Contents
1 DII: Dyana’s Integrated Implementation
2 Loading and Running DII

3 The DII Grammar
3.1 Syntax and the Syntax-Semantics Mapping
3.2 Temporal Relations o o
3.2.1 Syntactic features oL L L
3.22 Constantso
3.2.3 Events/states and times L oL
3.2.4 Narrative progression o it e e e e e

3.2.5 Temporal connectives oo
4 Using Information Structure
5 Creating the Expanded Lexicon

6 Using CUF-RA

11
11
12
13
13
14

14

15

16

1 DII: Dyana’s Integrated Implementation

The DII grammar is the product of collaborative work on two of DYANA-2’s implementation
deliverables: P3.4, Constraint-Based Semantics in CUF (Stuttgart) and P3.7, Grammar Inte-
gration (Edinburgh). DII was developed by Peter Krause in Stuttgart and by David Beaver,
Claire Grover, Janet Hitzeman and Ingrid van de Bovenkamp in Edinburgh.

DII is a grammar implementation in CUF which derives initially from Konig’s LexGram
system and grammar (Konig 1994a; Konig 1995). It was decided to use the LexGram system
as a starting point for the implementation in order that issues of semantic implementation
could be explored from an early stage.

The syntactic component of Konig’s LexGram grammar is a type of unification-based cate-
gorial grammar. Konig points to similarities between her framework and Head-driven Phrase
Structure Grammar (HPSG: Pollard and Sag 1994) and she refers to her framework as “lex-
icalised HPSG”. However, the framework is more strongly lexicalist than HPSG and bears
a much closer resemblance to categorial grammar. There are no phrase-structure rules or
syntactic schemata as in HPSG and, instead, information about phrase structure is located
in the lexicon. The LexGram system makes use of CUF’s foreign language interface which
allows calls to Prolog goals from CUF sorts and parsing with LexGram grammars is achieved
by means of a special Prolog head-driven parser written by Esther Konig and Peter Krause.
The DII grammar takes over LexGram’s syntactic framework almost unaltered but extensions
have been added to allow for parsing of discourses as well as of sentences. Additionally, the
grammar includes a partial implementation of Engdahl and Vallduvi’s (1994) proposals for
representing information structure and this has involved modifying the parser so that it will
accept either strings of words or strings of word-accent pairs.

The syntactic coverage of the sentence-level DII grammar includes the following:

e A basic treatment of verbs, nouns, adjectives and prepositions.

e A number of subcategorization possibilities for verbs including intransitives, transitives,
ditransitives and verbs taking factive sentential complements.

e A treatment of the auxiliaries be and hawve.

e A subset of unbounded dependency constructions, viz. topicalisations and subject and
non-subject relative clauses.

e Singular and plural noun phrases occurring with definite and indefinite determiners or
with quantifiers.

e Partitives.
e Possessives.

e Nominal adjuncts including attributive adjectives, prepositional phrases and relative
clauses.

e Verbal adjuncts including prepositional phrases, temporal modifiers and focus-sensitive
adverbs.

Lexical items in the LexGram framework are rather complex objects and therefore a method
is provided to allow the lexicon to be specified in a simple way and then mapped into its more
complex form. In addition, inflected forms of verbs and nouns are optionally generated by
means of the morphophonological software addition to CUF known as CUF-RA (Manandhar
1995).

The semantic component of Konig’s LexGram grammar is an implementation of Frank and
Reyle’s (1995) Underspecified Discourse Representation Theory (UDRT), and, although the
DII grammar reuses many of the sorts which perform the compositional mapping, it was
decided to use a simplified version of UDRSs which is close in spirit to the quasi-logical
forms of the Core Language Engine (Alshawi 1992). An initial underspecified representation
is non-deterministically converted into a scoped representation which makes distributive and
collective readings of plural noun phrases explicit. The scoping process is one main area where
the DII implementation could be refined in the future.

In DII, anaphoric and presuppositional terms are treated uniformly. In fact, the grammar
maps both pronouns and presupposition triggers such as definite descriptions or factives to so-
called anaphoric terms. We refer to elements of both classes as “PA terms”, and the module
that treats them as the “PA component”. It is crucial for the PA component that the semantic
representation language is dynamically interpreted, with formulae mapping input states to
output states. PA terms correspond to a special subclass of formulae which place constraints
on their input states. If these constraints are satisfied, we say that a PA term is well-formed in
its local context. This context is determined both by the interpretation of preceding discourse
and by the interpretation of certain parts (the accessible parts) of the sentence containing the
relevant PA expression. In general, information provided by the surface form of an utterance
will not automatically guarantee well-formedness of all PA terms, but to fully understand a
speaker’s meaning, a hearer must be able to calculate what extra information available to the
speaker is needed in order to guarantee well-formedness. We adopt a very general approach
to this problem, whereby interpretation involves abducing the extra information required for
well-formedness. We take it that mechanisms of presupposition accommodation described by
such scholars as Lewis, Heim and van der Sandt are naturally seen as special instances of an
abductive scheme.

