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Preface

Corpus-based distributional models (such as LSA or HAL) have been claimed to capture interesting aspects
of word meaning and provide an explanation for the rapid acquisition of semantic knowledge by human
language learners. Although these models have been proposed as plausible simulations of human semantic
space organization, careful and extensive empirical tests of such claims are still lacking.

Systematic evaluations typically focus on large-scale quantitative tasks, often more oriented towards en-
gineering applications than towards the challenges posed by linguistic theory, philosophy and cognitive
science. Moreover, whereas human lexical semantic competence is obviously multi-faceted – ranging from
free association to taxonomic judgments to relational effects – tests of distributional models tend to focus
on a single aspect (most typically the detection of semantic similarity), and few if any models have been
tuned to tackle different facets of semantics in an integrated manner.

The goal of this workshop was to fill such gaps by inviting researchers to test their computational models on
a variety of small tasks that were carefully designed to bring out linguistically and cognitively interesting
aspects of semantics. To this effect, annotated data sets were provided for participants on the workshop
wiki, where they remain available to interested parties:

http://wordspace.collocations.de/doku.php/esslli:start

The proposed tasks were:

• semantic categorization – distinguishing natural kinds of concrete nouns, distinguishing between
concrete and abstract nouns, verb categorization;

• free association – predicting human word association behaviour;

• salient property generation – predicting the most salient properties of concepts produced by humans.

The focus of these “shared tasks” was not on competition, but on understanding how different models high-
light different semantic aspects, how far we are from an integrated model, and which aspects of semantics
are beyond the reach of purely distributional approaches. Most papers in the proceedings report experiments
with the proposed data sets, whereas some of the authors explore related tasks and issues.

We hope that this initiative – and the ESSLLI workshop – will foster collaboration among the nascent
community of researchers interested in computational semantics from a theoretical and interdisciplinary
rather than purely engineering-oriented point of view.

We would like to thank all the authors who submitted papers, as well as the members of the programme
committee for the time and effort they contributed in reviewing the papers.

Marco Baroni, Stefan Evert, Alessandro Lenci
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Semantic Categorization Using Simple Word Co-occurrence Statistics

John A. Bullinaria
School of Computer Science, University of Birmingham

Edgbaston, Birmingham, B15 2TT, UK
j.bullinaria@physics.org

Abstract

This paper presents a series of new results on
corpus derived semantic representations based
on vectors of simple word co-occurrence
statistics, with particular reference to word
categorization performance as a function of
window type and size, semantic vector di-
mension, and corpus size. A number of out-
standing problems and difficulties with this
approach are identified and discussed.

1 Introduction

There is now considerable evidence that simple
word co-occurrence statistics from large text cor-
pora can capture certain aspects of word meaning
(e.g., Lund & Burgess, 1996; Landauer & Dumais,
1997; Bullinaria & Levy, 2007). This is certainly
consistent with the intuition that words with similar
meaning will tend to occur in similar contexts, but
it is also clear that there are limits to how far this
idea can be taken (e.g., French & Labiouse, 2002).
The natural way to proceed is to optimize the stan-
dard procedure as best one can, and then identify and
solve the problems that remain.

To begin that process, Bullinaria & Levy (2007)
presented results from a systematic series of experi-
ments that examined how different statistic collec-
tion details affected the performance of the resul-
tant co-occurrence vectors on a range of semantic
tasks. This included varying the nature of the ‘win-
dow’ used for the co-occurrence counting (e.g., type,
size), the nature of the statistics collected (e.g., raw
conditional probabilities, pointwise mutual informa-
tion), the vector space dimensionality (e.g., using

only the d highest frequency context words), the
size and quality of the corpus (e.g., professionally
created corpus, news-group text), and the semantic
distance measure used (e.g., Euclidean, City-block,
Cosine, Hellinger, Bhattacharya, Kulback-Leibler).
The resultant vectors were subjected to a series of
test tasks: a standard multiple choice TOEFL test
(Landauer & Dumais, 1997), a larger scale seman-
tic distance comparison task (Bullinaria & Levy,
2007), a semantic categorization task (Patel et al.,
1997), and a syntactic categorization task (Levy et
al., 1998). It was found that the set-up producing
the best results was remarkably consistent across all
the tasks, and that involved using Positive Pointwise
Mutual Information (PPMI) as the statistic to col-
lect, very small window sizes (just one context word
each side of the target word), and the standard Co-
sine distance measure (Bullinaria & Levy, 2007).

That study was primarily conducted using a 90
million word untagged corpus derived from the BNC
(Aston & Burnard, 1998), and most of the results
presented could be understood in terms of the qual-
ity or reliability of the various vector components
collected from it: Larger windows will tend to con-
tain more misleading context, so keeping the win-
dow small is advantageous. Estimations of word
co-occurrence probabilities will be more accurate
for higher frequency words, so one might expect
that using vector components that correspond to low
frequency context words would worsen the perfor-
mance rather than enhance it. That is true if a poorly
chosen statistic or distance measure is chosen, but
for PPMI and Cosine it seems that more context di-
mensions lead to more useful information and bet-
ter performance. For smaller corpora, that remains
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true, but then larger windows lead to larger counts
and better statistical reliability, and that can improve
performance (Bullinaria & Levy, 2007). That will
be an important issue if one is interested in model-
ing human acquisition of language, as the language
streams available to children are certainly in that
regime (Landauer & Dumais, 1997; Bullinaria &
Levy, 2007). For more practical applications, how-
ever, much larger and better quality corpora will cer-
tainly lead to better results, and the performance lev-
els are still far from ceiling even with the full BNC
corpus (Bullinaria & Levy, 2007).

The aim of this paper is to explore how the re-
sults of Bullinaria & Levy (2007) extend to the
ukWaC corpus (Ferraresi, 2007) which is more than
20 times the size of the BNC, and to test the re-
sultant semantic representations on further tasks us-
ing the more sophisticated clustering tool CLUTO
(Karypis, 2003). The next section will describe the
methodology in more detail, and then the word cate-
gorization results are presented that explore how the
performance varies as a function of window size and
type, vector representation dimensionality, and cor-
pus size. The paper ends with some conclusions and
discussion.

2 Methodology

The basic word co-occurrence counts are the num-
ber of times in the given corpus that each context
word c appears in a window of a particular size s

and type w (e.g., to the left/right/left+right) around
each target word t, and from these one can easily
compute the conditional probabilities p(c|t). These
actual probabilities can then be compared with the
expected probabilities p(c), that would occur if the
words were distributed randomly in the corpus, to
give the Pointwise Mutual Information (PMI):

I(c, t) = log
p(c|t)

p(c)
(1)

(Manning & Schutze, 1999, Sect. 5.4). Positive val-
ues indicate that the context words occur more fre-
quently than expected, and negative values corre-
spond to less than expected. The study of Bullinaria
& Levy (2007) showed that setting all the negative
values to zero, leaving the Positive Pointwise Mutual
Information (PPMI), reliably gave the best perform-
ing semantic vectors across all the semantic tasks

considered, if the standard Cosine distance measure
was used. Exactly the same PPMI Cosine approach
was used for all the investigations here. The window
type and size, and the number of frequency ordered
context word dimensions, were allowed to vary to
explore their effect on the results.

The raw ukWaC corpus (Ferraresi, 2007) was first
preprocessed to give a plain stream of about two
billion untagged words, containing no punctuation
marks apart from apostrophes. Then the list of po-
tential target and context words contained within it
was frequency ordered and truncated at one million
words, at which point the word frequency was just
five occurrences in the whole corpus. This process
then allowed the creation of a one million dimen-
sional vector of PPMI values for each target word of
interest. The full corpus was easily split into disjoint
subsets to explore the effect of corpus size.

The quality of the resultant semantic vectors was
tested by using them as a basis for clustering the sets
of nouns and verbs specified for the Lexical Seman-
tics Workshop at ESSLLI 2008. Vector represen-
tations for the n words in each word-set were clus-
tered using the CLUTO Clustering Toolkit (Karypis,
2003), with the direct k-way clustering algorithm
and default settings. The quality of clustering was
established by comparison against hand-crafted cat-
egory labels using standard quantitative measures of
entropy E and purity P , defined as weighted aver-
ages over the cluster entropies Er and purities Pr:

E =
k∑

r=1

nr

n
Er , Er = −

1

log q

q∑

i=1

ni
r

nr

log
ni

r

nr

(2)

P =
k∑

r=1

nr

n
Pr , Pr =

1

nr

max
i

(ni
r) (3)

where nr and ni
r are the numbers of words in the

relevant clusters and classes, with r labelling the
k clusters, and i labelling the q classes (Zhao &
Karypis, 2001). Both measures range from 0 to 1,
with 1 best for purity and 0 best for entropy.

3 Results

It is convenient to start by looking in Figure 1 at the
results obtained by instructing the clustering algo-
rithm to identify six clusters in the semantic vectors
generated for a set of 44 concrete nouns. The six
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Figure 1: Noun categorization cluster diagram.

hand-crafted categories {‘birds’, ‘ground animals’,
‘fruits’, ‘vegetables’, ‘tools,’ ‘vehicles’} seem to
be identified almost perfectly, as are the higher
level categories {‘animals’, ‘plants’, ‘artifacts’} and
{‘natural’, ‘artifact’}. The purity of the six clusters
is 0.886 and the entropy is 0.120. Closer inspection
shows that the good clustering persists right down
to individual word pairs. The only discrepancy is

‘chicken’ which is positioned as a ‘foodstuff’ rather
than as an ‘animal’, which seems to be no less ac-
ceptable than the “correct” classification.

Results such as these can be rather misleading,
however. The six clusters obtained do not actually
line up with the six hand-crafted clusters we were
looking for. The ‘fruit’ and ‘vegetable’ clusters are
combined, and the ‘tools’ cluster is split into two.
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Figure 2: The effect of vector dimensionality on noun
clustering quality.

This contributes more to the poor entropy and pu-
rity values than the misplaced ‘chicken’. If one asks
for seven clusters, this does not result in the splitting
of ‘fruit’ and ‘vegetables’, as one would hope, but
instead creates a new cluster consisting of ‘turtle’,
‘snail’, ‘penguin’ and ‘telephone’ (which are out-
liers of their correct classes), which ruins the nice
structure of Figure 1. Similarly, asking for only three
clusters doesn’t lead to the split expected from Fig-
ure 1, but instead ‘cup’, ‘bowl’ and ‘spoon’ end up
with the plants, and ‘bottle’ with the vehicles. It is
clear that either the clusters are not very robust, or
the default clustering algorithm is not doing a par-
ticularly good job. Nevertheless, it is still worth ex-
ploring how the details of the vector creation process
affect the basic six cluster clustering results.

The results shown in Figure 1, which were the
best obtained, used a window of just one context
word to the right of the target word, and the full set
of one million vector dimensions. Figure 2 shows
how reducing the number of frequency ordered con-
text dimensions and/or changing the window type
affects the clustering quality for window size one.
The results are remarkably consistent down to about
50,000 dimensions, but below that the quality falls
considerably. Windows just to the right of the tar-
get word (R) are best, windows just to the right (L)
are worst, while windows to the left and right (L+R)
and vectors with the left and right components sep-
arate (L&R) come in between. Increasing the win-
dow size causes the semantic clustering quality to
deteriorate as seen in Figure 3. Large numbers of di-
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Figure 3: The effect of window size on noun clustering
quality.

mensions remain advantageous for larger windows,
but the best window type is less consistent.

That large numbers of dimensions and very small
window sizes are best is exactly what was found by
Bullinaria & Levy (2007) for their semantic tasks
using the much smaller BNC corpus. There, how-
ever, it was the L+R and L&R type windows that
gave the best results, not the R window. Figure 4
shows how the clustering performance for the var-
ious window types varies with the size of corpus
used, with averages over distinct sub-sets of the full
corpus and the window size kept at one. Interest-
ingly, the superiority of the R type window disap-
pears around the size of the BNC corpus, and be-
low that the L+R and L&R windows are best, as was
found previously. The differences are small though,
and often they correspond to further use of different
valid semantic categories rather than “real errors”,
such as clustering ‘egg laying animals’ rather than
‘birds’. Perhaps the most important aspect of Figure
4, however, is that the performance levels still do not
appear to have reached a ceiling level by two billion
words. It is quite likely that even better results will
be obtainable with larger corpora.

While the PPMI Cosine approach identified by
Bullinaria & Levy (2007) produces good results for
nouns, it appears to be rather less successful for
verb clustering. Figure 5 shows the result of at-
tempting five-way clustering of the verb set vectors
obtained in exactly the same way as for the nouns
above. No reliably better results were found by
changing the window size or type or vector dimen-
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Figure 4: The effect of corpus size on noun clustering
quality.

sionality. There is certainly a great deal of seman-
tic validity in the clustering, with numerous appro-
priate word pairs such as ‘buy, sell’, ‘eat, drink’,
‘kill, destroy’, and identifiable clusters such as those
that might be called ‘body functions’ and ‘motions’.
However, there is limited correspondence with the
five hand crafted categories {‘cognition’, ‘motion’,
‘body’, ‘exchange’, ‘change-state’}, resulting in a
poor entropy of 0.527 and purity only 0.644.

Finally, it is worth checking how the larger size of
the ukWaC corpus affects the results on the standard
TOEFL task (Landauer & Dumais, 1997), which
contains a variety of word types. Figure 6 shows the
performance as a function of window type and num-
ber of dimensions, for the optimal window size of
one. Compared to the BNC based results found by
Bullinaria & Levy (2007), the increased corpus size
has improved the performance for all window types,
and the L+R and L&R windows continue to work
much better than R or L windows. It seems that, de-
spite the indications from the above noun clustering
results, it is not true that R type windows will always
work better for very large corpora. Probably, for the
most reliably good overall performance, L&R win-
dows should be used for all corpus sizes.

4 Conclusions and Discussion

It is clear from the results presented in the previous
section that the simple word co-occurrence count-
ing approach for generating corpus derived semantic
representations, as explored systematically by Bul-
linaria & Levy (2007), works surprisingly well in

100000100001000100
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70
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 C
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Figure 6: The effect of vector dimensionality on TOEFL
performance.

some situations (e.g., for clustering concrete nouns),
but appears to have serious problems in other cases
(e.g., for clustering verbs).

For the verb clustering task of Figure 5, there
is clearly a fundamental problem in that the hand-
crafted categories correspond to just one particular
pint of view, and that the verb meanings will be
influenced strongly by the contexts, which are lost
in the simple co-occurrence counts. Certainly, the
more meanings a word has, the more meaningless
the resultant average semantic vector will be. More-
over, even if a word has a well defined meaning,
there may well be different aspects of it that are rele-
vant in different circumstances, and clustering based
on the whole lot together will not necessarily make
sense. Nor should we expect the clustering to match
one particular set of hand crafted categories, when
there exist numerous equally valid alternative ways
of doing the categorization. Given these difficulties,
it is hard to see how any pure corpus derived seman-
tic representation approach will be able to perform
much better on this kind of clustering task.

Discrepancies amongst concrete nouns, such as
the misplaced ‘chicken’ in Figure 1, can be explored
and understood by further experiments. Replacing
‘chicken’ by ‘hen’ does lead to the correct ‘bird’
clustering alongside ‘swan’ and ‘duck’. Adding
‘pork’ and ‘beef’ into the analysis leads to them be-
ing clustered with the vegetables too, in a ‘food-
stuff’ category, with ‘pork’ much closer to ‘beef’
and ‘potato’ than to ‘pig’. As we already saw with
the verbs above, an inherent difficulty with testing
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Figure 5: Verb categorization cluster diagram.

semantic representations using any form of cluster-
ing is that words can be classified in many differ-
ent ways, and the appropriate classes will be context
dependent. If we try to ignore those contexts, ei-
ther the highest frequency cases will dominate (as
in the ‘foodstuff’ versus ‘animal’ example here), or
merged representations will emerge which will quite
likely be meaningless.

There will certainly be dimensions or sub-spaces
in the semantic vector space corresponding to par-
ticular aspects of semantics, such as one in which
‘pork’ and ‘pig’ are more closely related than ‘pork’
and ’potato’. However, as long as one only uses
simple word co-occurrence counts, those will not be
easily identifiable. Most likely, the help of some
form of additional supervised learning will be re-
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Figure 7: Extended noun categorization cluster diagram.

quired (Bullinaria & Levy, 2007). For example, ap-
propriate class-labelled training data might be uti-
lized with some form of Discriminant Analysis to
identify distinct semantic dimensions that can be
used as a basis for performing different types of
classification that have different class boundaries,

such as ‘birds’ versus ‘egg laying animals’. Alter-
natively, or additionally, external semantic informa-
tion sources, such as dictionaries, could be used by
some form of machine learning process that sepa-
rates the merged representations corresponding to
word forms that have multiple meanings.
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Another problem for small semantic categoriza-
tion tasks, such as those represented by Figures 1
and 5, is that with so few representatives of each
hand-crafted class, the clusters will be very sparse
compared to the “real” clusters containing all pos-
sible class members, e.g. all ‘fruits’ or all ‘birds’.
With poorly chosen word sets, class outliers can
easily fall in the wrong cluster, and there may be
stronger clustering within some classes than there
are between other classes. This was seen in the
overly poor entropy and purity values returned for
the intuitively good clustering of Figure 1.

In many ways, there are two separate issues that
both need to be addressed, namely:

1. If we did have word forms with well defined
semantics, what would be the best approach for
obtaining corpus derived semantic representa-
tions?

2. Given that best approach, how can one go on to
deal with word forms that have more than one
meaning, and deal with the multidimensional
aspects of semantics?

The obvious way to proceed with the first issue
would be to develop much larger, less ambiguous,
and more representative word-sets for clustering,
and to use those for comparing different semantic
representation generation algorithms. A less com-
putationally demanding next step might be to per-
severe with the current small concrete noun cluster-
ing task of Figure 1, but remove the complications
such as ambiguous words (i.e. ‘chicken’) and class
outliers (i.e. ‘telephone’), and add in extra words so
that there is less variation in the class sizes, and no
classes with fewer than eight members. For the min-
imal window PPMI Cosine approach identified by
Bullinaria & Levy (2007) as giving the best general
purpose representations, this leads to the perfect (en-
tropy 0, purity 1) clustering seen in Figure 7, includ-
ing “proof” that ‘tomato’ is (semantically, if not sci-
entifically) a vegetable rather than a fruit. This set
could be regarded as a preliminary clustering chal-
lenge for any approach to corpus derived semantic
representations, to be conquered before moving on
to tackle the harder problems of the field, such as
dealing with the merged representations of homo-
graphs, and clustering according to different seman-

tic contexts and criteria. This may require changes
to the basic corpus approach, and is likely to require
inputs beyond simple word co-occurrence counts.
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Abstract 

Feature norms can be regarded as reposito-

ries of common sense knowledge. We ac-

quire from very large corpora feature-

norm-like concept descriptions using shal-

low methods. To accomplish this we classi-

fy the properties in the norms in a number 

of property classes. Then we use a combi-

nation of a weakly supervised method and 

an unsupervised method to learn each se-

mantic property class. We report the suc-

cess of our methods in identifying the 

specific properties listed in the feature 

norms as well as the success of the me-

thods in acquiring the classes of properties 

present in the norms. 

1 Introduction 

In the NLP and Semantic Web communities there 

is a widespread interest for ontology learning. To 

build an ontology one needs to identify the main 

concepts and relations of a domain of interest. It is 

easier to identify the relevant relations for specia-

lized domains like physics or marketing than it is 

for general domains like the domain of the com-

mon sense knowledge. To formalize a narrow do-

main we use comprehensive theories describing the 

respective domain: theories of physics, theories of 

marketing, etc. Unfortunately we do not have 

broad theories of the common sense knowledge 

and therefore we do not have a principled way to 

identify the properties of “every day” concepts.  

In cognitive psychology there is a significant effort 

to understand the content of mental representation 

of concepts. A question asked in this discipline is: 

Which are, from a cognitive point of view, the 

most important properties of basic level concepts? 

An answer to this question is given by feature 

norms. In a task called feature generation human 

subjects list what they believe the most important 

properties for a set of test concepts are. The expe-

rimenter processes the resulting conceptual de-

scriptions and registers the final representation in 

the norm. Thus, a feature norm is a database con-

taining a set of concepts and their most salient fea-

tures (properties). Usually the properties listed in 

the norms are pieces of common sense knowledge. 

For example, in a norm one find statements like: 

 (1) An apple (concept) is a fruit (property). 

 (2) An airplane (concept) is used for 

people transportation (property). 

In this paper we explore the possibility to learn 

feature-norm-like concept descriptions from corpo-

ra using minimally supervised methods. To 

achieve this we use a double classification of the 

properties in the norms. At the morphological level 

the properties are grouped according to the part of 

speech of the words used to express them (noun 

properties, adjective properties, verb properties). 

At the semantic level we group the properties in 

semantic classes (taxonomic properties, part prop-

erties, etc.).  

The properties in certain semantic classes are 

learnt using a pattern-based approach, while other 

classes of properties are learnt using a novel me-

thod based on co-occurrence associations. 

The main contribution of this paper is the devis-

ing of a method for learning feature-norm-like 
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conceptual structures from corpora. Another con-

tribution is the benchmarking of four association 

measures at the task of finding good lexico-

syntactic patterns for a group of four semantic rela-

tions. 

The rest of the paper has the following organi-

zation. The second section briefly surveys other 

works that make use of shallow methods for rela-

tion extraction. The third section discusses the 

classification of properties in the feature norm we 

use for the experiments. The fourth section 

presents the procedure for property learning. In the 

fifth section we evaluate the accuracy of the proce-

dure and discuss the results. We end the paper with 

the conclusions. 

2 Related work  

The idea of finding lexico-syntactic patterns ex-

pressing with high precision semantic relations was 

first proposed by Hearst (1992). For identifying the 

most accurate lexico-syntactic patterns she defined 

a bootstrapping procedure
1
. The procedure iterates 

between three phases called: pattern induction, pat-

tern ranking and selection, and instance extraction. 

Pattern Induction. In the pattern-induction 

phase one chooses a relation of interest (for exam-

ple hyperonymy) and collects a list of instances of 

the relation. Subsequently all contexts containing 

these instances are gathered and their commonali-

ties identified. These commonalities form the list 

of potential patterns. 

Pattern Ranking and Selection. In this stage 

the most salient patterns expressing the semantic 

relation are identified. Hearst discovered the best 

patterns manually inspecting the list of the poten-

tial patterns. 

Instance Extraction. Using the best patterns 

one gathers new instances of the semantic relation. 

The algorithm continues from the first step and it 

finishes either when no more patterns can be found 

or the number of found instances is sufficient. 

The subsequent research tries to automate the 

most part of Hearst’s framework. The strategy fol-

lowed was to make some of the notions Hearst 

employed more precise and thus suitable for im-

plementation.  

The first clarification has to do with the mean-

ing of the term commonality. Ravichandran and 
                                                           
1 The terminology for labeling Hearst’s procedure was intro-

duced by Pantel and Pennacchiotti (2006). 

Hovy (2002) defined the commonality as being the 

maximum common substring that links the seeds in 

k distinct contexts (sentences).  

The second improvement is the finding of a bet-

ter procedure for pattern selection. For example, 

Ravichandran and Hovy (2002) rank the potential 

patterns according to their frequency and selects 

only the n most frequent patterns as candidate pat-

terns. Afterwards they compute the precision of 

these patterns using the Web as a corpus and retain 

only the patterns that have the precision above a 

certain threshold. 

Pantel and Pennachiotti (2006) innovated on the 

work of Ravichandran and Hovy proposing a new 

pattern ranking and instance selection method. A 

variant of their algorithm uses the Web for filtering 

incorrect instances and in this way they exploit 

generic patterns (those patterns with high recall but 

low precision). 

The pattern-based learning of semantic relations 

was used in question answering (Ravichandran and 

Hovy, 2002), identification of the attributes of 

concepts (Poesio and Abdulrahman, 2005) or for 

acquiring qualia structures (Cimiano and Wende-

roth, 2005).  

3 Property classification 

For our experiments we choose the feature norm 

obtained by McRae and colleagues (McRae et al., 

2005). The norm lists conceptual descriptions for 

541 basic level concepts representing living and 

non-living things. To produce this norm McRae 

and colleagues interviewed 725 participants. 

We classify each property in the norm at two 

levels: a morphological level and a semantic level.  

The morphological level contains the part of 

speech of the word representing the property. The 

semantic classification is inspired by a perceptually 

based taxonomy discussed later in this section. Ta-

ble 1 shows a part of the conceptual description for 

the focal concept axe and the double classification 

of the concept properties. 

A focal concept is a concept for which the human 

subjects should list properties in the feature pro-

duction task. 
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Property Morphological 

Classification 

Semantic 

classification 

Tool Noun superordinate 

Blade Noun part 

Chop Verb action 

Table 1. The double classification of the properties of 

the concept axe 

 

The semantic classification is based on Wu and 

Barsalou (WB) taxonomy (Wu and Barsalou, in 

press). This taxonomy gives a perceptually 

oriented classification of properties in the norms. 

WB taxonomy classifies the properties in 27 dis-

tinct classes. Some of these classes contain very 

few properties and therefore are of marginal inter-

est. For example, the Affect Emotion class classi-

fies only 11 properties. Our classification considers 

only the classes that classify at least 100 proper-

ties.  

Unfortunately, we cannot directly use the WB 

taxonomy in the learning process because some of 

the distinctions it makes are too fine-grained. For 

example, the taxonomy distinguishes between ex-

ternal components of an object and its internal 

components.  On this account the heart of an ani-

mal is an internal component whereas its legs are 

external components. Keeping these distinctions 

otherwise relevant from a psychological point of 

view will hinder the learning of feature norm con-

cept descriptions
2
. Therefore we remap the WB 

initial property classes on a new set of property 

classes more adequate for our task. Table 2 

presents the new set of property classes together 

with the morphological classification of the proper-

ties in each class.   

