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Abstract

I define a simple calculus of simultaneous abstraction, and show how it can provide
the basis for property-theoretic reconstructions of Dynamic Montague Grammar and
Discourse Representation Theory. The system can also be used for some forms of
Situation Theory, instead of parametric objects and Aczel-Lunnon abstraction.

1 Introduction

There are close similarities between some of the most influential semantic theories
of our time, such as Discourse Representation Theory (DRT), see [Kamp 1981] and
[Zeevat 1991], Dynamic Montague Grammar (DMG), see [Groenendijk & Stokhof 1990],
especially when based on the Dynamic Property Theory (DPT) of [Chierchia 1992],
and Situation Theory (ST), as described in [Barwise & Cooper 1991], with its under-
lying theory of abstraction (AL) developed in [Aczel & Lunnon 1991]. They all can
be construed as involving forms of simultaneous abstraction. In DRT we have a set
of discourse markers as one ingredient of a DRS, though one usually doesn’t think of
them as being abstracted over. We will show a pretty straightforward way of render-
ing them as abstractions. In DPT the "-operator can be understood as abstracting
over the infinite set of discourse markers, which are a subsort of the variables. In AL
we take a one-one mapping of roles to parameters as input to abstract over a set of
parameters in one go.

Abstraction over an unordered set of variables, or parameters, creates the problem
of defining a sensible operation of application which unambiguously determines which
of the objects applied to fill which of the positions abstracted over. The solution
to this difficulty comes in the form of application to assignments. These abstracts
denote, or correspond to, functions from assignments to objects of some kind. They
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are thus rather like open formulas in standard logics which have their semantics given
in terms of functions from assignments to denotations. In the same vein DRSs can
be taken to denote, under an assignment, a set of verifying “embeddings,” that is, a
function from variable assignments to truth values. In DPT functions from discourse
marker assignments to propositions are first class citizens of the semantic domain
itself, and in AL the application operation is defined on assignments of entities to
role indices.

It seems worthwhile to look for a common core which brings out the similarities
as well as the differences between these theories more clearly and with formal preci-
sion. This core is our Simultaneous Abstraction Calculus. Semantic theories can be
obtained from it by giving axioms of properties, propositions and truth, which again
may be shared to some extent across competing theories. One may group the axioms
into convenient packages under the banner of “abstract specification,” thus creating
a framework that should facilitate the comparison of existing theories as well as the
development of alternatives. DMG and DRT for example, which we concentrate on
in this paper, share a common theory of identity and propositional logic, but diverge
in the kinds of quantification they employ. ST might be obtained by adding a logic of
situation types to such unsituated theories of propositions. I can only give a sketchy
account of these matters here, and also must leave the topic of relating these semantic
objects to natural language utterances largely in the background.

1.1 Variables: “Bound yet Free”

As a consequence of the idea of simultaneous abstraction we will face a certain loss
of a-equivalence. This is an inevitable result of the way in which application has to
work for such terms. A renaming of variables will normally change the object as it
will yield different results when applied to the same assignment. This should come
as no surprise: it is of course well known that free variables cannot be renamed,
but neither can the “abstracted” discourse markers of a DRS be changed without
consequences. The same holds true for DPT discourse markers under "'-abstraction.
Parameters in AL can be renamed, if abstracted over, but role indices cannot without
changing the object.

I will not embark into an argument about whether it is wrong to speak of “ab-
straction” when there is no a-equivalence. It is more important to see that it is not a
virtue in itself to be able to rename variables, as this means that computational work
has to be done to establish a trivial identity of objects. Its virtue, as we shall see, lies
in obtaining a total substitution operation, which is essential for the full exploitation
of B-equivalences.

The idea that variables may be essential to the identity of a semantic object is
certainly now fairly accepted, due to DRT and its “dynamic” children. From a more
philosophical perspective I would argue that using variables in this way is no more a
contamination of semantic objects by non semantic concepts than the common view
that the order of arguments to a many place function should matter.
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2 The Simultaneous Abstraction Calculus

In this section I introduce the basic formalism for simultaneous abstraction. I then
add an operation of partial application to it, and compare the system to a similar
one which is closer to Aczel and Lunnon’s approach. Finally I take a look at possibly
non well-founded structured objects.