Although the DII grammar has limited coverage, the phenomena that are covered have been
selected in order to explore issues that have been the subject of theoretical work both in
DYANA and DYANA-2. Moreover, the architecture is general enough to allow for straight-
forward extensions, in particular in the area of anaphoric phenomena. The Stuttgart part of
the implementation has concerned itself primarily with plural anaphora, presupposition and
general issues of semantic representation and disambiguation:

e The LexGram semantics construction concept has been applied to the construction of
basic underspecified representations.

e The noun phrase representations are organized in a typology distinguishing different
kinds of anaphoric terms and classifying generalized quantifiers roughly as in Kamp
and Reyle 1993.

e Plural anaphora are treated using a mechanism which is descriptively equivalent to the
treatment of Kamp and Reyle 1993. It is compatible with recent approaches to plural

anaphora using richer semantic values for quantifiers or an extended external dynamics
such as Elworthy 1995 and Fernando 1993. The general presupposition module based
on abduction, which was developed together with Edinburgh, has made it possible to
treat plural anaphora and plural definites in a uniform way. In the representation of
quantifiers, context sets (Westerstahl 1985) are used to be able to determine dynam-
ically the domain of quantification. They are resolved like plural anaphors. Partitive
prepositional phrases are mapped to context sets as well.

The Edinburgh parts of the implementation provide the following coverage:

e The representation of tense and aspect and the calculation of temporal relations. Here
we follow the methods of Kamp and Reyle 1993, using features in the syntax to per-
colate tense and aspect information to the root, where the semantics makes use of it
to calculate narrative progression. An additional fine-grained classification of temporal
connectives has been implemented using results from the ESPRIT project Dandelion
(cf. Oversteegen 1993; Hitzeman 1995a; Verschuur 1995) demonstrating a degree of
compatibility between the two projects.

e An implementation of Vallduvi’s (1990, 1994) theory of information structure which is
broadly compatible with the HPSG-based encoding proposed in Engdahl and Vallduvi
1994. Information about focus-ground structure is used by the PA component in two
ways. Firstly, it helps determine how anaphors are resolved, this being achieved by
feeding focus-ground information into a modified centering model. Secondly, it deter-
mines what the presupposition actually is in the case of focus sensitive presupposition
triggers such as “too” and “only”.

e An implementation of the centering approach to anaphora resolution. The standard
centering approach (Brennan et al. 1987; Grosz et al. 1995) is adopted but augmented
in several ways:

— Information structure is used to influence whether a center is retained.

— Because each pronoun is presented to the centering module along with a set of ac-
cessible NPs, sentences with more than one pronoun may have different antecedent
possibilities. For example, in the sentence He gave Bill his hat, Bill is accessible to
his but not to He. Rather than combine these antecedent sets in order to create
the traditional ordered list of possible antecedents which constitutes the forward
center list, potentially losing information, the forward center list is an ordered list
of possible moves.

— Traditional centering deals only with sentences with no embedded clauses, but our
data includes more complex constructions. We have augmented our algorithm to
handle these constructions based on (unpublished) observations by Massimo Poesio
and Rosemary Stevenson in their work on nominal anaphora and centering.

2 Loading and Running DII

In this section we provide information about how to use DII. For users who are unfamiliar
either with CUF or with the LexGram system it is recommended that they also consult
the CUF User’s Manual (Dérre et al. 1994) and the LexGram documentation (Konig 1994a;
Konig 1994b). In addition, a number of papers in the DYANA-2 report (Beaver 1995) contain
detailed descriptions of various aspects of the DII grammar and users may find it valuable
to consult these. For those users who wish to use the version of the lexicon generated by
the morphophonological component CUF-RA, it is recommended that its user manual be
consulted (Manandhar 1995).

DII is made up of a large number of files. The main grammar files are all located in the top level
directory DII. The subdirectory 1g-sys contains the parser and other LexGram system files.
There are two other subdirectories, Morph and Morph-sol. These contain DII-customised
versions of the morphophonology component CUF-RA. Morph contains a version compatible
with the SunOS 4.1.3 operating system while Morph-sol contains a version compatible with
the Solaris (SunOS 5.4) operating system (CUF-RA uses compiled C++ code which is not

compatible across operating systems).

The file dii.cnf is a standard CUF .cnf file which contains grammar initialisation informa-
tion including the information about which CUF and Prolog files are to be loaded. dii.cnf
should be loaded using the load_cnf command. Once dii.cnf has been loaded the grammar
should be compiled using the gload command as follows:

CUF - Versiomn 2.30

Institut fuer maschinelle Sprachverarbeitung (IMS),
Universitaet Stuttgart, Germany

Michael Dorna, Jochen Doerre & Joerg Junger
July 1994
%h% global initialization:c..eeiiieininnn..

yes
| ?- load_cnf(dii).

yes
| 7- gload(dii).

%h% (re)loading grammar dii:

%%% CUF WARNING: Do not interrupt during file handling!

The DII grammar takes approximately the same form as the German grammar supplied with
Konig’s LexGram and, in particular, Konig’s philosophy of modularity is reflected in the fact
that the grammar is split across a large number of files, each representing a sub-component of
the whole system. Our grammar is simpler than Konig’s in that we have virtually eliminated
those parts that would make the grammar reversible for generation: the only remnant of
LexGram’s generation module occurs in the lexicon where entries still retain an extra ‘slot’
that was intended for the semantic ‘guide’ for generation. This was left in place in case the
grammar should ever be used in future for generation.

The file dii.cnf requires a number of .pl and .ctrl files to be consulted as follows:

= [
%hhhh LexGram system

’1g-sys/auxpreds.pl’, % auxiliary predicates/parser
’1g-sys/hdparser.pl’,), parser
’1g-sys/lgi_uif.ctrl’, ¥ LexGram user interface
’1g-sys/tree.ctrl’, % tree data structure,

hhhhh grammar specific

%% lexicon

‘mk_lexif.ctrl?’, % lexicon expander
’is_mk_lexif.ctrl’, % ditto for information structure
’lex_transpo.ctrl’, % contains gram_t/4

’is_lex_transpo.ctrl’, 7% ditto for information structure

%% Text Processing & Inferencing

% note: lg-sys/lgi_uif.ctrl contains text handling code
’resolution.pl’, % resolution module

’abducer.pl’,

’centering.pl’

1.