 

 

Semantic classifi-

cation 

Morphological 

classification 

Superordinate  noun 

Part noun 

Stuff noun 

Location noun 

Action verb 

Quality adjective 
Table 2. The semantic and morphological classification 

of properties in McRae feature norm 

                                                           
2We mean learning using the methods introduced in this paper. 

It is possible that other learning approaches should be able to 

exploit the WB taxonomy successfully.  

 

The meaning of each semantic class of properties 

is the following: 

• Superordinate. The superordinate properties 

are those properties that classify a concept 

from a taxonomic point of view. For exam-

ple, the dog (focal concept) is an animal 

(taxonomic property). 

• Part. The category part includes the proper-

ties denoting external and internal compo-

nents of an object. For example blade (part 

property) is a part of an axe (focal concept). 

• Stuff. The properties in this semantic class 

denote the stuff an object is made of. For 

example, bottle (focal concept) is made of 

glass (stuff property). 

• Location. The properties in this semantic 

class denote typical places where instances 

of the focal concepts are found. For exam-

ple, airplanes (focal concept) are found in 

airports (location property). 

• Action. This class of properties denotes the 

characteristic actions defining the behavior 

of an entity (the cat (focal concept) meow 

(action property)) or the function, instances 

of the focal concepts typically fulfill (the 

heart (focal concept) pumps blood (function 

property)).  

• Quality. This class of properties denotes the 

qualities (color, taste, etc.) of the objects in-

stances of the focal concepts. For example, 

the apple (focal concept) is red (quality 

property) or the apple is sweet (quality 

property). 

The most relevant properties produced by the sub-

jects in the feature production experiments are in 

the categories presented above. Thus, asked to list 

the defining properties of the concepts representing 

concrete objects the subjects will typically: classify 

the objects (Superordinate), list their parts and the 

stuff they are made from (Parts and Stuff), specify 

the location the objects are typically found in (Lo-

cation) their intended functions and their typical 

behavior (Action) or name their perceptual quali-

ties (Quality).  

4 Property learning 
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To learn the property classes discussed in the pre-

ceding section we employ two different strategies.  

Superordinate, Part, Stuff and Location properties 

are learnt using a pattern-based approach. Quality 

and Action properties are learnt using a novel me-

thod that quantifies the strength of association be-

tween the nouns representing the focal concepts 

and the adjective and verbs co-occurring with them 

in a corpus. The learning decision is motivated by 

the following experiment. We took a set of con-

cepts and their properties from McRae feature 

norm and extracted sentences from a corpus where 

a pair concept - property appears in the same sen-

tence. 

We noticed that, in general, the quality properties 

are expressed by the adjectives modifying the noun 

representing the focal concept. For example, for 

the concept property pair (apple, red) we find con-

texts like: “She took the red apple”. 

The action properties are expressed by verbs. 

The pair (dog, bark) is conveyed by contexts like: 

“The ugly dog is barking” where the verb ex-

presses an action to which the dog (i.e. the noun 

representing the concept) is a participant.  

The experiment suggests that to learn Quality 

and Action properties we should filter the adjec-

tives and verbs co-occurring with the focal con-

cepts.  

For the rest of the property classes the extracted 

contexts suggest that the best learning strategy 

should be a pattern-based approach. Moreover with 

the exception of the Location relation, that, to our 

knowledge, has not been studied yet, for the rela-

tions Superordinate, Part and Stuff some patterns 

are already known. 

The properties we try to find lexico-syntactic 

patterns for are classified at the morphological lev-

el as nouns (see Table 2). The rest of the properties 

are classified as either adjectives (Qualities) or 

verbs (Action).    

To identify the best lexico-syntactic patterns we 

follow the framework introduced in section 2. The 

hypothesis we pursue is that the best lexico-

syntactic patterns are those highly associated with 

the instances representing the relation of interest. 

The idea is not new and was used in the past by 

other researchers. However, they used only fre-

quency (Ravichandran and Hovy, 2002) or point-

wise mutual information (Pantel and Penacchiotti, 

2006) to calculate the strength of association be-

tween patterns and instances. We improve previous 

work and employ two statistical association meas-

ures (Chi-squared and Log-Likelihood) for the 

same task. Further we benchmark all four-

association measures (the two used in the past and 

the two tested in this paper) at the task of finding 

good lexico-syntactic patterns for Superordinate, 

Part, Stuff and Location relations.  

The pattern induction phase starts with a set of 

seeds instantiating one of the four semantic rela-

tions. We collect sentences where the seeds appear 

together and replace every seed occurrence with 

their part of speech. The potential patterns are 

computed as suggested by Ravichandran and Hovy 

(see section 2) and the most general ones are elim-

inated from the list.  

The remaining patterns are ranked using each of 

the above mentioned association measures. 

     We introduce the following notation: 

• { }miiiI ..., 21= . I  is the set of instances in 

the training set. 

• { }kpppP ..., 21= . P is the set of patterns 

linking the seeds in the training set and in-

ferred in the pattern induction phase.  

• { } { } { }{ }ks pipipiS ,,...,,,, 2111= .) Ppi ∈ . 

S is the set of all instance-pattern pairs in 

the corpus. 

If we consider an instance i and a pattern p , then, 

following (Evert, in press), we define: 

• 11O the number of occurrences the instance 

has with the pattern p . 

• 12O  the number of occurrences the instance 

has with any other pattern except p . 

• 21O  the number of occurrences any other in-

stance except i  has with the pattern p. 

•  22O  the number of occurrences any in-

stance except i  has with any pattern excepts 

p .. 

• 1R and 2R are the sums of the table rows 

• 1C  and 2C  are the sums of the table col-

umns. All defined frequencies can be easi-

ly visualized in table 3. 
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• N is the number of all instances with all 

the patterns (the cardinality of S). 

 

Table 3. The contingency table 

 

The tested association measures are: 

Simple Frequency 

The frequency 11O  gives the number of occur-

rences of a pattern with an instance.  

(Pointwise) mutual information (Church and 

Hanks, 1990) 

Because this measure is biased toward infrequent 

events, in practice a correction is used to counter-

balance the bias effect.  

N

CR

O
MI

11

2

11

2

2 log
⋅

=  

Chi-squared (with Yates continuity correction) 

(DeGroot and Schervish, 2002) 

2121

2

21122211 )
2

(

CCRR

N
OOOON

chicorr
⋅⋅⋅

−⋅−⋅
=  

Log-Likelihood(Dunning ,1993) : 

    ∑ ⋅
⋅=−

ij ji

ij

N

CR

O
likelihood log2log  

Once the strength of association between the in-

stances and patterns in S  is quantified, the best 

patterns are voted. The best patterns are the pat-

terns having the higher association score with the 

instances in the training set. Therefore, for each 

pattern in P we compute the sum of the association 

scores of the pattern with all instances in the set I . 

In the pattern selection phase we manually eva-

luate the two best patterns selected using each as-

sociation measure. In case the patterns have a good 

precision we used them for new property extrac-

tion otherwise, we use the intuition to devise new 

patterns. The precision of a pattern used to 

represent a certain semantic relation is evaluated in 

the following way. A set of 50 concept-feature 

pairs is selected from a corpus using the devised 

pattern. For example, to evaluate the precision of 

the pattern: “N made of N” for the Stuff relation 

we extract concept feature pairs like hammer-

wood, bottle-glass, car-cheese, etc.. Then we label 

a pair as a hit if the semantic relation holds be-

tween the concept and the feature in the pair and a 

miss otherwise. The pattern precision is defined as 

the percent of hits. In the case of the three pairs in 

the example above we have two hits: hammer-

wood and bottle-glass and one miss: car-cheese. 

Thus we have a pattern precision of 66 %. 

The Quality and Action properties are learnt us-

ing an unsupervised approach. First the association 

strength between the nouns representing the focal 

concepts and the adjectives or verbs co-occurring 

with them in a corpus is computed. The co-

occurring adjectives are those adjectives found one 

word at the left of the nouns representing the focal 

concepts. A co-occurring verb is a verb found one 

word at the right of the nouns representing the foc-

al concepts or a verb separated from an auxiliary 

verb by the nouns representing the focal concepts. 

The strongest 30 associated adjectives are se-

lected as Quality properties and the strongest 30 

associated verbs are selected as Action properties. 

To quantify the new attraction strength between 

the concept and the potential properties of type 

adjective or verb the same association measures 

introduced before are used. The association meas-

ures are then benchmarked at the task of finding 

relevant properties for the focal concepts.  

5 Results and discussion 

The corpora used for learning feature-norm-like 

concept descriptions are British National Corpus 

(BNC) and ukWaC (Ferraresi et al., in press). The 

BNC is a balanced corpus containing 100 million 

words. UkWaC is a very large corpus of British 

English, containing more than 2 billion words, 

constructed by crawling the web. For evaluating 

the success of our method we have chosen a test 

set of 44
3
 concepts from McRae feature norm. In 

the next two subsections we report and discuss the 

results obtained for Superordinate, Stuff, Location 
                                                           
3 The test set is the same set of concepts used in the workshop 

task “generation of salient properties of concepts”. 
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and Part properties and Quality and Action proper-

ties respectively. All our experiments were per-

formed using the CWB (Christ, 1994) and UCS 

toolkits 

(http://www.collocations.de/software.html). 

5.1 Results for Superordinate, Stuff, Location 

and Part properties  

For the concepts in the test set we extract proper-

ties using the manual selected patterns reported in 

table 4.  

We evaluate the success of each association 

measure in finding good patterns and the success 

of manually selected patterns in extracting good 

properties. 

The input of the algorithm for automatic pattern 

selection consists of 200 seeds taken from the 

McRae database. None of the 44 test concepts nor 

their properties is among the input seeds. The pat-

tern-learning algorithm is run on BNC using each 

association measure introduced in section 4. There-

fore for each relation in the table 4 we have four 

runs of the algorithm, one for each association 

measure. We evaluate the precision of the top two 

voted patterns. 

 

 

Relation Pattern 

Superordinate N [JJ]-such [IN]-as N; 

N [CC]-and [JJ]-other N; 

N [CC]-or [JJ]-other N; 

 

Stuff N [VVN]-make [IN]-of N 

Location N [IN]-from [DT]-the N 

Part N [VVP]-comprise N 

N  [VVP]-consists [IN]-of N 
Table 4. The manually selected patterns 

 

The manually selected patterns for Superordinate 

relation are voted by any of the tested association 

measures. Therefore, to find patterns for the Supe-

rordinate relation one needs to supply the algo-

rithm presented in section 4 with a set of seeds and 

the top patterns voted by any of the four associa-

tion measures will be good lexico-syntactic pat-

terns. 

The pattern-learning algorithm run with any as-

sociation measure except the simple frequency will 

rank higher the pattern manually selected to 

represent the Stuff relation. The simple frequency 

votes the following patterns as the strongest asso-

ciated patterns with the instances in the test set: N 

from the N and N be in N. The first pattern does not 

express the Stuff relation whereas the second one 

expresses it very rarely. 

In the case of Location relation all association 

measures select the pattern in the table except Chi-

squared. The top two patterns (N cold N and N 

freshly ground black N) selected with the aid of the 

Chi-squared measure are very rare constructions 

that appear with the input instances. 

The manually selected patterns for Part are not 

found by any association measure. Only one of the 

patterns voted by frequency and log-likelihood (N 

have N) sometimes expresses the Part relation, the 

rest of patterns voted are spurious constructions 

appearing with the instances in the input set. 

Therefore the contest of association measures 

for a good pattern selection marginally favors 

pointwise mutual information with correction and 

log-likelihood. 

Using the manually selected patterns presented 

in the above table we gather new properties for the 

concepts in the test set from UkWaC corpus. 

The results of property extraction phase are re-

ported in table 5. The columns of the table 

represent in order: the name of the class of seman-

tic properties to be extracted, the recall of our pro-

cedure and the pattern precision. The recall tells 

how many properties in the test set are found using 

the patterns in table 4. The pattern precision states 

how precise the selected pattern is in finding the 

properties in a certain semantic class and it is com-

puted as shown in section 4. In case more than one 

pattern have been selected, the pattern precision is 

the average precision for all selected patterns. 

 

Property 

class 

Recall Pattern 

Precision 

Superordinate 87% 85 % 

Stuff 21% 70 % 

Location 33% 40 % 

Part 0 % 51 % 
Table 5. The results for each property class 

 

 

As one can see from table 5, the recall for the supe-

rordinate relation is very good and the precision of 

the patterns is not bad either (average precision 85 

%). However, some of the extracted superordinate 
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properties are roles and not types. For example, 

banana, one of the concepts in the test set, has the 

superordinate property fruit (type). Using the pat-

terns for superordinate relation we find that banana 

is a fruit (type) but also an ingredient and a product 

(roles). The lexico-syntactic patterns for the supe-

rordinate relation blur the type-role distinction.  

The pattern used to represent the Stuff relation 

has a bad recall (21 %) and an estimated precision 

of 70 %. To be fair, the pattern expresses better 

than the estimated precision the substance an ob-

ject is made of. The problem is that in many cases 

constructions of type “Noun made of Noun” are 

used in a metaphoric way as in: “car made of 

cheese”. In the actual context the car was not made 

of cheese but the construction is used to show that 

the respective car was not resistant to impact.  

The pattern for Location relation has bad preci-

sion and bad recall. The properties of type Loca-

tion listed in the norm represent typical places 

where objects can be found. For example, in the 

norm it is stated that bananas are found in tropical 

climates (the tropical climate being the typical 

place where bananas grow). However what one can 

hope from a pattern-based approach is to find pat-

terns representing with good precision the concept 

of Location in general. We founded a more precise 

Location pattern than the selected one: N is found 

in N. Unfortunately, this pattern has 0% recall for 

our test set.  

The patterns for Part relation have 0% recall for 

the concepts in the test set and their precision for 

the general domain is not very good either. As oth-

ers have shown (Girju et al. 2006) a pattern based 

approach is not enough to learn the part relation 

and one needs to use a supervised approach to 

achieve a relevant degree of success. 

5.2 Results for Quality and Action properties 

We computed the association strength between the 

concepts in the test set and the co-occurring verbs 

and adjectives using all four-association measures. 

The best recall for the test set was obtained by log-

likelihood measure and the results are reported for 

this measure. 

The results for Quality and Action properties 

are presented in table 6. The columns of the table 

represent in order: the name of the class of seman-

tic properties, the Recall and the Property Preci-

sion. The Recall represents the percent of 

properties in the test set our procedure found. The 

Property Precision computes the precision with 

which our procedure finds properties in a semantic 

class. The property precision is the percent of qual-

ity and action properties found among the strongest 

30 adjectives and verbs associated with the focal 

concepts. 

 

Property 

class 

Recall Property  

Precision 

Quality 60% 60 % 

Action 70% 83 % 
Table 6. The results for Quality and Action property 

classes 

 

Because the number of potential properties is rea-

sonable for hand checking, the validation for this 

procedure was performed manually. 

The manual comparison between the corpus ex-

tracted properties and the norm properties confirm 

the hypothesis regarding the relation between the 

association strength of features of type adjective 

and verbs and their degree of relevance as proper-

ties of concepts. 

For each concept in the test set roughly 18 ad-

jectives and 25 verbs in the extracted set of poten-

tial properties represent qualities and action 

respectively (see Property Precision column in ta-

ble 6). This can be explained by the fact that all 

concepts in the test set denote concrete objects. 

Many of the adjectives modifying nouns denoting 

concrete objects express the objects qualities, whe-

reas the verbs usually denote actions different ac-

tors perform or to which various objects are 

subject. 

There are cases in which the properties found 

using this method are excellent candidates for the 

semantic representation of focal concepts. For ex-

ample, the semantic representation of the concept 

turtle has the following Quality properties listed in 

the norm {green, hard, small}. The strongest adjec-

tives associated in the UkWaC corpus with the 

noun turtle ordered by the loglikelihood score are: 

{marine, green, giant}. The property marine car-

ries a greater distinctiveness than any of similar 

feature listed in the norms. 

The actions typically associated with the con-

cept turtle in the McRae feature norm are {lays 

eggs, swims, walks slowly}. The strongest verbs 

associated in the UkWaC corpus with the noun 

turtle are: {dive, nest, hatch}. The dive action is 
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more specific and therefore more distinct than the 

swim action registered in the feature norm. The 

hatch property is characteristic to reptiles and birds 

and thus a good candidate for the representation of 

the concept turtle. 

6 Conclusions 

The presented method for learning feature norm 

concept description has been successful at learning 

the semantic property classes Superordinate, Quali-

ty and Action. All these properties can be learnt 

automatically. For Superordinate relation one starts 

with a set of seeds representing the Superordinate 

relation and then, as shown in section 4, computes 

the best pattern associated with the seeds using any 

of the discussed measures. Then (s)he extracts new 

properties for a test set of concepts using the voted 

pattern. For Quality and Action properties one 

needs to apply the method based on concurrence 

association presented in the same section 4. 

To learn all the other property classes to other 

methods (probably a supervised approach) must be 

devised. 

As in the case of ontology learning or qualia 

structure acquisition it seems that the best way to 

acquire feature-norm-like concept descriptions is a 

semiautomatic one. A human judge makes the best 

property selections based on the proposals made by 

an automatic method. 
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Abstract

Automatic acquisition of qualia structures is
one of the directions in information extraction
that has received a great attention lately. We
consider such information as a possible input
for the word-space models and investigate its
impact on the categorization task. We show
that the results of the categorization are mostly
influenced by the formal role while the other
roles have not contributed discriminative fea-
tures for this task. The best results on 3-way
clustering are achieved by using the formal
role alone (entropy 0.00, purity 1.00), the best
performance on 6-way clustering is yielded by
a combination of the formal and the agentive
roles (entropy 0.09, purity 0.91).

1 Introduction

Computational models of semantic similarity have
been used for some decades already with various
modifications (Sahlgren, 2006). In this paper, we
investigate qualia structures and their impact on the
quality of the word-space models. Automatic acqui-
sition of qualia structures has received a great atten-
tion lately resulting in several methods which use ei-
ther existing corpora or the Web (Cimiano and Wen-
deroth, 2007; Yamada et al., 2007). We build on
the work reported in the literature and aim to test
how suitable the results of automatic qualia extrac-
tion are for the word-space models. We approach a
seemingly simple task of the concrete noun catego-
rization. Previous research has shown that when hu-
mans are asked to provide qualia elements per role
for a list of nouns, concrete nouns lead to the high-

est agreement. The words with the lowest agree-
ment are abstract notions (Cimiano and Wenderoth,
2007). Naturally, a question arises of what informa-
tion would be captured by the word-space models if
qualia elements are used.

This paper is organized as follows. Section II
presents some relevant information on word-space
models and their modifications. Section III gives
a brief overview of the Generative Lexicon Theory.
Then, we describe a method used for an automatic
qualia structure acquisition. We proceed with an ex-
perimental part by discussing results and analyzing
errors.

2 Word-Space Models

Underlying idea behind the word-space models lies
in the semantic similarity of words. In particu-
lar, if two words are similar, they have to be close
in the word space which led to so called geomet-
ric metaphor. In his dissertation, Sahlgren (2006)
discusses different ways of constructing such word
spaces. One possible solution is to take into account
word co-occurrences, the other would be using a
limited number of semantic features. While the for-
mer method may result in a high-dimensional space
containing redundant information, the latter may be
too restrictive. The main concern about a list of
features is how they can be defined and what kind
of features are sufficient for a given task. Sahlgren
(2006) argues that the word-space models have to
be considered together with a task they are used for.
He highlights differences between the word-space
models based on paradigmatic and syntagmatic no-
tions and shows that both models can be effectively
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used. On the task of human association norm, word
spaces produced by using syntagmatic information
seem to have a higher degree of corelation with a
norm, while paradigmatic word-spaces yield better
results on the synonymy test.

3 Generative Lexicon Theory

In the semantic theory of Generative Lexicon, Puste-
jovsky (2001) proposes to describe lexical expres-
sions by using four representation levels, argument
structure, event structure, qualia structure, and lex-
ical inheritance structure. For the work presented
here, qualia structure is of the most interest. Qualia
structure use defined by the following roles:

• formal - information that allows to distinguish
a given objects from others, such as superclass

• constitutive- an object’s parts

• telic - a purpose of an object; what it is used for

• agentive- origin of an object, ”how it came into
being”

While discussing natural kinds and artifacts,
Pustejovsky (2001) argues that a distinction between
these two categories can be drawn by employing a
notion of intentionality. In other words, it should be
reflected in the telic and agentive roles. If no inten-
tionality is involved, such words are natural types.
On the contrary, artifacts are identified by the telic
and agentive roles.

4 Automatic Acquisition of Qualia
Structures

After the theory of Generative Lexicon has been pro-
posed, various researchers put it in practice. For
instance, Lenci (2000) considered it for designing
ontologies on example of SIMPLE. Qualia struc-
ture is used here to formally represent a core of
the lexicons. In a nutshell, the SIMPLE model is
more complex and besides qualia structure includes
such information as argument structure for seman-
tic units, selectional restrictions of the arguments,
collocations and other. The Generative Lexicon the-
ory was also used for different languages. For in-
stance, Zavaglia and Greghi (2003) employ it to an-
alyze homonyms in Portuguese.

Another interesting and useful aspect of qualia
structure acquisition is automatic qualia extraction.
Recently, Yamada et al. (2007) presented a method
on the telic role acquisition from corpus data. A
motivation behind the telic role was that there are
already approaches to capture formal or constitutive
information, while there is less attention to the func-
tion extraction. A method of Yamada et al. (2007) is
fully supervised and requires a human effort to an-
notate the data.

Contrary to the work reported in (Yamada et al.,
2007), Cimiano and Wenderoth (2007) proposed
several hand-written patterns to extract qualia infor-
mation. Such patterns were constructed in the itera-
tive process and only the best were retained. Further,
the authors used various ranking measures to filter
out the extracted terms.

We start with the qualia information acquisition
by adopting Cimiano and Wenderoth’s (2007) ap-
proach. For each role, there is a number of pat-
terns which might be used to obtain qualia informa-
tion. Table 1 contains a list of the patterns per role
which have been proposed by Cimiano and Wen-
deroth (2007). All patterns are accompanied by the
parts of speech tags.1 The patterns for theformal
role are well-known Hearst patterns (Hearst, 1992)
and patterns for the other roles were acquired manu-
ally.

In Table 1x stands for a seed in singular (e.g.,
lion, hammer) andp for a noun in plural (e.g.,lions,
hammers). For pluralia tantum nouns only a cor-
responding subset of patterns is used. In addition,
we employ a wildcard which stands for one word (a
verb, as it can be seen in agentive patterns).

5 Experiments

The data set used in our experiments consists of 44
words which fall in several categories, depending on
the granularity. On the most general level, they can
be divided in two groups,natural kindandartifact.
Further,natural group includes such categories as
vegetableand animal. On the most specific level,
the data set represents the following 6 categories:
green, fruitTree, bird, groundAnimal, tool, andve-

1the following categories are used : nouns in singular
(NN ), nouns in pluralNNP , conjunctions (CC), determin-
ers (DET ), adjectives (JJ), prepositions (IN )
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Role Pattern
x NN is VBZ (a DT|the DT) kind NN of IN
x NN is VBZ
x NN andCC otherJJ

formal x NN or CC otherJJ
suchJJ asIN p NNP
*,*(* especially RB p NNP
*,*(* including VVG p NNP
purposeNN of IN (a DT)* x NN is VBZ

telic purposeNN of IN p NNP is VBZ
(a DT|the DT)* x NN is VBZ usedVVN to TO
p NNP areVBP usedVVN to TO
(a DT|the DT)* x NN is VBZ madeVVN (up RP )*of IN
(a DT|the DT)* x NN comprisesVVZ

constitutive (a DT|the DT)* x NN consistsVVZ of IN
p NNP areVBP madeVVN (up RP )*of IN
p NNP compriseVVP
p NNP consistVVP of IN
to TO * a DT new JJ xNN
to TO * a DT completeJJ xNN

agentive to TO * new JJ pNNP
to TO * completeJJ pNNP
a DT new JJ xNN hasVHZ beenVBN
a DT completeJJ xNN hasVHZ beenVBN

Table 1: Patterns

hicle. Such division of the data set poses an interest-
ing question whether these distinctions can be ade-
quately captured by a method we employ. For ex-
tracting hyperonymy relation, there seems to be a
consensus that very general information (likeJohn
is a human) is not likely to be found in the data. It is
therefore unclear whether the 2-way clustering (nat-
ural vs. artifact) would provide accurate results. We
hypothesize that a more granular distinction can be
captured much better.

To conduct all experiments, we use the Web data,
particularly, Google API to extract snippets. Sim-
ilarly to the experiments by Cimiano and Wen-
deroth(2007), a number of extractions is set to
50. However, if enumerations and conjunctions are
treated, a number of extractions per seed might be
greater than this threshold. All snippets are tok-
enized and tagged by a PoS analyzer, which in our
case is TreeTagger2. Further, the preprocessed data
is matched against a given pattern. PoS information

2available from http://www.ims.
uni-stuttgart.de/projekte/corplex/
TreeTagger/

allows us to reduce a number of candidates for the
qualia roles. Unlike Cimiano, we do not employ any
ranking of the extracted elements but use them to
build a word-space model. In such a model, rows
correspond to the words provided by the organizers
of the challenge and columns are the qualia elements
for a selected role. As in most word-space models,
the elements of a matrix contain frequency counts.
CLUTO (Zhao and Karypic, 2002) toolkit is used to
cluster the seeds given the information in matrices.