2.1 The Basic Calculus

Instead of abstracting over single variables, as in standard A-calculus, we allow \-
abstraction over any set of them. Terms are applied to records assigning terms to
variables. For the rest of the paper, differently indexed variables are assumed to be
non-identical.

Definition 1 The language A consists of TERMS t,t ... built up from basic type free
CONSTANTS ¢, c ..., and # for “undefined,” and VARIABLES z,y ... € Var by means
of ABSTRACTION AM.t, for M C Var, and APPLICATION t(z1.t1,...,Zn.tn).

We in fact allow infinite sets of variables to be abstracted over and also infinite
records (z;.t;)icr to be applied to. We often write {z;..z,}t instead of A{z1, .., z, }.t,
without meaning to imply that n has to be a finite number. A similar remark holds
for application terms. Ways of introducing standard abstraction and application into
such a system will be discussed later on.

Semantically, we will be working in the category CPO of complete partial orders
and continuous functions. So a DOMAIN will always be understood to be a cpo with
a least element |, a mapping between cpo’s to be continuous, and the operation
— to form the space of continuous functions, ordered pointwise.! g}VI is defined by
g}v‘r(x) = f(z) if z € M, otherwise gﬁ/‘r(x) = g(z), for all z € Var. Letting dom(f) =
{a|f(a) # L} T will use the notation g1 f for gdo;n(f). We write (z; + &)ieq for the
function f such that f(z;) =& for i € I and f(z) = L otherwise. A RETRACTION
between two domains, written D #g C, is a pair of mappings ¥ : D — C and
®:C — D such that ¥ o ® = idc.

Definition 2 A A-MODEL consists of a retraction D =3 (Var — D) — D, and an
interpretation & which maps constants into D, with S(#) = Lp. The denotation of
terms under a variable assignment g is given by:?

o [l = 3(e);
o Jl2ll? = g(2);

M
o [AM.lo = @ Af[e];

!Tn some cases they will be required to be strict, preserving the bottom element. For background
information notions see [Barendregt 1984]. Notice that every partial assignment function is continuous (if

strict), given that Var is a flat domain with an added L.

2The third clause has its predecessor in [Zeevat 1990], where abstraction over the sets of variables of a
common type was defined in a reconstruction of DMG. The ‘)’ on the right is used as an expression of the

meta language in this clause, with the expected meaning.
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o [[t(zi-ti)icr||? = C(|[#]7) (i = [[t:])ier)-
The denotations are only well-defined because the following holds:®

M
Theorem 1 \f||t||% is continuous for all terms t.

Definition 3 The FREE VARIABLES of a term are defined by
. FV(z) = {x}

o FV(c)=

e FV(AM. t) FV(t)\ M;

o FV(t(ziti)icr) = FV(t) UU;er FV (ti).

Lemma 2 Ifz ¢ FV(t) then ||t||9 = ||t||% for all g and d.

In such a case the denotation of ¢ is independent of what we assign to x, but
this does not mean one could rename x by some y of which ¢ is independent as
well. For example {z}z is independent of = and y, but ||{z}z]|? # [[{y}y||Y- The
latter becomes clear when we apply these two functions to suitable assignments e.g.,
I{z}z (z.a,y.b)||9 = ||la]|? # ||b|? = |{y}y (z.a,y.b)||?, presuming our model is non
trivial.

Definition 4 SIMULTANEOUS SUBSTITUTION [s;/y;|jes (dropping the index set when
no confusion can arise) is a partially defined operation given by:

o [sj/yjljcsz = sj, if x = y; for some j € J, otherwise x;

o [sj/yjle=¢

® [sj/yjljesAM.t = AM.[s; [yilicrt, where I = J\ {j| y; € M},

if M NU;jer FV (si) = 0, otherwise undefined;

o [sj/y] t@iti)ier = [3j/y;]t (zi-[sj/yjlti)ier-

An example of an undefined substitution would be [y/z]{y}t,,, where replacing
z in tyy by y would give undesired results and renaming y is not a possibility. To
avoid such trouble we require a FRESH VARIABLE for a term to occur neither free nor

bound in it.
Let us say that A =t = t' iff for every A-model and assignment ||¢||9 = ||¢'||9.

