: a situation in which s -+ ¢; and s — t5, while both ¢; # s and ts # s,
cannot occur, since due to the nature of unraveling, one of 1, %5 will not be in
the falsifying trace; and the fact that the original frame was in LE will make
sure that if one of t; or t2 equals s, they in fact both equal s. O

However, the previous proposition is still not the final answer to the question
what the class of all frames is for which CM is correct in the sense that it
preserve =5. As we saw in proposition 4 of the previous section, CM is also
sound on the class £C.

Proposition 10 |=§E:|=§C.

Proof: As LE C LC it is clear that I’ =X¢ S implies T' =€ S. For the other
direction a pure modeltheoretic explanation is yet to be found, but in turns out
that our considerations on completeness of the previous section are sufficient: if

r \#%C S, then I" /rar,cc,cm S, and it then follows form van Benthem’s original
proof that T' /5™ S, but Fne C LE, so T ¥ S. |

2.4 Update-Test Consequence

2.4.1 Structural Completeness for Idempotent Updates: a General

Method
The equivalence between the update-test semantics for sequents p1,...,p, = ¢q
and the truth conditions in PDL of [p1]--- [pn]fiz(q) suggest that we set op

the structural completeness proofs in the same way as we set up a Henkin
completeness proof in modal logic. That is, the states of the canonical frame
should be sets of sequents; and the actions should also be treated in the PDL
fashion, by the above semantic correspondence: for sets of sequents I', A, and
an action ¢:

T %5 Aiff for all X,4: if ($X = 1) € T then (X = ) € A

This will in principle only work if it is possible to identify states with the
sequents that are true in it. Or in the terminology of modal logic, if it is always
possible to pass from a model to an equivalent distinguished model. And the
latter happens not be the case in the present setting, at least not in general, as
we shall shortly see.

In modal logic, passing to a distinguished model is a special case of filtration.
Let’s copy the definion of filtration in modal logic (see [1]) to the present setting:

Definition 15 Given a frame F = (%, [-]) for some language £, define a relation
=r on the states of F by

s=ptiff forall X,p €L :F,sEX=¢if F,tEX = ¢
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For any state s, define ||s||=, = {t € £ | s = t}, and define £/ =x= {||s||=, |
s € X}. Then a frame F' = (¥',[-]') is a filtration of F = (X,[]) provided
Y =¥/ =, and the relations in F’ satisfy the two conditions:

1. if s % ¢ in F then ||s||=, % ||t||=, in F'

2. if ||s||=, = ||t||l=, in F' then for all X, ¢: if F,s = (¢X = ¢) then
Ft=X=>1 O

Now of course we would like to prove the Filtration Lemma:
for all X,¢: F,s =X = ¢ it F',||s|| F X = ¢

but the following example shows that this is not possible in general. Consider
the following frame with two distinct states 1 and 2, and all arrows shown:

A one-state frame either has a reflexive p-arrow or not; if it has then ¢ = p is
true, which is false in the original frame; if it hasn’t, p = p is (trivially) true,
which is also false in the original frame.

The reason for this failure is clearly the special status that Update-Test
Consequence gives to the reflexive arrows in the frames. In fact, there is a
special condition on frames, which is only needed in the proof of the filtration
lemma for the basic sequents of the form ¢ = ¢, under which filtration is
possible:

Definition 16 (Filtration Condition) An L-frame F = (S, [-]) satisfies the
Filtration Condition if for all states s € S and all ¢ € L:

if for all X,4, if F,s = ¢pX = 1 then F,s =X = 1)

then F,s Fe= ¢
a

Lemma 1 (Restricted Filtration Lemma) Suppose that F = (3, []) sat-
isfies the Filtration Condition and that F' = (X', [-]') is a filtration of F. Then

forall X,¢: F,s EX = ¢ iff F,||s||z, =X = ¢
Proof: Offers no problems. |

Since Idempotency is equivalent with the validity of all sequents of the form
(X¢ = ¢), the following observation is straightforward.

Proposition 11 Idempotency implies the Filtration Condition. m|
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This suggests that a Henkin style method for proving completeness may
work for Idempotent relations. Also, all actual systems of update semantics in
[11] have the property of Idempotency, so any technique based on this constraint
will be general enough to apply to all those systems.

We start from finitary deduction relations F; between sequents and show
that, provided 4 has some special properties, there exists a cononical frame
Fq. First some definitions.

Definition 17 Suppose d is a set of sequent rules with |-, its associated finitary
deduction relation between sequents.

1. d is normal if for all p, X, q, X1,..., X, q1,---,qn:

Xi=2q,...,. Xpn=>q¢g,Fg X =>¢q
pX1=>q,...,pXn = gntapX = ¢q

2. The local part of d is d \ {LM}.

3. d is locally normal if its local part is normal. O

We reflect on the force (or rather weakness) of the constraint of (local)
normality later on. At present only notice that under the correspondence with
PDL, normality is just the K-rule, which is satisfied by any normal modal
operator.

Now define a notion of syntactic update on sets of sequents as follows.

Definition 18 For any set of sequents I', and any finite sequence X of L,
IMX] =4 {(Y = q) | (XY = q) €T} O

The idea is that I'[ X] prescribes which sequents must be true after doing
X in a state where all sequents in I' are rue.

Lemma 2 Suppose d is locally normal and has local part dl; let " be a di-
theory. Then

1. P}—dle:>qiﬁ.P[[p]] Fa X =q
2. T'[p] is a di-theory

Proof: To see 1, suppose I' 5 pX = ¢; then (pX = ¢q) € I since I is a
dl-theory, so (X = q) € T'[p], so I'[p] Fas X = ¢. The converse follows from
normality. Now 2 follows from 1 and the assumption that I' is a dl-theory. O

Lemma 3 Suppose that LM € d, and that I is a d-theory. Then I'[XT] is a
local d-theory that extends I'.
Proof: If dl is the local part of d, then di C d, which implies that I' is also a

dl-theory. The first claim now follows form lemma 2.2; the second easily follows
from LM. O

Next we define the canonical frame:
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Definition 19 (Canonical Frame) Let d be a a set of sequent rules with
local part dI. Let I' be a d-theory. Then the canonical frame C4(I") is defined
as Cq(T) = (Z4(T), [-]a), where

o 54(T) = {T[X] | X € £=)
o [#la={(A,A") | A[g] C A} -

Lemma 4 (Sequent Truth Lemma) Suppose I is locally normal, and has
Left Monotony, Cautious Cut and Reflexivity. Let dl be the local part of d.
Then in C4(T") the following hold:

1. Cd(P),A|:X=>¢1ﬁ‘A|—le:>¢
2. C4T)EX = ¢ iff Ty X = ¢

Proof: We show 1 with induction on the number of premisses of the sequent.
Suppose that C4(T'), A = € = ¢. Then A 25 A so Af¢] € A. By Reflexivity,
(¢ = ¢) € A, s0 (e = ¢) € Al¢], so (¢ = ¢) € A. Conversely, suppose
(e = ¢) € A. Let (X = 9) € A[¢], then (¢X = ) € A, so by CC,
(X = 1) € A. This shows that A¢]] C A and hence that C4(I'), A F e = ¢.

For the induction step, suppose C4(T"), A F ¢X = 1. By the previous two
lemmas, A[¢] is a di-theory and in ¥4(T"). Since A 2, A[¢], our assumption
implies C4(T"), A[¢] E X = 1. Hence by the induction hypothesis, A[[¢] Fa
X = 1, so by lemma 2, A Fg ¢X = 1.

Conversely, if A Fg ¢X = 1 then A[¢] Fg X = 4 by lemma 2. Then for
all A’ with A —%» A', (X = 1) € A'. But then the induction hypothesis gives
that C4(T), A = ¢X = .

For 2, suppose that C4(I') = X = ¢, then in particular C4(T"),T F X = ¢
sol'Fgyg X = ¢ by 1,soalso ' 3y X = ¢. Conversely, if I' -3 X = ¢ then for
allY, (YX = ¢) € T by LM and the fact that T" is a d-theory. Now any A in
the frame is of the form I'[Y] for some Y, so (X = ¢) € A for all A, so by 1,
Ca(T),AE X = ¢ for all A, so Cy(T) F X = ¢. |

Lemma 5 (Structure Lemma) All relations [¢]4 in C4(T") are idempotent.
Proof: since then (¢ = ¢) € A for all A in the frame, the sequent truth lemma
yields idempotency. O

As to the status of the constraint of normality: consider any class of frames
K; let Kgen be the closure of K under generated subframes. Since the generation
theorem holds for our sequent semantics (see the previous section), we have that

:’Cgen

the local consequence relations \=’2Cl and F,°" are the same. Now it is simple

to show that |:’2Clge" is normal. Thus,

Proposition 12 If a deduction relation t-4 is sound and complete for |:’2Cl, then
F4 is normal. O

It is at present not clear whether something similar holds for global conse-
quence:
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Conjecture 1 If |, is sound and complete for \:’; , then F4 is locally normal.