Table 2 presents the results (whenformal role
only is used) in terms of purity and entropy. Entropy
of clusteri is usually measured as

ei = −

m∑

j=1

pijlog(pij) (1)

wherem is a number of classes andpij is proba-
bility that an object in clusteri belongs to clusterj,
pij = nij/ni. Purity r is defined asr = maxj pij .
The total entropy (purity) is obtained by a weighted
sum of the individual cluster entropies (purities).
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clustering entropy purity
2-way 0.59 0.80
3-way 0.00 1.00
6-way 0.13 0.89
2-way>1 0.70 0.77
3-way>1 0.14 0.96
6-way>1 0.23 0.82

Table 2: Performance usingformal role only

The 2-way clustering resulted in the imperfect
discrimination between natural and artifact cate-
gories. Errors are caused by classifying vegetables
as artifacts while they belong to the categorynatu-
ral kind. The 3-way clustering was intended to ex-
hibit differences among fruit and vegetables (1st cat-
egory), birds and animals (2nd category) and tools
and vehicles (3rd category). In contrast to the 2-
way clustering, there have been no errors observed
in the clustering solution. While conducting exper-
iments with the 6-way clustering aiming at finding
6 clusters corresponding to the abovementioned cat-
egories, we have noticed that vehicles and tools are
not properly discriminated.

We have not filtered the acquired formal role ele-
ments in any way. As there is noise in the data, we
decided to conduct an additional experiment by re-
moving all features with the frequency 1 (2-way>1,
3-way>1, 6-way>1). We observe lower purity for all
three categorization tasks which suggest that some
of the removed elements were important. In general,
seeds in such categories asbird or animalget many
qualia elements with the high frequency for thefor-
mal role varying from very general such ascreature,
mammal, speciesto quite specific (pheasant, verte-
brate). Some members of other categories such as
tool or vehicledo not possess as many features and
their frequency is low.

6 Discussion

To evaluate which features were important for each
particular solution and shed light on problematic ar-
eas, we carried out some additional analysis. Ta-
ble 3, Table 4 and Table 6 present descriptive and
discriminative features for the2−way, 3−way and

6− way clustering respectively. Descriptive features
correspond to the features that describe a given clus-
ter the best and the discriminative are those which
highlight the differences between a given cluster and
the rest. Each feature is provided with the percent-
age of its contribution to a given category. In each
tableA stands for a descriptive part andB denotes
discriminative one.

The categories are not necessarily homogeneous
and this can be observed given the descriptive fea-
tures. For instance, the categoryvegetablesincludes
the membermushroomthe features of which are
quite distinct from the features of the other mem-
bers (such aspotatoor onion). This is reflected by
the featurefungi in the descriptive part ofvegetables.
The categorybird includes the false descriptive fea-
turestory. As mentioned, we did not rank extracted
terms in any way and such titles asowls and other
storiesheavily contributed to the featurestory. It
turned out that such titles are frequent for thebird
category and, fortunately, a presence of this feature
did not result in any misclassifications.

Telic role Having hoped that additional informa-
tion might be helpful for such categories astool
and vehicle, we added terms extracted for other
qualia roles. Unfortunately, none of them drastically
changed the overall performance. The fact thattelic
role does not have a considerable impact on the fi-
nal performance can be explained if one looks at the
extracted terms. As some examples in Table 5 sug-
gest, patterns for thetelic role provide useful cues to
what a purpose of the given entity is. Nevertheless,
accurate extractions are usually not shared by other
members of the same category. For instance, various
tools have a quite different purpose (e.g.,to cut, to
hit, to serve) and there is no common denominator
which would serve as a descriptive feature for the
entire category.

Constitutive role In contrast to the telic role, con-
stitutive information is either too general or too spe-
cific and does not contribute to the overall perfor-
mance either. For instance, it is known that mush-
rooms consist of mycelium, water and have a cap;
telephones have transceivers and handsets; boats
consist of cabins, engines, niches and hulls but this
information is not really used to discriminate among
categories.

Agentive role The last role to consider is an agen-
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Cluster Features
A NATURAL animal (43.3%), bird (23.0%), story (6.6%), pet (3.5%), waterfowl (2.4%)

ARTIFACT tool (19.7%), fruit (14.6%), vegetables (10.0%), vehicle (9.7%), crop(5.1%)
B animal (22.1%), bird (11.7%), tool (10.1%), fruit (7.4%), vegetables (5.1%)

Table 3:2−way clustering: descriptive vs. discriminative features

Cluster Features
VEGETABLE fruit (41.3%), vegetables (28.3%), crop (14.6%), food (3.4%), plant(2.5%)

A ANIMAL animal (43.3%), bird (23.0%), story (6.6%), pet (3.5%), waterfowl (2.4%)
ARTIFACT tool (31.0%), vehicle (15.3%), weapon (5.4%), instrument (4.4%), container (3.9%)
VEGETABLE fruit (21.0%), vegetables (14.3%), animal (11.6%), crop (7.4%), tool (2.5%)

B ANIMAL animal (22.1%), bird (11.7%), tool (10.1%), fruit (7.4%), vegetables (5.1%)
ARTIFACT tool (15.8%), animal (14.8%), bird (7.9%), vehicle (7.8%), fruit (6.8%)

Table 4:3−way clustering: descriptive vs. discriminative features

seed extractions
helicopter to rescue
rocket to propel
chisel to cut, to chop, to clean
hammer to hit
kettle to boil, to prepare
bowl to serve
pencil to draw, to create
spoon to serve
bottle to store, to pack

Table 5: Some extractions for thetelic role

tive one. As pointed out by Pustejovsky (2001),
it might be helpful to distinguish between natural
kinds and artifacts. Indeed, by adding results de-
livered by agentive patterns to those corresponding
to the formal role, entropy decreases to0.09 and pu-
rity increases to0.91 on 6-way clustering. However,
the results do not change for the 2-way clustering
still classifying the members of the categoryvegeta-
blesas artifacts. An interesting observation is that
such division reflects a degree of animacy. It is well
known that personal pronouns have the highest ani-
macy followed by humans, animals, plants, concrete
things and abstract things (in this order). Clustering
based on the formal role alone or any combination of
other roles with it always distinguishes well animals

(agroundAnimaland abird) from plants but it seems
to cut the animacy hierarchy right after animals by
placing vegetables to artifacts.

A combination of the agentive and the formal
roles (Figure 1) finally correctly classifiesrocketas a
vehicle. We can also observe that agentive features
(to develop, to invent, etc.) mostly influence such
categories as vehicles and tools.

All features (rows) presented in Figure 1 were se-
lected on the basis of the union of the discriminative
and descriptive features per cluster. Actual seeds
(words) are given in columns.

6.1 Error Analysis

We also analyzed the clusters by means of features
that frequently occur together. In CLUTO, there
are two possibilities to perform such analysis, ei-
ther by employing cliques or itemsets. Our aim in
this case is to find possible subclusters withing re-
sulting clusters. If there are any subclusters, they
can be either attributed to the existing subcategories
of a given category or by clustering errors so that
two subclusters were merged even though they do
not belong to the same category. Such information
would be especially useful for thetool and vehi-
cle classes. A cluster containing a mixture of vehi-
cles and tools is indeed described by three frequent
itemsets,container-load, container-appliancesand
vehicle-aircraft. Consequently, such words asbowl,
bottle andkettleare all correctly clustered together
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Figure 1: A combination of the formal and the agentive roles

but as a subcluster they occur in a wrong cluster
which describes vehicles rather than tools.

CLUTO also provides a possibility to analyze
how similar a given element is to other members in
the same cluster. We expect a misclassified instance
to be an outlier in a cluster. For this reason, we look
at thez-scores ofrocket, bowl, cup, bottleandkettle.
There are two types ofz-score, internal and external.
Given an objectj which belongs to the clusterl, the
internalz-score is computed as follows:

zI =
sI
j − µI

l

δI
l

(2)

In Eq. 2 sI
j stands for the average similarity be-

tween the objectj and the rest objects in the same
cluster,µI

l is the average ofsI
j values over all objects

in the lth cluster, andδI
l is the standard deviation of

the similarities.
The externalz-score is defined in a similar way

with the only distinction that similarity is measured
not with the object in the same cluster but in all other
clusters.

The core of the cluster respresenting tools is
formed bychisel followed by knife andscissorsas
they have the largest internalz-score. When the for-
mal role only is used, the same cluster wrongly con-
tainsrocketbut according to the internalz-score, it
is an outlier (with the lowestz-score in the cluster).
What concerns the ”container” subcluster is the clus-
ter of vehicles,bowl, cup, bottleandkettleall have
the lowest internalz-scores. The core of the cluster
of vehicles is atruck andmotorcycle.

By examining features we found several types of
errors:

1. Errors occurring at the extraction stage

2. Lexical ambiguity and erroneous statements in
text

The first type of errors can be further classified as
errors due to the incorrect tagging or due to the im-
perfect extraction mechanism. In general, seeds we
have can be PoS ambiguous and to take this ambigu-
ity into account, we put strict restrictions on the pat-
tern matching. None of the seeds which were tagged
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Cluster Features
fruitTree fruit (90.1%), fiber (5.2%), plant (0.6%), food (0.5%), flavor (0.5%)
green vegetables (56.4%), crop (25.2%), food (4%), fungi (3.6%), greens (2.8%)

A bird bird (60.9%), story (10.7%), waterfowl (6.4%), animal (3.2%), raptor (3.1%)
groundAnimal animal (68.5%), pet (7.8%), reptile (2.5%), cat (2.4%), mollusc (1.8%)
tool tool (53.8%), weapon (9.4%), instrument (7.6%), supplies (5.4%), device (1.8%)
vehicle vehicle (42.8%), container (10.8%), aircraft (5.1%), appliances (4.9%), load (3.5%)
fruitTree fruit (46.1%), animal (10.5%), tool (6.5%), bird (5.6%), vehicle (3.2%)
green vegetables (28.9%), crop (12.2%), animal (10.7%), tool (6.6%), bird (5.7%)

B bird bird (34.7%), tool (8.4%), fruit (6.2%), vegetables (4.2%), vehicle (4.1%)
groundAnimal animal (31.4%), tool (8.7%), bird (7.4%), fruit (6.4%), vegetables (4.4%)
tool tool (28.1%), animal (12.4%), bird (6.6%), fruit (5.7%), weapon (4.9%)
vehicle vehicle (22.6%), animal (11.4%), tool (7.0%), bird (6.0%), container (5.7%)

Table 6:6−way clustering: descriptive vs. discriminative features

as verbs are matched in text which narrows down a
number of extracted terms. However, our analysis
reveals that in most cases seeds tagged as verbs are
not ambiguous and these are the PoS tagging errors.
Besides, we mostly rely on the PoS information and
some errors occur because of the imperfect extrac-
tion. For instance, if PP attachment is not handled,
the extracted terms are most often incorrect.

The second type of errors is attributed to the lexi-
cal ambiguity such as the sentence below:

(3) in fact, scottish gardens are starting to see
many more butterflies including peacocks,. . .

From here, by using patterns for the formal role
we get thatpeacockis a kind ofbutterflywhich is
not correct (according to the gold standard). How-
ever, we hope that such rare incorrect extractions
will not play a significant role while clustering, if
enough evidence is given. In our experimentspea-
cock is always correctly categorized as a bird be-
cause of many other features which have been ex-
tracted. In particular, a featurebird has the highest
frequency for this particular seed and, consequently,
other rare features contribute to a lesser degree.

7 Conclusions

We presented a method for the concrete noun cate-
gorization which uses a notion of qualia structures.
Our initial hypothesis of the difficulty of distinguish-
ing between very general levels of categorization
was supported by the empirical findings. While all

tools and vehicles are always correctly identified
as artifacts, vegetables are not classified as a natu-
ral category. The 3-way categorization provides the
best performance by correctly identifying categories
for all words. The 6-way categorization reveals dif-
ficulties in discriminating tools and vehicles. In par-
ticular, all containers are grouped together but incor-
rectly placed in the clustervehicle. The most diffi-
cult element to classify isrocketwhich according to
the gold standard is a vehicle. However, most fea-
tures describing it are related to weapon and it is
less surprising to find it in a categorytool with such
words asknife sharing this feature. When agentive
role information is added,rocket is finally correctly
classified as a vehicle.

Regarding qualia roles, theformal role is already
sufficient to discriminate well between 3 categories.
Adding extra information on other roles such as telic
and constitutive does not improve results. By in-
specting features which are extracted for these roles
we can conclude that many of them are relevant (es-
pecially for the telic role) but there are hardly any
members of the same category which would share
them. This finding is in line with (Cimiano and Wen-
deroth, 2007) who mentioned the telic role as the
one humans mostly disagree on.

As possible future directions, it would be interest-
ing to experiment with other corpora. We have con-
ducted all experiments with the Web data because
of our intention to capture different qualia elements
for each role. We noticed however that some pat-
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terns proposed by (Cimiano and Wenderoth, 2007)
are more suitable for the artifacts than natural kinds.
More general patterns such as those by (Yamada et
al., 2007) might be more helpful for the telic role
but all candidates must be ranked to select the best
suitable.
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Abstract

Empirical evaluations of distributional lexical 
semantic   models   (LSA,   Topics,   HAL)   have 
largely  focused  on word­level   tests   (such  as 
synonym   and   word   association   tests).   This 
paper  motivates   the   need   to   focus   more   on 
representation of larger units of text. A suite 
of evaluation metrics is proposed and used to 
compare   the   performance   of   two   prominent 
distributional   lexical   models:   LSA   and 
Topics. Theoretical  observations and broader 
implications related to text representation are 
discussed.

1 Introduction

Corpus­based   distributional   models   are 
mathematical   models   of   language   that   derive 
semantic   representations  of  word  meanings   from 
patterns of occurrence of words in a large corpus 
of natural language. A prominent subset of these 
models   are   called   vector   space   models,   because 
they attempt to represent meanings of words and 
documents in a high­dimensional geometric space.

On   the   practical   side,   distributional   models 
provide  an efficient  and   robust  way  to   represent 
semantics  of  words   and   text,  which   is  useful   in 
various Natural Language Processing applications, 
from   information   retrieval   [2]   to   intelligent 
tutoring systems ([5], [11], [7]). On the theoretical 
side, such methods offer a way to model important 
processes   in   human   cognition   and   language 
acquisition ([12], [8], [13]).

Several   distributional   models   have   gained 
prominence in the past few decades. Among them 
are   Latent   Semantic   Analysis   (LSA,   [2]), 
Probabilistic   Topics   Model   (Topics,   [8]), 
Hyperspace  Analogue   to  Language   (HAL,   [14]), 
Bound   Encoding   of   the   Aggregate   Language 
Environment (BEAGLE, [9]) and others. With the 
emergence of several different models, it becomes 
natural   to   attempt   to   compare   performance 
characteristics of these models.

Traditionally,   tests   of   how   well   a   particular 
model  represents meaning,  have  largely revolved 
around   word­level   comparisons.   The   most 
common such metric is a synonym test, in which 
the model uses semantic similarity measurements 
between words to predict the synonym for a given 
cue   word,   among   possible   choices   (akin   to 
synonym   questions   presented   to   students   on   the 
TOEFL test; see [12]).  On this task, models have 
shown   performance   equivalent   to   that   of   of 
college­admitted students. A related test is a word 
association  task,   in  which  the model  attempts   to 
imitate human performance on producing the first 
word that comes to mind in response to a particular 
cue word. Some other interesting word­level  tasks 
are described in [8]. 

Although   analyzing   performance   at   the   word 
level  may provide   some  interesting   insights   into 
the   behavior   of   the   models,   it   does   not   capture 
important   linguistic   phenomena,   as   words   are 
rarely used in isolation in natural language. Rather, 
we tend to combine words  into larger structures, 
such as sentences and documents, to communicate 
meaning.   Therefore,   tasks   focusing   on   isolated 

25



words,   such   as   synonym   questions,   are   not   a 
realistic reflection of use of language, and as such, 
constitute a questionable standard of performance 
for  computational models.

Therefore,   an   especially   important   aspect   of 
distributional  models   is   their   ability   to   represent 
semantic   meaning   of   sentences,   paragraphs   and 
documents. This not only reflects natural linguistic 
phenomena, but also enables many useful practical 
applications   such   as   information   retrieval   ([2]), 
intelligent   tutoring   systems   ([5],   [11]), 
conversation analysis ([4]), and others.

In   this   paper,   we   discuss   some   methods   of 
evaluating   semantic   representations   in 
distributional   models   on   document­,   paragraph­ 
and sentence­ length passages. We propose a suite 
of   tests   that   we   hope   provide   richer   and   more 
realistic evaluation metrics than traditional  word­
level tests. We demonstrate the use of these tests to 
evaluate   performance   of   two   prominent   models 
(LSA   and   Topics).   We   then   discuss   some 
theoretical issues of semantic representation and its 
evaluation.

2 Models

LSA   and   Topics   are   two   prominent   and 
contrasting  models  of   language.  They  both  have 
the facility to represent and compare meanings of 
both words and text passages, though they each do 
so in very different ways. In this section we give 
very   brief   mathematical   descriptions   of   these 
models.

2.1 Latent Semantic Analysis (LSA)

Latent   Semantic   Analysis   ([2])   is   an 
unsupervised   methods   of   deriving   vector   space 
semantic   representation   from   a   large   corpus   of 
texts.  LSA starts  by   representing  a  collection  of 
documents by a term by document (T x D) matrix 
A, which in essence represents each word by a D­
dimensional vector. It then performs singular value 
decomposition (SVD) on the matrix:

A=U V T (1)
Subsequently, all but the first (largest)  k values in 
the   diagonal   singular   matrix   ,   are   set   to   zero,Σ  
resulting in a kind of principal component analysis. 
This effectively reduces the dimensionality of each 

word vector to k. (For more details, please consult 
[2]).  The number of dimensions (k) is determined 
empirically.  The   dimensions   have   no   intuitive 
interpretation; they simply serve to position word 
vectors in the high­dimensional space.

The   measure   of   semantic   similarity   between 
two words in this model is typically1 the cosine of 
the   angle   between   their   corresponding   word 
vectors :

S w1 ,w2=cosvw1 ,vw2 =
vw1⋅vw2

∥vw1∥∥vw2∥    (2)
The simulated meaning of a new document 

(sometimes referred to as pseudo­document) can 
be represented in LSA using the following method:

v d=qT U k k
−1 (3)

where  q  represents   the   array   containing   type 
frequencies for words in the document (weighted 
by tf­idf­derived entropy weights). Note that this is 
equivalent   to   (weighted)   geometric   addition   of 
constituent word vectors corresponding to words in 
a   document..   As   a   result,   both   words   and 
documents   are   represented   as   vectors   in  k­
dimentional   space2,   allowing   for   straightforward 
word­word,   word­document,   and   document­
document   comparisons.,   which   reflect   their 
semantic similarity according to the model:

S w ,d =cos vw
1/2 ,v d 

1/2
              (4)

S d 1, d 2=cosvd1 , vd2                  (5)
The absolute values of cosines (which may range 

between ­1 and 1 with larger values indicating 
greater similarity) have no strict interpretation; 
only comparisons of cosine values (e.g. between 
pairs of words) are meaningful.

2.2 Topics Model (LDA)

The   Topics   model   ([8])   is   a   generative 
probabilistic  model  of   language.   It   is   sometimes 
referred to as LDA, because it is based on Latent 
Dirichlet Allocation (see [8]). At the heart of the 
model, is the assumptions each document may be 
represented by a mixture of topics (for example, a 

1Other metrics like Eucledian distance and dot product are less 
commonly used
2Depending on the type of comparison, operands  need to be 
multiplied by the singular matrix   (word­word)Σ  or its square 
root (word­doc). Please see LSA literature for more details.
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news article about the use of steroids in baseball 
will   likely   have   significant   contributions   from 
topics   corresponding   to   “sports”,   “drugs”   and 
“health”).   Although   not   strictly   a   vector   space 
model,   it   exhibits   all   of   the   relevant   details   of 
representation. Each word w in the Topics model is 
represented   by   a   multinomial   distribution   over 
topics   ( (w)φ ),   which   can   be   thought   of   as   a 
multidimensional vector, where each dimension is 
the   strength  of   association  of   the  word  with   the 
particular topic. 

The   topics   are   derived   in   an   unsupervised 
manner;  only   the  number  of   topics   (T)  is   set   a­
priori.   Topics   can   be   characterized   by   most 
probabilistically   representative   words,   and   are 
generally intuitively interpretable, e.g. T1 = {print,  
paper, ink, ...},  T2 = {team, game, basketball, ...}, 
etc.  

A   particular   document   is   represented,  as   a 
mixture of topics ( (d))θ , a multinomial distribution 
derived from the particular topics assignments of 
its constituent word tokens. Note that while a word 
type  is   represented   as   a   distribution   ( (w)φ ),   a 
particular word token in a document is assigned to 
a  discrete   topic.  The assignment   is  based on the 
joint  probability of  its  word type ( (w)φ ) and the 
probability of a particular topic manifesting in this 
document,   which   in   turn   is   derived   from   topic 
assignments of other tokens.  

Since   both   words   and   documents   are 
represented   as   multinomial   distributions   ( (w),φ  
and  (d) θ respectively), their semantic distance can 
be   measured   using   the   Kullback­Leibler   (KL) 
divergence3:

KL  p ,q =∑
j=1

T

p j log2 
p j

q j

 (6)

which   can   be   converted   into   a   symmetrical 
similarity4 measure (KLS):

KLS  p , q=−1
2
KL p , qKL q , p   (7)

(this measure can range from negative infinity to 
zero).  To compute  the similarity  between a word 
and a document, we measure the probability of a 
particular word occurring in a particular document:

3Some other metrics are possible, like Jensen­Shannon 
divergence. See [16] for more details.
4The cosine metric used in LSA is also a similarity measure; 
higher values means greater similarity.

P w∣d =∑
z

P w∣z P  z∣d =w⋅d    (8)

Please refer to ([8], [16]) for more details.

2.3 Model Implementations

In our experiments we trained both models on 
the   TASA   corpus,   containing   roughly   44,000 
reading   passages   for   school   children   through 
college level. Each passage (document) contained 
around 300 words. The number of dimensions on 
LSA (k),   as  well  as   the number of   topics   in  the 
Topics model (T)  was set to 300. For the Topics 
model   we   used   hyper­parameter   values   =50/T,α  

=0.01, N=500 (see [8] for more details). It shouldβ  
be noted that better performance on specific tasks 
may be accomplished by a more thorough analysis 
of the optimal parameter settings.

3 Evaluations

3.1 Primary Topic Detection

In   this   test   we   compute   the   representation   of 
selected documents in each respective model, and 
ask   the   models   to   select   the   word   that   best 
represents the semantic content of a document, i.e. 
the word that is most  semantically similar to the 
document. This corresponds to asking someone to 
describe  in one word what  a document  is  about. 
While on the surface, this resembles the problem 
of  keyword extraction, it should be noted that this 
is not the ultimate goal. Rather we use the words to 
probe the models' representations of text.

To measure model's performance, we compare 
the   model's   answer   with     the   document's   actual 
(human­generated)   title.   More   specifically,   each 
model ranks all the words in the document by how 
well   they   represent   the  document   (in  decreasing 
order). The model's performance score is the rank 
of   the   actual   title   word   in   this   sorted   list, 
normalized by the total number of words in the list:

score1 (d) = rank(titled) / #unique_words(d) (9)
and falls between 0 (good; actual title is at the top 
of the list) and 1 (bad; actual title is at the bottom 
of   the   list).     This   allows   the   score   to   be 
independent   both   of   the   document   size   and   the 
scaling of similarity metric.
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We used 46 Wikipedia   ([17])  articles   from 6 
different categories, as test documents:
Sports Animals Countries

Sciences Religions Diseases

In the table below both the score for each article, 
as well as the word that each model picked as the 
most   representative,   are   presented.   Words   that 
resemble   the   title   (modulo   stemming)   are 
highlighted. 

Original 
 title

LSA Topics
top word score1 top word score1

Baseball player 0.00135 basketball 0.0127

Boxing position 0.02789 championship 0.0423

Golf player 0.00480 hockey 0.0210

Gymnastics gymnastics 0.00000 athletes 0.0409

Tennis players 0.01308 championship 0.0111

Hockey players 0.01146 basketball 0.0514

Skiing skiing 0.00000 skis 0.0528

Fencing tournaments 0.47745 championship 0.5255

Zebra species 0.00404 lion 0.0319

Giraffe giraffe 0.00000 lion 0.0140

Bear bears 0.00302 lion 0.0070

Deer antelope 0.00655 zoo 0.0112

Wolf wolves 0.00370 dog 0.0051

Fox rodents 0.05575 dog 0.0033

Elephant elephants 0.00296 zoo 0.0028

Tiger elephants 0.03197 zoo 0.0132

Russia russian 0.00058 soviet 0.0089

Germany germany 0.00000 hitler 0.0144

Canada canadian 0.00161 united 0.0038

Sweden dominated 0.02231 asia 0.0361

Thailand buddhism 0.01402 mali 0.0692

Kenya uganda 0.00115 africans 0.0175

Australia
commonwealt
h 0.00187 latitude 0.0044

Brazil brazil 0.00000 columbus 0.0116

Biology biologists 0.00816 ecosystem 0.0186

Chemistry chemistry 0.00000 hydroxide 0.0783

Physics physicists 0.00114 theory 0.0276

Psychology psychology 0.00559 psychologist 0.0160

Mathematics mathematical 0.00129 hypotheses 0.0148

Sociology sociologists 0.00000 emphasizes 0.0601

Economics economists 0.00142 prices 0.0381

Geography geography 0.00000 cultures 0.0273

Christianity christian 0.00155 bishop 0.0306

Islam prophet 0.00000 jesus 0.0413

Judaism judaism 0.00000 egyptian 0.0663

Hinduism hinduism 0.00000 rites 0.0461

Buddhism philosophy 0.00069 thou 0.1712

Cancer abnormal 0.00259 disease 0.0241

AIDS incidence 0.16098 viruses 0.2953

Asthma symptoms 0.00453 disease 0.1066

Syphilis symptoms 0.00514 disease 0.0722

Flu viral 0.01984 disease 0.0359

Pneumonia infections 0.00854 disease 0.0913
Mean
(stdev)

0.0211
(0.0758)

0.0529
(0.0900)

Table 1. Performance on predicting the main theme (title)

In this task LSA outperforms the Topics model, 
having generally lower score, i.e. having the actual 
title word appear closer to the top of the list.