As with LexGram, the files in the subdirectory 1g-sys contain the parser and associated
code. The files 1g-sys/auxpreds.pl, lg-sys/hdparser.pl, lg-sys/lgi uif.ctrl and
lg-sys/tree.ctrl are DII-customised versions of the LexGram files of the same name.

The pre-compiled lexicon is in the file lexicon.cuf in the DII directory and although
this file is not loaded into CUF, it is read in the course of lexicon compilation. The file
mk_lexif.ctrl contains Prolog code for transforming lexicon.cuf into the expanded lex-
icon file expanded lexicon.cuf. The lexicon compilation process requires that mapping
rules be defined and these are to be found in the file lex_transpo.ctrl. The two files
ismk lexif.ctrl and is_lex_transpo.ctrl are variants of the first two which compile the
lexicon into a format including accent information for use when computing information struc-
ture. Section 4 discusses the information structure component and Section 5 discusses the
lexicon in more detail.

The files resolution.pl, centering.pl and abducer.pl are used in the resolution and

abduction stages of processing.

The file dii.cnf ensures that all the relevant .cuf files are loaded as follows:

e LexGram system files. These are based on general files from LexGram but have been

altered for use with DII:

category,
daccess,
lgi_general,
drsguide,
tree,

e General purpose files:
general,

ptests,
pluraltests,

e Lexicon files (see sections 5 and 6) :

expanded_lexicon,
is_expanded_lexicon,
verbs_exp,
is_verbs_exp,
nouns_exp,
is_nouns_exp,

e Morpho-syntax files (see section 3):

morph,
subcat,
synT,
synschema,
lexrules,
synsem,
inf_struc,

e Semantics files (see section 3):

sem,
psemT,
usemT,
scopedsemT,
rsemT,
disamb,

h
h
h
b
h

b
h
b

h
b
h
b
h
b

b
b
h
b
h
b
h
b

h
b
h
b
b

category data type

subroutines of grammar interpreter
general (public) stuff

guides for generation

tree data structure

general useful sorts
test sentences
tests for plural phenomena

lexicon minus verbs and nouns
ditto for information structure
verb lexicon (generated by CUF-RA)
ditto for information structure
noun lexicon (generated by CUF-RA)
ditto for information structure

morphology

subcategorization frames
syntactic data type

basic syntactic schemata

word class definitions
semantic construction rules
information structure (IS) and
duplicate sorts for IS

lexical semantics

partial semantics data type
underspecified semantics data type
scoped, unresolved semantics
scoped and resolved semantics

collect_accessibles,
pi_expansion,
inference_rules,
resolution,
centering_sorts,
centering

There are two parsing predicates defined in DII: p/1 is used for parsing single sentences and
returns a result where stored terms have been scoped but no disambiguation has taken place;
pt/1 is used for parsing discourses and the full range of processing takes place. Examples
for parsing must be declared using the sorts psent/2 (for single sentences) and ptext/1 for
discourses. A wide range of example sentences can be found in the files ptests.cuf and
pluraltests.cuf. Some examples are as follows:

psent (565 ,max_vp)
psent (571 ,max_vp)

[every,doctor,cures,her,patient].
[the,man,and,the,children,sing].
ptext(208) := [[a,woman,finds,a,soup],[she,eats,it]].
ptext(748) := [[a,man,entered,the_white_hart],

[he ,was,wearing,a,black,jacket]].

The second argument of the sort psent gives the category that must be asscociated with the
parse. Sort definitions for these are included at the end of the file ptests.cuf. To parse
these examples, one types either p(Number) or pt (Number) in the CUF window:

| ?- p(565).

| 7- pt(208).

Input to the two parse predicates may be either a list of words (as above) or, when information
structure is to be calculated, a list of word-accent pairs:

psent (441,max_vp) := [[rudi,bl,[only,ul, [gave,ul, [the,u], [man,a],
[the,u], [book,ul].

ptext(806) := [[[rudi,b], [found,u],[a,u], [doctor,al],
[[he,ul], [1likes,a], [him,ul]].

3 The DII Grammar

Many aspects of the DII grammar are described in some detail in the papers collected in Beaver
1995 and it is beyond the scope of this manual to attempt to reproduce those descriptions
here. Instead the (necessarily brief) discussion in this section is limited to those aspects of DII
that are not described in Beaver 1995. This section therefore deals only with the syntactic
component (including the initial syntax-semantics mapping) and the treatment of tense and
aspect. See Krause 1995 and Beaver and Krause 1995 for information about the semantics
components (underspecified, scoped and resolved) and Beaver and van der Bovenkamp 1995
for discussion of the implementation of information structure.