If the conjecture is true then the assumption of local normality in our com-
pleteness construction is quite weak. A possible route of proving the conjecture
would be to transform F; into a normal form consisting of the rule LM plus
some set of rules that are sound for local consequence.

2.4.2 Functional Idempotent Updates

The above method can be specialized to the case that also the rule Cautious

Monotony: X Xy
=p =q

XpY = ¢

CM

is present. Of course the previous method is still available, and it will yield a
canonical frame that satisfies the Loops Condition (see section 2.3). But now
there is the possibility of making the relations functional in the canonical frame,
by letting the relations in the frame coincide with the syntactic updates.

Definition 20 (Functional Canonical Frame) Let d be a a set of sequent
rules with local part dl. Let I' be a d-theory. Then the functional canonical
frame F4(T') is defined as Fy4(T') = (£4(T), [-]4), where

e Sy(T) = {T[X] | X € £}
o [8la={(A,A) | A[¢] = A} .

It is immediately clear that all relations are functions in F,, so the question
arises where the rule CM actually comes in. This turns out to be only in the
atomic case of the sequent truth lemma, where we have to show that

Fo,A=se=>¢oiff Abge=¢
which comes dow to proving that
Afl¢] = Aiff (e= ¢) € A

Now the inclusion A[J¢] C A is proven just as in the general case with RR and
CC, but for the converse A C A[[¢] we need CRM. Suppose (e = ¢) € A, and
let (X = 1) € A, then by CM, (¢X = ) € A, so (X = ¢) € A[[¢].

The rest of the proof remains as before.

Lemma 6 (Functional Sequent Truth Lemma) Suppose -4 is locally nor-
mal, and has LM, CC, RR and CM. Let dl be the local part of d. Then in Fy4(T")
the following hold:

1L FaT),AEX = ¢if Ay X = ¢
2. FAT)EX = ¢pif T Hy X = ¢

Proof: see the general case for the remaining details. O
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2.4.3 Extension to Systems with Connectives

Ideally, we would like to see the methods of the previous two sections to be
the basis of completeness theorems for actual semantic systems in which there
are also connectives present. We will first treat an example, and then set out a
general pattern.

In [3], Kanazawa gives a completeness result for a language with only a
binary connective e, which is semantically explained as relational composition.

Definition 21 (Language and Semantics) The language is now complex,
and is the closure of some set of atoms A under the binary connective o. The
frames are as before structures F = (X, []), but with the understanding that [-]
now only interprets atomic formulae as arbitrary binary relations over ¥, and
that this interpretation is inherited by complex formule ¢ e via the stipulation

[ @] =g [#] o [¢]. O

Now Kanazawa proves that Fo over the class of all frames is completely
axiomatized by the following sequent calculus M (e):

X = X=>¢ XQY =1

¢X = 1 [LM] XY =9 lec]
XY = x XodopY =

XgegvV oy U XV = x 2

X=¢ X=
X=g¢e7

Xop=1p X=dey
X = (poth) e x

[= o]

[= 1]

X = glae(Ber)]
X = ¢[(aep)en]

A
[= Assocs] 4T both ways

Now consider a variant Z(e) of this calculus, with Reflexivity added:

7X¢:>¢RR
X =1 X=>¢ XY =
i o [LM)] XY = [CC]
XY = x XodehY = [0 =]

XpeY = x [o =] XY = x

From the form of the rules it follows that the calculus Z(e) is locally normal.
Also notice that there are only two rules left for e, but that the other e-rules
of M(e) are derivable in Z(e) with the help of Reflexivity and Cautious Cut.
We leave the verification of this to the reader.

Since I(s) is locally normal, and has CC and RR for all formulae we can
define the canonical frame just as before, where the atomic relations are defined
by

I = AiffTp] C A
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Now all constructions and proofs carry over provided we can also show for all
formulae that

I % AN T[¢) C A

especially for complex formulae involving e. This essentailly boils down to
proving that

I¢ ey = Tlel14]

which is straightforward given the rules for o. We leave the details to the reader.

There is one aspect in which this example of a system with connectives is
not representative, and that is the fact that in the semantic exlanation of e as
relational composition no specific structure of the state space is used. Thus in
order to prove that the canonical frame has the right structural properties we
only have to show Idempotency of the relations, which simply follows from the
fact that the Refexivity rule holds for all formulae. If on the other hand we
have a semantics that uses some algebraic structure over the state space in the
semantic explanation of some connectives, the proof that the canonical frame
reproduces this algebraic structure may be quite involved.

The general outline of our tehnique for a system with connectives is as
follows. Suppose we have a language £, which is the closure over a set of atoms
A under the connectives ¢y, ..., ¢, which have arity a1, ..., a,, repectively. We
want to prove completeness of some calculus F; for some class K of frames
F=(%, f1,---, fn,[}]) that interprete connective ¢; by the operation f; via the
stipulation that

[ci((ﬁla ceey qslli] = fz([¢1]a sy [¢dz])

Then it seems that our structural completeness method can be specialized as
follows.
The basic assumptions that have to obtain are:

Basic Assumptions:
e Deduction Calculus: k4 is locally normal, and has LM, CC and RR.
e Semantics: in any frame in K, each [¢] is an idempotent relation

We define the ‘base’ of the canonical frame as before: X, is the set of all
d-theories, and atoms p are interpreted by [p]g = {(T', A) | ['[p] C A}.

Then the two essental lemmas that have to be proven are

Structure Lemma: there are operations f; such that Cq = (24, f1, ..., fn,["]d)
is a frame of K.

Dynamic Valuation Lemma: In the canonical frame C; we have for all
formulae ¢ that
I 2 AN T¢) C A

This latter lemma together with the basic assumptions will enable you to
prove the Sequent Truth Lemma just as before, and then the Structure Lemma
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and standard argumentation yield completeness. The logical rules of 4 for
the connectives will of course play a major role in the proofs of the Structure
Lemma and the Dynamic Valuation Lemma.

Ideally, the completeness proofs in the next sections of the actual update
systems with Update-Test Consequence should be dressed in the above format.
Though we presently think that this is a viable way, we have not yet found a
smooth way of reproducing the algebraic structure which is needed in the proof
of the structure lemma. For this reason we have chosen to give the original
proofs of [10], rather than messy proofs in the general format.

3 The might-systems

3.1 Semantics

We review the definitions of the update semantics of might from [11].

Definition 22 (Language) Civen a finite set of atoms A, £g! is the closure
of A under the Booolean connectives -, V, A. L{* = L' U {might ¢ | ¢ € L§'}.
a

So might only occurs as outermost operator.

Definition 23 (Semantics) Given a finite set of atoms A, the set of possible
worlds for A is W =4 Pow(A). The set of information states is 3 =4 Pow(W).
The minimal information state is 0 =4 W. The update functions are induc-
tively defined as functions from states to states as follows:

1. op) ={weo|pecw}

2. o[~¢] = o\ g[¢]

3. ol Ap] = of¢] N aly]

4. o[p V] = of¢] U aly]

0 ifofp] =10

o otherwise

5. o[might ¢| = {
a

So in the terminology of section 2 we have defined one specific functional
generated frame U = (%, [.]). Apply the three definitions of consequence to this
frame and what we get is:

Definition 24 (Consequence)
1. ¢1,y.-eyn E1 9 iF O[h1] - -+ [én] | ¥
2. $1y- s ¢ Fo o iff for all o, o]~ [¢n] |- 9
3. $1,...,¢pn Fspifffor all o, if o |- ¢y,...,0 |- ¢,, then o |- ¢
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3.2 Three sequent calculi

We present the three sequent calculi of [10]. As to the differences between the
three logics of might, observe that

—p, might p F5 | and might p, -p ¥y L

but
—p, might p =3 1 and might p,—p F3 L

So Fg and =3 are different, and Permutation fails for Fs. In fact it will be a
property of the layout of the sequents systems given below for =5 and =3 that
they only differ in the structural inference rules.

Also, = is distinct from F, since

p F1might q, but p #omight g

In fact it is not hard to show that for £y conclusions 1), 1 and 5 behave the
same:

¢17"'a¢n |:1'Z/)iﬁ‘§b17"'a§bn |:2¢

This fact will also be reflected in the systems below: the systems for =y and Fs
will only differ in the right-introducing might-rules.
We treat the structural rules first. Consider these five rules:

N=¢ Mell=y  O=¢ L=y
g = ¢ 1L I = 0, 6, I = 4
I, ¢, 9, II' = x LI = 4
I, 67 = x L PPM g = Mom

These are devided over the three systems as follows:

e I1: RR, CC, CM, Perm for ¢,¢ € Ly, Mon for ¢ € Ly or ¢ =might .
e I5: the same as for F.

e 3: RR, CC, CM, Perm, Mon.”