3.2 Text Categories

In this experiment we compare the semantic 
similarity judgments between articles  within the 
same topic category and across categories. One 
would expect articles within the same category to 
be more similar, compared to articles across 
different categories. Hence, a model that 
adequately represents meaning of test should 
reflect greater similarity of within­category 
articles. We use the Wikipedia articles and 
categories described in section 3.1.

 The scoring metric used in this test is the 
difference between average similarity μ (using 
metrics (5) and (7) for LSA and Topics, 
respectively) for within­category articles and 
across­category articles , normalized by standard 
deviation   δ of across­category similarity:
score2 (C) = (μd1,d2 C∈  ­  μd1 C', d2∈ ∈C'') / δd1 C', d2∈ ∈C''    (10)

Categories LSA score2 Topics score2

Sports 4.59 2.76

Animals 5.49 3.38

Countries 4.99 3.67

Sciences 3.11 1.82

Religions 6.30 3.72

Diseases 6.04 3.50

Table 2. Average semantic similarity of articles within the same 
category, compared to across­categories

Both models were correctly evaluate within­
category articles to be more semantically related, 
as all scores are greater than zero. The pairwise t­
test shows that LSA's scores within­category 
articles to be consistently higher. 

We also used pairwise semantic distances 
between articles as input to agglomerative 
clustering, to see if the articles belonging to the 
same categories, will be clustered together 
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automatically. The clustering based on either of 
the models' calculated distances reconstructed the 
original groupings perfectly.

3.3 Text Coherence

Previous   research   ([4],   [6])   employed 
distributional   semantic   models   to   measure 
coherence, or semantic connectedness of text. The 
assumption   underlying   it,   is   that   adjacent 
paragraphs   in   expository   texts   will   have   higher 
semantic similarity, so as to ensure smooth, logical 
transitions   between   content   segments. 
Furthermore,   the   difficulty   of   text   should   be 
inversely   related   to   its   cohesion;   i.e.   one  would 
expect   simpler   texts   (written   for   lower   grade 
levels) to have higher cohesion.

In   this   experiment,   we   compute   measures   of 
coherence between paragraphs of text taken from 
chapters of science textbooks written for 3rd and 6th 

grades.  We use  text  similarity metrics (equations 
(5)   and   (7)),   to   compare   the   mean     semantic 
similarity   between   adjacent   and   non­adjacent 
paragraphs.   The   score   is   computed   as   the 
difference   in   the   mean   similarity   ( )  μ between 
adjacent and non­adjacent paragraphs in each text, 
normalized by the standard deviation   (δ) of non­
adjacent paragraphs.
score3 (d) = (μadjacent  ­  μnon­adjacent') / δnon­adjacent' 

(11)
Another interesting task is to attempt to 

reconstruct the original order of the paragraphs, 
based on their pairwise semantic distances. This 
can be done using Multidimensional Scaling 
(MDS, [1]) to 1 dimension. This has the effect of 
attempting to fit all paragraphs along a line, in such 
a way as to maximally satisfy their pairwise 
distances (as reported by either of the models). 
One can then compare the resulting order of 
paragraphs to their original order in the text. This 
can be done by computing the Kendall tau rank 
correlation with the original order, essentially 
counting the number of indices that are “in order”. 
We take the absolute value of the metric, since 
MDS may arrange results in “reverse” order:
score3' = abs( Corrkendall( mds(M), <1..P>) )    (12)
In equation (12), M is the PxP pairwise semantic 
distance metric between P  paragraphs. A higher 
correlation (score3'), means that the original order 

of paragraphs can be reconstructed more 
accurately, using the output of the model.

Grade Text score3 score3'

LSA Topics LSA Topics

Grade 3

1 0.58 0.34 0.35 0.19

2 0.65 0.52 0.52 0.26

3 1.42 0.37 0.71 0.36

4 0.35 0.25 0.30 0.33

5 0.75 0.81 0.58 0.41

Mean
(grade 3)

0.75 0.46 0.49 0.31

Grade 6

1 ­0.07 ­0.03 0.18 0.28

2 0.34 0.35 0.30 0.00

3 0.46 0.41 0.32 0.24

4 0.74 0.87 0.27 0.08

5 0.21 0.15 0.09 0.26

Mean
(grade 6)

0.34 0.35 0.23 0.17

Table 3. Semantic similarity of adjacent paragraphs compared to non­
adjacent, and measure of accuracy in recreating the original paragraph 
score using MDS.

Both models show greater similarity between 
adjacent paragraphs (with one exception). Also, as 
expected, the models show that the (more difficult) sixth 
grade reading exhibits less coherence than the (easier) 
third grade reading. Attempting to restore original 
paragraph order was more effective using the output of 
LSA.

3.4 Sentence Coherence

In this test we use the data originally reported by 
McNamara   et   al   ([15]).   The   authors   used   both 
distributional  model  (LSA) and human similarity 
judgments   on   a   6­point   Likert   scale   to   judge 
similarity between pairs of sentences that were (a) 
human­generated   paraphrases,   (b)   adjacent 
sentences   in   expository   text,   (c)   non­adjacent 
sentences in the same text,  (d) random sentences 
from different texts. In general one would expect 
the   sentence   similarity   to   range   from  highest   to 
lowest in the categories above, i.e. 
(paraphrase)>(adjacent)>(jump)>(random)       (13)

In this experiment we computed sentence 
similarity scores with LSA and Topics  (equations 
(5) and (7), respectively) and correlations with 
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human ratings reported by McNamara et al. We 
also show the item­by­item correlations between 
the models and human judgments.

Paraphr
ase

Adjacent Jump Random

Human
(Likert scale)

5.38 2.89 2.41 1.89

LSA
(cosine sim)

0.53 0.35 0.27 0.00

Topics
(KLS similarity)

­0.35 ­0.38 ­0.37 ­0.50

Correlation
(LSA, Human)

0.26 0.43 0.27 0.10

Correlation
(Topics, Human)

­0.48 0.08 0.06 ­0.33

Table 4. Semantic similarity scores and correlations with human 
judgments for sentences.

LSA measurements maintain the inequality 
(12), while Topics does not. LSA also maintains a 
more reliable correlation with human similarity 
judgments.

3.5 Sentence Paraphrases

In   this   experiment   we   used   a   collection   of 
sentence pairs from Microsoft Research Paraphrase 
Corpus [3]. The sentence pairs were annotated by 2 
human  judges  who  were  asked   to  give  a  binary 
judgment as to whether a pair of sentences could 
be considered “semantically equivalent” (1 – yes, 0 
­   no).  We   filtered   out   sentences   containing   rare 
words, resulting in a collection of 1323 pairs.

We   computed   the   correlation   between   the 
human   judgments,   and   the   similarity   scores 
between sentences in each pair, as reported by each 
model:

LSA Topics

Pearson Correlation 0.205 0.067

Table 5. Correlation of LSA and Topic similarity scores with human 
judgments.

LSA model produced higher correlation scores 
with human annotators.

4 Discussion

Currently,   no   agreed   standard   for   evaluating 
meaning of texts beyond the word level exists. The 
traditional   approach   to   evaluating   many   Natural 
Language processing algorithms is to create a gold 

standard   of   human­annotated   data,   such   as 
similarity   judgments   between   sentences   used   in 
(3.4)   and   (3.5).   However,   human   semantic 
similarity   judgments   beyond   sentence   level 
processing  and   simple  binary   judgments   (same  / 
not   same),   are   a   complex   and   subjective   task. 
Furthermore they are not a natural task that people 
regularly  perform with   language.  As   such,   these 
explicit judgments would be an unreliable metric.

We   have   proposed   a   few   measures   of 
estimating   how   well   distributional   models   can 
represent   text   at   the   document   (3.1   and   3.2), 
paragraph (3.3) and sentence (3.4 and 3.5)  level. 
These measures are grounded in natural linguistic 
artifacts, such as expository texts. While no single 
one   of   these   measures   is   the   definitive   test   of 
semantic representation, together, the collection of 
tests can be used to paint a  picture of strengths and 
weakness of various semantic models.

Even though applications that rely on semantic 
representation   of   text   with   distributional   models 
have   been   used   for   some   time,   some   important 
details of these models have been overlooked. 

For   example,   consider   the   following   three 
sentences and similarity scores between them, as 
calculated by LSA:

Figure 1. LSA semantic similarity scores between three sentences.

The result   that   (a)   and  (c)   are  deemed more 
similar than (a) and (b) should be counter­intuitive, 
given that (a) and (b) differ only by a single word, 
and the different words are roughly synonymous! 
The reason for this phenomenon can be found in 
the fact that the vector length for the word dog5 is 
almost an order of magnitude greater than any of 
the   other   words   in   any   of   the   sentences,   and 
therefore   largely   dominates   the   meanings   of 
sentences   (a)   and   (c).   Walter   Kintsch   writes   in 
[10]:

“Intuitively,   the   vector   length   tells   us   how   much 
information LSA has about this vector.   [...] Words that 
LSA knows a lot about (because they appear frequently in 

5Word vectors are multiplied by entropy weights when being 
combined into documents.

(a) I walked my dog in 
the park yesterday.

(b) I walked my puppy in 
the park yesterday.

(c) His dog is scary and 
often bites the mailman.

0.73 0.77

30



the   training   corpus,   in   many   different   contexts)   have 
greater  vector   lengths   than  words LSA does not  know 
well.  Function words  that  are  used  frequently   in  many 
different contexts have low vector lengths ­­ LSA knows 
nothing about them and cannot tell them apart since they 
appear in all contexts.”

Roughly   speaking,   the   vector   length   (and 
hence  its   level  of  semantic   influence)   in  LSA is 
determined by frequency of its occurrence and its 
concreteness  (the   two   factors   may   be   in 
competition). Let's take a closer look as to whether 
this in fact corresponds to intuition. 

It   is   true   that   a   word   that   has   only   been 
encountered by the model once or twice, ought to 
have   much   uncertainty   in   its   meaning,   and, 
therefore, a small semantic contribution (i.e. short 
vector length). However, after a certain threshold 
number   of   occurrences,   we   would   expect   the 
word's meaning representation to stabilize and no 
longer  be   altered  by   subsequent   encounters.  For 
example,   even   though   the   word  canine  occurs 
almost   two   orders   of   magnitude   less   frequently 
than  dog  in language (in TASA corpus the word 
counts are 2962 and 17, respectively), it's difficult 
to   argue   that   once   its   meaning   is   understood, 
canine  should   provide   an   equivalent   semantic 
contribution to dog. Yet in LSA, the vector for dog 
is  roughly 22 times greater. McNamara et al ([15]) 
have experimented with different word weighting 
schemes.     One   of   the   finding   was   that   giving 
greater weight to rare words result results in better 
performance   on   some   of   the   tasks   involving 
semantic   representations   of   sentences   and 
passages.   Along   the   same   lines,   the   common 
practice of using a stop word lists to discard words 
that are too common (like the, of) is much more of 
a   heuristic   than   a   theoretically­motivated 
technique.   The   real   solution   would   involve 
analysis of many factors, such as psycholinguistic 
characteristics,   parts   of   speech,   propositional 
attachment and so on.

In   LSA,   words   that   have   more   concretely 
defined meanings will tend to have longer vector 
lengths compared to more polysemous or abstract 
words,   when   controlled   for   the   frequency   of 
occurrence.   For   example,   the   vector   for  cat 
(occurring   1461   times   in   TASA)   is   1.5   times 
longer than bank  (occurring 1567 times). In other 
words,   the  vector   for  bank  is   shorter  because of 

ambiguity of   its  meaning (“house for  money” or 
“edge of river”). But while the meaning of bank is 
ambiguous in the abstract, it becomes clarified in 
most   practical   contexts.   Once   the   word   is 
disambiguated   (i.e.   in   the   context   of   a   pseudo­
document)   to   one   concrete   sense,   it   should   no 
longer carry a “uncertainty penalty” by having a 
shorter vector length.   By contrast,  in the Topics 
model   word   tokens   are   automatically 
disambiguated   when   the   pseudo­document 
representation  is  created.  Kintsch has proposed a 
method of word sense disambiguation for LSA in 
[10], but it is far from systematic.

In Topics, all word tokens contribute equally to 
the   the   overall   representation   of   a   pseudo­
document   ( (d)θ );   no   weighting   scheme   is 
employed. As mentioned earlier,  unlike LSA, the 
semantic   contribution   of   each   word   may   vary 
between   documents,   depending   on   the   context, 
since the words are disambiguated. This may have 
some unpredictable effects, however. Consider for 
example   the   topic   assignments  generated   by   the 
Topics   model6  for   words   in   the   following   two 
sentences, which differ by one word:
A  boy  was holding a dog by a 
leash when the leash broke

A  girl  was  holding  a  dog  by  a 
leash when the leash broke

Token Topic Token Topic

boy 61 girl 74

was 135 was 77

holding 144 holding 128

dog 148 dog 148

when 203 when 207

leash 148 leash 148

broke 116 broke 66

Table 5. Topic assignments for word tokens in the two sentences.

Note   how   most   of   the   words   change   their 
assignment, depending on presence of  boy  or  girl 
in the sentence. This behavior is particularly true 
of more abstract or polysemous words, since in the 
Topics   model   such  words   tend   to  have   a   wider 
spread of  possible   topics,   in  contrast   to  concrete 
words,  which  tend  to  be assigned  to  only a   few 

6Topics model trained with T = 308. Remember that it's not 
important here what individual topics mean; only whether they 
are the same or different.
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possible topics. For example, consider histograms 
of topic assignments ( (w)φ ) for some words:

cat bank thought

Table 6.  Histograms for topic assignments in the Topics model for 
some words.

This   behavior   has   significant   implications   for 
computing semantic representation of texts in the 
Topics  model,   since  many of   the  abstract  words 
tend to have more unstable topic assignments and, 
thus,     small  variations  may drastically  affect   the 
overall topic mixture of the document.

One interesting observation of this study is that 
LSA generally  outperforms   the  Topics  model   at 
the   text­level   tasks,   and   therefore   is   likely   to 
represent meaning of text passages better. This is 
despite showing somewhat lower performance on 
word­level tasks such as synonym tests and word 
priming.   (see   [8]).  Aside   from  the  possibility  of 
obtaining   better   performance   by   using   different 
model   parameters   or   comparison   functions,   two 
explanations can be plausible for this discrepancy. 
One is  that Topics, as a model,   is  simply not  as 
well equipped to represent compositional meaning. 

A   related,   and   more   interesting   explanation, 
however, is that the word­level tasks are not well 
suited   as   theoretical   insights   into   language   and 
cognition. One can argue that human judgments of 
synonymy and word  associations  are  not  natural 
tasks, because words  in language are never used or 
learned in isolation. Therefore, it might be entirely 
plausible, for example, that the kind of associations 
that occur when the brain represents meanings of 
words are very different from those that synonym 
judgments would suggest. In other words, explicit 
word   similarity   judgments   may   be   a   high­level 
cognitive   task   (e.g.   based   on   explicitly 
enumerating and comparing attributes) rather than 
a direct insight into meaning representation in the 
brain. 

5 Conclusions

In this paper we have started exploring issues of 
semantic   representation   of   text   passages   and 
methods   for   their   evaluation.   Many   questions 
remain open in this area. The answers will likely 
only   come   from   combining   advancements   in 
computer   science,   neurophysiology,   cognitive 
psychology and linguistics 
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Abstract

Word Space Models use distributional similar-
ity between two words as a measure of their
semantic similarity or relatedness. This dis-
tributional similarity, however, is influenced
by the type of context the models take into
account. Context definitions range on a con-
tinuum from tight to loose, depending on the
size of the context window around the target or
the order of the context words that are consid-
ered. This paper investigates whether two gen-
eral ways of loosening the context definition
— by extending the context size from one to
ten words, and by taking into account second-
order context words — produce equivalent re-
sults. In particular, we will evaluate the per-
formance of the models in terms of their abil-
ity (1) to discover semantic word classes and
(2) to mirror human associations.

1 Introduction

In recent years, Word Space Models (Landauer and
Dumais, 1997; Schütze, 1998; Padó and Lapata,
2007; Baroni et al., 2007) have become the stan-
dard NLP answer to any question concerning lexical
semantics. Be it query expansion, automated essay
rating, thesaurus extraction, word sense disambigua-
tion or question answering, Word Space Models are
readily applied to the task at hand. Their success al-
most makes us forget that the word space approach
itself presents us with a number of questions. For
instance: what kind of semantic relations are cap-
tured by these models? Is it semantic similarity —
as between car and truck — or more topical related-
ness — as between car and road? Moreover, what is

the influence of all parameters involved — from the
definition of context to the similarity measure used
to compare the context vectors of two words? In this
paper, we will focus on the precise definition of con-
text that the models use and investigate its effect on
the semantic relations that they find.

1.1 Word Space Models

In order to get at the semantic relatedness between
two words, word space approaches model their use.
They do so by recording in a so-called context vec-
tor the contextual features that each word co-occurs
with in a corpus. For instance, first-order bag-of-
word models simply keep track of the context words
that appear within a context window of n words
around the target (Gale et al., 1994; Levy and Bul-
linaria, 2001; Bullinaria and Levy, 2007). This im-
plies that two words are similar when they often co-
occur with the same context words. The tightest def-
inition of context for bag-of-word models restricts
itself to one word to the left and right of the tar-
get. Because this restriction may lead to data sparse-
ness, it is often loosened in one of two ways: either
the context window is stretched to a higher num-
ber of words around the target (Sahlgren, 2006), or
the models take into account not the direct context
words of the target, but the context words of these
context words (Schütze, 1998). In this paper, we
will investigate whether these two ways of loosen-
ing the context definition have the same influence
on the results of the Word Space Models.

Without any doubt, enlarging the context window
will change the type of features that the models are
based on. With just one word to the left and the
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right of the target, an English noun will tend to have
mostly adjectives and verbs as contextual features,
for instance. Most of these context words will more-
over be syntactically related to the target. If we ex-
tend the window size to five words, say, the noun’s
context vector will look very different. Not only are
other nouns more likely to appear; the majority of
words will not be in a direct syntactic relation to
the target, but will merely be topically linked to it.
We can expect this to have an influence on the type
of semantic relatedness that the Word Space Models
distinguish.

This effect of context has obviously been noted
before. Sahlgren (2006) in particular observes that
in the literature, all sorts of context sizes can be
found, from fifty words to the left and right of
the target (Gale et al., 1994) via fifty words in to-
tal (Schütze, 1998) to a mere three words (Dagan
et al., 1993). Through a series of experiments,
Sahlgren was able to confirm his hypothesis that
large context windows tend to model syntagmatic
— or topical — relations better, while small con-
text windows are better geared towards paradigmatic
— similarity or antonymy — relations. In a similar
vein, we investigated the influence of several context
definitions on the semantic characteristics of a wide
variety of Word Space Models for Dutch (Peirsman
et al., 2007; Peirsman, 2008). We found that syntac-
tic models worked best for similarity relations, while
first-order bag-of-word approaches modelled human
associations better, among other things.

1.2 Research hypothesis

In line with Sahlgren (2006), our research hypothe-
sis is that tight context windows will give better re-
sults for semantic similarity, while looser context
windows will score higher with respect to more gen-
eral topical relatedness. ‘Loose’ here refers to the
use of a larger context window or of second-order
context words.

We will test this hypothesis through a number of
experimental tasks that have been released for the
ESSLLI 2008 Lexical Semantics Workshop. First,
section 2 will present the setup of our experiments.
Section 3 will then discuss three word clustering
tasks, in which the Word Space Models are required
to discover semantic word classes. In section 4, we
will investigate if the models are equally suited to

model free associations. Finally, section 5 will wrap
up with conclusions and an outlook for future re-
search.

2 Experimental setup

The data for our experiments was the British Na-
tional Corpus, a 100 million word corpus of British
English, drawn from across a wide variety of gen-
res, spoken as well as written. On the basis of this
corpus, we constructed fourteen Word Space Mod-
els, seven first-order and seven second-order ones.
Context size varied from 1 via 2, 3, 4, 5 and 7 to 10
words on either side of the target.

We reduced the dimensionality of the context vec-
tors by treating only the 5,000 most frequent words
in the BNC as possible features — a simple, yet
popular way of dimensionality reduction (Padó and
Lapata, 2007). Although working with all fea-
tures could still improve performance (Bullinaria
and Levy, 2007), we feel confident that cutting off
at 5,000 dimensions has no direct influence on the
relationships between the models, and the semantic
relations they prefer. Semantically empty words in
our stop list were ignored, and all words were lem-
matized and tagged by their part of speech. In ad-
dition, we also used a cut-off that linearly increased
with context size. For context size n, with n words
on either side of the target word, we only took into
account a feature if it occurred at least n times to-
gether with the target word. This variable cut-off
keeps the number of non-zero cells in the word by
feature matrices from exploding for the larger con-
texts.

The context vectors did not contain the frequency
of the features, but rather their point-wise mutual in-
formation (PMI) with the target. This measure in-
dicates whether the feature occurs together with the
target more or less often than we would expect on
the basis of their individual frequencies. Finally, the
similarity between two context vectors was opera-
tionalized as the cosine of the angle they describe.

3 Task 1: Word Clustering

In Task 1, we tested the ability of our models to dis-
cover semantic classes for three types of words: con-
crete nouns, verbs, and a mixture of concrete and
abstract nouns. The data sets and their sources are
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described on the website of the ESSLLI workshop.1

The set of concrete nouns consisted of words like
hammer, pear and owl, which our models had to
cluster into groups corresponding to a number of se-
mantic classes. The output was evaluated at three
levels. The most fine-grained class distinctions were
those between tools, fruit, birds, etc. — six clusters
in total. Next, we checked the models’ ability to rec-
ognize the differences between artifacts, vegetables
and animals. Finally, animals and vegetables had to
be combined into one natural category.

The second test set consisted of a mixture of con-
crete and abstract nouns — truth and temptation ver-
sus hammer and eagle, for instance. Here, the mod-
els were simply required to make the distinction be-
tween concrete and abstract — a task they were well
capable of, as we will see.

The final test set contained only verbs. Again the
models were evaluated several times. At the first
stage, with nine clusters, we checked for the distinc-
tion between verb classes like communication (e.g.,
speak), mental state (e.g., know) and body action
(e.g., eat). At the second stage, with five clusters,
the categories were reduced to the likes of cognition
and motion.

The vectors output by the models were clustered
with the repeated bisections algorithm implemented
in CLUTO (Karypis, 2003). This is a so-called par-
titional algorithm, which starts with one large clus-
ter that contains all instances, and repeatedly divides
one of its clusters in two until the requested number
of clusters is reached. The resulting clusters are then
evaluated against two measures: entropy and purity.

The entropy of cluster Sr of size nr is defined as
follows:

E(Sr) = − 1
log q

q∑
i=1

ni
r

nr
log

ni
r

nr
(1)

Here, q is the number of word classes in the data
set, and ni

r the number of words of class i in clus-
ter r. As always, entropy expresses the uncertainty
of a cluster — the degree to which it mixes up sev-
eral categories. The lower the entropy, the better the
cluster.

Purity, next, is the portion of the cluster taken up
by the largest class in that cluster:

1http://www.wordspace.collocations.de/doku.php/esslli:start
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Figure 1: Performance of the Word Space Models in the
6-way concrete noun clustering task.

P (Sr) =
1
nr

max
i

(ni
r) (2)

The higher the purity of a given cluster, the better.
The entropy and purity values of the total solution
are simply the sums of the individual cluster scores,
weighted according to cluster size.

3.1 Results

By way of example, Figure 1 shows the performance
of the models in the 6-way concrete noun clustering
task. A number of observations we can make here
apply to all results in this section. First, the purity
and entropy of the models are almost perfect mir-
ror images of one another. Second, the performance
of the first-order models is clearly superior to that
of the second-order ones. Purity lies considerably
higher; entropy much lower. Third, our expectation
that performance would decrease with larger con-
texts is not fully borne out. For the first-order mod-
els, the ideal context size seems to be two words on
either side of the target. For the second-order mod-
els, it is four. This best second-order approach, how-
ever, gives results far lower than the least successful
first-order wordspace. In the rest of this section we
will therefore focus on the performance of the first-
order models only. The results of the second-order
approaches were invariably inferior and, because of
this lack of quality, often hard to interpret.

Table 1 gives the performance of the first-order
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concrete nouns concrete – abstract verbs
n 6 3 2 2 9 5

E P E P E P E P E P E P

10 .26 .73 .54 .71 .97 .59 .18 .97 .44 .53 .41 .64
7 .28 .73 .27 .86 .97 .57 .00 1.0 .41 .56 .39 .69
5 .31 .71 .35 .82 .95 .61 .00 1.0 .41 .56 .39 .69
4 .28 .73 .54 .71 .96 .61 .00 1.0 .44 .51 .39 .69
3 .26 .77 .54 .71 .97 .59 .00 1.0 .42 .56 .54 .56
2 .23 .82 .34 .84 .55 .86 .00 1.0 .48 .47 .63 .56
1 .29 .77 .50 .75 .98 .57 .00 1.0 .42 .53 .51 .60

Table 1: Performance of the first-order Word Space Models in the word clustering tasks.