Theorem 3 1. A [ {z1..2,}t = {y1.-yn }Hyi/zilt,
2. Az zn H{xnt1--Tnem Jt = {T1..Znim

Lemma 4 ||t||Y = ||[ti/zi)icr t]|? if [ti/x:]t is defined, where v = g (z; — ||t:]|9)icr-

3Proofs are generally omitted from this paper. None of them is particularly interesting or involved.
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The following equations can now be shown to hold, where the list is not meant to
be complete. The fact that substitution is not always defined is responsible for the
difficulties in giving such a list. Fact 5.3, which allows for some amount of renaming
of variables, is just one example of an equation that cannot be derived from 5.2 for
this reason. It seems a good idea to look for a complete calculus for A4y, defined
below, before doing the same for A since substitution can be totally defined in that
system.

Theorem 5 1. A= AM.t = AN.t for N =M NFV(t);

2. A= {zitiert (z).t5)jer = [tj/z), #/jericr t
with J' = J NI and I' = I\ J, if the substitution is defined.

8. A = {zitiert (witi)ier = {2i}ierlzi/milicrt (2i-ti)icr,
where all z; are fresh.

2.2 Partial Application

It is very natural to ask for an operation for partially filling the argument roles of a
relation, leaving some of them simply open for more to come. We use the notation
t[z1.t1, .., Tn.ty] for partial application. The semantics is as follows:

t[zi-tilicr||® =ar @NF U] (f U{zi = [|t:]|9)ier) -

The following properties of partial application are of particular interest, letting
application associate to the left.

Theorem 6 1. A IZ {Ii}ie]’t [Ij-tj]je.] = [tj/mj]jejl{mi}iept, if defined,
where J' =JNT and I' =T\ J;

2. A =tz tilicr[y;-siljer = tlzits, yj.55)icr jes
where J' = J\ {j| 3 y; = z;:};

8. A= tlzitilier(yj-s55)jer = t(ziti, Yj.85)icr jes
where J' = J\ {j|3i y; = =;}.

2.3 Aczel-Lunnon Abstraction

The SAC is closely related to Barwise and Cooper’s Extended Kamp Notation (EKN),
see [Barwise & Cooper 1991], which is based on Aczel and Lunnon’s theory of ab-
straction. In EKN X-abstraction operates on injective functions from a set of role
indices to parameters. In our case those two notions are merged into one, the vari-
ables (thought of as argument roles), which allows us to replace the injections by
simple sets. This makes sense because in contrast to AL our semantics does not treat
the application to variables in a term like #(z.y) as a filling of the role z by some
“indeterminate object” y, but rather as a linking of two roles. There is a price we pay
for our simple mindedness: we cannot link a role y with any role z inside the scope
of an abstraction over y by a simple application. The same problem was encountered
in undefined substitutions such as [y/z]{y}ts,, which indicated a certain deficit of
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elegance for our system. The following system revises the basic SAC to overcome this
problem, using AL-style syntax for abstraction. We will show then that no additional
expressive power is gained from such a move.

Definition 5 The TERMS of Aap are built up from CONSTANTS c, #,.. and PARAM-
ETERS X,Y,.. by means of ABSTRACTION Ax.t over injective functions x from pa-
rameters to variables (=roles),* and TOTAL/PARTIAL APPLICATION t(z;.t;)icr and
t[l’i.ti]ie[.

Semantically we stay in the same space of domains D \ﬁg (Var — D) — D as for
A, with the only difference being that we now interpret under assignments of objects
to parameters, called ANCHORS, and that these have to be obtained from assignments
to roles when we define the meaning of abstraction.