What may be surprising about the system 5 is that in this presentation,
Left Monotonicity is not a rule, while we have seen in section 2 that it is a
characteristic rule for Update-Test Consequence. But it turns out that LM is
admissible for 2. We will prove this after we have presented the whole system.

All three systems contain the same, classical, rules for the Boolean connec-
tives. In these rules all formulae involved must be £y formulae:

II=¢ H:>1/)R II,¢ = x LAl I,y = x
T=gry " Morp=x "' Merp=x

"Of course, CM is not realy needed for k3 since it follows from Mon; the rule is included
to facilitate comparison with the other systems.

LA2
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M= ¢ = Iéo=x I,¢¥=x

Toovey BV Toove BY2 ~ Toveoy &Y
L= 1 PC I, = x
H:>_'¢ a Ha¢7_'¢:>J— H,_‘_‘¢:>X

Actually the condition that all formulae involved must be £y can be weakened

in several cases, but for reasons of uniformity we have chosen not too, since

these are not the same cases for all three systems. One example of a rule in

which the condition is necessary is the left V- rule in the case of -3: we have

both —p, might p 3 p and p, might p F3 p; but an unrestricted left V-rule would

then imply that p V —p, might p b3 p, hence might p b3 p, but might p ¥3 p.
Finally the might-rules. For -1 these are:

A=>d1... A= ¢, A=Y II¢= L Ll I= L
b1, ..., bn =might I might = L =" T =4

m — efsq

In the first rule, A has to be a diagram (a formula that picks out a unique world,

see definition 25 below), and ¢1,...,¢n, % € Ly. The Ex Falso rule is already

derivable from the logical rules for ¢ € Ly, but is also needed for ¢ =might x.
F2 and F3 have the same logical rules for might, namely:

I =might ¢ *"" M might p= L “™ = = 5%
IT = mightvy TI,¢ = ¢ M I, = o IR
II, ¢ = might M MO T might ¢ —might ¢ "
We leave the verification of soundness to the reader.
Theorem 1 (Soundness) If -; II = ¢ then IT =; ¢, for ¢ € {1,2,3}. O

We will now show that LM is an admssible rule for 5. Any instance of
LM of the form ¥ = v/ might ¢~ = 1 is just a special case of Mon. So it
remains to prove the case in which we add an Ly-premiss.

Lemma 7 If ¢ € Ly and 5 II = %) then kg ¢, 11 = 2.

Proof: Induction on the length of the derivation. If IT = 1) is an axiom (RR or
PC) then ¢II = 1) is also an axiom since ¢ € L. For the induction step use the
induction hypothesis and the fact that in every rule of -3, all sequents involved
in that rule have the same left context ‘II’, possibly constrained to be Ly; but
since ¢ € Ly, replacing the context ‘II’ by ‘¢II’ will also yield an instance of
the rule. O

That we have full Left Monotony also implies that for pure Ly-sequents we
also have full Monotony:
LI = 4
¢, IL I = 4
=——F——— Per
IL ¢, II' = ¢

LM

m
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And also for Ly-sequents we have that the normal Cut rule is derivable:

¢, 11" = 9 M
O=¢ I,¢II = iy
I, IT = 4

These two facts imply, amongst other things, the following.

Proposition 13 For any Ly-sequent II = ¢ such that - II = ¢ in classical
logic, also F; IT = ¢ for i € {1,2,3}.
Proof: Left to the reader. O

In fact the converse is also true.
In order to make sense of the might-rules for -1, we must say what a diagram
is.

Definition 25 Fix some enumeration pi,...,p, of the finite set of atoms A.
Then a diagram is a sequence A = 41, ..., d, such that either §; = p; or §; = —p;.
If w is a possible world then its associated diagram A,, satisfies é; = p; iff p; € w.
a

We stated before that the might-rules of 9 are derived rules of ;. This
can be shown by first observing that

if¢la"'7¢na¢ |7/1J—then (;Zsla"'a(;bn |—1m1ght1,b (F)

This fact (F') is specific for -1 and will be proven in section 3.4.

Proposition 14 Rm, LRm and m — Mon are derived rules of .

Proof: For Rm, suppose that II -, ¢. IfII 1 L then by m—efsq, II Fymight ¢.
On the other hand, if IT /1 | then by C'C and our assumption, I, ¢ t/; 1, so
by fact (F') above, I b1 might ¢.

For LRm, suppose that II, ¢ -1 1, and first consider the case that I, ¢ -1 L.
Then by Lm1 and m — efsq, II, might ¢ F1might 1. next consider the cae
that II,¢ /1 L, then by fact (F'), II Fymight ¢. Now consider the following
derivation:

II, might ¢, = L 11 = might ¢ oo
Iy =1
= Mon
O, = L E¢¢¢CC
I = L

The application of Mon is warranted since | is an £y formula. The derivation
shows that under our current assumptions, II, might ¢, t#1 L, so by fact (F'),
11, might ¢ -1 might 1), which we were after.

To see that m — Mon holds, assume that II Fymight ¢ and II,¢ F; ¢. In
case that II, ¢, 1 L, the fact (F') proves that II, ¢ ymight 1. The case that
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II, ¢, k1 L is proven by the follwoing derivation:

Loyp=1
M= L "™ Myp=¢
Ly = 1
T, might ¢ — 1 “ML T = might 4
o cc
iJ—M
ML= L "

T ¢ omighty ™ /%
O

We end this section by proving some lemmas on diagrams that hold for all
three systems and that will play a role in the completeness proofs to be given
below. Informally, the reason that these lemmas hold for all three systems
is that they only involve the Boolean rules (which are the same for all three
systems) and the weak forms of the structural rules. In the following four
lemmas, |- is any of the three consequence relations described above.

Lemma 8 Let A be a diagram.
1. AL
2. for every p € Lo, AFdpor AjpF L
3.

a) AF piff poccurs in A

(a)
(b) A A iff A pand Al
() A ¢V if A dor Ak

d) AF =g iff A, ¢ L

Proof: Item 1 follows form the soundness theorem(s). 2 is proven by induction
on ¢; we do two cases. If ¢ is atomic, say ¢ = p, then we have that either p
or —p occurs in A; if p occurs in A then A F p by RR and Perm; and if —p
occurs in A then A,pF L by PC and Perm. Suppose ¢ = 1) V X, and assume
A ¥4V x, then by the right V rules, A I/ ¢, and A I/ x, so by the induction
hypothesis, A, F 1L and A, x - L, so by the left V-rule, A,¢ VvV x = L. The
oter ases are similar.

Item 3 is also relatively straightforward , and we do only one case by way of
llustration. Suppose A F ¢V ), but A I/ ¢ nad A I/ 1, then by 2, A,¢ F L and
A,y 1, so by the left V rule, A, ¢V L; but now CC and our assumption
yield that A F L which contradicts 1. O

Lemma 9 Let 0 CW and ¢ € £y. Then o[¢] = {w € 0 | A, - ¢}.
Proof: By induction on ¢ and the previous lemma. O

Lemma 10 Suppose ¢1,...,¢, € Lo and ¢1,...,¢, I/ L. Then there exists a
diagram A such that ¢1,...,¢n, At/ L, and A ¢; for every ¢;.
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Proof: Assume some enumeration pi,...,pg of the set of atoms A. Define

AZ(Sl,...,(Sk by

5 _ { Pi+1 if ¢17"'7¢na517"'a5iapi+1 VL
i+1 —

—p;+1 otherwise

Assume as induction hypothesis ¢1,...,¢,,61,...,0; ¥ L. Now suppose
that ¢1,...,¢n,01,..., (Si+1 F 1. Then 51'_;_1 = —p;+1 and both

¢11"',¢n5615"'55i1pi+1 F 1 and ¢17"'7¢n5615"'55i1_'pi+1 Fl

so
Pryeees Py O1y-eey 8y Pig1 VD1 F L
Since everything is £y, we have (from classical logic) that
¢17"'a¢na51a"' a(s’i l_p'i—{—l V it

Hence by Cautious Cut, a contradiction with the induction hypothesis arises.
This establishes that ¢1,...,¢,, A/ L. Now by lemma 8, either A - ¢; or

A, ¢; - L. But the latter would imply, with Mon for £j-conclusions and Perm,

that ¢1,...,¢n, A L. So AF ¢;. O

Lemma 11 Suppose ¢1,...,¢, 7 L. Then

O[] - [dn] ={w | O1,...,0k, Ay I/ L}

where 61,...,0; are the Ly-formulae in ¢1,..., ¢,.
Proof: Induction on n. If n = 0, we have that 0 =W ={weW | A, I/ L}
In the case that n = m + 1 we consider two cases. Case 1: ¢p41 €

Ly. Let 0y,...,0; be the Lo-formulae among ¢1,...,¢,. Suppose that w €
0[¢1] - - [pm+1]- By lemma 9 this is equivalent to

w € O[¢n] -+ [pm] and Ay F i

By the induction hypothesis this is equivalent to
01,...,0;,A4 1/ L and Ay F dpy1

By the structural rules CC and CM, the latter is equivlent to

015"'59ja¢m+1,Aw |71J—

which we were after.