3.1 Syntax and the Syntax-Semantics Mapping

DII’s syntactic component will be familiar to LexGram users and will be easily comprehensible
to users familiar with categorial grammar. The basic driving force are the lexical items—each
lexical item contains not just information about its syntactic category but also about the
constituents it needs to combine with. In this way, each lexical item defines a piece of
syntactic tree and there is no need for a set of rewrite rules to state how elements combine.
The following is the syntactic part of the feature structure associated with the transitive verb

likes:

(stree &
root: (synsem_pair &
syn: (fin_pres &
agr:(agr &
number:sg &
person:third))) &
leaves: [(argument_leaf &
dir:right &
cat: (arg_stree &
root: (synsem_pair &
syn: (dp &
case:acc)))),
(argument_leaf &
dir:left &
cat: (arg_stree &
root: (synsem_pair &
syn: ((dp & “trace) &
case:nom &
agr:(agr &
number:sg &
person:third)))))])

The syntactic category of likes is encoded in the feature root while the feature 1eaves contains
information about the two determiner phrases that likes must combine with to form a
sentence. The verb first combines with the accusative dp to its right and then with the

nominative dp to its left. In this way the entire structure of sentences headed by likes is
encoded within the lexical entry.

The actual lexical entry for likes is stated much more economically using the sort verb/5:
1(1likes,_342) :=verb(weak,v(sg3),stative,v2,like_prime).

All of the sorts used in lexical entry definitions can be found in the file lexrules.cuf.
These generally call other sorts which can be found in other files depending on what their
function is. The subcategorisation properties of categories are defined using the sorts in the
file subcat.cuf. In the case of likes, the fourth argument of verb/5, v2, encodes the fact
that the verb is transitive. This argument is passed on to the sort subcat/1 in subcat.cuf
and the relevant sort definition is as follows:

subcat(v2) := [(dp(acc) & dir:right), (subj_dp(nom) & dir:left)].

This expands out to the list that is the value of leaves in feature structure above.

It is not possible to describe the syntactic component in any great detail here and users are
referred to Konig 1994b for more information. The syntactic types and sorts in DII are all
based on the original German grammar described by Konig although many simplifications
have been made because the fixed nature of English word-order is simpler to describe than
the more flexible word-order of German.

The basic lexical sorts in lexrules also call sorts that perform the initial mapping from
syntax to underspecified semantics. These mapping sorts have “synsem” in their names and
can be found in the file synsem. cuf. These sorts in turn make reference to sorts which can be
found in sem.cuf (basic semantics of different category types), psemT.cuf (types for partial
semantics) and usemT.cuf (types for underspecified semantics). For the entry for the verb
likes above, the calls to semantic sorts result in a syntactic-semantic feature structure as
follows (less relevant features suppressed):

(stree &
root: (synsem_pair &
syn: (fin_pres &
agr: (agr &
number:sg &
person:third)) &
sem: (clause_sem &
store:[(A & store_term),
(B & store_term),
(event_term &
res: (basic_relation &
rel:state &
args: (argument_frame &
argl:(C & at))) &
index:C &
lexinfo:eventintro &
mods: []1)] &
matrix: (basic_relation &
rel:1like_prime &
args: (argument_frame &
emarker:C &
argl: (G & term) &
arg2:(H & term))))) &
leaves: [(argument_leaf &
dir:right &
cat: (arg_stree &
root: (synsem_pair &
syn: (dp & case:acc) &
sem: (I &
partial_sem &
lambda_index:H &
body:B)))),
(argument_leaf &
dir:left &
cat: (arg_stree &
root: (synsem_pair &
syn: ((dp & “trace) &
case:nom &
agr: (agr &
number:sg &
person:third)) &
sem: (J &
partial_sem &
lambda_index:G &
body:4))))1)

Here the semantics of the verb is realised by the two features store and matrix. The matrix
contains the basic argument structure of the verb while the store contains terms whose
semantics derive from the semantics of the two dp arguments of likes. In addition the store
contains a Davidsonian-style event_term in whose mods slot information about adjuncts is
encoded.

10

3.2 Temporal Relations

The temporal portion of the implementation currently covers these main areas:

Constants

Syntactic features holding information crucial to processing of temporal information

Events/states and the times they occur

Narrative progression

e Temporal connectives
Except for the information concerning temporal connectives (which is taken from Hitzeman

1995a), the temporal information is implemented in a manner consistent with Kamp & Reyle

(1993) Chapter 5.

3.2.1 Syntactic features

In order to handle temporal information, several features have been added to the syntactic
1

tree:

verb ::
stat : bool,
tp : bool,
tppt : referent,
rpt : referent,

prev_context : list,
durative : bool.

bool = {plus, minus}.
verb = finite | nonfinite.

finite ::
tense : tense,
perf : bool.
tense = {past, pres, fut}.

The features can be described as follows:

e stat: If stat has a plus value, the aspect of the verb is stative; a minus values indicates
an event. The value of this feature is determined by the verb sort (lexrules.cuf) at
a time when the tense of the VP is known, because the present and progessive tenses
make a sentence stative.

!These features are discussed in Kamp & Reyle p. 598.

11

Table 1: The values for TP and TENSE.

\ | TP | TENSE |

Simple Present || -PAST pres
Simple Past +PAST pres
Simple Future -PAST fut
Present Perfect || -PAST pres
Past Perfect +PAST past
Future Perfect -PAST fut

e tppt: The Temporal Perspective Point (TPpt) is like Reichenbach’s time point R and
will be discussed further in the section on narrative progession, below. (See also Kamp

& Reyle p. 610.)
e tp and tense: Their values are set according to Table 1.

e rpt: The Reference Point (Rpt) aids in tracking narrative progression. Its value is
determined according to the following algorithm, where S is the current sentence (K&R,

p. 545):

— The part of the discourse preceding S contains an earlier event-sentence in the
past tense. For this case we stipulate that the reference point be the discourse
referent representing the event described by the most recent past tense event-
sentence before S.