Word Space Models on the three clustering tasks,
for each of the pre-specified numbers of clusters.
It is hard to pin down an overall best context size:
only the smallest and biggest windows under inves-
tigation never gave the best results. Let us first dis-
cuss the concrete noun clustering task. Here the
systems were evaluated at three steps of their out-
put. Their performance clearly deteriorates with
each step. With six clusters, the most successful
model is that with context size 2. It gives an av-
erage entropy of .23 and an average purity of .82.
For the three-way clustering task, however, context
size 7 unexpectedly gives the best results. We will
see why this happens below. At the final evaluation
stage, context size 2 is again distinctly in first po-
sition, as the only model that manages to come up
with a decent clustering.

The division between concrete and abstract
nouns, by contrast, is made much more easily. In
fact, six out of seven first-order models are able to
perfectly retrieve the two classes in the Gold Stan-
dard. The model with context size 10 makes a few
mistakes here and there, but still finds a reasonable
clustering. The verb clustering task, finally, seems
to be of average difficulty. In general, intermediate
context windows perform best.

3.2 Error analysis

Let us now take a closer look at the results. Again we
start with the concrete noun subtask. At a first level,
the models were required to distinguish between six
possible classes. Broadly speaking all models here
have the same three difficulties: (1) they are often
not able to distinguish between vegetables and fruit,

(2) they confuse some of the ground animals with
birds, and (3) the tools are scattered among several
clusters. Context size 1 makes a separate category
for screwdriver, chisel, knife and scissors, for in-
stance. The larger context sizes tend to put spoon,
bowl, cup and bottle in a separate cluster, some-
times together with a number of animals or kinds
of fruit. At the later stages, a hard core of artifacts
seems to be easily grouped together, but the natural
kinds (animals and fruit or vegetables) are still much
harder to identify. Here and there a kitchen cluster
that combines several types of tools, fruit and veg-
etables might be discerned instead of the Gold Stan-
dard grouping, but this is obviously open to interpre-
tation.

The good performance of context size 2 in
semantic similarity tasks has been observed be-
fore (Sahlgren, 2006). This is no doubt due to the
fact that it combines useful information from a num-
ber of sources: a noun’s adjectives, verbs of which
it is the subject, and those of which it fills the object
position. This last source of information is often ab-
sent from context size 1, at least when the noun is
preceded by an article.

With three clusters, we observed that context size
7 suddenly outperforms this seemingly ideal config-
uration. This actually appears to be a question of
chance. The main reason is that with six clusters,
the model with context size 7 splits the ground ani-
mals and the birds evenly over two clusters. Because
of their similarity, these are merged correctly after-
wards. Context size 2 gives a far better classification
early on, but at the next stage, it recovers less well
from its few mistakes than context 7 does. It thus
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looks like the high performance of context 7 may
partly be an artifact of the data set. Overall, context
size 2 still seems the best choice for a classification
task of concrete nouns.

Let us now turn to the verb clustering task. At the
lowest level, the models were asked to produce nine
clusters. The models with intermediate context sizes
performed best, although the differences are small.
This might be due to the fact that verb clustering
benefits from information from a large number of ar-
guments to the verb: subjects and objects as well as
prepositional and adverbial phrases. Note that verb
classification seems harder than the noun clustering
tasks. The boundaries between the classes are in-
deed more subtle and fuzzy here. Differences, for
instance, between change location (as in move), mo-
tion direction (as in arrive) or motion manner (as in
run) are often too small to discover on a distribu-
tional basis.

In this analysis, we regularly mentioned syntac-
tically related words as interesting sources of se-
mantic information. We can therefore expect a
model that takes into account these syntactic rela-
tions (Padó and Lapata, 2007; Peirsman, 2008) to
outperform the simple bag-of-word approaches in
these tasks. For the time being, such a model is out-
side the scope of our investigation, however.

4 Task 2: Free Associations

Of course, two words can also be related across se-
mantic classes. Doctor is linked to hospital, for in-
stance, even though the former refers to a human be-
ing and the latter to a building. Similarly, car and
drive are associated, despite the fact they belong to
different parts of speech. In this second task, we will
try and investigate the degree to which our models
are able to capture this type of semantic relatedness,
by comparing their nearest neighbours for a target
word with the results from a psycholinguistic exper-
iment in which people were asked to give an associ-
ation for each cue word they were presented with.

Both training and test sets consist of a number of
cue word – association pairs. All words occurred
in at least fifty BNC documents. It was now the gen-
eral task of our Word Space Models to automatically
find the associate for each cue word. This differs
considerably from the previous task: whereas word

clustering requires the Word Space Models only to
consider the words in the test set, now they have to
compare the targets with a far larger set of words.
We chose to use the 10,000 most frequent words in
the BNC as potential associates, including semanti-
cally empty words, plus those associates in the test
set that did not survive the cut-off at 10,000 words.
Even though the words in the training and test set
were not tagged for part of speech, our Word Space
Models did take these tags into account. Each cue
word therefore automatically received its most fre-
quent part of speech in the BNC.

For each of the cue words in the test set, we
had the Word Space Models recover the 100 near-
est neighbours, in the same way as described in sec-
tion 2. Since this is an unsupervised approach, we
ignored the training set and worked on the test set
only. The performance of the models was expressed
by the average rank of the association in the list of
100 nearest neighbours to the respective cue word.
If the association did not appear in this list, it was
automatically given rank 101. Obviously, the lower
the score of the model, the better it is able to capture
the type of semantic relatedness this task represents.

We also added a different type of algorithm to
the experiment. Since we expected syntagmatic re-
lations to play an important role in human associa-
tions, we investigated if simple co-occurrence statis-
tics allow us to model the data better than the more
advanced Word Space Models. We therefore com-
puted the log-likelihood statistic between each cue
word and all potential associates, within a context
window of n words to the left and right of the cue.
We then simply selected the 100 words with the
highest log-likelihood scores.

4.1 Results

The results for the investigated models are presented
in Figure 2. Because of the cut-off values, the cov-
erage of our models was not always 100%. Context
size 10, for instance, fails to come up with nearest
neighbours for 7% of the words in the experiment.
This is due to a slight inconsistency between our
data and the Gold Standard. While we used a lem-
matized version of the BNC, the words in the Gold
Standard were not always lemmatized to the same
base. A good example is prepared: in the lemma-
tized BNC, this is generally reduced to prepare/VV,
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Figure 2: Performance of the Word Space Models in the
free association task: average rank of association.

so that prepared as an adjective occurs very infre-
quently. If a cue word was not covered, the example
automatically received rank 101.

A Friedman test confirms that there is indeed a
statistical influence of the type of model on per-
formance. Interestingly, the direct co-occurrence
statistics clearly outperform the Word Space Mod-
els. When they take into account seven words to the
left and right of the cue, they find the desired as-
sociation at rank 30, on average. By contrast, the
best first-order model (context size 5) only gives
this association at a mean rank of 47, and the best
second-order model performs even worse, with an
average rank of 66.5 for context size 2. Moreover,
the performance of the different context sizes seems
to contradict our initial research hypothesis, which
claimed that tight contexts should score better in
the clustering task, while looser context windows
should compare more favourably to free association
norms. Tests for multiple comparisons after a Fried-
man test showed significant differences between the
three types of models in the association task, but
hardly any significant differences between the sev-
eral context sizes. A detailed error analysis, how-
ever, adds some subtlety to this first impression.

4.2 Error analysis

To fully appreciate the outcome of the present task,
we need to look at the results of the models in
more detail. After all, semantically associated words

come in many flavours. Some words may be associ-
ated to their cue because they are semantically simi-
lar, others because they are part of the same concep-
tual frame, still others because they represent typical
collocations. This may explain the relatively low av-
erage ranks in Figure 2: each model could have its
own preference for a specific type of association. It
is therefore interesting to have a closer look at the
precise associations that are recovered successfully
by the different models.

Table 2 compares the results of the first-order
model with context size 1 to those of the first-order
model with context size 10. For both these mod-
els, it shows the twenty cue–association pairs with
the highest gain in ranks, as compared to the other
model. For instance, with a context size of 1, the as-
sociate of hard (soft) shows up 78 ranks higher than
with a context size of 10. This last model, however,
was able to recover the associate of wave (sea) at
rank four — the first does not find it.

Interestingly, the nature of the associations for
which the models display the highest difference in
ranks, varies from one model to the other. The
model with context size 1 tends to score comparably
well on associations that are semantically similar to
their target word. Many are (near-)synonyms, like
rapidly and quickly or astonishment and surprise,
others are antonyms, like hard and soft or new and
old, while still others are in a IS-A relationship, like
cormorant and bird. The associations for which the
larger context window scores far better are generally
of a completely different type. Here semantic sim-
ilarity forms the exception. Most associations are
topically related to their target word, either because
they belong to the same conceptual frame, as with
reflection and mirror or spend and money, or be-
cause they are typical collocates of their target word,
like twentieth and century or damsel and distress. Of
course, no clear line exists between the two cate-
gories, since frame-related words will often be col-
locates of each other.

This contrast is even more outspoken when we
compare the first-order model with context size 1 to
the best direct co-occurrence model. Among the as-
sociation pairs recovered by the latter but not by the
former are wizard–oz, salvation–army and trafal-
gar–square. This type of syntagmatic relatedness is
indeed seldom modelled by the word spaces.
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strengths of context size 1 strengths of context size 10
cue asso diff cue asso diff cue asso diff cue asso diff

melancholy sad 100 glucose sugar 63 sill window 100 damsel distress 97
rapidly quickly 98 fund money 61 riding horse 100 leash dog 96
plasma blood 95 suspend hang 61 reflection mirror 100 consultant doctor 95

astonishment surprise 91 adequate enough 54 nigger black 100 pram baby 94
joyful happy 83 levi jeans 49 hoof horse 100 barrel beer 94
hard soft 78 sugar sweet 46 holster gun 100 twentieth century 91

cormorant bird 76 din noise 44 dump rubbish 100 handler dog 90
new old 70 no yes 42 spend money 98 scissors cut 80

combat fight 69 tumour brain 39 bidder auction 98 deck ship 75
wrath anger 64 weary tired 33 wave sea 97 suicide death 72

Table 2: Top twenty cue words and associations for which either the first-order model with context size 1 or that with
context size 10 scored better than the other.

Finally, when we put the first-order and second-
order models with context size 1 side to side, it be-
comes more difficult to discern a clear pattern. De-
spite the fact that second-order context words are an-
other way of loosening the definition of context, the
second-order model with context size 1 still appears
to have a preference for semantic similarity. In fact,
word pairs like companion–friend and chat–talk are
better covered here. As Figure 2 suggested, second-
order models thus seem to follow the behaviour of
the first-order approaches, even though they are con-
sistently less successful.

Our findings so far are confirmed when we look
at the parts of speech of the words that are recov-
ered as nearest neighbours to a given cue word. Ta-
ble 2 showed that for the smallest context window,
these nearest neighbours tend to belong to the same
part of speech as their cues. This does not hold
for the models with larger context sizes. In fact,
the table suggests that these sometimes even find
nearest neighbours that typically appear as an argu-
ment of their cue. Nice examples are dump–rubbish
or spend–money. We therefore calculated for each
model the proportion of single nearest neighbours
with the same part of speech as their cue. The re-
sults are given in Figure 3. It can clearly be seen that,
as the context grows larger, the Word Space Models
tend to find more neighbours with different parts of
speech. For the first-order model with context size
1, 83% of the nearest neighbours have the same part
of speech as their cue; for the model with context
size 10, this figure has dropped to 58%. The second-
order Word Space Models follow the behaviour of
the first-order ones here. Not surprisingly, the algo-
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Figure 3: Percentage of nearest neighbours with same tag
as their cue word in the free association task.

rithm that chooses associations on the basis of their
log-likelihood score with the target shows the re-
verse pattern. The larger the co-occurrence span, the
higher the chance of finding a word with the same
part of speech.

Overall, our findings demonstrate that human as-
sociations are a mixed bag of semantic similarity and
topical relatedness. Models with small contexts bet-
ter recover the former, those with large contexts have
a preference for the latter.

5 Conclusions and future work

Word Space Models have become an indispensible
tool in many computational-linguistic applications.
Yet, the NLP community is only slowly gaining in-
sight in the type of semantic information that gets
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modelled by these approaches, and how this infor-
mation is influenced by the way the models opera-
tionalize the vague notion of context. While it has
previously been shown that first-order bag-of-word
models with small context sizes tend to best capture
semantic similarity (Sahlgren, 2006), this paper is
the first to compare two ways of loosening this con-
text definition. In particular, we contrasted larger
first-order context windows with second-order con-
text models, which model the meaning of a word in
terms of the context words of its context words, and
evaluated them through two series of experiments.

Our findings can now be summarized as follows.
(1) Overall, second-order bag-of-word models are
inferior to their first-order competitors. Switching
to second-order co-occurrence moreover does not
lead to an increased preference for syntagmatic rela-
tions. (2) With respect to semantic similarity, a con-
text window of size 2 gives the best results for noun
clustering. For verbs, the context is better stretched
to 4-7 words to the left and right of the target word.
(3) Even though there is only a minor impact of con-
text size on the overall performance in the free asso-
ciation task, small contexts display a preference for
semantic similarity, while large contexts model syn-
tagmatic relations better. However, the Word Space
Models here are clearly outperformed by direct co-
occurrence statistics.

Obviously, the Word Space Models under investi-
gation allow for much more variation than we have
been able to explore here. Syntactic models, for
instance, certainly deserve further investigation, as
in our papers on Dutch (Peirsman, 2008). More-
over, the question still remains why the second-order
contexts, despite their poor performance generally,
did score extremely well on a number of examples.
Is this coincidental, or could there be a pattern to
this set of cases? Either way, the intriguing varia-
tion across the results from the different Word Space
Models justifies further research in the precise rela-
tionship between distributional and semantic relat-
edness.
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Performance of HAL-like word space models  

on semantic clustering. 

 
Abstract 

A recent implementation of a HAL-like 
word space model called HiDEx was used 
to create vector representations of nouns 
and verbs. As proposed by the organizers of 
the Lexical Semantics Workshop (part of 
ESSLLI 2008), these vectors were analyzed 
to see if they could predict behavioral data 
from lexical categorization experiments and 
feature generation experiments. HiDEx per-
formed well on the Abstract/Concrete Noun 
discrimination task, but poorly on the other 
tasks.  There is much work to be done be-
fore HiDEx can accurately categorize nouns 
and verbs or generate lexical features. 

1 Introduction 

HAL (Hyperspace Analog of Language) is a 
computational model of semantic memory (Lund 
& Burgess, 1996). HAL-like models have been 
shown to be capable of discovering semantic 
categories of lexical items (Burgess & Lund, 
1997). For our contribution to the Lexical Se-
mantics Workshop at ESSLLI 2008, we used an 
implementation of HAL (Shaoul & Westbury, 
2006) to see if the vectors in a HAL-like word 
space model could accurately categorize words 
into different semantic categories. 

HAL collects global co-occurrence statistics 
for words used in a corpus, and then analyzes the 
geometric relationships between words in this 
co-occurrence space by measuring the Euclidean 
distance between words. This type of model has 
been shown to accurately categorize English 
words by parts of speech, concrete noun catego-
ries and abstract noun categories when clustering 
was done using multi-dimensional scaling (Bur-
gess & Lund, 2000). In this work we will inves-
tigate the capabilities of HAL-like models to 
categorize nouns and verbs in three tasks: Con-
crete Noun Clustering, Abstract/Concrete Noun 

Discrimination, and Verb Clustering.  We also 
looked at the ability of HAL-like models to gen-
erate lexical features. Finally, we will see if the 
parameter settings used by HAL-like models 
contribute to the performance of the model on 
these tasks. 

2 Model Performance 

2.1 Methods 

We used HiDEx (Shaoul & Westbury, 2006) 
to create a global co-occurrence matrix for 
48,000 English words. The corpus used in this 
experiment was a 1 billion-word subset of the 
freely available Westbury Lab USENET corpus 
(Shaoul & Westbury, 2007). Two sets of parame-
ters were used, the original HAL parameters 
(Lund & Burgess, 1998), and the parameters 
proposed by Shaoul & Westbury (in preparation) 
that had greater correlations with lexical and se-
mantic decision reaction times (RT). The original 
HAL parameters were the following: the local 
co-occurrence window was 10 words ahead and 
10 words behind, and the weighting scheme was 
a triangular one known as the linear ramp. This 
weighting scheme gives the most weight to 
words that co-occur near the target word.  

The optimized parameters proposed by 
Shaoul & Westbury (in preparation) include a 
local co-occurrence window of 5 words ahead 
and 10 words behind, and a weighting scheme 
that is the inverse of the original HAL scheme, 
an inverse linear ramp. This weighting scheme 
gives the most weight to words that co-occur 
farther from the target word. Bullinaria and Levy 
(2007) and others have found optimized parame-
ter sets for HAL-like models. Their optimiza-
tions differ from those used here as the tasks 
used to measure the model’s fitness were not RT, 
but rather TOEFL scores and other measures. 

During the creation of the global co-
occurrence matrix, the vectors from the 10,000 
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most frequent words were retained from the full 
lexicon of 47,000 words. Rohde et al (submitted) 
and Bullinaria and Levy (2007), found that ma-
trices of this size or greater produced good re-
sults. With vectors for the both the forward and 
backward windows, the actual number of col-
umns in the global co-occurrence matrix is dou-
bled, to 20,000. 

2.2 Results 

All cluster analysis was performed using the 
CLUTO clustering package (Zhao & Karypis, 
2002) with the “Repeated Bisections by k-way 
refinement” clustering method. In all the analy-
ses, the cluster entropy and purity values that are 
reported were calculated by CLUTO. Zhao and 
Karypis  (2001) define cluster entropy as a 
measure of how much uncertainty there was in 
the clustering solution. A value of 0 indicates a 
no uncertainty, and larger values indicates in-
creasing uncertainty. Cluster purity is defined as 
the degree to which the clusters contain items 
that are not in the maximally included target 
category. A value of 1 indicates a perfect match, 
with lower scores indicating more intrusions 
from other categories. 

2.2.1 Concrete Noun Clustering 

In this task, 44 concrete nouns from the 
nouns listed in McRae et al. (2005) were 
clustered into 6 categories. The same words were 
then clustered into more general 2 and 3 category 
arrangements.  We used the vectors produced by 
HiDEx to cluster the words, and then compared 
the quality of our clustering solutions for both 
the Original HAL and Optimized HAL parameter 
sets. 

The cluster measure results are shown in 
Table 1. The cluster entropy produced by our of 
our word space models shrank as the number of 
clusters increased, and the purity decreased in 
parallel. Since the best clustering solution has a 
high purity and low entropy, there appear to be 
no general trends towards better fits in this data. 
The two different parameter sets produced highly 
similar, poor results. 

The confusion matrix for the six-way solution 
is shown in Table 2. Although most (4/6) noun 
categories were placed in two or fewer clusters, 
this is largely because two ‘super-clusters’ (Clus-
ters 4 and 5) contained most (37/44) of the 
words. 
 
 

Original 
HAL 

Cluster 
Entropy 

Cluster 
Purity 

2-way 0.931 0.545 
3-way 0.844 0.523 
6-way 0.770 0.409 
   
Optimized 
HAL 

Cluster 
Entropy 

Cluster 
Purity 

2-way 0.981 0.545 
3-way 0.869 0.523 
6-way 0.719 0.386 

Table 1: Results for the 2-, 3- and 6-way cluster-
ing solutions for two HAL parameter sets in the 
Concrete Noun Clustering task.  

 
 

Cluster Bird Tree Green 
veg 

Ground 
animal 

Tool Ve-
hicle 

0 0 0 0 0 1 0 
1 0 1 0 0 0 0 
2 3 0 0 0 0 0 
3 0 0 0 0 1 1 
4 2 3 5 3 6 6 
5 2 0 0 5 5 0 

Table 2: Confusion Matrix for the 6-way con-
crete noun clustering by the Optimized HAL 
model. 
 

One pattern of errors became clear from ob-
servation: in the 2-, 3- and 6-way clustering solu-
tions, the words EAGLE, OWL and PENGUIN 
were consistently clustered together in a separate 
cluster. It is unclear why the other “bird” items 
did not join these three in their cluster.  

See the Appendix for a full report of the 
clustering solutions. 

2.2.2 Abstract/Concrete Noun Discrimination 

In this task, 40 nouns were clustered into 
two groups. One third of the nouns were rated as 
highly imageable using the MRC imageability 
norms (Wilson, 1988), one third had very low 
imageability ratings, and one third had interme-
diate imageability ratings.  

The cluster measure results are shown in 
Table 3. The clusters produced from the HiDEx 
measures closely matched the imageability 
groups that were produced from human ratings. 
The Optimized HAL parameters produced a 2-
way clustering that was lower in entropy and 
greater in purity than the Original HAL parame-
ters.  
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Original 
HAL 

Cluster 
Entropy 

Cluster 
Purity 

2-way 0.84 0.6 
   
Optimized 
HAL 

Cluster 
Entropy 

Cluster 
Purity 

2-way 0.647 0.725 
Difference  
between  
parameter sets 0.193 -0.125 

Table 3: The 2-way clustering solution for the 40 
words in the Abstract/Concrete Discrimination 
data set. 
 

Table 4 shows the categorizations of the 
words with intermediary imageability in the 2-
way clustering solution, with category labels 
added for the clusters that clearly contained ab-
stract or concrete words. There was no discern-
able pattern to this categorization of intermediate 
imageability words. 

 
Intermediate  
Imageability Word Categorization 
CEREMONY HI 
EMPIRE HI 
FIGHT LO 
FOUNDATION HI 
INVITATION LO 
POLLUTION LO 
SHAPE HI 
SMELL HI 
WEATHER HI 

Table 4: Categorizations of words with interme-
diate imageability.  

 

2.2.3 Verb Clustering 

In this task, the challenge was to cluster 44 
verbs into either 5 or 9 different semantic catego-
ries.  

Table 4 shows the results for the 5- and 9-
way clustering solutions. Neither the Original 
HAL nor the Optimized HAL produced cluster-
ing solutions of very good purity or entropy.  

There was no obvious qualitative explana-
tion for the cluster pattern of the verbs by our 
model in this task. One speculative is that there 
was an effect of verb polysemy on their represen-

tation in the HAL word space. The clusters that 
our model created three single-word clusters that 
are qualitatively suggestive of this: the words 
LEND, PAY and EVALUATE made up their 
own clusters in the 5-way categorization, with 
the rest of the verbs filling up the remaining two 
clusters.  

The full confusion matrix for the 5-way so-
lution is shown in Table 6. As with the noun 
clusters, most (40/44) of the words were catego-
rized into two super-clusters that included words 
from all (Cluster 3) or almost all (Cluster 4) of 
the verb types. 

 
Original 
HAL 

Cluster 
Entropy 

Cluster 
Purity 

5-way 0.816 0.4 
9-way 0.572 0.422 
   
Optimized 
HAL 

Cluster 
Entropy 

Cluster 
Purity 

5-way 0.715 0.511 
9-way 0.709 0.333 

Table 5: Scores for the 5- and 9-way clustering 
solutions for verb categories. 
 

In the 9-way solution, there were 6 one-
word clusters (the previous three words, plus 
BREATHE, ACQUIRE, CRY) and one two-
word clusters (SMELL and SMILE). There is a 
possibility that the clustering algorithms used in 
CLUTO may not be well suited to this data, as 
all the available clustering methods produced 
approximately the same results. It is more likely 
that the clusters produced by our model reflect a 
non-intuitive vector similarity that is being used 
by the clustering method to create these clusters. 

 
Cluster Body State Cog Exch Mo-

tion 
0 1 0 0 0 0 
1 0 0 0 0 1 
2 0 0 1 0 1 
3 4 5 4 3 9 
4 5 0 5 2 4 

Table 6: Confusion Matrix for the 5-way verb 
clustering by the Optimized HAL model. 

2.2.4 Property Generation 

The property generation task required the 
word space model to predict which properties 
human subjects would produce with the greatest 
frequency when asked to give properties of a 
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word. This task was built on the feature norms 
collected by McRea et. al (2005). For a word 
such as DUCK, subjects provided features such 
HAS FEET, SWIMS, and LIVES ON WATER.  
For this task, the target properties were converted 
into an expanded set of terms using the synset 
information from WordNet (Fellbaum, 1998). 
DUCK should produce the words FEET, 
SWIMS, and WATER, among others. 

To apply our model to this task, we used 
HiDEx to generate the 200 closest neighbors to 
each of the words in the word list in our word 
space (the number 200 was chosen arbitrarily). 
We then used the evaluation script provided by 
the workshop organizers to calculate the preci-
sion of the match between our neighbors and the 
properties generated by participants. The results 
of this precision calculation are listed in Table 7. 

Both the Original and Optimized HAL pa-
rameter sets produced very low precision scores 
(below 2%) in this task. The low precision was 
due to the fact that HAL neighbors are more of-
ten words with very similar contexts to the target 
word. Feature names are not often found in the 
same contexts as the words that they describe. 

For example, the word DUCK has the fea-
tures FLIES and WEB-FOOTED. These features 
have low “substitutability” for the word DUCK, 
and therefore would likely not appear in the list 
of neighbors in a HAL-like word space. 
 

Original 
HAL 

Average 
Precision 

Std. Dev of 
Precision 

10 best 0.018 0.039 
20 best 0.013 0.022 
30 best 0.014 0.019 
   
Optimized 
HAL 

Average 
Precision 

Std. Dev of 
Precision 

10 best 0.018 0.039 
20 best 0.016 0.023 
30 best 0.012 0.019 

Table 7: Precision of lexical feature generation 
for 44 concrete nouns. 
 