Case 2: ¢m41 =might 1. First suppose that O[¢1]- - [¢pm][tY] = 0. Then
by lemma 9 there are no worlds w such that w € 0[¢1]---[¢m] and Ay F 3.
So by the induction hypothesis, there is no w such that 6,,...,0;, A, I/ L and
Ay F1p. This means that for every diagram A we have that 0y,...,60;,¢,AF L
so by lemma 10, 61,...,60;,4 F L; but then by the might-rule miL we have
01,...,0;,might 9 = L, so by Mon, ¢1,...,¢m41 F L, contradiction.

Next suppose that O[¢q]: - [pm][1)] # 0. Then O[¢p1]: - [¢y][might ¢] =
0[¢1] - - [#1], and we can apply the induction hypothesis. O
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3.3 The Update-Test Logic of might
3.3.1 Completeness

Theorem 2 If ¢1,..., ¢, Fo ¥ then ¢1,...,ppy Fa 1.
Proof: Suppose that ¢1,...,¢, Yo 1. Let 01,...,0; be the Ly formulae in
¢1,-..,¢n, and distinguish two cases about complexity of 1.

Case 1: ¢ € Ly. We want to show that for some o, o[d1]---[¢n] [~ ¥;
we will actually show that we can take ¢ = 0 in this case. Observe that
01,...,0,,— /o L, since otherwise 61,...,0; F2 9 and then by monotony for
Ly conclusions ¢1, ..., ¢, Fs 1, contrary to our assumption. So 64, ...,0,, — o
1, so by lemma 8 and lemma 10, there must be some diagram A, such that
01,...,0k, Ay /2 1. But then by lemma 11, w € 0[¢1] - - - [¢y], but by lemma 9,

w & 0[¢1] - - [bn][¥].
Case 2: 1) =might x. Define a state o by

o=0[-(01 A--- N A X)]
We will show that o[¢1] - - [¢n] |~might x. This will be true if

2. aln]---[#n]x] = 0

It is easy to see that 2 must hold: since =(61 A---AOp A X),01,...,0k,x F2 L,
Mon for Ly-conclusions yields that =(0; A+ AOp A x), P1,---, Pn,x F2 L, and
then 2 follows from soundness.

To see 1 we make the following claim: if 7 < n, and 64,...,0; are the
Lo-formulae in ¢1,..., ¢;, in the order in which they occur, then

olp1]---[pjl ={w | ~(OL A---ANO A X),01,...,0;, Ay o L}

We now first show that this is sufficient for 1. Suppose that o[¢1]-- - [¢dn] = 0;
then by the claim and lemma 10, =(6; A--- AOx A x),601,...,60 2 L. But then
the negation and conjunction rules imply that 61,...,0; F2 X, so by Mon for
Log-conclusions, ¢1,..., ¢y F2 X, 80 ¢1,..., ¢y Famight x by might-introduction.

Finally we show the claim by induction on j. If j = 0 the claim reduces to
lemma 11 if we can show that —(601 A---AOxAx) o L. But if 2(61A- - -AOxAX) 2
1 then by (61 A---ABpAX), s0 2 X, 80 ¢1,..., b, Fa X, 80 ¢1,. .., b, Fomight x,
which contradicts our assumption.

For the induction step distinguish two cases. Case 1: ¢;11 € Lo. Then by
lemma 9,

olpr]- - [pjr1] ={w € ol¢n]--- [45] | Aw F2 pj41}
which by the induction hypothesis implies that

0'[(]51] cee [(}5]'_|_1] = {w ew | _'(91/\' . -/\Gk/\x),el, - ,(91', Ay |7(2 1 and Ay o ¢j+1}

which by CC and CM yields that

o] [pjr1] ={w €W | (0L A ANO AX),01,--.,0; 0511, A o L}
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Case 2: ¢;y1 =might . Suppose that o[p]---[¢;][t)] = 0. Then by the

induction hypothesis and lemmas 9 and 10,
—I(01 VAR /\0k/\X),91,...,0i,’(p Fo L

But then
O01,...,0;,p o 0L N+~ ANO AN x

SO
015"'301'71/}}_20’i+1/\"'/\0k/\x

so by simultaneous might-introduction
01,...,0;, might 1 Fomight (0;11 A--- A O A )

But then repeated application of the might-monotonicity rule m — Mon yields
that
01,...,0;, might 1,0;,1,...,60 Fomight (6;31 A--- A6k A X)

And from this it follows that
91, e ,Hi, mlght I/), 91'_1_1, . ,9k Fgmfght X
and by hence by Mon that

$1,. .., Pn Fomight x

which contradicts our assumption. So o[$1]--- [¢;][¢)] # 0. But then we have
o[¢1] - - - [¢;][might 4] = o[¢1] - - [¢;], and we can apply the induction hypoth-
esis. O

3.3.2 Cut Elimination

In [8] van der Does gives an alternative calculus for =2, which is equivalent
to our calculus -3, but allows the elimination of Cautious Cut. His calculus,
M4, actualy arose out of an attempt to prove Cautious Cut elimination for
3, which turned out to be problematic due to the various side conditions on
syntactic complexity in the rules of 5. We present the calculus here, but for
the proof of the Cut Elimination theorem refer the reader to the cited paper.

The presentation of the system uses the following notational coventions. The
symbols ¢, 1, x, ... vary over Ly formulas, and A,T', 0, ... over finite sequences
of £y formulas. £; formulas are denoted by o, T, i, ..., and finite sequences of
such formulas by II, A, ....

The deduction system Mg consists of two parts, one for £y sequents and
one for £1 sequents.

The Common part consists of two structural rules.

=0 llocA=>1T1
7= RR IIA= 71

cautiouscut
The Classical part consists of Ly-sequents (x may be the empty string).
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Logical rules

I'd; = x ; F=¢ I'= ¢

_ = R
Lot Ao = x N ['= 1 Ao "
p=x D=y, T=d L
Lp1 Vo = x v F= ¢V Y
I'=s¢ T'Ypy=x I'¢ = R
Tog=>9p=>x F=>¢=>19
I'=¢ I'¢ =
'-¢= """ I's-¢
' = x
P—|—|¢$X -
Structural rules
I'A=x TodpA = x T'dpA = x

F(;SA:>Xmon TGA = contr mperm

Might logic.  This part consists of £1 sequents (7 may be the empty
string).

Logical rules

¢ = OA=>71 ¢ M=¢
Il might $ = ™ Tl might A = 7 ™ Tl =might¢ ™

¢ = 9 IT = might (¢ A1)
II might ¢ = might 1) I1¢ = might 1

Structural rules

hES = 5

HA:>LmO" M=o ™"

Theorem 3 Cautious Cut can be eliminated in M.
Proof: see [8]. O

3.4 Starting from Ignorance

We first prove a necessary lemma, which is particular for .

Lemma 12

If qsla Tt ¢na7/) |7(1 L then ¢13 s 7¢n |_IH'tht 71[)
Proof: If there are no might-formulae in ¢1,..., ¢,, then by lemma 10 there

is some diagram A such that A Fy ¢1,...,A F1 ¢, and A 1 v, but then the
diagram rule A gives ¢1, ..., ¢, F1might 1.

Next suppose that there are might-formulae in ¢q, ..., ¢, and let 0y,...,60;
be the Ly-formulae in ¢1,...,¢,. If ¢1,...,¢0n,% /1 L then 61,...,0,9 /1 L

255



by Mon for £j-conclusions. Hence by the above, 01, ..., 60 F1might ¢, but then
again by Mon we can put the might-premisses back in, so ¢1, ..., ¢, Fimight 1.
a

Theorem 4 ¢1,..., ¢, 1 ¢ iff ¢1,...,0n F1 9.
Proof: We leave the soundness part to the reader.

Suppose ¢1, ..., ¢ 171 P. Casel: ¢ € Ly. We want to show that O[] - - - [¢n][1)] #
O[¢1] -+ [#n]- Let by,...,0 be the Ly formulaein ¢y, ..., ¢,. Thenby,...,0, 1)t/
1, since otherwise 6,...,60; F1 1 and then by monotony for £y conclusions
¢1,...,¢n F1 1, contrary to our assumption. So 601,...,0x, - t/1 L, so by
lemma 8 and lemma 10, there must be some diagram A, such that 64, ..., 0, Ay /1
. But then by lemma 11, w € 0[¢1] - - - [y], but by lemma 9, w & 0[¢1]- - - [pn][¢]-

Case II: ¢ =might x. Our assumption implies that ¢1,...,¢, /1 L, which
by lemma 11 and lemma 10 implies that 0[¢1]--- [¢n] # 0. But by lemma 12,
@1,---5bn,x F1 L, hence by soundness, 0[¢1] - - - [¢n][might x| = 0. O

3.5 The Test Logic of might

For this case the main work has already been done, because the lemmas 8, 9,

and 10 also hold for F3.