Definition 6 A A47-MODEL is a A-model, where the denotation of terms under an
anchor g is given by:

o [l = 3(o);

o [[X]|# = g(X);

o [Xxtl|? = @ Af|t]|FX);

o [[t(ziti)icrl|? = C([H17) ((zi = NIt:l|)ier);

o |[tlzitilier[| = AS W) (F t(mi = [[£i]l)ier)-

This solves the problems described above as substitution is total by means of
renaming parameters e.g., [X/Y|NX—z2).txy = AN(Z+—>2).tzx. The question that
needs to be addressed is whether there is more to be gained, namely terms which have
no equivalent in the original language A. To show that there are no such terms we
only face one difficulty, namely that of dealing with multiple uses of roles in different
levels of abstraction. Such “role recycling” is made easy by using different parameters
in a term like X(Y — z)A\(Z + z).tyz. In creating a A-term with the same role z
used twice we face the potential problem of the outer abstraction to become vacuous.
The solution is to inject an intermediate role y to arrive at {z}({y}{z}tys (y.z)). To
have such roles available we assume some form of restriction on A 4z, abstraction to
that effect. Alternatively one might employ a way of expanding Var suitably for the
purposes of translation. I will be sloppy about the details of this in the following
elaboration.

Definition 7 The TRANSLATION [:cz-/Xi];rE] : Aar — A under a substitution of all

free parameters of a Aar-term by variables is defined by:
J [mi/Xi]}LE[Xi = Tj;

4In AL, the functions take roles to parameters injectively. In turning them around we could be more
liberal in allowing several parameters to be mapped to the same role, which is equivalent to renaming
those parameters by one of them which then gets mapped to the role in question. Notice that associating
one parameter with many roles in one abstraction clearly makes no sense. Our semantics for A 41, will not

presuppose injectivity, but we will assume it here nevertheless for convenience.
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o [zi/Xi]le=¢

o [2i/Xiller MY = yj)jert
= (Mazitiern Myjtier lvi/ Yiljeslwi/ Xilier 2] Xilier 1) (2i-2i)iern,
where K = I\ {i|3jes Xi =Y}, I' = K \ {i[Fjes = = y;},
I" = K N {i|3jes z;i = y;} and the z; are fresh;

o [z;/ X" t(y;.t))jes = [xi/ Xa]Tt (y;.[zi/ Xa]Tt5) jers
o [zi/Xi] [y tilies = [wi/ Xa]'t [y;.[zi/ Xi]Tt5)5e 0.

Lemma 7 ||t||Y = ||[a:,-/X,~];r€It||9°”, where m = (z; = X;)ier.

Translation from A to A 45, is a trivial matter of renaming variables by parameters,
and abstracted sets by mappings, under some fixed bijection between Par and Var.
Hence we conclude the following.

Theorem 8 There are faithful translations from A to A4y and vice versa.

It is clear that we can define unary abstraction and application in A 41 in terms
of a designated role used solely for that purpose. By the above theorem we see that
the same can be done in A as well. The SAC thus contains the unary A-calculus. In
particular, a-equivalence for A-terms becomes an instance of Theorem 5.3 above.

Corollary 9 )\ can be embedded into A.

2.4 Structured Objects and Systems of Equations

Using some encoding of standard abstraction, which exists for A by the previous
corollary, we define the following PREDICATION OPERATION:

(t; (zi-ti)ier)) =ar Aw. (2(t) (i-te)icr)-
Theorem 10 «t; (mi.ti)iej» = <<tl; (mzt;)ze[» —St=tA /\’iEI t; = t;.

We thus have structured objects and operations of abstraction and application in
place that appear to satisfy much of the needs of current Situation Theory. A further
demand is to have non well-founded objects, obtained from cyclic sets of equations.
To solve systems of equations® (z; = #;);c; we need to encode assignments by some
kind of terms. We could use predication for this, but it is still simpler to define
L i ti>ier=ar Mr.x(xi.t;)ier and 7, =gf Az.z({2}2). Notice that

o (Kxjtj>jcs) =1 for i € J.

We say that an assignment @ SOLVES A SYSTEM OF EQUATIONS (z; = t;)scr iff
g, (@) = [mz;(a)/zj]jerts for i € 1.