— The antecedent part of the discourse contains no past tense event-sentence. In this
case we let the reference point be the location time of the most recent past tense
state-sentence. Otherwise we set the reference point equal to some new arbitrary
time (represented by a new discourse referent).

(See also Kamp & Reyle p. 610.)

e prev_context: Initially the previous context is set to a list containing only the now
point (described below in the section on Constants). After each parse, the semantics of
the sentence parsed is added to the prev_context slot, which represents the accumulated
semantics of the discourse.

e durative: Whether an event occurs at a moment or has some greater duration is
important for processing temporal connectives. An event such as build a house will
have the value plus and an event such as bf notice a problem will have the value minus.

e perf: When a sentence is in the perfect tense, the value of perf at the root of the tree
will be set to plus. This value is passed up from the auxiliary.

3.2.2 Constants

The only constant currently in use is Kamp & Reyle’s now point, which they refer to as n.
The now point is currently the total initial contents of the store, and is used in expressing

12

temporal relations, e.g., a past tense event will always precede the now point. The now point
is added to the prev_context slot in the file lg-sys/hdparser.pl.

3.2.3 Events/states and times

When an event or state is added to the discourse, a store term of type eventintro is added to
the store. Accompanying this, there is a store term that indicates whether this is an event
or a state (important for narrative progression). These store terms are added to the store in
the file psemT.cuf by means of the verb_sem sort.

3.2.4 Narrative progression

Narrative progression is dealt with by means of Kamp & Reyle’s Rpt. It is necessary to
distinguish between two types of reference times: Reichenbach’s R and an additional reference
time used in DRT. Kamp & Reyle call Reichenbach’s R the Temporal Perspective point (TPpt)
to reflect Reichenbach’s idea that this is the time from which the event is viewed, and they
call the other reference time, which is used to track narrative progression, the Rpt. The
distinction is motivated by the following example:

(1) Fred arrived at 10. He had got up at 5; he had taken a long shower, had got
dressed and had eaten a leisurely breakfast. He had left the house at 6:30.
(Kamp&Reyle 5.161)

In (1) the TPpt of each of the past perfect sentences is the time of Fred’s arrival, but the Rpt
changes as the narrative progresses. Kamp & Reyle describe how the Rpt may be determined,
giving the following two cases, where S is the current sentence (p. 545):

(2) The part of the discourse preceding S contains an earlier event-sentence in the
past tense. For this case we stipulate that the reference point be the discourse
referent representing the event described by the most recent past tense event-

sentence before S. .)
(3) The antecedent part of the discourse contains no past tense event-sentence. In

this case we let the reference point be the location time of the most recent past
tense state-sentence. Otherwise we set the reference point equal to some new
arbitrary time (represented by a new discourse referent).

The reference times for future tense are chosen similarly.

I will follow Kamp (1979), Hinrichs (1981), and Partee (1984) in assuming that a new event
is interpreted as following the current Rpt, while a new state overlaps it. For example, the
event of the fox ducking into the foxhole is interpreted as occurring after the fox hears the
noise in (4), but the state of the fox being in the foxhole is interpreted as overlapping the
event of the fox hearing the noise in (5):

(4) The fox heard a noise. He ducked into the foxhole.
(5) The fox heard a noise. He was in the foxhole.

13

The choice of the TPpt depends on the tense of the sentence. I will follow Kamp & Reyle in
their use of the feature TENSE to express the relationship between the eventuality and the
TPpt. When TENSE has the value pres the time of the eventuality coincides with the TPpt,
when it has the value past the time of the eventuality precedes the TPpt, and when it has
the value fut the time of the T'Ppt precedes the eventuality. Similarly, I will use the feature
TP to express the relationship between the TPpt and the speech time. The values for TP
and TENSE for each tense are shown in Table 1.

When TP has the value pres, the TPpt is the same as speech time, which Kamp & Reyle refer
to as n. When TP does not have the value pres, the eventuality whose time is the time of the
TPpt must be found. For example, in (1) the TPpt for each of the past perfect sentences is
the time of Fred’s arrival. How to decide what this eventuality is is a difficult problem, and
beyond the scope of this work. I will assume that some algorithm exists to accomplish this,
and when TP has a value other than pres I will set the TPpt to some referent intended to
represent the appropriate TPpt.

3.2.5 Temporal connectives

For the Dandelion work on temporal connectives, each tensed clause requires a series of values
that describe in TTT terms (A “Two-Track Theory of Tense”) the tense and aspect of the
clause and the temporal relationship(s) of the eventuality it describes and other eventualities
in the discourse. These have all been gathered in one store term of type ttt for modularity.
The relevant code can be found in the file usemT.cuf. Temporal connectives use this informa-
tion to determine their acceptability with various eventualities, and to calculate the temporal
relations between the two eventualities they relate.

A detailed discussion of the temporal connectives can be found in Hitzeman 1995a; Verschuur

1995 and in Hitzeman 1995b.