Theorem 5 ¢1,...,¢, F3 ¢ iff ¢1,...,¢, F3 .
Proof: Soundness is left to the reader. Suppose ¢1,..., ¢, /3 1. We consider

two cases. Case I: ¢ € L. Let 04,...,0; be the Ly formulae in ¢1, ..., ¢,, and
consider the state

a:{w|Aw |—301,...,0k}

Then o | ¢;, since either ¢; is one of the 61,...,60k, or ¢; =might x. In the

latter case, suppose that o [-might x, then o[x] = @, but then by lemma 9,

01,...,0k,x F3 L, so 0y,...,0;, might x F3 1; but then by Permutation and

Monotony for Ly conclusions, a contradiction with our assumption arises. Fi-

nally o |~ v: this follows form classical logic and the fact that 0y, ...,0 /3 1.
Case II: ¢ =might x. Then consider the state

U:{w‘A'w }_3 017-"’0k1_'X}

where again 61, . .., 0 are the £y formulae in ¢4, ..., ¢,. Since ¢1, ..., ¢, Fsmight
X, we have that 6q,...,0; /3 X, so 0 # (. On the other hand o[x] = 0 by
lemma 9, so o [f-might x. So we are done if we can show that o |~ ¢;. Again
the only interesting case is that ¢; is not one of the 8’s, and hence is of the form
might a. Now if o |f-might «, o[a] = 0, so by lemma 9, 6,...,0,a,—x 3
L; but then 6y,...,0,a,F3 x so 01,...,0,, might o,F3might x, which by
Monotony contradicts our assumption. O

4 The normally-presumably-system

4.1 Semantics

We repeat the definitions of [11].
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Definition 26 (Languages) Let A be a set of atomic formulae. Then L3 is
the closure of A under the Boolean connectives —,V,A. [,54 consists of LOA,
and of every formula of the form normally¢ for ¢ € [,64, and every formula
of the form presumably¢ for ¢ € [,‘64. n¢ and p¢ abbreviate normally¢ and
presumablyg, respectively. m|

The basic idea of the semantics for normally¢ is that a sentence of that
form changes expectations rather than factive information. Factive information
is still modeled as a set of possible worlds, just as in the semantics of might.
Expectations are modeled as a binary relation over these worlds. The semantics
of a sentence of the form presumably¢ is guided by the idea that these express
a property of those worlds in the factive information set that comply best with
your expectations.

Definition 27 Let W = P(A) be the set of possible worlds for an atomic
vocabulary A. Then an expectation pattern is a preorder on W.
Let € be a pattern on W

1. a world w € W is normal in € if (w,v) € € for allv € W
2. ne is the set of all normal worlds in €
3. € is coherent if ne # ()

Let s CW. Then

1. a world w € W is optimal in (e, s) if w € s and for all v € s, if (v,w) € €
then (w,v) € e.

2. m ) is the set of all optimal worlds of (e, s) O

The intuitive idea is that if (w,v) € €, w complies at least as well with your
expectations as v. If you learn a sentence normally¢ this has to be preserved,
and hence any pair (w,v) € € such that ¢ is true in v but not in w has to be
removed from the pattern. This process is called refinement.

Definition 28 Let ¢, € be patterns on W, and consider a proposition p C W.
1. € is a refinement of € if € C ¢

2. eop =g {(w,v) € €| ifv €pthen w € p}. eop is called the refinement
of € with p. O

The refinement operation has the following properties.

Proposition 15
1. eoP=¢

2. eoW=W
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3. (op)op=cop
4. (eop)og=(eoq)op

5. ife Ce and € op=¢€ thenecop=-c¢ O

Definition 29 If € is a pattern on W, p C W, then p is a default in € if p # (}
and eop =e. O

Proposition 16 If € is a pattern on W then for all w,v € W:
(w,v) € e iff for all defaults p in €, if v € p then w € p

Proof: for the non obvious part, assume (w,v) ¢ € and consider the proposition
p={ueW|(w,u) e}. Then w & p, v € p, and p is a defualt in e. |

Finally then we define the set of information states and the semantics.

Definition 30

1. An information state is a pair o = (€, s) such that either € is a coherent
pattern on W and s is a non-empty subset of W, or € = {(w,w) | w € W}
and s = (.

2. The minimal state is the state 0= (W x W, W). The maximal or absurd
state is the state 1 = ({(w,w) | w € W}, 0).

3. o = (€, ) is at least as strong as o/ = (¢/,s') if e C €’ and s C & O

Definition 31 (Semantics) Let o = (¢, s) be an information state. Then for
any ¢ € L3', o[¢] is defined as follows

1. If g € l()‘t then

e if s N [|gl] =0
(€,8)[¢] = { (e,sN||4||) otherwise

Here ||¢|| = W][¢]|, which we can calculate from the semantics of the

might-system, since ¢ € Ly. (Put otherwise: ||¢|| is just the proposition
expressed by ¢, the set of all worlds where ¢ is true.)

2. If ¢ = normally) then

(€, s)[mormallyp] = { (1 ifnen ||yl =0

eolly||,s) otherwise

3. If ¢ = presumablyy) then

(¢, s)[presumablyp] = { (€,5) i meq) N Y]] = mye,s)

1 otherwise
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We end this section with some comments on the duality of defaults as propo-
sitions and defaults as patterns since this will play a role in the completeness
proofs.

Defaults are defined as derivatives of an expectation pattern: they are those
consistent propositions that are preserved by the pattern. From proposition 16
it follows that if two patterns have the same defaults, then they are equal.
It does not follow that every set of propositions picks out a unique pattern,
though this turns out to be true under some simple constraints on the set of
propositions.

Definition 32 let W be a set of possible worlds. Then an expectation set is
a set of propositions E C P(W) such that W € E, 0 ¢ E, E is closed under
unions, and F is closed under intersections. If F is an expectation set then its
associated pattern is defined as €(F) =g {(u,v) |[Vg€ E: ifv € g thenu €

q}- O

It is not hard to show that €(E) is a coherent pattern. It is also clear that
every q € E is a default in ¢(E). And the converse also holds:

Proposition 17 Let E be an expectation set over W. Then every default of
e(E) is already in E, that is, if

1. g#0

2. for all (u,v) € €(E), if v € g then u € ¢

then g € E.
Proof: Suppose ¢ satisfies 1. and 2. Describe any v € W by the set of propo-
sitions in F that are true of v, as follows:

e(v)=({pe E|vep}
Since v € W and W € E, v € e(v), so e(v) is non-empty. And e(v) € E by
closure under intersections. Moreover, we have that

if u € e(v) then (u,v) € €(E)

For suppose u € e(v), and let p € E, and v € p, then by definition of e(v),
u € p. Since this holds for arbitrary p € E the definition of €¢(F) gives that
(u,v) € €(E).
Next define
¢t =U{e(v) [veq)

Then g € E by closure under union. Moroever g7 = ¢: if u € ¢ then u € g™
since u € e(u) C q*; and if u € ¢* then u € e(v) for some v € q. The former
impies that (u,v) € €(E) (as we’ve just shown), which combined with the fact
that v € ¢ and our assumption that g is preserved by €(E) implies that u € q.
a

From the definition of €(E) it is also immediate that every g € E is a default
€(E). Thus by proposition 16, E uniquely determines ¢(E). The construction in
the proof of proposition 17 will turn out to be a crucial part of the completeness
theorems in the next sections.
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4.2 The static logic of normally

For the fragment with only the Booelans and normally, Permutation and Idem-
potency hold, as is easily seen from proposition 15, so by the results of section
2.1, all three consequence relations collapse to one, essentially static relation.

We determine this consequence relation by developping an alternative static
semantics for normally, give a complete characterization of consequence in this
static semantics, and then show that this static consequence relation is equiva-
lent to the dynamic consequence relations.

The models are the ordinary Kripke models from modal logic:

Definition 33 (Models, Semantics, Validity) Let A be a set of atomic for-
mulae.

1. A frame is a pair (W, R) where W # () and R is a binary relation over W
2. An A-valuation is a function f: A — {0,1}.

3. An A-model is a triple M = (W, R, V) where (W, R) is a frame and V is

a function that assigns to each w € W an A-valuation V(w).

4. The notion of truth in a world in a model is defined as usual for the
Boolean connectives; the truth conditions for n are given by

w |- n¢ iff Jv:v | ¢ and Yuv : if uRv and v | ¢ then u | ¢

5. M = ¢ iff for all w in M, M, w | ¢.

6. Validity is defined as preservation of truth: if K is a class of A- models
and ¢1,...,¢n, 1 are A-formulae, then ¢1,..., ¢, Fx ¢ if and only if for
all models M in K and all worlds w in M, if M,w |- ¢; for 1 < i < n,
then M, w | 9. O

So almost everything is as we are used to in modal logic. The relation R
of a model will play the same role as the expectation pattern in the dynamic

semantics. Note that n is not a normal modal operator, since it does not satisfy
the K-rule

¢17"'7¢n}_1/)
ng1, ... ,nd, - ny

at least not if we look at the class of all models.