3 Conclusion 

Using a HAL-like word space model, we at-
tempted to algorithmically cluster English nouns 
and verbs, given pre-defined semantic categories. 
Our model performed well on the Ab-
stract/Concrete Noun Discrimination task, but 

poorly on the Noun Clustering and Verb 
Clustering tasks. It is unclear to us why there was 
large variability in the performance of our model 
on these tasks, and why it performs relatively 
well on the Abstract/Concrete noun discrimina-
tion task.  

We also used out word space model to on 
the more open-ended tasks of generating features 
for concrete nouns, but found that our model 
could did not produce many feature names in the 
list of word space neighbors. This is not surpris-
ing given the nature of the model, since features 
are not often substitutable for the concept with 
which they are associated. 

These results show the strengths and weak-
nesses our HAL-like models. They also illumi-
nate the pathway to future improvements of this 
type of model. We see two potential avenues for 
progress: changes to the core model and change 
to the usage of the model. 

In terms of the core model, we used model 
parameters that were optimized to produce high 
correlations with particular behavioral measures: 
lexical decision reaction time and semantic deci-
sion reaction time. There might be a very differ-
ent set of model parameters that would be the 
optimal ones for semantic clustering. One 
straightforward way of testing this would be to 
test many model parameter combinations and 
find which one produced the highest scores on 
the current clustering task set. There is even a 
possibility that the parameter settings that create 
the best clustering for nouns would be very dif-
ferent from those that perform best for verbs, and 
these settings my lower the score on the Ab-
stract/Concrete Discrimination task. A true lack 
of generalization of the model may be an indica-
tor of the underlying psychological complexity 
of lexical semantic organization. 

Other changes could be made to the core 
model, including the algorithms used in HAL, 
such as the distance metric, and methods of vec-
tor normalization. Rohde et al (submitted) pro-
pose changes to normalization methods and 
metric calculations that greatly improve per-
formance of a HAL-like model on many differ-
ent semantic tasks. These types of modifications 
to the HAL model can influence the content of 
the word space vectors, but they do not change 
the fact that the HAL model has limitations in 
what kind of measures it can produce. The core 
capability of the HAL model is the construction 
of co-occurrence vectors, the calculation of inter-
word distance measures, the calculation of word 
space neighborhoods, and the measurement of 
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the density of these neighborhoods (Shaoul & 
Westbury, 2006). To be able to perform the fea-
ture generation task, the HAL model will need to 
be used in a novel way. 

How to change the usage of the HAL 
model? One proposal is to look at the neighbors 
of a word’s neighbors. A “small world” network 
model might help a graph-based clustering algo-
rithm find greater degree of similarity for the 
neighbors of a word like DUCK when compared 
to the neighbors of a word like OWL. With the 
addition of the neighbor’s neighbors, the catego-
rization might converge more quickly and accu-
rately that with the raw vectors alone.  

Another possibility is to use the category 
names as anchors, and find the distance between 
the targets and these anchors to test for category 
membership. These types of alternative uses of 
the information in the HAL model should be in-
formed by current psychological theory where 
possible. They may also provide new perspec-
tives on current debates about language and lexi-
cal memory. We hope to continue this kind of 
research in the future and make contributions to 
the understanding of lexical semantics and word 
space models. 

Appendix 
 
All the vectors that were used in our clustering 
analyses and the clustering solutions are avail-
able for download at:  

www.ualberta.ca/~westburylab/ESSLLI2008 

References 
Bullinaria, J., & Levy, J. (2007). Extracting semantic 

representations from word co-occurrence statistics: 
A computational study. Behavior Research Meth-
ods, 39, 510–52 

Burgess, C., & Lund, K. (1997). Modelling parsing 
constraints with high-dimensional context space. 
Language & Cognitive Processes, 12, 177–21 

Burgess, C., & Lund, K. (2000). The dynamics of 
meaning in memory. In E. Dietrich & A. B. Mark-
man (Eds.), Cognitive dynamics: Conceptual and 
representational change in humans and machines 
(pp. 117–156). Mahwah, NJ, US: Lawrence Erl-
baum Associates. 

Fellbaum, C. (1998) WordNet: An Electronic Lexical 
Database. MIT Press. MA, USA 

Lund, K., & Burgess, C. (1996). Producing high-
dimensional semantic spaces from lexical co-
occurrence. Behavior Research Methods, Instru-
mentation, and Computers, 28, 203–20 

McRae, K., Cree, G.S., Seidenberg, M.S., and 
McNorgan C. (2005). Semantic feature production 

norms for a large set of living and nonliving things. 
Behavioral Research Methods, Instruments, and 
Computers, 37, 547–559. 

Rohde, D. L. T., Gonnerman, L., and Plaut, D. C. 
(submitted). An improved model of semantic simi-
larity based on lexical co-occurrence. Cognitive 
Science. 

Shaoul, C., & Westbury, C. (2006). Word frequency 
effects in high-dimensional co-occurrence models: 
A new approach. Behavior Research Methods, 38, 
190-19 

 Shaoul, C., & Westbury, C. (2007). A usenet corpus 
(2005-2008) Edmonton, AB: University of Alberta. 
Downloaded from http://www.psych.ualberta.ca/ 
westbury-
lab/downloads/usenetcorpus.download.html.  

Shaoul, C., & Westbury, C. (In prep). Using a high 
dimensional model to predict Lexical Decision and 
Semantic Decision Reaction Time. 

Wilson, M.D. (1988). The MRC Psycholinguistic 
Database: Machine Readable Dictionary, Version 
2. Behavioural Research Methods, Instruments and 
Computers, 20(1), 6-11. 

Zhao, Y. & Karypis, G (2001). Criterion functions for 
document clustering: Experiments and analysis. 
Technical Report TR #01–40, Department of 
Computer Science, University of Minnesota, Min-
neapolis, MN. Available on the WWW at 
http://cs.umn.edu/ ̃karypis/publications. 

Zhao, Y. & Karypis, G. (2002). Evaluation of hierar-
chical clustering algorithms for document datasets. 
In Proceedings of the eleventh international Con-
ference on Information and Knowledge Manage-
ment. ACM, NY, NY, USA. 

46



A Comparison of Bag of Words and Syntax-based Approaches forWord
Categorization

Tim Van de Cruys
Humanities Computing
University of Groningen

t.van.de.cruys@rug.nl

Abstract

This paper will examine the aptness of various
word space models for the task of word cat-
egorization, as defined by the lexical seman-
tics workshop atESSLLI 2008. Three word
clustering tasks will be examined: concrete
noun categorization, concrete/abstract noun
discrimination, and verb categorization. The
main focus will be on the difference between
bag of words models and syntax-based mod-
els. Both approaches will be evaluated with
regard to the three tasks, and differences be-
tween the clustering solutions will be pointed
out.

1 Introduction

For quite some years now, word space models are a
popular tool for the automatic acquisition of seman-
tics from text. In word space models, a particular
word is defined by the context surrounding it. By
defining a particular word (i.e. its context features)
in a vector space, the word can be compared to other
words, and similarity can be calculated.

With regard to the context used, two basic ap-
proaches exist. One approach makes use of ‘bag of
words’ co-occurrence data; in this approach, a cer-
tain window around a word is used for gathering co-
occurrence information. The window may either be
a fixed number of words, or the paragraph or docu-
ment that a word appears in. Thus, words are consid-
ered similar if they appear in similar windows (doc-
uments). One of the dominant methods using this
method isLATENT SEMANTIC ANALYSIS (LSA).

The second approach uses a more fine grained
distributional model, focusing on the syntactic re-
lations that words appear with. Typically, a large
text corpus is parsed, and dependency triples are ex-
tracted.1 Words are considered similar if they appear
with similar syntactic relations. Note that the former
approach does not need any kind of linguistic anno-
tation, whereas for the latter, some form of syntactic
annotation is needed.

The results yielded by both approaches are typi-
cally quite different in nature: the former approach
typically puts its finger on a broad, thematic kind of
similarity, while the latter approach typically grasps
a tighter, synonym-like similarity. Example (1)
shows the difference between both approaches; for
each approach, the top ten most similar nouns to the
nounmuziek‘music’ are given. In (a), the window-
based approach is used, while (b) uses the syntax-
based approach. (a) shows indeed more thematic
similarity, whereas (b) shows tighter similarity.

(1) a. muziek ‘music’: gitaar ‘guitar’, jazz ‘jazz’,
cd ‘cd’, rock ‘rock’, bas ‘bass’, song ‘song’,
muzikant‘musician’, musicus‘musician’, drum
‘drum’, slagwerker‘drummer’

b. muziek ‘music’: dans‘dance’,kunst‘art’, klank
‘sound’, liedje ‘song’, geluid‘sound’,poëzie‘po-
etry’, literatuur ‘literature’, popmuziek‘pop mu-
sic’, lied ‘song’, melodie‘melody’

This paper will provide results for the catego-
rization tasks that have been defined for the lexi-
cal semantics workshop ‘Bridging the gap between

1e.g. dependency relations that qualifyapplemight be ‘ob-
ject ofeat’ and ‘adjectivered’. This gives us dependency triples
like < apple, obj, eat >.
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semantic theory and computational simulations’ at
ESSLLI 2008.2 The workshop provides three differ-
ent categorization (clustering) tasks:

• concrete noun categorization

• abstract/concrete noun discrimination:

• verb categorization

The three tasks will be carried out according to
the two approaches described above. In the evalu-
ation of the various tasks, we will try to determine
whether the difference between the ‘bag of words’
approach and the syntactic approach is responsible
for different clustering outputs.

2 Methodology

2.1 General remarks

The research has been carried out for Dutch, mainly
because this enabled us to use the Alpino parser
(van Noord, 2006), a dependency parser for Dutch.
The test sets that were provided have been translated
into Dutch by three translators, and – when multi-
ple translations were found – the majority translation
has been taken as the final one. The frequencies of
the Dutch words are by and large comparable to the
frequencies of their English counterparts. High fre-
quent words (dog, cat) and low-frequent ones (snail,
turtle) in one language generally have the same or-
der of magnitude in the other, although exceptions
occur (eagle). Table 1 compares the frequencies of
words of theanimal class in the British National
Corpus and the Twente Nieuws Corpus. The results
for the other words are similar.

All data has been extracted from theTWENTE

NIEUWS CORPUS(Ordelman, 2002), a corpus of±
500M words of Dutch newspaper text. The cor-
pus is consistently divided into paragraphs, consti-
tuting our window for the bag of words approach.
The whole corpus has been parsed with the Alpino
parser, and dependency triples have been extracted.

The clustering solutions have been computed with
the clustering programCLUTO (Karypis, 2003), us-
ing the ‘rbr’ option as clustering algorithm (this is an
algorithm that repeatedly bisects the matrix until the

2http://wordspace.collocations.de/doku.
php/esslli:start

desired numbers of clusters is reached; application
of this algorithm was prescribed by the workshop
task description).

2.2 Bag of words

For the bag of words approach, matrices have been
constructed that contain co-occurrence frequencies
of nouns (verbs) together with the most frequent
words of the corpus in a context window. As a
context window, we selected the paragraphs of the
newspaper. The resulting matrix has been adapted
with POINTWISE MUTUAL INFORMATION (PMI)
(Church and Hanks, 1990).

The final test matrix has been constructed in two
different ways:

1. a small matrix is extracted, containing only the
frequencies of the words in the test set. The
output is a matrix of e.g. 45 nouns by 2K co-
occurring words;

2. a large matrix is extracted, containing the fre-
quencies of a large number of words (including
the test words). The output is a matrix of e.g.
10K nouns by 2K co-occurring words. After
applyingPMI, the test words are extracted from
the large matrix.

The choice of method has a considerable impact
on the final matrix, as the results of thePMI com-
putation are rather different. In the first case, only
the test words are taken into account to normalize
the features; in the second case, the features are nor-
malized with regard to a large set of words in the
corpus. The difference will lead to different cluster-
ing results. The first method will be coinedLOCAL

PMI (LOCPMI), the secondGLOBAL PMI (GLOPMI).
We have experimented with two kinds of dimen-

sionality reduction:LATENT SEMANTIC ANALYSIS

(LSA, Landauer et al. (1997; 1998)), in which a
SINGULAR VALUE DECOMPOSITION(SVD) is com-
puted of the original co-occurrence frequency ma-
trix3, and NON-NEGATIVE MATRIX FACTORIZA -
TION (Lee and Seung, 2000), in which a factoriza-
tion of the original frequency is calculated by min-
imizing Kullback-Leibler divergence between the

3The original method ofLSA uses the frequency of words
by documents as input; we used frequencies of words by co-
occurring words in a context window.
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NOUN.ENG FREQ.BNC LOGFREQ.BNC NOUN.DU FREQ.TWNC LOGFREQ.TWNC

chicken 2579 7.86 kip 7663 8.94
eagle 1793 7.49 arend 113 4.72
duck 2094 7.65 eend 3245 8.08
swan 1431 7.27 zwaan 1092 7.00
owl 1648 7.41 uil 559 6.33
penguin 600 6.40 pinguı̈n 146 4.98
peacock 578 6.36 pauw 221 5.40
dog 12536 9.44 hond 17651 9.77
elephant 1508 7.32 olifant 2708 7.90
cow 2611 7.87 koe 9976 9.21
cat 5540 8.62 kat 5822 8.67
lion 2155 7.68 leeuw 2055 7.63
pig 2508 7.83 varken 5817 8.67
snail 543 6.30 slak 712 6.56
turtle 447 6.10 schildpad 498 6.21

Table 1: The frequencies of English words in theBNC vs. the frequencies of Dutch words in theTWNC

original matrix and its factorization according to the
constraint that all values have to be non-negative.
But since the dimensionality reduction models did
not bring about any improvement over the simple
bag of word models, dimensionality reduction mod-
els have not been included in the evaluation.

2.3 Syntax-based

The syntax-based approach makes use of matrices
that contain the co-occurrence frequencies of nouns
(verbs) by their dependencies. Typically, the fea-
ture space with the syntax-based method is much
larger than with simple co-occurrences, but also
much sparser. The resulting matrix is again adapted
with PMI.

Again, the matrix can be constructed in two dif-
ferent ways:

1. a small matrix, containing only the frequen-
cies of the test words by the dependencies with
which the word occurs. The output is a matrix
of e.g. 45 nouns by 100K dependencies;

2. a large matrix, containing the frequencies of
a large number of words (including the test
words). The output is e.g. a matrix of 10K
nouns by 100K dependencies. The final test
words are extracted afterwards.

The choice of method again has a large impact on
the final matrix with regard toPMI.

2.4 Evaluation measures

There are two external evaluation measures avail-
able in CLUTO – ENTROPY and PURITY – which
have been chosen as evaluation measures for the
workshop task. Entropy measures how the various
semantic classes are distributed within each cluster,
and purity measures the extent to which each cluster
contains words from primarily one class (Zhao and
Karypis, 2001). Both measures run from 0 to 1. Low
entropy measures and high purity values indicate a
successful clustering.

3 Results & Evaluation

3.1 Concrete noun categorization

3.1.1 Introduction

In the concrete noun categorization task, the goal
is to cluster 44 concrete nouns in a number of classes
on various levels of generality:

• 2-way clustering: cluster nouns in two top
classesnatural andartefact;

• 3-way clustering: cluster nouns in three classes
animal, vegetableandartefact;
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• 6-way clustering: cluster nouns in six classes
bird, groundAnimal, fruitTree, green, tool and
vehicle.

In the next sections, we will evaluate how bag of
words models and syntactic models are coping with
this clustering task, and compare both methods.

3.1.2 Bag of words

Table 2 gives the clustering results of the bag of
words methods for different clustering sizes.

method n-way entropy purity

LOCPMI 2 .930 .614
3 .489 .750
6 .339 .636

GLOPMI 2 .983 .545
3 .539 .705
6 .334 .682

Table 2: A comparison of different clustering results for
concrete noun categorization — bag of words approach

None of the bag of words models is particularly
good at noun categorization: theLOCPMI and GL-
OPMI have similar results. The results do show that
bag of word models are better in categorizing on a
more specific level: the more specific the clustering,
the better the scores are.

Figure 1 shows the confusion matrix for theGL-
OPMI 6-way clustering.

cluster bird grou frui gree tool vehi

1 0 0 0 0 1 2
2 1 0 4 5 2 0
3 0 0 0 0 0 5
4 0 0 0 0 3 0
5 6 8 0 0 0 0
6 0 0 0 0 7 0

Figure 1: Confusion matrix

The clusters found by the algorithm are still quite
sensible; cluster 1 for example looks like this:

• aardappel ‘potatoe’, ananas‘pineapple’, ba-
naan ‘banana’,champignon‘mushroom’,kers
‘cherry’, kip ‘chicken’, kom ‘bowl’, lepel

‘spoon’, mäıs ‘corn’, peer ‘pear’, sla ‘lettuce’
ui ‘oignon’

Clearly, the algorithm has found a food-related
cluster, with fruits, vegetables, a meat term
(‘chicken’) and kitchen tools (‘bowl’, ‘spoon’).

The two- and three-way clusterings of the bag of
words models are less sensible.

3.1.3 Syntax-based

Table 3 gives the clustering results for the syntax-
based algorithms for different clustering sizes.

method n-way entropy purity

LOCPMI 2 .939 .636
3 .344 .818
6 .118 .886

GLOPMI 2 .000 1.000
3 .000 1.000
6 .173 .841

Table 3: A comparison of different clustering results for
concrete noun categorization — syntactic approach

LOCPMI scores the best result with regard to the
most specific (6-way) clustering, but only slightly
better thanGLOPMI. When the clustering task be-
comes more abstract,GLOPMI clearly outperforms
the local model: the 2-way and 3-way clusterings
are optimal in the global model, whereas the local
models score worse results with increasing abstract-
ness.

Figure 2 shows the confusion matrix for the best-
performing 6-way clustering (LOCPMI). The results
of the global model are quite similar.

cluster bird grou frui gree tool vehi

1 0 0 4 5 0 0
2 0 0 0 0 7 0
3 6 0 0 0 0 0
4 0 0 0 0 0 7
5 0 0 0 0 6 0
6 1 8 0 0 0 0

Figure 2: Confusion matrix

Upon examining the results, the decisions made
by the algorithm look quite reasonable:
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• One bird (‘chicken’) is classified asgrounAni-
mal;

• fruits and vegetables are assigned to one single
cluster;

• thetoolsclass is split up into two different clus-
ters, so that a division is made between ‘active’
and ‘passive’ tools:

– beitel ‘chisel’, hamer ‘hammer’, mes
‘knife’, pen ‘pen’, potlood ‘pencil’,
schaar ‘scissors’, schroevendraaier
‘screwdriver’;

– beker ‘cup’, fles ‘bottle’, ketel ‘kettle’,
kom, ‘bowl’, lepel ‘spoon’, telefoon‘tele-
phone’.

It is interesting to note that the difference between
fruit and vegetables nonetheless is present in the
data. When clustering the words from the subsets
fruitTree andgreeninto two classes, they are prop-
erly split up:

• kers ‘cherry’, banaan ‘banana’, peer ‘pear’,
ananas‘pineapple’;

• champignon‘mushroom’,mäıs ‘corn’, sla ‘let-
tuce’,aardappel‘potatoe’, ui ‘oignon’.

3.1.4 Comparison of both approaches

Globally, the syntax-based approach seems more
apt for concrete noun clustering. Both approaches
have similar results for the most specific classifi-
cation (6-way clustering), but the syntax-based ap-
proach performs a lot better on a more abstract
level. The conclusion might be that the bag of
words approach is able to cluster nouns into ‘top-
ics’ (cfr. the cluster containing words that relate
to the topic ‘food’), but has difficulties generalizing
beyond these topics. The syntax-based approach,
on the other hand, is able to generalize beyond the
topics, discovering features such as ‘agentness’ and
‘naturalness’, allowing the words to be clustered in
more general, top-level categories.

3.2 Abstract/Concrete Noun Discrimination

3.2.1 Introduction

The evaluation of algorithms discriminating be-
tween abstract and concrete nouns consists of three
parts:

• In the first part, 30 nouns (15 with high con-
creteness value and 15 with low concreteness
value) are clustered in two clusters,HI andLO;

• in the second part, 10 nouns with average con-
creteness value are added to the two-way clus-
tering, to see whether they end up in theHI or
theLO cluster;

• in the third part, a three-way clustering of the
40 nouns (15HI, 10 ME, 15 LO) is performed.

In the next sections, both bag of word models and
syntax-based models are again evaluated with regard
to these parts.

3.2.2 Bag of words

Table 4 gives the clustering results of the bag of
words methods for different clustering sizes.

method part entropy purity

LOCPMI part 1 .470 .867
part 3 .505 .750

GLOPMI part 1 .000 1.000
part 3 .605 .700

Table 4: A comparison of different clustering results for
abstract/concrete noun discrimination — bag of words
approach

The GLOPMI model outperforms theLOCPMI in
the discrimination of abstract and concrete nouns
(part 1). TheLOCPMI scores a bit better in discrimi-
nating theME nouns (part 3).

Interestingly enough, the result of part 2 is for
bothLOCPMI andGLOPMI the same:

• geur ‘smell’, vervuiling ‘pollution’ and weer
‘weather’ are assigned to theHI cluster;

• uitnodiging ‘invitation’, vorm ‘shape’, rijk
‘empire’, fundament‘foundation’, ruzie‘fight’,
pijn ‘ache’ andceremonie‘ceremony’ are as-
signed to theLO cluster.

3.2.3 Syntax-based

Table 5 gives the clustering results of the syntax-
based methods for different clustering sizes.

The localPMI method gets the best results: The
2-way clustering as well as the 3-way clustering are
accurately carried out.
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method part entropy purity

LOCPMI part 1 .000 1.000
part 3 .000 1.000

GLOPMI part 1 .000 1.000
part 3 .367 .750

Table 5: A comparison of different clustering results
for abstract/concrete noun discrimination — syntactic ap-
proach

Part 2 gives different results for theLOCPMI and
GLOPMI method:

• The local method classifiesrijk ‘empire’ asHI

and the other 9 words asLO;

• the global method classifiesweer ‘weather’,
uitnodiging‘invitation’, ceremonie‘ceremony’
asHI and the other 7 words asLO.

3.2.4 Comparison of both approaches

The syntax-based approach outperforms the bag
of words approach, although the bag of words ap-
proach is also able to make an accurate distinction
between concrete and abstract nouns with theGL-
OPMI model. Again, the explanation might be that
the syntax-based method is able to discover general
features of the nouns more easily. Nevertheless, the
results show that discrimination between concrete
and abstract nouns is possible with the bag of words
approach as well as the syntax-based approach.

3.3 Verb categorization

3.3.1 Introduction

The goal of the verb categorization task is to clus-
ter 45 verbs into a number of classes, both on a more
general and a more specific level:

• 5-way clustering: cluster the verbs into 5 more
general verb classes:cognition, motion, body,
exchangeandchangeState;

• 9-way clustering: cluster the verbs into 9
fine-grained verb classes: communication,
mentalState, motionManner, motionDirection,
changeLocation, bodySense, bodyAction, ex-
changeandchangeState.

3.3.2 Bag of words

Table 6 gives the clustering results of the bag of
words methods for different clustering sizes.

method n-way entropy purity

LOCPMI 5 .478 .622
9 .419 .578

GLOPMI 5 .463 .600
9 .442 .556

Table 6: A comparison of different clustering results for
verb categorization — bag of words approach

There are no large differences between the local
and globalPMI method: both methods score about
the same. The more specific classification (9-way
clustering) scores slightly better, but the differences
are small.

Figure 3 shows the confusion matrix for the best-
performing 5-way clustering (GLOPMI). The results
of the local model are again similar.

cluster cogn moti body exch chan

1 0 0 1 5 1
2 5 1 4 0 0
3 5 2 0 0 0
4 0 7 5 0 0
5 0 5 0 0 4

Figure 3: Confusion matrix

The first cluster mainly contains exchange verbs.
The second cluster is a combination of cognition
and body verbs. It is interesting to note that the
body verbs with a particular emotional connotation
(‘cry’, ‘smile’, also ‘listen’ and ‘feel’) end up in a
cluster together with the cognition verbs. The body
verbs without an emotional connotation (‘breathe’,
‘drink’, ‘eat’, also ‘smell’) end up in a cluster to-
gether with (body) movements (cluster 4). Cluster 3
seems a business-related cluster, given the fact that
bestuuris an ambiguous verb in Dutch, meaning ‘to
drive’ as well as ‘to manage’.

The complete clustering is given below:

• betaal ‘pay’, herstel ‘repair’, koop ‘buy’, leen
‘lend’ , merk ‘notice’, verkoop‘sell’, verwerf
‘acquire’
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• ga weg ‘leave’, herinner ‘remember’, huil
‘cry’, lach ‘smile’, lees‘read’, luister ‘listen’,
praat ‘talk’, vergeet‘forget’, voel ‘feel’, weet
‘know’

• bestuur ‘drive’, controleer ‘check’, evalueer
‘evaluate’, spreek ‘speak’, suggereer ‘sug-
gest’,verzoek‘request’,zend‘send’

• adem‘breathe’,beweeg‘move’, draag ‘carry’,
drink ‘drink’, duw ‘push’, eet‘eat’, kijk ‘look’,
loop ‘run’, ruik ‘smell’, sta op ‘rise’, trek
‘pull’, wandel‘walk’

• breek ‘break’ , dood ‘kill’ , ga binnen ‘en-
ter’, kom aan ‘arrive’, rij ‘ride’, sterf ‘die’, val
‘fall’, verniel ‘destroy’, vlieg ‘fly’

3.3.3 Syntax-based

Table 7 gives the clustering results of the syntax-
based methods for different clustering sizes.

method n-way entropy purity

LOCPMI 5 .516 .644
9 .432 .489

GLOPMI 5 .464 .667
9 .408 .556

Table 7: A comparison of different clustering results for
verb categorization — syntactic approach

The globalPMI approach yields slightly better re-
sults than the local one, but differences are again
small. The more specific clustering is slightly bet-
ter than the more general one.