5We need to assume that at least three variables do not occur in such a system, to allow us to form the
terms below without accidentally binding some of the z; inside them.
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Theorem 11 FEwvery system of equations has a solution.

Proof: Recall that T =4 Af. (Az.f(zz))(Az.f(zz)) is a fixed point combi-
nator with #(Yt) = (Tt) for any term t¢. Define from a system of equations
(z; = t;)ier the functor F =g A\z. <w;.[ny;(2)/%j]jerti>icr. Then (TF) solves
the system, as 7, (YF) = 7, (F(YF)) = 7y, < zi[mg;(TF) /5] jerts >ier =
[me; (Y F)/xjljerti- O

As things stand we do not necessarily have unique solutions to such equations.
It may be consistent to assume uniqueness at least for some kinds of systems, in the
spirit of [Aczel & Lunnon 1991].

2.5 Equations for Ay,

The complications in clause three of the translation from A4; to A indicate why
a complete and reasonably simple set of equations for A will be hard to find. The
slightly more complex language A1 seems more suitable for this task. So I give a
set of equations for it that T hope to be complete if used in conjunction with rules for
congruence relations. The notions of free parameters and substitution are assumed
to be defined in the standard way.

Theorem 12 1. |: t(.’]]i.ti, 'Tj'#)iGI,jEJ = t(xi-ti)iEI;

2. E Axt= ALt for &= Xy pgs

3. |: )‘<Xz"_)-7;i>i61t = A(E'_)$1>161[Y;/X1]161t for fresh Y; ’5,'

4 B MXim zidiert (z5.45)jeq = [t/ X, #/ Xiljer iert
with J' =JNI and I' =1\ J;

5. B MXim ai)iert [z.t5]e5 = [t/ Xjljen MXi = zi)iert
with J'=JNI andI':I\J;

6. = tlzitilicrlyj-siljer = tlziti, y;.85)icr jer
where J' = J\ {j| 3 y; = z:};

7. = tlritilicr(yj-55)jer = tziti, Y;.55)icr,jer
where J' = J\ {j| 3 y; = z;}.

3 Dynamic Montague Grammar

I now show how the SAC can provide a framework for specifying semantic theories, es-
pecially recent ones, which do not easily fit into the traditional A-calculus. The basic
idea for semantics as conceived of in this paper is to think of properties as functions
from assignments to propositions.® I will use the term w-properties to distinguish
them from ordinary functions which take entities into propositions. Equipped with
this notion we can reconstruct DMG along the lines of [Chierchia 1992].

6Propositions can be very fine grained—there is no need to think of propositions as sets of possible worlds
or situations. Even so, Bealer’s fondalee/rajneesh puzzle, see [Bealer 1989], suggests that propositional
functions cannot cope with all problems of intensional grain, or at least that function application should
be distinguished from a structure preserving predication operation, as was done in 2.4.
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3.1 Using the SAC for DMG

For DM@, variables need to come in two kinds: the DISCOURSE MARKERS DM, and
the remaining ones, which I call META VARIABLES M V. I use greek letters o, 3. .. for
meta variables, dotted letters , 9 ... for discourse markers, and x,y ... for variables
that can be of either kind. The sorting of our variables is not a matter of the kinds of
denotation that they take. It is rather a matter of protecting some of them, namely
the meta variables, from the influence of abstraction so that we can bind variables
inside the scope of ™.

The crucial point of DMG can now be captured easily by abstracting and applying
to the infinite set of discourse markers via the following definitions:

o Mt =df ADM.t, and

o Ut =df t(:l.?.ii?)a;,eDM.

All other abstractions and applications will be the traditional unary ones. Notice
that every discourse marker is bound in a term of the form "¢, and occurs free in “t.
We thus can S-convert a term Aa.t (') even if some discourse markers of ¢ end up
in the scope of an abstraction in t. Discourse markers are not free in "'t and hence
do not become bound by a new operator inside t. Another reduction we use in DMG
beside the more standard B-conversions is “''t = t.