Also note that formulae of the form n¢ are global: if they are true in some
world they are true in all worlds; and if they are false somewhere they are false
everywhere.

The information states that are used in the update semantics for normally
are special cases of models. Suppose we have a finite vocabulary of atoms
A. Then an information state can be seen as an A-model having four special
properties:
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1. different worlds carry different valuations
2. the relation is a preorder
3. there are minimal (‘normal’) worlds
A fourth distinction is that
4. the dynamic semantics is defined only for n¢ if ¢ is propositional

that is, formulae in which n can only occur as outermost operator.

So we have allowed ourselves four generalizations. We will show that the
first two are inessential. The existence of normal worlds makes a difference but
is expressible in the static semantics. Finally, the restriction on the occurrence
of n will actually be an issue that we will study: we will prove completeness
with and without this restriction.

We will first show that the constraint that the expectation pattern is a
preorder is free.

Definition 34 Let M = (W, R,V) be a model. Define the completion of R by
R = {(u,v) | V¢ : if M En¢ and M,v ||~ ¢ then M,u | ¢}
Define the completed model Mt = (W, RT, V). O

Then R C R', and clearly RT is a preorder. RT fills in the ‘gaps’ of
R; we add any pair which was not in the original pattern, although the pair
does in fact comply with all true defauls. In view of proposition 16, it may
appear that every model is complete, but this need not be so if the model is not
distinguished. All finite distinguished models are complete, as a straighforward
adaptation of the proof of proposition 16 will show.?

Proposition 18 Let M be a model and let M™ be its completion. Then for
all g, w: M,w |- ¢ if MT,w |- ¢
Proof: an induction in which n¢ is the only interesting case. Suppose M, w ||—
ng. Then M E n¢. Moreover, M,v |- ¢ for some v, so by the induction
hypothesis, M* v |- ¢. Next suppose zR*y and M T,y | ¢, then by the
induction hypothesis, M,y | ¢. So xR*y and M,y |— ¢, but since M F ne,
the definition of RT implies that M,z |- ¢, and then Mt z |- ¢ follows from
the induction hypothesis.

The converse follows from the induction hypothesis and the fact that R C
R™. O

Given any class of models K, define K* = {M™* | M € K}. Then the

previous proposition implies that whatever is valid on K is valid on KT, and

8For the case of infinite distinguished models the proof of proposition 16 does not carry
over, since in that case the proposition p that is used in the proof may not be expressible by
some formula.
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that whatever is satisfiable in K is satisfiable in K. Hence K-validity and K-
validity coincide. This means that from a class of models can we can always
pass to a class of preorders that has the same logic.

Next we show that we can remove situations in which different worlds carry
the same valuation. The idea why this is so is that in a completed model, worlds
that carry the same valuation are R-related to the same worlds, so that we can
conceive of them as ‘one’ world.

Lemma 13 Let M be a model. Then for all formulae ¢ and all worlds u,v €
W, if u,v carry the same valuation then M, u |- ¢ iff M,v | ¢.

Proof: The case where ¢ is atomic is immediate from the assumption on u,v.
The Boolean cases are immediate form the induction hypothesis. The case
¢ = nap is trivial since all worlds satisfy the same norms. O

Lemma 14 Let MT = (W, R",V) be the completion of M. Let u,v € W
carry the same valuation. Then for all w € W, wR v iff wRTu, and vRTw iff
uR w.

Proof: Suppose that u,v € W carry the same valuation, wR v, but not wR .
The latter implies that there is some formula n¢ such that M = ng, M, u |- ¢,
but M,w |/ ¢. Then by proposition 18, M* u |- ¢ and M, w |~ ¢, so
by lemma 13, M™,v | ¢ and M, w |~ &, but this contradicts the fact that
wRTv. The other cases are similar. O

The next move is standard now: apply filtration to M™ to obtain a distin-
guished model. We leave the remaning details to the reader.

We will now consider the constraint of the existence of normal worlds, in
finite models. To be precise, w is normal in (W, R) if wRwv for all v € W. On
finite models, the existence of these worlds is equivalent to the condition that
(W, R) is closed under finite meets: for every finite subset X of W there is
a v € W such that vRu for all u € X. And the latter condition is of course
equivalent to the existence of binary meets: if u,v € W then there is a w € W
such that wRv and wRu.

Definition 35 If (W, R) is a frame and u,v € W, then u is a predecessor of v
provided (u,v) € R*, where R* is the Reflexive-transitive closure of R. a

Proposition 19 Consider the class of all frames in which every two worlds
have a common predecessor. This class is characterised by np A ng — n(p A q).
Proof: Suppose M = (W, R, V) is a model of which the frame has the property.
Suppose w |- np A ng. Then there are u,v with u | p and v |- ¢. But u,v
must have a common predecessor, say z, and since both p and g are downward
preserved, z |- pAg. That pAq is also preserved downward is straightforward.
So w |- n(p A q).

Conversely, suppose we have a frame (W, R) and two worlds u,v € W that
don’t have a common predecessor. Then the frame consists of three disjunct
parts:

e Ru={zeW | (z,u) € R*}
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e Ru={ze W | (z,v) € R*}
e the rest: W\ (RuU Rv)

Then there are no arrows between Ru and Rv; moreover there no arrows from
the rest to either Ru or Rv. Make a model on this frame where p, —q are true
in Ru, —p,q are true in Rv, and —p, ~q are true in the rest. Then np and ng
are true but n(p A q) is false. O

Notice that the existence of common predecessors is not quite the same
as existence of finite meet, though it is of course whenever R is reflexive and
transitive.

We’ve now shown that two of the four abstractions we made from the update
framework are not esential. Thus two remain, which give the following four
logics of interest:

o M, the logic of the class of all models
e N, the logic of the class of all models with finite meet
e M, which is M restricted to £, formulae

e N1, which is A restricted to £1 formulae

Since we’ve shown that finite meet is expressed by np Ang — n(p A q), it
would be nice if we can formulate ' as M with only this axiom added. This
turns out to be possible. However we will only treat details of the completeness
proofs of N and NN; since these are the logics that have a direct correspondence
with the dynamic logic of normally.

But before we do this you may want to know what is exactly the connection
between the update semantics for normally and the truth conditional semantics
of this section.

Proposition 20 For the fragment with only the Booleans and normally, static
consequence coincides with dynamic consequence.

Proof: We sketch the main line of argument and leave the details to the reader.
We already know that the three dynamic consequence relations coincide, so it
is sufficient to show that static consequence coincides with =3. Let P(.A) be
the set of all possible worlds over a finite set of atoms A. Then for any state
(€,8), consider the model M = (P(A),¢,V), where V is of course defined by:
V(w)(p) =1 iff p € w. Then show that

(,8) | ¢ iff forallwe s: M,w | ¢

From this it follows that ¢1,..., ¢, =1 implies ¢1, ..., P, =3 1.

For the converse suppose that ¢1,...,¢, 1, then there is a model M =
(W, R,V) and a world w € W with M,w | ¢1,...,¢n, M,w |}— 7). Define a
pattern € by € = {(u,v) | for all x € Ly, if M Eny and v . Iy then u =. Ix},
where F. [ means ‘true in classical logic’. Then check that e is a coherent
pattern, and that for the unique w' € P(A) with w’' = {p € A | V(w)(p) = 1},
we have that (e, {w'}) | ¢ iff M,w |- ¢. Tt follows that ¢1,...,¢, F31p. O
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4.2.1 TUnrestricted Version

We we first consider A/, the logic of the class of all preorders that have finite
meet, without any syntactic restrictions on occurences of normally. We present
N as a sequent calculus where the sequents are of the form I' = A for finite
sets of formulae T', A.

Reflexivity ¢ = ¢ [Refl]
r=A
Structural Rules ILT = A% [Mon]
I'=¢,A ILp= X%
LI= A% [cuT)]
Logical rules for -, A,V
I'=¢,A L¢g=A
T,~¢=a ey
Lo,y => A '=s¢,A T=19A
Tonp=a N T gnp,a N
e=A TIyp=A '=¢,9,A
Tovesa VM t5avea VA

Logical Rules for n

T=ng, A T =np A T=npA T =np A

A V
Tongrg,a ™ TTongvena MY
In the following four rules I'; A may only contain formulae of the form n¢
or ngo.
é¢=A I'= ¢ A
Tngs A "l TS np.a

Ingi,...,ndr = A I''ng = nip, A

Here a norm is a formula of the form n¢ or of the form —n¢. This presenta-
tion of N is not the most economic one, but we’ve tried to give the system such
a form that there is some prospect of proving a Cut Elimination theorem.® Ac-
tually A could be presented as an extension of classical logic with the following
rules:

1. ng,np En(dp A) (nA)
2. ng,np Fn(p V) (nV)

9But these attempts have failed until now.
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3.nlk1 (nl)

4. FnT (nT)

N, ¢ty N,pEg
5. N,n¢ = nip

EPL’ . .
R ) provided that A is a set of norms
These are the rules for n that are needed in the completeness theorem. We
leave it to the reader to verify that these rules are derivable in our sequent
calculus.