4 Using Information Structure

The DII component which computes information structure has a more much more restricted
coverage than the general DII grammar and the process of using accent information to calcu-
late information structure often results in ambiguities which are not strictly relevant to other
aspects of DII. For these reasons it was felt that the use of this component should be optional
and efforts have been made to allow users to ignore or even remove the information struc-
ture component. In general the addition of the information structure component has involved
writing counterparts to existing CUF sorts or Prolog predicates which take an extra accent ar-
gument. For the parser the extra predicates are to be found in the file 1g-sys/auxpreds.pl:
they are leaf constr/3, assert positions_aux/3 and cuflist prologlist/2. Lexical
look-up for normal parsing involves the sort 1/2 but for the information structure com-
ponent it uses 1/3 where the extra argument encodes accent information. In the grammar
itself, certain features, types and sorts specific to information structure can be found in
the file inf _struc.cuf. This file also includes alternate versions of certain sorts which af-
fect the expansion of lexical entries (i.e. some sorts whose usual definitions can be found in
lexrules.cuf, sem.cuf and synsem. cuf). In order for the parser to receive word-accent pair

14

input as an alternative to its usual input of simple words, an alternate word-accent form for
each lexical entry must be created. The file lexicon.cuf contains entries in a form which
can be expanded either with or without the accent. Some examples are as follows:

word(book) := [noun,neut_sg,count_noun,book,(A & accent_info)].
word(laugh) := [verb,weak,v(0),process,vl,laugh, (A & accent_info)].
word(every) := [det,d(sg),every,u].

As explained in the next section, these entries are expanded in two different ways to create
unaccented and accented expanded lexical entries (in expanded lexicon.cuf and
is_expanded lexicon.cuf respectively):

Unaccented:

1(book,_406) :=noun(neut_sg,count_noun,noun_sem(book_prime)) .
1(laugh,_357) :=verb(weak,v(0) ,process,vl,laugh_prime).
1(every,_380) :=det(d(sg) ,determiner_sem(every)).

Accented:

1(book,_414,_290&accent_info) :=
noun(neut_sg,count_noun,noun_sem(book_prime,_290&accent_info)).
1(laugh,_453,_318&%accent_info) :=
verb(weak,v(0) ,process,vl,laugh_prime,_318&accent_info).
1l(every,_380,u) :=det (d(sg) ,determiner_sem(every,u)).

The unaccented lexical entries are defined using the sort 1/2 while the accented ones are
defined with 1/3 where the third argument of 1/3 is the accent argument. The unaccented
entries are defined in terms of the sorts noun/3, verb/5 and det/2 while the sorts for the
accented entries have an extra accent argument: noun/4, verb/6 and det/3. The shared
variable in the final arguments of 1/3 and the sorts noun/4 and verb/6 allow the noun and
verb entries to be underspecified for accent.

During parsing, the information structure component uses accent information to compute
values for the feature info_struct. This feature occurs in the semantic representation of
noun phrases and verbs and indicates whether an element is part of the focus, the link or
the tail. Information about the info_struct status of elements is used in the later stages of
processing for a variety of purposes: for example it interacts with the centering component
for anaphora resolution and with the presupposition component for examples involving focus-
sensitive adverbs.

For more information about the theory of information structure see Vallduvi 1990; Vallduvi
1994 and Engdahl and Vallduvi 1994. For further details concerning the DII implementation
of the information structure component see Beaver and van der Bovenkamp 1995.

5 Creating the Expanded Lexicon

As briefly outlined in the previous section, DII has an initial lexicon, lexicon.cuf, in which
lexical information is encoded in a format which is relatively theory- and grammar-neutral.

15

This initial lexicon is input to a lexicon expansion process which results in the lexicon
expanded lexicon.cuf and this expanded lexicon is the one that is actually used by the
grammar.

The mapping process is performed by a call to the command gram mk lexif (defined in the
file mk lexif.ctrl). This command reads entries from the file lexicon.cuf and, using a set
of mapping rules defined by the user in the file lex_transpo.ctrl, it transforms them into
the output format and writes them to the file expanded lexicon.cuf. Users wishing to add
or ammend lexical entries should therefore edit the file lexicon.cuf and also check in case
changes are needed to the mapping rules in lex transpo.ctrl. The lexicon is then expanded
by a call to gram mk lexif and the resulting new version of expanded_lexicon.cuf will be
utilised after a call to the gload command:

| ?7- gram_mk_lexif.
%%%* LEXICON EXPANSION: lexicon.cuf ==> expanded_lexicon.cuf

| 7- gload.

If the information structure component is being used then any changes to lex_transpo.ctrl
should be mirrored in the file is_lex transpo (which contains the mapping rules for accented
lexical entries). A new version of the file is_expanded lexicon.cuf should then be created
by a call to the command is_gram mk lexif:

| ?7- is_gram_mk_lexif.

%%%* LEXICON EXPANSION: lexicon.cuf ==> is_expanded_lexicon.cuf

The morphophonological extension to CUF, CUF-RA, can be used to generate a full set of
entries for inflectional paradigms and in DII we have provided the option of creating verb
and noun entries using CUF-RA. In the files lex_transpo.ctrl and is_lex_transpo.ctrl
the mapping rules for verbs and nouns have been commented out because these entries occur
in the CUF-RA output files verbs_exp.cuf and nouns_exp.cuf (and is_verbs_exp.cuf and
is nouns_exp.cuf for the information structure component) . Users not wishing to use
CUF-RA should edit the file dii.cnf to prevent the files verbs_exp.cuf, nouns_exp. cuf,
is_verbs_exp.cuf and is nouns_exp.cuf from being loaded. The verb and noun mapping
rules in lex transpo.ctrl and is_lex transpo.ctrl should be uncommented, the lexicon
re-expanded and the system reloaded.

6 Using CUF-RA

CUF-RA is a system for generating morphological paradigms for words. It represents lexical
items as finite-state automata and it effectively implements Bird and Ellison’s (1994) “one-
level” approach to phonology and extends it to deal with morphophonological phenomena.
For details about CUF-RA and how to use it, see Manandhar 1995.