The sentence ‘A man walks in’ can now be rendered in our notation as

.Yz (man (i) Nwalkin(i) N “a)
which can applied to "whistle(z) (‘he whistles’) to yield
Yz(man(z) Nwalkin(z) N whistle(z))

The important action happens at the level of conjunction of w-properties, which
is achieved by abstracting over “possible continuations” of the discourse.”

We use unary abstraction and application in the system in order to get a fairly
standard logic that does not require us to rethink the setup of DMG. We saw that
these notions can be defined within the confines of A.8 Logical operations are treated
as unary or binary constants whose semantic behavior is captured by our theories of
truth, which we choose to give separate from the general model theory in an axiomatic
way. The following logical constants are singled out: N, U, —, D, 3, II, =, intended to
be the operations of conjunction, disjunction, negation, implication, existential and
universal quantification, and equality. I will take N, —, ¥, = as primitive, and the
others to be defined in the standard way.® Logical combinators are written in the

conventional form, t N ¢’ for N(t)(t'), Lzt for X(Az.t) etc., to enhance readability.

"Lambda conversion on Twhistle(z) is only one way to make the conjunction happen; Unification of
whistle(z) with the free variable a, as in UCG, is just as intuitive for this. Hence the choice of the term

‘meta variables’, reminiscent of its use in [Zeevat 1991].

8As an alternative to taking these unary operations as defined in terms of A-expressions, one could
introduce them as basic operations, and give them a semantics in an expanded domain D =% ((Var —

D) — D) + (D — D), in the way [Chierchia 1992] does.

9There may be reasons not to do this, such as to avoid unintended identities in attitude contexts, or to

be able to use the less symmetric notion of implication of [Aczel 1980].
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3.2 Frege Structure Axioms

For semantics, we need a theory of truth for the propositions that we hope to denote
by the A-terms. To that end, we introduce a formal language in which to state
such a theory. One might do the job in an informal model theoretic way along the
lines of [Aczel 1980] but I will make things look more like the formal treatment of
[Turner 1990].

Definition 8 We define WFFs of FOLy in the standard way:
e ift,t' € TERM then T(t),t =t € WFF,
o if ), € WFF then =¢,p ANy, Jap € WFF.

The interpretation of WFFs proceeds in the standard way. T is a truth predi-
cate. We define F(t) =4 T(—t) (falsity), P(t) =4 T'(t) V F(t) (being a proposition),
and PTY"(t) =4 VYx1...2n (Niz1. p @i # #) = P(t(z1)...(z,)) (being an n-place

property). Here are the basic axioms:

Pit=thAN Tt=t)<t="t
P(t) — P(—t) A T(—t) < =T(t)
Pi)APH) - PEnt)A T@Ent) < TE)AT(H)
PTY(t) — P(Zt) A T(%t) ¢ F=zT(t(2))

3.3 Some DMG Translations

We can only give a short sketch here and refer the reader to [Chierchia 1992] and
[Chierchia 1992b] for a more complete treatment. Sentence denotations in DMG are
not propositions, but context change potentials (ccp’s), where a ccp is a function
from w-properties to propositions. Two operations are handy to convert props into
cep’s and back: 1t =g Aa(t N Ya) and |t =4 t("'true). Ccp’s allow for clever
ways of leaving holes within quantified structures to be filled by later material in
the discourse so that one can use functional composition t;t" =4 Aa.t("'(¢'(a))) for
discourse sequencing:

‘i’[a]’ E—

AaAB AyZa(Zad) (76 (2)(v))

““[a man] walks in. ¥[he] whistles.’=—>

M2z (man(z) Nwalkin(z) N Yy)]; [Ay. whistle(z) N Yy]
= My(2z man(z) Nwalkin(z) Nwhistle(z) N "y)

The flexibility of ccp’s is shown by various possibilities to define dynamic kinds
of universal quantification for donkey sentences:

‘every’ =

Ao 1z — [(Had) (M= L (Y8 E))]
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‘man with Y[a donkey]’ =
Az My(man(z) N Xy(donkey(y) Nwith(z,y) N “y))

‘beats Y[it]’ =
\i: Theat(, )