Definition 36 An N -derivation is a finite sequence of sequents, in which every
sequent is either an axiom, or follows from sequents earlier in the sequence by
one of the rules. T' k5 A iff there are finite subsets ¥ C T" and A’ C A and an
N -derivation such that IV = A’ is the last sequent. If K is a class of models,
then I' = A if for all M € K and worlds w € M, if M,w |~ ¢ forall ¢ € T
then M, w |~ % for some 1) € A. O

From (nR) it is easy to see that n¢ Fx nng and -n¢ s n—ne, and likewise
(nL) implies that nn¢ by ng and n—ne Fyr —nd.

Theorem 6 (Soundness) N issound with respect to the class of all preorders
that have finite meet.
Proof: left to the reader. The existence of finite meets is relevant for the rules

(nA) and MEET. O

The construction of a canonical model is similar to the standard construction
in modal logic. There is one detail that we have to take care of: norms are
either true everywhere in a model, or false everywhere. So in the canonical
model construction we have to take care that all maximal consistent sets that
constitute the model contain the same norms.

Definition 37
1. N(T'), the norms of T', is the set {n¢ | np € '} U{-n¢ | -nd €T}

2. A norm set C is norm-maximal if for every formula ¢ either n¢ € C or

—-n¢ € C.

3. T' is consistent if I' I L. T" is maximal consistent if I' is consistent and no
proper extension of I' is consistent.

4. Let C be a norm set. Then I' is maximal consistent modulo C if T" is
maximal consistent, and N (T') = C. |

If T' is maximal consistent modulo C then C is norm-maximal.

Lemma 15 (First Saturation Lemma) Suppose I' I/ ¢. Then there is a
maximal consistent set I such that T'U {—¢} C T".
Proof: Use a standard Lindenbaum argument. ]
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Next we need a second form of the saturation lemma. We will frequently
need an argument of the form: if C is a norm set and C U X is consistent then
C U3 can be extended to maximal consistent set modulo C: for this we have to
show that we can saturate in such a way that the resulting set contains the same
n-formulae as C. But this easily follows if C is already maximal with respect to
norms.

Lemma 16 (Second Saturation Lemma) Suppose C is norm-maximal and
CUY is consistent. Then there is a ¥ O CUY such that ' is maximal consistent
modulo C.

Proof: By the first saturation lemma there is a maximal consistent ¥’ D CUX.
Then clearly C C N (X'); the converse follows from the norm-maximality of C.
a

Definition 38 (Canonical Model) Suppose C is a norm-maximal set in an
atomic vocabulary A. Then the model My¢c = (Wac,Re,V) is defined as
follows:

e Wy consists of all sets of L(A)-formulae that are maximal consistent
modulo C

o SRcY iff for all nyp € C, if ¢ € ' then ¢ €

« V(p,T)=1iffpe X O

Lemma 17 If C is norm-maximal in a finite vocabulary A, then M 4¢ is a
finite model.

Proof: Suppose I'1 and I's are maximal consistent modulo C, and suppose they
contain the same L£y(.A) formulae. Then prove with induction on the structure
of ¢ that ¢ € T'; iff ¢ € I'y. The atomic case follows from our assumption; the
Boolean cases follow from the induction hypothesis and maximal consistency,
and the n-case follows from the fact that both are maximal consistent modulo
C, so they must contain the same norms.

So we have shown that two maximal consistent sets are identical if they
contain the same norms and the same Lo-formulae. Next observe that the £o(A)
formulae of some maximal consistent set must form a maximal consistent set in
classical propositional logic. Hence by our previous observation, there can be at
most 2% different maximal consistent sets modulo C, where k is the cardinality

of A. O

Lemma 18 (Valuation Lemma) Let C be a norm-maximal set in a finite
vocabulary A, and let I' € W4 c.

1. ~¢peTiffpgT
2. Ifopnypeliff peTandp €T
. pvypel iffgpeToryp el
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4. np €T iff

(a) there is a I in We A such that ¢ € T”
(b) for all £,%" € We a, if ER¢Y and ¢ € X' then ¢ € B

Proof: The Boolean connectives are standard.

We consider the case of n¢. Suppose n¢ € I'. Then n¢ € C. Suppose CU{¢}
is inconsistent, that is, C,¢ F L. Since also C, L F ¢, the Replacement Rule
gives C,n¢ F nL, so by the rule (nl), C,n¢ F L, which can’t be since n¢ € C
and C is consistent. So CU {¢} is consistent. By the Second Saturation Lemma
there must be a set ¥ € Wy ¢ with CU {¢} C E; s0 ¢ € 3.

Next suppose that ¥/, 3" € Wy ¢, ¥'ReXE" and ¢ € ¥". But n¢ € C, so the
definition of R¢ gives that ¢ € X',

For the converse, suppose that clauses 4(a) and 4(b) hold, so we have a
3 with ¢ € ¥ and ¢ is downward preserved by the ordering. Consider any
I' € Wi, consider all norms of C that are true in I':

T(T) =g { €T | nyp €C}

Notice that the maximality of C and the rule (nR) imply that nT € C, so
{$p €T |np eC} #0.
Then
if €I then C,T(T) F ¢ (1)

For suppose ¢ € T but C,T(T') t/ ¢, then C,T(T"),—¢ I/ L so there is a I that
is maximal consistent modulo C and CUT(T') U {~¢} C I''. But then I"RT, so
by the preservation condition on ¢, ¢ € IV, but then IV must be inconsistent.
Now by compactness, if C,T(T") F ¢ there must be a finite subset T' of T'(T")
such that C,T  ¢; then put ¢(I') = AT. Use this to describe ¢ by all these

finite descriptions of sets of which it is a member:

ot = \/{t(F) |peT and T € Wy}

This is welldefined, since W4 ¢ is finite because A is finite. Since ¢ is the
disjunction of all ¢(I") with ¢ € I" it follows from (1) that

C,d" o (2)
On the other hand, we also have that
C,pk ot (3)

since otherwise C, —t(T'y),...,—t(Tk), ¢ I/ L, where I'y, ..., T’y list all sets with
¢ € I';. Hence it can be extended to a set X with ¢ € ¥, which means that X
is one of the I';, so X F ¢(I';) and ¥ F —¢(T;), contradiction.

But (2) and (3) and the Replacement Rule imply that

C,nédt Fne
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So we are done if we can show that
CFne¢*

Well, ¢(T") is of the form ¢1 A ... A ¢y, where n¢g; € C, so the rule nA gives that
CtEn(dy A... A dyg), hence T  nt(T') so by maximality of T, nt(T') € T so
nt(I') € C. So by the disjunction rule (nV), C F n¢*. O

Finally we show that the frame of the canonical model has the right struc-
tural properties. That R is a preorder is immediately clear from its definition.
So what is left to show is the existence of meets.

Lemma 19 (Canonical Frame lemma) Suppose C is norm-maximal in a
vocabulary A, and consider the canonical frame (W4 ¢, Re). If T'1,Ty € Wy
then there is a ¥ € W 4 ¢ such that ¥ R¢I'y and X RcI's.

Proof: Consider the set

CU{p el |np eCtU{x el | nyecC}

Suppose that this set is inconsistent, say (we do a simple case) that C,4,x F L
where 1 € I'1,x € '3, np,nx € C. Then by the MEET rule, C,ny,nx - L.
But niy,ny € C, so by Cut, C I L, contradiction. ]

Now standard argumentation establishes

Theorem 7 (Completeness of ') A is complete for the class of all pre-
orders with finite meet. O

4.2.2 Restricted Version

We will now look again at the class of models with meet, but through the eyes
of formulae in which normally can only occur as outermost operator.

Definition 39 £, = Lo U {n¢ | ¢ € Lo} 0

Now we don’t have negations of the form —n¢, so the construction of max-
imal norm sets does not work here. But this is compensated by the fact that
we can exploit some theorems about classical logic, since we now know that
whenever we have a formula of the form n¢, ¢ can’t contain n, so ¢ behaves
purely classical. The following change of terminology is forced upon us by the
syntactic restriction.

Definition 40 A norm is any formula of the form niy with ¢ € Ly. A set of
formulae N is a norm set if all formulae in A/ are norms. The empty set is a
norm set. O
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The system N1 is simply defined as follows: A1 is the set of £; instances
of the schemata that axiomatize N. It is then immediate from the soundness
of N that A1 is also sound on the class of preorders with finite meet.