16

The example morphological descriptions distributed with CUF-RA are small illustrative de-
scriptions which do not reflect the potential complexity of using CUF-RA to creat lexical
entries for large scale CUF grammars like DII. For this reason it has been instructive to use
CUF-RA with a large and heavily lexicalist grammar like DII and indeed the demands of DII
have provoked certain additions to CUF-RA. The major problem that was encountered in-
volved lexical definitions containing delayed goals. CUF-RA takes a stem form and generates
inflected lexical entries using a set of word-formation rules. In these word-formation rules the
output feature description is expressed using standard CUF feature terms but in the course
of processing the feature terms are fully evaluated and the feature structure that results is
written to the output file. With the DII grammar, several sorts which occur in the feature
term description of lexical entries are ones which have delayed goals and these could not be
written to an output file and subsequently loaded into CUF. The solution was to isolate the
morphological information relevant to the word-formation rules from other information asso-
ciated with lexical items and to let CUF-RA manipulate the former while simply writing out
the latter without evaluating it. The morphological description for verbs in the file verbs.pl
also exists in a simplified form as the example description english_verbs.pl distributed with
the CUF-RA system. A stem entry in the simpler version looks like this:

enter —*-> vweak.
while the equivalent stem in verbs.pl look like this:

(enter,verb(weak,_,achievement,v2,enter_prime))
-%-> verb(weak,_).

In the simple case there is no information apart from morphological information associated
with the verb while, in the complex case, the DII grammar clearly needs a variety of syntactic
and semantic information in verb lexical entries. In order to accommodate the more complex
cases, CUF-RA was extended to allow two kinds of stem definitions. The complex kind has
the stem word paired with extra non-morphological information. When CUF-RA generates
inflected forms from a complex stem it ignores the extra information in the stem definition
but it does write it to the output file conjoined with the result of morphological processing.
For example, the following is the third person singular entry deriving from the complex stem
definition for enter.

l(enters,[]):=
(stree &
root: (synsem_pair &
syn: (fin_pres &
agr: (agr &
number:sg &
person:third) &
morph:weak)))
& verb(weak,_12814,achievement,v2,enter_prime).

Notice that the sort verb/5 used to describe the extra non-morphological information is the
same sort as is used in the definitions of verb lexical entries in the expanded lexicon described

17

in the previous section. The second argument of verb/5 is where morphological information
is usually encoded and in this case it is unspecified precisely because the feature structure
resulting from the CUF-RA generation process supplies this information. The version of
CUF-RA distributed with the DII system has been customised for use with DII to ensure
that output lexical entries are defined using the sort 1/2: this means that there is an exact
equivalence between the CUF-RA entry for enters above and the expanded lexicon entry for
enters shown below:

l(enters,_357) :=verb(weak,v(sg3) ,achievement,v2,enter_prime).

It is beyond the scope of this manual to describe the word-formation rules and paradigms
involved in CUF-RA descriptions and users are referred to Manandhar 1995 to help them
understand the contents of the files verbs.pl and nouns.pl. In general the process of adding
a new verb will involve making decisions about whether it is weak or strong (regular or
irregular) and how its orthographic form is affected by affixation. For example, a regular verb
like arrange will need the following stem definition:

(arrange-[e] ,verb(weak,_,process,v2,arrange_prime))
-*—> verb(weak,_).

The final ‘e’ is enclosed in square brackets to indicate that it will be elided when occurring
with a suffix beginning with a vowel, e.g. the past tense form is arranged not arrangeed.

To generate the inflected forms for verbs and nouns, the DII grammar must be loaded. Then

the file containing the DII-customized version of CUF-RA must be consulted (Morph/cuf ra

or Morph-sol/cuf _ra when using the Solaris operating system) and the commands lex_compile(verbs)
or lex _compile (nouns) must be given:

| ?- [’Morph/cuf_ra’].
{consulting /projects/DYANA/DII/Morph/cuf_ra.pl...}

Loading foreign files...
...loaded

CUF-RA Versiomn 1
{/projects/DYANA/DII/Morph/cuf_ra.pl consulted, 1170 msec 73552 bytes}

yes
| ?- lex_compile(verbs).

The results of 1ex_compile are written to the output files verbs_exp.cuf and nouns_exp.cuf
respectively and are available following a call to gload.

As with the previous method of lexicon creation, a separate accented lexicon for use with the
information structure component can be generated. The DII-customized file Morph/cuf ra
(or Morph-sol/cuf ra) contains extra top-level calls to define the predicate is_lex _compile.
In addition separate input files are required namely is_verbs.pl and is nouns.pl. These

18

are based on the files verbs.pl and nouns.p but extra information about accent has been
added. The stem definition for enter in is_verbs.pl is as follows:

(enter,verb(weak,_,achievement,v2,enter_prime,A))
-*—> (verb(weak,_),A).

and the third person singular output is this:

l(enters,[],_12823):=
(stree &
root: (synsem_pair &
syn: (fin_pres &
agr:(agr &
number:sg &
person:third) &
morph:weak)))
& verb(weak,_12829,achievement,v2,enter_prime,_12823).

As before, these entries make use of the sorts 1/3 and verb/6 which contain extra accent
arguments not in the standard sorts 1/2 and verb/5. Notice the shared variable in the final
argument positions of 1/3 and verb/6 which permit the verb to be underspecified for accent.
The information structure variant of CUF-RA is used in the same way as the regular version:

| ?- [’Morph/cuf_ra’].
{consulting /projects/DYANA/DII/Morph/cuf_ra.pl...}

Loading foreign files...
...loaded

CUF-RA Version 1
{/projects/DYANA/DII/Morph/cuf_ra.pl consulted, 1170 msec 73552 bytes}

yes
| ?- is_lex_compile(is_verbs).