By intensional function application ¢("'#') on the translations one gets:
1z — [man(z) N Zy(donkey(y) Nwith(z,y) N —(beat(z,y) N true))]

An alternative to the above “strong” reading of the universal, would assign the
translation:

‘every’ =

NeAB HTLE[— | (Yad) U (Yad)(T (184))]
resulting in the “weak” reading:

TIz[—(man(z) N Ly(donkey(y) N with(z,y) N true))
U(man(z) N Ly(donkey(y) N with(z,y) N beat(z,y) N true))]

4 Discourse Representation Theory

The SAC mirrors very closely the use of discourse referents in DRSs. The similarity
with Zeevat’s semantics for those, in terms of pairs consisting of a set of variables
and a function from assignments to truth, is undeniable, see [Zeevat 1991]. We have
put propositions in the place of truth values and defined an abstraction operation
that takes such pairs into appropriate new functions. In addition, we can iterate such
abstractions indefinitely and we have a simple notion of application at our disposal.

Our approach is most closely related to Cooper’s Situation Theoretic DRT, see
[Cooper 1993], who uses EKN with Aczel-Lunnon abstraction to similar effect. As
in Cooper’s treatment our version of DRT imposes a need for some additional ab-
stractions at the right level. 1 won’t go into the resulting complications for the
syntax—semantics interface here.

4.1 w-Properties

To be a propositional function in the argument roles z; ...z, is defined by:'°

PF*- " (t) =g V21..25 /\ zi ## — P(t(r1-21,-..,Tn-2n))-

i=1l..n

10We will use an infinitary version of FOL, to express the theory, though one might get away with
axiom shemata in the finitary logic if we stick to finite n here. In particular the definition of PTY™ (t)
below would have to be replaced by an infinite number of implicational axioms.
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This is not a sufficiently strict notion of w-properties to support the forthcoming
definitions and theorems. How strict a notion of w-property one ultimately wants
remains to be seen, but a function f that for example maps an assignment (z — d)
to the proposition p while mapping (z’ — d') to —p seems useless for semantics. We
exclude such pathological cases by requiring something to the effect that

PTYM(d) = VN PFN(d) &+ M C N.

A too strict definition would have = instead of C. This would exclude any ab-
stracts from denoting w-properties, because they are insensitive to overdefined assign-
ments:

A E Az}t (2181, 0 tn) = {2120 JE (181, oy Trm Tntm)

Still one may ask whether the application of a w-property to an assignment should
ever result in something other than a proposition or L. The only sensible possibility
seems to be to have application to “underdefined” assignments result in a new w-
property whose argument roles are those that haven’t been filled on the first attempt.
We have introduced the operation of partial application for these purposes, which will
also enable us to define the duplex conditions of modern DRT. So for now I stick to
the view that (full) application of w-properties to assignments, if yielding a definite
result at all, always yields a proposition.

Definition 9 PTY =€ (1) =4 Ay PRHEETN () A Npg ; Vai t(eiz)ics = #.

4.2 Kamp Structures

Let us now try to give a theory of w-properties and propositions and truth that is
capable of dealing with basic ideas of DRT. We add to the logical operations N, —, =
two new quantificational operators, namely a non selective existential = and a binary
conditional . All these are required to be (bi)strict: yielding L whenever one of
their arguments is 1. Here are the axioms for Kamp structures:

Plt=t)A T(t=t)ert=t
P(t) -  P(=t) A T(—t) & =T(t)
Pt)AP({H) — PENt)A T{ENE) < T(t) AT()
PTY=r(t) —  P(EN) A T(Et) & Fm.z T(t(01.21, o 20.70))
PTY i€} (1) A PTYili€T}(5) — P(t>> s) A
Tt>s) Vzi T(t(zi-zi)ier) *32} T(s (mi-2i; 5.2 Jiesnr,je\r )

Notice that only bound variables in s are quantified in the conditional. To get
some kind of “dynamic conjunction” of DRSs we can introduce the operation @ into
the system.!! For example by means of this definition:

"This operation is used in [Cooper 1993] for the interpretation of discourse. It becomes definable in a
slightly richer language that employs variables over assignments.