The problem that we can’t negate formulas n¢ anymore can be illustrated
by an example: n(p A q) I/ np. But the conclusion that n(p A q), np I/ L has
become useless, since —np is not an £i-formula. However we can do something
like the following. The closure A of {n(pAq),np} is {n(pAq),np, (P Aq),~(pA
q),p,9,p,q}. Put C = {n(p Aq)}. This gives four ‘finite’ maximal consistent
subsets of A that don’t contain np, namely

T ={n(pAq),(pAq),p,q} T ={n(pAq),~(pAq),p,—q}

Lo = {n(p A q),=(p A q),~p,q} Loo = {n(p A q),=(p A q), ~p,~q}
Now we define R¢ by exactly those pairs that preserve all norms in C, that is,
that preserve p A g, the following model results:

(reflexive and transitive arrows not drawn). The R¢-connections between the
{p,~q} set and the {—p,q} make sure that neither np nor ng is true in the
model.

The worlds in the model turn out to correspond exactly to all the finite valu-
ations for p and ¢, and the relation is just defined to have the right preservation
behaviour. This turns out to be possible in general: if C is a finite consistent
set of norms in a finite vocabulary A, then the set of all A -valuations can be
equipped with a relation R such that in the resulting model all norms in C are
true. This will be a leading idea in our completeness proof.

Definition 41 (Finite Canonical Model) Let C be a consistent set of norms.
Let A be a set that contains all atomic formulae that occur in C. Then the model
Fac = (Wa,Re,V) is defined as follows:

e W, is the set of all A-valuations
e V is the identity function
e Re ={(u,v) | forallng € C: if v(¢) =1 then u(¢) =1} O

This definition makes sense: if n¢ € C then ¢ is a formula that doens’t
contain n, and then we know from classical logic how to calculate w(¢). It
would be circular to define R directly in terms of the forcing relation, since we
then would define M in terms of itself. Of course, the previous remark shows
that after we have defined the model it is no problem to show that in fact

Re ={(u,v) | forallng € C: if M¢,v | ¢ then Mc,u |- ¢}
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We leave this to the reader.

Lemma 20 (Norm Consistency Lemma) Let C be a consistent norm set
in a vocabulary A. Then F ¢ =C.

Proof: . Suppose n¢ € C. Then ¢ € Ly. Since by assumption C I/ L, also
nd l/ L, so by the MEET rule , ¢ I/ L. Since classical logic is part of N1, the
consistency theorem for classical logic implies that there is some valuation v
with v(¢) = 1 so Fc,v |- ¢. That R¢ has the right preservation behaviour
for ¢ is true by definition of R¢. So Fac F ng. O

Lemma 21 (Consistency Lemma) Let C be a consistent norm set in the
vocabulary A, and ¥ a consistent set of Ly(A)-formulae. Then CUX is satisfied
by some world in F 4.

Proof: by the consistency theorem for classical logic and the previous lemma.
a

Now the soundness theorem for A1 gives that

Corollary 3 If C is a consistent norm set, and X a consistent set of Ly-
formulae, then C U X is consistent. O

These observations prove a nice philosophical point: norms don’t imply
facts. To be precise, if a set of norms imply some fact then either the set of
norms is inconsistent or the fact is valid.

We now turn to a converse of the Norm Consistency Lemma, for which we
will make some finiteness assumptions.

Definition 42

1. A is closed if it contains nT and n_L, is closed under subformulae, nega-
tions of non-negated Ly-formulae, and furthermore contains —¢ whenever
it contains nd.

2. Suppose C is a norm set. Then C is a consistent n—theory within A if
C C A, C is consistent, and for every formula ny € A, if C F ni then
nyp €C.

Lemma 22 Let A be a finite closed set, and C a consistent n-theory within A.
Suppose A includes all atoms in A. Then for all n¢ € A, Fac Ene iff ng € C.
Proof: Suppose ng € A and F4c = ne; then

FveWe: v ¢ (1)
Vu,v € We @ if uRcv and v |- ¢ then u |- ¢ (2)

Describe any world w in the model by the norms in C that are realized by

tw) = {4 | ntp € C and w |- 4}
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This is well defined since C is finite, and w | nT and nT € C. Notice that
w |~ t(w). Then ’describe’ ¢ by

¢" = V{t(w) | w |- 4}

This is well-defined bacause the model consists of all A-valuations, and A is
finite. Then we have that
CF t(w) (3)

by (nR) (which implies that - nT) and (nA) (which implies that n¢1,...,né, F
n(¢1 A--- Angy) for k <n). So by the disjunction rule (nV),

CtHnpt (4)

Next we show that
if w |- ¢ then C,t(w) - ¢ (5)

For suppose w |- ¢ but C,t(w) t/ ¢. Then C,t(w),—¢ I/ L, so by the Con-
sistency Lemma there is some world v with v |- C U {t(w), ~¢}, so v |- —¢.
But by definition of R¢ and ¢(w) we must have vRew, hence by (2) and the
assumption that w |- ¢, also v |- ¢, contradiction.

By (5) and the definition of ¢,

C,d" o (6)

Conversely, we also have
Cipt ¢t (7)

for if this is not the case then C,$,—¢* F L so C U {¢,~¢T} is true in some
world v by the consistency lemma. Since v |- ¢, t(v) is one of the disjuncts
of ¢T. However, C U {¢,~¢*} = —t(v), so by soundness, v |- —t(v), which is
impossible.

The Replacement Rule applied to (6) and (7) implies that C,n¢™ - n¢, but
then by (4) and Cut, C F n¢. But n¢ € A and C is an n-theory within A, so
n¢ € C. O

Lemma 23 (Frame Lemma) If A is finite, C is a finite consistent norm set,
then F 4¢ is a preorder that has finite meet.

Proof: That F4¢ is a preorder is immediate from the definition of R¢. Let
w,v € Wy; consider

Y={|npeCand wl|— vy} U{y|nyp €C and v | 1}
Since n3¥ C C, ¥ I/ L by the MEET rule and the consistency of C. Hence by

the consistency theorem for classical logic, u |- X for some u € W. But then
by the definition of R¢ it is immediate that uRew and uRev. O

Now we are all set to prove completeness:
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Theorem 8 (Completeness) N1 is complete on the class of preorders with
finite meet.
Proof: Let A be the smallest closed set that extends I' U {—¢}. Consider two
cases: (1) ¢ € Lo. Then T, =t/ L. Define I' = {¢p € A | T, =¢ F 1} and put
C={nyp €T | nyp € A}. Then I is satisfied by some world in Fac. So T ¥ ¢.
Case (2): ¢ is of the form n¢'. Then define IV = {¢) € A | T F 4} and put
C={mp eI"|np € A}. Then n¢’ € C, so n¢’ is not true in F4¢ while I" is
satisfied by some world in F4¢. So T # ¢. O

Since F 4 ¢ is finite if A is, decidability easily follows.

5 Discussion and Further Research

There are two spefic problems that remain to be solved. First, there remains the
task of providing completeness theorems for the update semantics that contains
both the normally and presumably operators. Second, it would be desirable to
reprove the completeness of the Update-Test variant of the might-system along
the lines of the general method of section 2.4.3. In both cases we feel that we
are ‘almost there’, and prefer to tell the real story at a later occasion, rather
than face the unrewarding task of explaining what we don’t yet understand.

We have not paid much attention to decidability issues in the present paper.
This is largely due to the fact that for the concrete update systems we discussed,
decidability is trivial, since in all cases the semantics is entirely framed in terms
of finitely many finite objects - thus a simple semantic ‘try out all cases’ pro-
cedure will yield a decision procedure.

Finally, a general issue in proof theory for dynamic semantics has to do with
the format of the proof system. We have used sequent calculi in this paper. The
advantage of sequent systems is not only their prominence in proof-theoretical
studies, but also the fact that the semantic definitions of valid consequence
we considered are attributions of some semantic property to sequents. Thus
sequent calculi neatly fit the semantic definitions of consequence. The Hoare
calculi for update semantics developed in [9] actually describe a class of state-
ments about the semantics that covers more than the semantic entailments
b1,---,¢n F; 1, and are less elegant in this respect. On the other hand, our
sequent calculi have a lot of side conditions on the rules, and the precise ef-
fects of these conditions in terms of proof theoretical properties are not well
understood yet.

We started this paper with the contention that the most problematic aspect
of the completeness proofs for update semantics consists in the non-validity of
the structural rules of Permutation and Monotony. Reconsidering the proofs we
have given, we can now say that the failure of Monotony is more problematic
than the failure of Permutation, and generates quite a lot of bookkeeping in
the proofs. It might be so that a proof system tailored as a tableau method
offers more opportunities for an elegant bookkeeping of these non-monotonic
phenomena. But on our current information, we are not able to assert that this
is presumably so.
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