The output files are is_verbs_exp.cuf and is_noun exp.cuf.

Postscript

Any queries or requests for assistance with DII should be directed to one of the following:

Claire Grover grover@cogsci.ed.ac.uk
Janet Hitzeman janet@cogsci.ed.ac.uk
Peter Krause peter@ims.uni-stuttgart.de

19

References

Alshawi, H. (ed.): 1992, The Core Language Engine, The MIT Press

Beaver, D. (ed.): 1995, The Dyana Integrated Implementation, DYANA-2 Report R3.7,
ILLC/Department of Philosophy, University of Amsterdam

Beaver, D. and Krause, P.: 1995, The Architecture and Semantic Representation Formats
of Dyana’s Integrated Implementation, in Beaver, D. (ed.), The Dyana Integrated Imple-
mentation

Beaver, D. and van der Bovenkamp, I.: 1995, Application and Implementation of Information
Packaging, in Beaver, D. (ed.), The Dyana Integrated Implementation

Bird, S. and Ellison, M.: 1994, One-level phonology: Autosegmental representations and
rules as finite automata, Computational Linguistics 20(1)

Brennan, S., Friedman, M., and Pollard, C.: 1987, A centering approach to pronouns, in
Proc. ACL-87, pp 155-162

Dorre, J., Dorna, M., and Junger, J.: 1994, The CUF User’s Manual, Technical report,
Institut fur Maschinelle Sprachverarbeitung, Universitat Stuttgart

Elworthy, D. A.: 1995, A Theory of Anaphoric Information, Linguistics and Philosophy 18,
297-332

Engdahl, E. and Vallduvi, E.: 1994, Information packaging and grammar architecture: a
constraint-based approach, in E. Engdahl (ed.), Integrating Information Structure into
Constraint-based and Categorial Approaches, pp 39-80, DYANA-2 Deliverable R1.3.B,
ILLC/Department of Philosophy, University of Amsterdam

Fernando, T.: 1993, Generalized quantifiers as second-order programs, in Paul Dekker and
Martin Stokhof (ed.), Proceedings of the Ninth Amsterdam Colloquium, Vol. II, pp 287-300,
Universiteit van Amsterdam

Frank, A. and Reyle, U.: 1995, Principle based semantics for HPSG, in Proceedings of the
6th Meeting of the Association for Computational Linguistics, Furopean Chapter, Dublin

Grosz, B. J., Joshi, A. K., and Weinstein, S.: 1995, Centering: A framework for modeling
the local coherence of discourse, Computational Linguistics 21(2), 203-225

Hinrichs, E.: 1981, Temporale Anaphora in Englischen, StaatsExamen thesis, Universitat
Tubingen

Hitzeman, J.: 1995a, A Constraint-based Grammar of English Temporal Connectives, ES-
PRIT Basic Research Project 6665 R2.3.3, DANDELION

Hitzeman, J.: 1995b, Temporal Connectives: A Combined Dyana/Dandelion Implementation,
in Beaver, D. (ed.), The Dyana Integrated Implementation

Kamp, H.: 1979, Events, instant and temporal reference, in R. Bauerle, U. Egli, and A. von
Stechow (eds.), Semantics from Different Points of View, pp 376-417, Springer-Verlag

Kamp, H. and Reyle, U.: 1993, From Discourse to Logic, D. Reidel, Dordrecht

Koénig, E.: 1994a, A Study in Grammar Design, Arbeitspapier des Sonderforschungsbereich
340 54, Institut fur Maschinelle Sprachverarbeitung, Universitat Stuttgart

Konig, E.: 1994b, LexGram User’s Manual, Technical report, Institut fiir Maschinelle
Sprachverarbeitung, Universitat Stuttgart

Konig, E.: 1995, Lexgram - a practical categorial grammar formalism, in Proceedings of the
Workshop on Computational Logic for Natural Language Processing. A Joint COMPU-
LOGNET/ELSNET/EAGLES Workshop, Edinburgh, Scotland

Krause, P.: 1995, Plural Phenomena in Dyana’s Integrated Implementation, in Beaver, D.
(ed.), The Dyana Integrated Implementation

20

Manandhar, S.: 1995, The CUF-R/CUF-RA Guide, Dyana report

Oversteegen, L.: 1993, Dutch Temporal Connectives, ESPRIT Basic Research Project 6665
R1.3.2a, DANDELION

Partee, B. H.: 1984, Nominal and temporal anaphora, Linguistics and Philosophy 7

Pollard, C. and Sag, I. A.: 1994, Head-Driven Phrase Structure Grammar, The University of
Chicago Press, Chicago

Vallduvi, E.: 1990, The Informational Component, Ph.D. thesis, University of Pennsylvania

Vallduvi, E.: 1994, The dynamics of information packaging, in E. Engdahl (ed.), Inte-
grating Information Structure into Constraint-based and Categorial Approaches, pp 1-26,
DYANA-2 Deliverable R1.3.B, ILLC/Department of Philosophy, University of Amsterdam

Verschuur, L.: 1995, Constraint-based Grammar of Dutch Temporal Connectives, ESPRIT
Basic Research Project 6665 R2.3.1a, DANDELION

Westerstahl, D.: 1985, Determiners and context sets, in J. van Benthem and A. ter Meulen
(eds.), Generalized Quantifiers in Natural Language, pp 4571, Foris, Dordrecht

21