78



[t ¢ =g & Xf I[2]| (f) N T[[)¥ (f)
The following consequences can now be derived:

Theorem 13 1. PTYX(t) APTYY(t') - PTYXY(tot');
2. |: tot (:Cl.tl, ey .’L'n.tn) = t(.’L‘l.tl, . an.tn) N t’(.’]]l.tl, . :cn.tn)

3. EAM.t®AN.s = AMUN .tNs,
if MAFV(AN.s) = NN FV(AM.t) = 0.

Using partial application we can define DRT-type quantifiers @), for the so called
“duplex conditions,” by means of standard generalized quantifiers ) as relations
between w-properties. The weak and strong readings are obtained as follows:

HQ) "t =4 QA2.Et[z.2], \2.Et @ t'[z.2]),

Q)" =g Q(A2.Et[z.2], Az.t[z.2] > t'[z.2]).

4.3 True Dynamics

It is now time to ask what the relation is between the SAC and systems like the
Dynamic Predicate Logic (DPL) of [Groenendijk & Stokhof 1991], that are based
on relational interpretations. DPL replaces the non-standard DRT syntax by FOL
formulas, but they have shown how to give the relational interpretation for DRSs
too. Let us view relations between assignments as functions from assignments to sets
of assignments. Call sets of assignments w-sets, and take conditions to denote just
w-sets. We then get the following denotation for a DRS:

{120}l Spr, = {h|g " =" h A R €|}

This should be compared with extensionalized SAC denotations, which we obtain
when we replace propositions by truth values. We then also get w-sets as denotations
under an assignment, but they are different from the DPL ones:

{z1.- 2}l ac = {1 ] g5 € l611}-

The point is that the h’s in our set can assign anything they like to the variables
outside {z1...z, }, while for the DPL style of denotation they have to agree with the
incoming g.

A natural development, carried further in [Dekker 1993], is to view “information
states” as such w-sets, and then lift denotations of DRSs to functions from w-sets to
w-sets, such as:

I¢llppz(G) = U l14llpps

geG
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which is quite different from the trivial lifting from ¢ to Ap.(p @ ¢) that might be
used in our system.

The lack of a requirement for assignments to agree on certain variables has con-
sequences for semantics. Thus, in contrast to DPL and most forms of DRT, we must
abstract over variables in order to link them anaphorically to preceding discourse by
®. If we would use DPL style composition for discourse conjunction instead the link
could not be sustained over more than two sentences. A similar divergence can be
found in the treatment of the conditional. Again we have to put anaphoric variables
into to abstracted set of the consequence, but only those which are anaphoric to
the antecedent, not those which refer further back. Abstraction in A really is just a
way of partitioning roles into different levels, in view of how we want to fill them or
quantify over them.

There is something of a philosophical gap between the approach of this paper
and the “truly dynamic” ones, which is brought out by these considerations. On
the SAC view the functions from assignments to w-properties are not regarded as
ways of “updating” information states by incoming material. It makes no sense
on this view to talk of “input” and “output” in reference to the assignments. The
guiding intuition is rather that semantic objects should be plausible as things to have
attitudes towards. These objects, I take it, are rather static creatures whose role in
the changes of mental states are another matter.

5 Conclusion

We have defined a calculus of simultaneous abstraction and shown it to be equivalent
to a less simple minded one that is more reminiscent of Aczel and Lunnon’s system.
We established the existence of structured, and non well-founded objects in the sys-
tem, by an embedding of the lambda calculus in it. We then obtained versions of
Dynamic Montague Grammar and Discourse Representation Theory, using axiomatic
theories of truth. It seems plausible that the same can be done for Situation The-
ory as well, supporting the claim that we have found a framework which is general
enough for a wide range of semantic theories which take notions of propositions and
truth as fundamental for the enterprise. It is at odds though with forms of “dynamic”
semantics that take the idea of updating (sets of) assignments as their starting point.
Many important logical questions remained unanswered in this paper, but I hope to
have shown that they may be worth asking.
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