Figure 4 shows the confusion matrix for the best-
performing 5-way clustering (GLOPMI).

cluster cogn moti body exch chan

1 0 8 1 0 0
2 1 2 0 5 1
3 7 0 3 0 0
4 2 2 0 0 4
5 0 3 6 0 0

Figure 4: Confusion matrix

The first cluster contains many motion verbs; the
second one has many exchange verbs, and the third

one contains many cognition verbs. The fourth
cluster contains mainly change verbs, but also non-
related cognition and motion verbs, and the fifth one
contains mostly motion verbs.

The complete clustering is given below:

• beweeg‘move’, duw ‘push’, kijk ‘look’, loop
‘run’, rij ‘ride’, trek ‘pull’, vlieg ‘fly’, wandel
‘walk’, zend‘send’

• bestuur ‘drive’, betaal ‘pay’, controleer
‘check’, draag ‘carry’, koop‘buy’, leen‘lend’,
verkoop ‘sell’, verniel ‘destroy’, verwerf ‘ac-
quire’

• adem ‘breathe’, herinner ‘remember’, lees
‘read’, merk ‘notice’, praat ‘talk’, spreek
‘speak’, sugerreer‘suggest’, vergeet‘forget’,
voel ‘feel’, weet‘know’

• breek‘break’, dood ‘kill’, evalueer‘evaluate’,
herstel ‘repair’, kom aan ‘arrive’, sterf ‘die’,
val ‘fall’, verzoek‘request’

• drink ‘drink’, eet ‘eat’, ga binnen ‘enter’,
ga weg ‘leave’, huil ‘cry’, lach ‘smile’, luister
‘listen’, ruik ‘smell’, sta op ‘rise’

3.3.4 Comparison of both approaches

The performance of the bag of words model and
the syntax-based model is similar; neither of both re-
ally outperforms the other. The more specific clus-
tering solutions are slightly better than the general
ones.

There is considerable difference between the clus-
tering solutions found by the bag of words approach
and the syntax-based approach. Again, this might
be due to the kind of similarity found by the mod-
els. The bag of words approach seems to be in-
fluenced by topics again (the business related clus-
ter), whereas the syntax-based model might be influ-
enced by more general features (‘motion’ in the first
cluster). But given the evaluation results of the verb
clustering, these are very tentative conclusions.

4 Conclusions & Future Work

The evaluation results presented in the former sec-
tion indicate that semantic space models are fruitful
models for the induction of actual semantic classes.
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Especially the noun categorizations – the concrete
noun categorization and the concrete/abstract noun
discrimination task – perform very well. Verb cat-
egorization is a more difficult task for the semantic
models presented in this paper: the results are worse
than those for the noun categorizations.

In general, the syntax-based approach yields bet-
ter results than the bag of words approach. This
might be due to the fact that bag of words models get
at a kind of topical semantic similarity, whereas the
syntax-based model might be able to extract more
abstract properties of the words. These are, how-
ever, tentative conclusions for a tendency present in
the data. More research is needed to found this state-
ment.

In most cases, a global method of calculationPMI

yields better results. If the algorithm is able to nor-
malize the word vectors according to the distribu-
tions of a large number of words in the data, the
clustering solution is generally better. There are,
however, some exceptions.

In the future, other semantic models need to be in-
vestigated for the categorization of verbs. Including
subcategorization information in the models might
be beneficial for the clustering of verbs, as well as
generalizing among the feature space of the verb’s
dependencies (e.g. by using semantic noun clusters
instead of nouns).

One last issue for future work is the comparison
between small clustering tasks like the ones pre-
sented above, and the clustering solutions of a large
clustering framework, in which a large number of
words are captured.

Nevertheless, the results of the present evaluation
tasks indicate that word space models are a suitable
tool for the induction of semantic classes.
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Abstract

Distributional approximations to lexical se-
mantics are very useful not only in helping
the creation of lexical semantic resources (Kil-
gariff et al., 2004; Snow et al., 2006), but
also when directly applied in tasks that can
benefit from large-coverage semantic knowl-
edge such as coreference resolution (Poesio
et al., 1998; Gasperin and Vieira, 2004; Ver-
sley, 2007), word sense disambiguation (Mc-
Carthy et al., 2004) or semantical role labeling
(Gordon and Swanson, 2007).

We present a model that is built from Web-
based corpora using both shallow patterns
for grammatical and semantic relations and a
window-based approach, using singular value
decomposition to decorrelate the feature space
which is otherwise too heavily influenced by
the skewed topic distribution of Web corpora.

1 Introduction

It is well-established that human learning of lexical
items beyond a certain point is driven by consider-
ing the contexts in which a word occurs, and it has
been confirmed by McDonald and Ramscar (2001)
that few occurrences of a word in informative con-
texts suffice to influence similarity judgements for
marginally known words.

Computational models of word semantics based
on this assumption are not only attractive for psy-
chological modelling of language, but also for the
purposes of automatic text processing, especially
for applications where manual ontology construc-
tion would be infeasible or overly expensive, or to
aid manual construction of lexical resources (cf. Kil-
gariff et al. 2004).

A common approach (Philips, 1985; Hindle,
1990) is to represent the context a word appears
in by the words occurring in that context, weight-
ing more heavily the context elements that co-
occur more often than expected for random co-
occurrences.

It is possible to group the approaches to use col-
locate features into two main areas:

• relation-free methods aim to directly use vec-
tors of collocate words as a representation with-
out distinguishing the relation between the tar-
get word and its collocates. Thus, related terms
such as doctor, hospital and treatment which
share many collocates, would be assigned a
high similarity value.

• relation-based methods use collocate words to-
gether with grammatical relations, so that one
noun being a frequent subject and another be-
ing a frequent object of a given word would not
increase their similarity score – in the hospi-
tal example, a context like the doctor treats the
patient would not contribute to the similarity
value of doctor and patient.

Different methods of extracting word features will
pick up different aspects of the denoted concept,
from general topic, to sentiment, to ontologically
relevant features such as exterior appearance.

In the remainder of this paper, I will start from the
hypothesis that basing distributional similarity mea-
sures on context elements that are informative (in
the sense that they implicitly or explicitly reflect the
ontological principles of the targeted taxonomy) is
preferable, and, by extension, that explicitly using
syntactico-semantic relations yields better results.
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2 Experimental Setting

To be useful in real-world tasks, both the size of
the vocabulary and the size of the corpus should be
large enough, as smaller samples would not contain
enough contexts for many of the rarer words. This
precludes approaches that rely on large numbers of
search engine queries, such as the ones by Markert
and Nissim (2005), Almuhareb and Poesio (2005),
or Geleijnse and Korst (2006), as achieving signifi-
cant coverage would necessitate an order of magni-
tude more effort than the (already very significant)
weeks or months of running search engine queries
that are necessary for a smaller sample.

On the other hand, the time consumption of full
parsing means that approximate methods can be a
better fit for processing very large corpora: Curran
and Moens (2002) find that the rather large time that
full parsing takes (even with a fast parser such as
Lin’s (1998b) MiniPar) can be reduced by using a
reimplementation of Grefenstette’s (1992) Sextant
system for approximate parsing, which uses a chun-
ker and considers simple neighbourhood relation-
ships between chunks to extract compound, subject
and object relations. Since the Sextant reimplemen-
tation only uses chunks, it is much faster (by a factor
of 27), while the accuracy for the extracted relations
is rather close to that of full parsing; Curran also re-
marks that a simple window-based approach is even
faster and can still achieve good quality on large cor-
pora, even though it is inferior to the syntax-based
approaches.

In the following, we will explore the use of two
large, Web-based datasets, namely UK-WaC (Fer-
raresi, 2007), as well as Google’s n-gram database1

for unsupervised noun and verb clustering, evaluated
on the corresponding datasets proposed by the work-
shop organisers.

Besides a purely window-based approach, which
we will present in section 4, we will present an ap-
proach that uses shallow patterns to approximate
syntactic and semantic relationships, in section 3;
even though some of the relations need more pro-
cessing in different languages (most notably verb
arguments, which are nontrivial to identify in lan-
guages with free word order such as German or

1Thorsten Brants, Alex Franz (2006): Web 1T 5-gram Ver-
sion 1, LDC2006T13

Czech, or between compound parts in languages
with synthetic compounds), we can show that this
approach is not only computationally relatively in-
expensive but also yields high-quality clustering re-
sults for verb clustering, where current approaches
do not consider semantic relations at all.

2.1 Relational Features for Nouns

Most older approaches to distributional similarity
focus on syntactic relations, such as the compound
noun, adjective-noun, subject and object relations
that Grefenstette (1992) extract from his SEXTANT

shallow parser, or the larger set of relations that Lin
(1998a) extracts by full parsing.

Clustering words using such ontologically moti-
vated patterns has been used by Evans (2003), who
uses hypernymy patterns such as those popularised
by Hearst (1992) to cluster named entities, and by
Almuhareb and Poesio (2005), who use a pattern
inspired by Berland and Charniak’s (1999) to clus-
ter nouns by their attributes. Using pattern search
on the World Wide Web, Almuhareb and Poesio are
able to achieve very good results. Some researchers
such as Pantel et al. (2004) use supervised training
to learn patterns corresponding to a single relation;
going past single ontological relations, Baroni and
Lenci (2008) use supervised learning of surface pat-
terns corresponding to relations out of an inventory
of 20 relations.

For our experiments, we used a combination of
syntactic patterns targeting the same relations as
Grefenstette (1992), variants of the hypernymy and
meronymy-related patterns popularised by Hearst
(1992) and Berland and Charniak (1999), respec-
tively, as well as coordinate structures (X and/or Y );
in contrast to Cederberg and Widdows (2003), we
use second-order associations (regarding as similar
terms which are coordinated with the same feature
words) and do not see coordination as an indication
for similarity of the conjuncts.

2.2 Relational Features for Verbs

Clustering and classification of verbs in the litera-
ture McCarthy (2000); Schulte im Walde and Brew
(2002) often makes heavy use of information about
argument structure, which is hard to come by with-
out parsing; Stevenson and collaborators (Stevenson
and Merlo, 1999; Joanis et al., 2007) use shallower
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UK-Wac
relation entropy purity
nv 0.209 0.818
vn−1 0.244 0.750
jjn−1 0.205 0.773
nn 0.172 0.841
nn−1 0.218 0.795
cc:and 0.241 0.750
cc:and−1 0.210 0.750
cc:or 0.203 0.767
cc:or−1 0.200 0.795
Y’s X 0.566 0.475
Y’s X −1 0.336 0.725
X of Y 0.437 0.655
X of Y −1 0.291 0.750
Google n-grams
relation entropy purity
of the 0.516 0.579
of the−1 0.211 0.818
and other 0.237 0.744
and other−1 0.458 0.632
such as 0.335 0.692
such as−1 0.345 0.675

Table 1: Shallow patterns for nouns

features of which some do not necessitate parsed in-
put, but they concentrate on verbs from three classes
and it is not certain whether their features are infor-
mative enough for larger clustering tasks.

Schulte im Walde (2008) uses both grammatical
relations output by a full parser and and part-of-
speech classes co-occurring in a 20 word window
to cluster German verbs. Comparing her clustering
to gold standard classifications extracted from Ger-
maNet (a German wordnet) and German FrameNet
and another gold-standard using classes derived
from human associations. She found that the dif-
ferent gold standards preferred different classes of
grammatical relations: while GermaNet clustering
results were best using subjects of nontransitive verb
occurrences, FrameNet results were best when us-
ing adverbs, and the human association were best
matched using NP and PP dependents on verbs.

In addition to syntactic correlates such as those in-
vestigated by Schulte im Walde (2008), we use sev-
eral patterns targeted at more semantic relations.

Chklovski and Pantel (2004) extract 29,165 pairs
of transitive verbs that co-occur with the same sub-
ject and object role, using Lin and Pantel’s (2001)

DIRT (Discovery of Inference Rules from text) ap-
proach, and then classify the relation between these
verbs into several relations using Web patterns in-
dicating particular relations (similarity, strength,
antonymy, enablement, and succession.

Besides detecting conjunctions of verbs (allowing
other words in between, but requiring the part-of-
speech tags to match to exclude matches like “see
how scared I was and started to calm me”), and
capturing general within-sentence co-occurrence of
verbs, we also tried to capture discourse relations
more explicitly by limiting to certain discourse
markers, such as that, because, if, or while.

3 Clustering Results

To determine the weight for an association in the
vector calculated for a word, we use the pointwise
mutual information value:

mi+(w1, w2) = max
(

0, log
p(X = w1|Y = w2)

p(X = w1)

)
We then use the vectors of mi+ values for clustering
in CLUTO using repeated bisecting k-means with
cosine similarity.2

For the nouns, we use a the last noun before a verb
as an approximation of subjecthood (vn), the next
head noun as an approximation for direct objects
(nv), as well as adjective modifiers (jjn), and noun
compounds (nn) on UK-WaC using the provided
lemmas. Using Berland and Charniak’s patterns A
and B (Y ’s X , X of Y ) on UK-WaC, we found that
a surface string search (using Minnen et al.’s (2001)
morphological analyser to map word forms to their
lemmas) on the Google n-gram dataset gave supe-
rior results. We used the same surface string search
for Hearst’s X and other Ys and Ys such as X pat-
terns (restricting the “Ys” part to plural nouns to im-
prove the precision). As the Hearst-style patterns are
relatively rare, the greater quantity of data from the
Google n-grams outweighs the drawback of having
no part of speech tagging and only approximate lem-
matisation.

Both on UK-WaC and on Google’s n-gram
dataset, we find a stark asymmetry in the clusterings

2Note that the resulting clusters can vary depending on the
random initialisation, which means that re-running CLUTO
later can result in slightly better or worse clustering.
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UK-Wac
relation entropy purity
nv−1 0.398 0.556
vn 0.441 0.511
rv−1 0.342 0.622
vi 0.397 0.556
vv 0.423 0.533
vv−1 0.378 0.556
that 0.504 0.467
that−1 0.479 0.489
because 0.584 0.378
because−1 0.577 0.400
if 0.508 0.444
if−1 0.526 0.444
while 0.477 0.511
while−1 0.502 0.444
by Xing 0.488 0.489
by Xing−1 0.380 0.600
then 0.424 0.533
then−1 0.348 0.600
cc:and 0.278 0.711
cc:and−1 0.329 0.622
cc:or 0.253 0.733
cc:or−1 0.323 0.667

Table 2: Shallow patterns for verbs

of meronymy patterns, probably due to the fact that
parts or attributes provide useful information, but the
nouns in the evaluation set are not meaningful parts
of other objects.

Considering the verbs, we found that a preced-
ing adverb (rv) provided the most useful informa-
tion, but other patterns, such as subject-verb (nv),
and verb-object (vn), as well as using the following
preposition (vi) to approximate the distribution of
prepositional modifiers of the verb, give useful re-
sults, as much as the following verb (vv), which we
used for a very rough approximation of discourse re-
lations. Using verbs linked by subordinate conjunc-
tions such as if, that, or because, performs compara-
tively poorly, however.

A third group of patterns is inspired by the pat-
terns used by Chklovski and Pantel (2004) to ap-
proximate semantic relations between verbs, namely
enablement relations expressed with gerunds (link-
ing the previous verb with the gerund in sentences
such as “Peter altered the design by adding a green
button”), temporal succession by relating any verb
that is modified by the adverb then with its preced-

ing verb, and broad similarity by finding pairs of co-
ordinated verbs (i.e., having a coordination between
them and marked with the same part-of-speech tag).

Noun compounds for nouns and preceding ad-
verbs for verbs already give slightly better cluster-
ings than an approach simply considering words co-
occurring in a one-word window (see table 3), with
coordination and some of the semantic patterns also
yielding results on par with (for nouns) syntactic re-
lations.

4 Window-based approach with
decorrelation

As reported by Curran and Moens (2002), a sim-
ple cooccurrence-window-based approach, while in-
ferior to approaches based on full or shallow pars-
ing, is amenable to the treatment of much larger
data quantities than parsing-based approaches, and
indeed, some successful work such as Rapp (2003)
or Ravichandran et al. (2005) does not use syntactic
information at all.

In this section, we report the results of our
approach using window-based cooccurrence on
Google’s n-gram dataset, using different weight-
ing functions, window sizes, and number of fea-
ture words. As a way to minimize the way of un-
informative collocates, we simply excluded the 500
most frequent tokens for use as features, using the
next most frequent N words (for N in 8k, 24k, 64k,
512k).

Besides the positive mutual information measure
introduced earlier, we tried out a simple logarithmic
weighting function:

Log(w1, w2) = log(1 + C(w1, w2))

(where C(w1, w2) is the raw count for w1 and w2 co-
occurring in a window), and the entropy-weighted
variant used by Rapp (2003):

LogEnt(w1, w2) = log(1+C(w1, w2))·H(X|Y =w2)

This weighting function emphasizes features (i.e.,
values for w2) which co-occur with many different
target words.

Generally, we found that the window-based ap-
proach gave the best results with mutual informa-
tion weighting (with clustering entropy values for
verbs between 0.363, for using 8k features with a
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window size of 1 word around the target word, and
0.504, for using 512k features with a window size
of 4) than for the other methods (which yielded en-
tropy values between 0.532, for 64k features with a
window of 2 words and logarithmic weighting and
0.682, for 8k features with a window size of 4 words
and log-entropy weighting). This difference is sta-
tistically very significant (p < 0.0001 for a paired
t-test between mi+ and Log over combinations of
three different window sizes and four different vo-
cabulary sizes).

To see if singular value decomposition would
improve the clustering results, we collected co-
occurrence vectors for the clustering target verbs in
addition to a collection of frequent verbs that we
obtained by taking the 2000 most frequent verbs or
nouns and eliminating verbs that correspond to very
frequent noun forms (e.g., to machine), as well as all
non-nouns (e.g. gonna), arriving at a set of 1965 tar-
get verbs, and 1413 target nouns, including the items
to be clustered. Even though using this larger data
set makes it more difficult to experiment with larger
feature spaces, we saw the possibility that just using
the words from the data set would create an artificial
difference from the transformation one would get us-
ing SVD in a more realistic setting and the transfor-
mation obtained in the experiment.

Using singular value decomposition for dimen-
sionality reduction only seems to have a very small
positive effect on results by itself: using mutual in-
formation weighting, we get from 0.436 to between
0.408 (for 100 dimensions), with other weight-
ing functions, dimensionality values, or vocabulary
sizes perform even worse.

This is in contrast to Rapp (2003), who achieved
vastly better results with SVD and log-entropy
weighting than without in his experiments using the
British National Corpus, and in parallel to the find-
ings of Baroni and Lenci (2008), who found that
Rapp’s results do not carry over to a web-based cor-
pus such as UK-WaC. Looking at table 4, we find it
plausible that the window-based approach tends to
pick up topic distinctions instead of semantic regu-
larities, which gives good results on a carefully bal-
anced corpus such as the BNC, but drowns other in-
formation when using a Web corpus with a (typi-

cally) rather biased topic distribution.3

Examining the singular vectors and values we get
out of the SVD results, we find that the first few
singular values are very large, and the correspond-
ing vectors seem to represent more a topic distinc-
tion than a semantic one. Parallel to this, the results
for the SVD of log-weighted data is plateauing after
the first few singular vectors are added, quite pos-
sibly due to the aforementioned drowning of infor-
mation by the topical distinctions. To relieve this,
we altered the size of singular values before clus-
tering, either by taking the square root of the sin-
gular values, which has the effect of attenuating the
effect of the singular vectors with large values, or
by setting all singular values to 1, creating a feature
space that has a spherically symmetric data distribu-
tion (usually referred to as decorrelation or whiten-
ing). As can be seen in figure 1, decorrelation yields
clearly superior results, even though they are clearly
much noisier, yielding wildly varying results with
the addition of just a few more dimensions. For the
decorrelated vectors, we find that depending on the
other parameters, positive mutual information is ei-
ther significantly better (p ≈ 0.0001 for paired t-test
over results for different dimension numbers with a
window size of 1 and 8k features), or insignificantly
worse (p ≈ 0.34 for a window size of 2 and 24k fea-
tures). We attribute the fact that the best clustering
result for the window-based approach was achieved
with log-entropy weighting to the fact that the log
and log-entropy based vectors are noisier and have
more variance (with respect to number of dimen-
sions), thus possibly yielding artifacts of overfitting
the small test data set; however, further research will
be necessary to confirm or deny this.

5 Results and Discussion

To get a better clustering than would be possible
using single features, we tried combinations of the
most promising single features by first normaliz-
ing the individual feature vectors by their Lp norm,

3Cf. table 4: besides the first two vectors, which seem to
identify frequency or content/navigation distinction, the second
and third singular vector are clearly influenced by dominant
web genres, with a pornography vs. regulatory documents axis
for v2 and a Unix/programming vs. newswire documents axis
for vector v3.
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Figure 1: Influence of decorrelation on clustering quality
(4-word window, 8k features)
Clustering Entropy in verb clustering vs. number of dimensions;

lower is better

noun clustering
relation entropy purity
win(1), 64k features, mi+ 0.221 0.818
best SVD+decorrelation 0.196 0.795
nn 0.172 0.841
cc:or−1 0.200 0.795
nv−1+jjn−1+and other, 7cl. 0.034 0.977
verb clustering
relation entropy purity
win(1), 1M features, mi+ 0.376 0.600
best SVD+decorrelation 0.280 0.711
rv−1 0.342 0.622
cc:or 0.253 0.733
cc:and+then−1 0.218 0.778

Table 3: Results overview

for p = 1.5.4 We then concatenate the normal-
ized vectors for the different relations to get the
vector used in clustering. As can be seen in table
3, the window-based approach comes near the best
results for a single syntax-based pattern, whereas
the semantically motivated patterns work better than
either syntactic patterns or the window-based ap-
proach. The best combinations we found involve
several of the semantically motivated patterns and,
in the case of nouns, also informative syntactic re-
lations the key seems to be that the different rela-

4The Lebesgue norm Lp =
(∑

|xi|p
)1/p

has the euclidean
norm L2 as a special case. For 1 ≤ p < 2, the Lp-norm is larger
than the euclidean norm if there are multiple non-zero values in
a vector; we think that normalizing by the L1.5 norm rather
than L2 norm has the beneficial effect of slightly emphasizing
relations with a smaller feature space.

tion focus on complementary aspects of the classes.
While the decorrelation-based approach is an im-
provement over a simpler window-based approach,
it does not seem possible to get much larger im-
provements; however, it should be said that both
window size and feature space were constrained due
to limitations of the Google n-gram data on one hand
and memory limitations on the other.

The resulting clusters generally seem rather sen-
sible, although they sometimes incorporate distinc-
tions that are slightly different from those in the gold
standard: in many clusterings, the class of birds and
ground animals are split according to a different pat-
tern, e.g. domestic and wild animals. Some other di-
visions are very consistently found in all clusterings:
Even in the best clustering, artifacts are split into
a container-like group including bottle, bowl, cup
and others, and a handle-like artifact group including
chisel, hammer, screwdriver, and fruits and vegeta-
bles are merged into one group unless the number of
clusters is increased to seven. chicken also seems to
be consistently misclustered as a cooking ingredient
rather than an animal.

For the verbs, the communication verbs are split
into the non-directive verbs read, speak and talk,
which are clustered with two mental state verbs
which are less action-focused, know and remember,
as well as listen, which the gold standard categorizes
as a body sense verb, whereas the more directive
communication verbs request and suggest are clus-
tered together with the more action-focused mental
state verbs check and evaluate, and repair, which
the gold standard groups with the state change verbs
(break, die, kill).

6 Outlook

We presented two approaches for using distribu-
tional statistics extracted from large Web-based cor-
pora to cluster nouns and verbs: one using shal-
low patterns to extract syntactically and semanti-
cally motivated relations, and the other using a small
window size together with Google’s n-gram dataset,
showing how manipulating the SVD-transformed
representation helps overcome problems that are due
to the skewed topic distribution of Web corpora. We
also showed how multiple relations can be combined
to arrive at high-quality clusterings that are better
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v0: λ = 56595 v1: λ = 2043.5 v2: λ = 2028.7 v3: λ = 1760.5
fundraise *0.0000 ensure *-9999.99 f–ck a–s configure src
exhilarate *Reserved determine *Verzeichnis suck p–ssy filter header
socialize *Advertise process *-99 *amend *pursuant *accuse *father
pend *Cart identify *-999 *comply *Agreement *murder *whom

Table 4: Singular vectors for the largest singular values (8k features, 4-word window)
Most important target verbs (left) and features (right), starred words have a negative weight in the vector. Some explicit words in

vector 2 have been redacted by replacing middle letters with a dash.

noun clusters
banana cat bottle1

cherry cow bowl1

pear dog kettle1

pineapple elephant pencil1

chisel1 lion pen1

hammer1 pig spoon1

knife1 snail telephone1

scissors1 turtle
screwdriver1

duck chicken boat
eagle corn car
owl lettuce helicopter
peacock mushroom motorcycle
penguin onion ship
swan potato truck

verb clusters
breathe drive carry
cry fly pull
drink ride push
eat run send

walk
acquire break feel
buy destroy look
lend die notice
pay kill smell
sell fall smile
check2 know2 arrive
evaluate2 remember2 enter
repair listen leave
request3 read3 rise
suggest3 speak3 move

talk3 forget

Table 5: Resulting verb and noun clusters
(Each cluster is one column. Italicized items are the only
members of their class in the cluster)

than would be possible using either single relations
or the best results achieved using the window-based
approach.

Several open questions remain for future research:
One would be the use of supervised learning ap-
proaches to perform automatic weighting and/or ac-
quisition of patterns. The other one would be a ques-
tion of how these approaches can be scaled up to
the size needed for real-world applications. While
the most important issue for the window-based ap-
proach is the use of Singular Value Decomposi-
tion, which scales poorly with both the size of the
dataset due to nonlinear growth of computation time
as well as memory consumption, the relation-based
approach may suffer from data sparsity when con-
sidering rare words, especially using the rarer se-
mantic relations; however, an approach like the ones
by Snow et al. (2006) or Baroni and Lenci (2008)
that is able to learn patterns from supervised train-
ing data may solve this problem at least partially.
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Abstract

In the past decade, Latent Semantic Analy-
sis (LSA) was used in many NLP approaches
with sometimes remarkable success. How-
ever, its abilities to express semantic related-
ness have been not yet systematically inves-
tigated. In this work, the semantic similar-
ity measures as provided by LSA (based on
a term-by-term matrix) are compared with hu-
man free associations. Three tasks have been
performed: (i)correlationwith human associ-
ation norms, (ii)discriminationof associated
and unassociated pairs and (iii)predictionof
the first human response. After a presentation
of the results a closer look is taken to the sta-
tistical behavior of the data, and a qualitative
(example-based) analysis of the LSA similar-
ity values is given as well.

1 Introduction

In its beginnings, Latent Semantic Analysis aimed at
improving the vector space model in information re-
trieval. Its abilities to enhance retrieval performance
were remarkable; results could be improved by up to
30%, compared to a standard vector space technique
(Dumais, 1995). It was further found that LSA was
able to retrieve documents that did not even share a
single word with the query but were rather semanti-
cally related.

This finding was the headstone for many subse-
quent researches. It was tried to apply the LSA
approach to other areas, such as automated evalu-
ation of student essays (Landauer et al., 1997) or
automated summarization (Wade-Stein and Kintsch,

2003). In (Landauer and Dumais, 1997), even an
LSA-based theory of knowledge acquisition was
presented.

Many researches have made claims on the ana-
lytic power of LSA. It is asserted that LSA does not
return superficial events such as simple contiguities,
but is able to describe semantic similarity between
two words (cf. Wade-Stein and Kintsch, 2003). The
extracted word relations are referred to as latent, hid-
den or deep (cf. Landauer et al. 1998), however,
only few articles address the nature of this deepness.

Some steps in this direction were taken by Lan-
dauer and Dumais (1997) and later by Rapp (2003).
In these works, LSA-based similarities were used to
solve a synonym test, taken from the TOEFL1. How-
ever, the results achieved can only be seen as a first
indication for the capacity of LSA.

We try to make a little step further. The main ob-
jective of this work is therefore not improvement,
but evaluation and a better understanding of the
method. The present investigation is carried out in
the framework of theLexical Semantics Workshop:
Bridging the gap between semantic theory and com-
putational simulationsat ESSLLI’082, which is de-
voted to discovering of the relationships between
word spaces computed by corpus-based distribu-
tional models and human semantic spaces. In this
paper, we concentrate on exploration of the correla-
tion between the LSA semantic similarity measures
and human free associations3.

1Test Of English as a Foreign Language
2http://wordspace.collocations.de/doku.php/esslli:start.
3Seehttp://wordspace.collocations.de/doku.php/

data:correlationwith free associationnorms.

63



The paper is structured as follows. In section 2
we briefly introduce the LSA method. We then (sec-
tion 3) give an overview on related work exploring
the semantic and associative capacities of LSA. In
section 4 we describe the workshop tasks on free as-
sociations and provide the results that we have ob-
tained. In section 5 we present a detailed quantita-
tive and qualitative analysis of the achieved results.
In the final section we draw conclusions and discuss
open issues.

2 Latent Semantic Analysis: Method

LSA is based on the vector space model from infor-
mation retrieval (Salton and McGill, 1983). Here,
a given corpus of text is first transformed into a
term×context matrixA, displaying the occurrences
of each word in each context. The decisive step in
the LSA process is then asingular value decompo-
sition (SVD) of the matrix which enables the map-
ping of this matrix to a subspace. The resulting
lower-dimensional matrix is the best reduced-rank
least-squares approximation of the original matrix.
According to the proponents of LSA this reduction
plays an important role for the uncovering of impor-
tant relations which are hidden (or ’latent’) in the
original matrix.

In its original form (cf. Deerwester et al. 1990),
LSA is based on a co-occurrence matrix of terms
in documents; such a matrix is normally extremely
sparse4, and it is obvious that this matrix grows with
the number of documents in the training corpus.
Moreover, the notion of document varies strongly
over different corpora: a document can be only a
paragraph, an article, a chapter or a whole book,
no hard criteria can be defined. Therefore, another
type of matrix can be used, as described by (Schütze,
1998) and (Cederberg and Widdows, 2003), which is
not based on occurrences of terms in documents but
on other co-occurring terms (term×term-matrix).
The two sets of terms need not be identical, one
can also define a (usually smaller) set ofindex terms
I = (i1, ..., im). The size of the matrix is then inde-
pendent of the size of the training data, so that much
larger corpora can be used for training.

After applying SVD, each word is represented as

4In (Wandmacher, 2005) a matrix was used that had less than
0.08% non-zero elements.

a vector ofk dimensions, and for every word pair
wi, wj of the vocabulary we can calculate a similar-
ity valuecos(wi, wj), based on thecosine between
their respective vectors.

Figure 1 summarizes the processing steps in-
volved in training an LSA-based semantic space.

cnm����cn1

������

������

������

������

�����c21

c1m���c12c11t1
t2

tn

...
...

...
...

...
...

im..............i1 i2

Text Text Text Text

Text Text Text Text

Text Text Text Text Text

Text Text Text Text Text 

Text Text Text Text Text

Text Text Text Text Text

Text Text Text Text Text

Text Text Text Text Text

Text Text Text Text Text

SVD

Co-occurrence matrix
Training corpus

Semantic space
(reduced matrix)

t1
t2

ti

tnα

Co-occurrence
window

Figure 1: Schematic overview on the generation of an
LSA-based semantic space

In the following we will apply this kind of
model, based on an SVD-reduced term-by-term co-
occurrence matrix, to the different tasks, and we will
compute term similarity by measuring the cosine of
term vectors in the reduced space.

3 Related Work

Considering the large number of works applying
LSA for various purposes, it is a surprising matter
of fact that only little research was done in order to
better understand the kind of relatedness that distri-
butional approaches like LSA are able to reflect.

In (Landauer and Dumais, 1997) a theory of
knowledge acquisition and representation is pre-
sented, assuming that the meaning induction mech-
anisms performed by LSA are very similar to those
of humans. As an example task, LSA is applied
to solve the TOEFL synonym test, and it could be
shown that the results of LSA are the same as those
of the average foreign student passing theTOEFL
(LSA: 64.4%; human participants: 64.5%). In
(Rapp, 2003), an LSA model, based on a term×term
matrix and trained on much more data, was able to
solve even 92.5% of the synonym questions.

In (Wandmacher, 2005) term relations (nearest
neighbors) generated by LSA as well as a first-order
co-occurrence approach are systematically analyzed
and compared. It could be shown that only a small
part of the relations are systematically related (e. g.
by hyponymy or synonymy), the largest part of the
nearest neighbors of a term were loose associations.
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While the error rate for LSA was lower than for the
first-order approach, no substantial differences be-
tween the results of the two methods could be deter-
mined. It could however be observed that a crucial
factor for the quality of the nearest neighbors is the
specificity of a term.

The correspondence of human association and
first-order co-occurrence was investigated in (Wet-
tler et al., 2005). Here, 100 stimulus words from
the Kent-Rosanoff word association test with associ-
ations selected from theEdinburgh Associative The-
saurus(cf. the following section) were predicted
with the help of associationist learning theory. This
theory states that the associative strength between
two eventsi andj increases by a constant fraction
of the maximally possible increment whenever these
two events cooccur. This idea was applied to the
coocurence of terms in the British National Corpus.
The achieved results appear to be very promising.
For 29 of the 100 stimulus words the model pro-
duced the primary associative response.

4 Tasks and Results

The main goal of our analysis was to find out to what
extent free associations can be explained and pre-
dicted by statistical similarity measures computed
by LSA. In order to address this issue, the workshop
organizers have proposed the three tasks described
below. Different training and test data sets contain-
ing association pairs were provided for each of the
three tasks5.

Free associationsare the first words that come to
the mind of a native speaker when he or she is pre-
sented a stimulus word. The degree of free associa-
tion between a stimulus (cue) and a response (target)
is quantified by the percentage of test subjects who
producedtargetwhen presented withcue.

4.1 Method

For training we used 108M words from two British
newspapers (The Times, The Guardian) of the years
1996 to 1998. Using theInfomap NLP toolkit6,
developed at Stanford University’s CSLI, we gen-
erated a term×term co-occurrence matrix of size

5The data sets are based on a database of English association
norms, the Edinburgh Associative Thesaurus (EAT). Cf. also:
http://www.eat.rl.ac.uk/.

6http://infomap-nlp.sourceforge.net/

80.000×3.000, closed-class words not occurring in
the test data were disregarded. The vocabulary
(|V | = 80.000) as well as the index terms (|I| =
3.000) were determined by corpus frequency, and
terms occurring less than 24 times in the corpus
were excluded from the vocabulary. We calcu-
lated several spaces for co-occurrence windows of
±5,±25,±50,±75 words, respectively; the win-
dow did not cross article boundaries. The results
presented in the following are obtained using the
±75-window space, if not mentioned otherwise.
The matrix was reduced by SVD to 300 dimen-
sions; term similarity was determined by measuring
the truncated cosine of the angle between the corre-
sponding term vectors. Since negative cosine values
can occur but are meaningless for similarity mea-
surements (i. e. terms having a negative similarity
value are not more dissimilar than those having a
value of 0), negative values are set to 0.

4.2 Discrimination

This task consists in discrimination between three
classes of association strengths:

• theFIRST set – strongly associated cue-target
pairs given by more than 50% of test subjects
as first responses,

• theHAPAXset – cue-target pairs that were pro-
duced by a single test subject,

• the RANDOMset – random combinations of
headwords from EAT that were never produced
as a cue-target pair.

For each of the cue–target pairs, excluding those
which contained terms not being present in our vo-
cabulary, we have computed LSA similarity val-
ues. We obtained results for 300 of the 301 sug-
gested pairs of the test data set, using a discrimina-
tion threshold of 0.23 betweenFIRST andHAPAX,
and a threshold of 0.02 for discrimination between
HAPAXandRANDOM, which showed to be optimal
for the training data set. The following table shows
the discrimination results for all classes considered7:

7HoRstands forHAPAXor RANDOM;
Accuracy = Right * 100 / (Right+Wrong).
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Right Wrong Accuracy
FIRST (th=0.23) 50 50 50%
HAPAX(th=0.02) 63 32 68%
RANDOM 68 17 78.2%
Total (F/H/R) 181 119 60.33%
HoR 189 11 94.5%
FIRST/HoR 239 61 79.66%

4.3 Correlation

The task is to predict free association strength (rang-
ing from 0 to 1) for a given list of cue-target pairs,
quantified by the proportion of test subjects that gave
this target as a response to the stimulus cue. Pairs in
the training and test set have been selected by strat-
ified sampling so that association strength is uni-
formly distributed across the full range.

We have computed LSA similarity values for 239
of the 241 suggested pairs, achieving thePearson
correlation of 0.353 between the human scores and
the LSA values; theKendall correlation coefficient
is 0.263. Both are significant with ap-value<0.01.

4.4 Response Prediction

In this task, models have to predict the most
frequent responses for a given list of stimulus
words. The data sets contain cue-target pairs with
the association strength of the target response and
the association strength of the second (unknown)
response. The cues were selected from the EAT
in such a way that the association strength of the
dominant response must be>0.4, and at least three
times as high as that of the second response. For
the first response prediction we have computed the
LSA similarity between cues and all terms in our
vocabulary for 199 pairs from 201. The resulting
average rank of the correct response is 51.89 (if
the correct response is not among the suggested
candidates, it is assigned rank 100 regardless of
the number of suggestions). The distribution of the
target ranks is as follows:

Target rank 1 2 3 4 5 6 7-99 100
Frequency 31 10 7 5 6 7 43 89

4.5 Co-occurrence Window

The size of the co-occurrence window on which the
input matrix is based is a crucial factor establish-
ing relatedness. Previous works using term×term
matrices employed rather small windows: Lund and

Burgess (1996) used windows of±8 words, Ceder-
berg and Widdows (2003) used±15 words and Rapp
(2003) used a window of±2 words only.

To get a better understanding of this parameter,
we calculated models for different window sizes
(±5,±25,±50,±75 words) and tested them on the
above described tasks8.

±5 ±25 ±50 ±75
Correlation (r) 0.254 0.326 0.347 0.354
Disc. (Acc.) 54.67 55.67 58.67 60.33
Pred. (Av. Rank) 62.61 54.11 52.69 51.89

The results for all three tasks are quite univocal:
The performance improves with the size of the co-
occurrence window. This is of course only a first
and rather coarse-grained observation, but it indi-
cates that this parameter deserves more attention in
the application of distributional models.

5 Analysis of the Results

In this section, we will analyse our results by com-
paring the similarity values produced by LSA with
the human scores.

5.1 Quantitative Analysis

5.1.1 Correlation Analysis

As the reliability of a statistical analysis depends
on the size of considered sample, in this section we
examine not only the test set (of size 239) but the
test and training sets altogether (of size 278). Since
the distributions of human values both of the train-
ing and test sets are the same, the training values can
be regarded as sampled from the same general pop-
ulation.

The calculated Pearson and Kendall correlation
coefficients are close to those reported for the train-
ing set (see section 4), and are 0.353 and 0.263, cor-
respondingly. Both are significant withp < 0.01.
The Spearman correlation is 0.384 and is also sig-
nificant. This confirms a significant monotone and,
moreover, linear dependence between the human
and LSA values.

As an initial step, let us visually examine figure 2
which depicts for each pair of terms (i) its human
and LSA values against its ordinal number (rank),

8Due to computational restrictions we were not able to cal-
culate co-occurrence matrices for windows larger than±75.
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Figure 2: The human and LSA values (left) and their absolute differences (right).

(ii) the absolute difference between these two val-
ues, where the pairs are sorted by their human val-
ues. The behavior of the observed characteristics
seems to differ at around the 136’th pair (human
value≈ 0.4). For the pairs with higher ranks (i.e.
≥ 0.4) the LSA values approximate human values
on average and the difference between the LSA and
human values looks like noise with constant vari-
ance. For the pairs with lower ranks the averaged
LSA values show no clear dependence on the human
values.

Based on these observations, we state the hy-
pothesis of separation of the whole data set into
two groups:high human association groupG1 with
the human values>0.4 andlow human association
group G2 with the values<0.4, where there is no
correlation between LSA and human values in the
first groupG1 in contrast toG2.

For testing the stated hypothesis, we calculated
the following characteristics between the human and
the LSA values in each group and for the whole data
set: (i) mean absolute difference, (ii) Pearson and
Kendall correlation coefficients, and their signifi-
cance and, furthermore, (iii) in each group we tested
the hypothesis of randomness of the LSA values (us-
ing theAbbe criterion). The results are given in ta-
ble 1; they show that in the high human association
groupG1 there is no dependence between the human
and the LSA values; moreover the mean absolute
difference between these values is large (0.35), and
it considerably exceeds the mean difference over the
whole data set (0.23). At the same time, the results
for the low human association groupG2 indicate a
significant linear correlation producing small mean
absolute difference (0.12).

Thus, we confirmed our hypothesis of difference
between the groupsG1 andG2. The existence of
these groups demonstrates the fact that low associa-

tion can be easily established, whereas correct es-
timation of high association strength seems to be
complicated (cf. section 5.2). This observation
conforms with the good discrimination results re-
ported for theRANDOMgroup and bad results for
the FIRST group. We would like to note that the
Pearson and Kendall correlations between the LSA
and human values calculated for the prediction data
set (where all human values≥0.4) are insignificant,
which additionally confirms our hypothesis of inde-
pendence between the LSA similarity and the human
association values for pairs with a high latter value.

LSA histrograCumulative Percent Cumul. % expon. distrCumulative Percent Cumul. %
<0.11 94 94 33.81295 33.8129 101.9815 101.9815 13.19568 36.6840
0.22 57 151 20.50360 54.3165 64.5706 166.5521 8.35498 59.9108
0.33 40 191 14.38849 68.7050 40.8835 207.4356 5.29004 74.6171
0.44 43 234 15.46763 84.1727 25.8858 233.3214 3.34944 83.9286
0.55 18 252 6.47482 90.6475 16.3899 249.7113 2.12073 89.8242
0.66 16 268 5.75540 96.4029 10.3774 260.0887 1.34276 93.5571
0.77 6 274 2.15827 98.5612 6.5706 266.6593 0.85018 95.9206
0.88 3 277 1.07914 99.6403 4.1602 270.8195 0.53830 97.4171
0.99 0 277 0.00000 99.6403 2.6341 273.4536 0.34083 98.3646
>0.99 1 278 0.35971 100.0000 4.5464 278.0000 0.58827 100.0000
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Figure 3: Histogram of the LSA values and the fitted ex-
ponential density.

The next interesting conclusion can be derived
considering the histogram of LSA values (see fig-
ure 3; recall that the human values are uniformly
distributed). Though the hypothesis of an exponen-
tial distribution of the LSA values is rejected with
p-value<0.01, it becomes obvious that LSA under-
estimates association strength as compared with hu-
man scores. Moreover, all but one of the 12 pairs
with the highest LSA values (>0.63) have high hu-
man values (≥0.45), see table 2. Thus, it is possible
that the pairs with high LSA values also have high
human values but not vice versa.

5.1.2 Prediction Analysis

In the following a closer look is taken on the re-
sults of the prediction task. First, though for each
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Group Mean abs. diff. Pearson corr. Kendall corr. Randomness of LSA values
G1 0.35 0.211 (−) 0.172 (+) Not rejected (p-value=0.43)
G2 0.12 0.514 (+) 0.393 (+) Rejected (p-value=0.00)
G1 ∪G2 (whole data set) 0.23 0.353 (+) 0.263 (+) Not rejected (p-value=0.07)

Table 1: Intragroup properties, the signs− or+ indicate significance of the correlation coefficients withp-value<0.01.

cue target human value LSA value
ha ha 0.66 1.00
inland revenue 0.31 0.84
four five 0.45 0.78
question answer 0.71 0.78
good bad 0.80 0.77
grammar school 0.53 0.74
below above 0.47 0.73
daughter son 0.63 0.72
vehicle car 0.82 0.72
parish church 0.66 0.70
boy girl 0.78 0.65
sing song 0.60 0.63

Table 2: The 12 pairs with the highest LSA values.

cue the first association value is at least three time
larger than the second association value (see sec-
tion 4), we do not detect the same effect for LSA.
The first and second LSA nearest neighbor values
differ in only 1.1 times on average (vs. 8.6 times for
the human values). It means that for every cue, the
LSA similarity values of the most strongly related
terms are very close. Second, it is interesting to note
that in the human data when the large first associa-
tion values (≥0.65) increase, the second association
values decrease, see figure 4. For LSA values no
such effect is observed. A possible interpretation of
this fact is that for humans a first strong association
suppresses the others.

0.00

0.22

0.43

0.65

0.87

1 21 41 61 81 101 121 141 161 181
ordinal number of pair

first association value
second association value
trend of 2nd assoc. value

Figure 4: The association values for the prediction task.

5.1.3 Parts of Speech and Lexical-Semantic
Relations

Wandmacher (2005) indicates that the quality of
the term relations for a given cue may depend on
its part of speech, e.g. LSA has found far more
meaningful relations for nouns then for adjectives
and verbs.9 We have made different observations:
For the correlation task the best result was achieved
with adjectives (for adjectives the Pearson correla-
tion is 0.68, for nouns 0.33, and for verbs 0.14) and
for the prediction task there is no significant differ-
ence.10

We have also tagged relations for the prediction
task test data set.11 For syntagmatic relations the
standard classification (cf. Cruse, 1986) was used:
near-synonymy (association highlights a common
part of the meaning, e.g. (incorrect, wrong)), oppo-
sition (association highlights an opposite part of the
meaning, e.g. (female, male)), hypo-/hyperonymy
(e.g. (finch, bird)), co-hyponymy (e.g. (july, au-
gust)), mero-/holonymy (e.g. (deck, ship)).12 In or-
der to estimate relations between terms belonging
to different parts of speech we have distinguished
following relations: collocation (e.g. (wizard,
oz)), attribute-class relation (e.g. (sugar, sweet)),
predicate-argument (e.g. (eating, food)), unsystem-
atic association (which mostly express connection
of terms via an implicit predicate, e.g. (prefect,
school)). The information about the corresponding
classes is given in table 3. We acknowledge that any
tagging of this kind is highly subjective. Moreover,
the number of pairs in some of our classes is defi-
nitely not enough to perform an analysis. Neverthe-
less, we decided to present these results, since the
LSA values for the class of oppositions show dis-

9These results refer to German.
10Morphologically ambiguous words (e.g.stingor shotgun)

were excluded from this analysis.
11The prediction data set was chosen because it contains

meaningful associations only (cf. section 4).
12We do not mention relations that occurred less than 5 times

in the data set, e.g. causation, presupposition etc.
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tinctively better performance than others.

relation average rank number of pairs
n.-syn. 46.98 47
oppos. 24.42 31
hypo. 53.32 22
mero. 58.43 21
co-hyp. 40.50 6
colloc. 77.59 17
attr.-cl. 85.86 7
pred.-arg. 49 13
assoc. 62.65 31

Table 3: Average rank of targets and number of pairs in
every class of relations for the prediction task data set.

5.2 Qualitative Analysis

In order to get a better understanding of what kind
of information is reflected by LSA, we will take a
look at some specific examples. First, we consider
the term pairs that have got the highest LSA val-
ues (≥0.63, see table 2). Obviously, LSA assigns
a similarity of 1 to the pairs where cue and target
are identical (e.g. (ha, ha)), whereas for human sub-
jects such an association is not necessarily prefer-
ential. Then, LSA strongly associates oppositions,
e.g. (question, answer), (good, bad), (daughter,
son).13 High LSA estimates for other semantic re-
lations, such as collocations (e.g. (inland, revenue)),
hyponyms (e.g. (vehicle, car)), co-hyponyms (e.g.
(four, five)) etc., are found to be less regular and
more corpus dependent.

The widest range of disagreements between LSA
and human evaluations seems to be corpus-related.
Since we have used a newspaper corpus, LSA ex-
tracted rather specific semantic neighbors for some
of the terms. For example, terms from the food
domain seem to stand out, possibly because of nu-
merous commercial statements: e.g. forfresh the
nearest neighbors are (flavour, 0.393), (soup, 0.368),
(vegetables, 0.365), (potato, 0.362), (chicken, 0.36).
Thus, the association (fresh, lobster) receiving a
very low human value (0.01) is estimated by LSA
at 0.2.

An interesting effect occurs for associations be-
tween some concepts and their salient proper-
ties, e.g. (snow, white) which is estimated at

1315 from 19 oppositions found in the correlation task data
sets have got LSA values>0.22.

0.408 by humans and at 0.09 by LSA. The near-
est neighbors found by LSA forsnow belong to
the “weather forecast” domain: (snowfalls, 0.65),
(winds, 0.624), (weather, 0.612), (slopes, 0.61),
(temperature, 0.608). It is straightforward to sup-
pose that since the feature of ”being white“ for snow
is so natural for our language community, people do
not talk much about it in newspapers.

Concerning word senses LSA is known to gen-
erate neighbors of the prominent meaning only and
to suppress other domains (cf. Rapp, 2003; Wand-
macher, 2005). This effect can lead both to over-
and to underestimation in comparison with human
values. For example the pair (nurse, hospital) gets a
relatively high LSA value of 0.627 (while the human
value is 0.156), because LSA has selected the near-
est neighbors fornursefrom only one (and very spe-
cific) domain: (nurses, 0.64), (hospital, 0.627), (pa-
tient, 0.597), (doctors, 0.554), (patients, 0.525). On
the other hand, (eve, adam) receives only 0.024 by
LSA (while the human value is 0.567), because LSA
has selected another meaning for the homonymeve:
(christmas, 0.657), (festive, 0.535), (yuletide0.456),
(festivities, 0.453), (presents, 0.408).

Besides the already mentioned effects we have
noticed some more regularities. It is often the case
(for 9 out of 22 collocations in the correlation task
data sets) that LSA assigns a low value (< 0.1) to
term pairs forming a collocation, e.g. (peg, clothes,
hum.: 0.225, LSA: 0.001), (shotgun, wedding, hum.:
0.402, LSA: 0.06), (core, apple, hum.: 0.776, LSA:
0.023). The problem here is that the terms in such
collocations have no other overlap in their meanings
(e.g. the nearest neighbors forshotgunare (gun,
0.536), (pistol, 0.506), (shooting, 0.463), (shotguns,
0.447), (firearms, 0.445), which most of the time
have nothing to do with weddings) and the given col-
locations are rare in the corpus.

As for the auxiliary words (like prepositions, pro-
nouns and conjunctions), LSA produces rather un-
stable results. A general observation is that the as-
sociation strength for such pairs is mostly underes-
timated because of their low specificity (cf. Wand-
macher, 2005). However, there is not enough data in
the considered data sets to investigate this effect.

It is worth reminding that the semantic similarity
estimated by LSA is symmetric, whereas it is obvi-
ously not the case for human scores. For example
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the association of termswrong and right which is
assigned an LSA value of 0.493, is estimated by hu-
mans at 0.717 in the direction fromwrong to right
and at 0.42 in the opposite direction.

6 Discussion and Conclusion

In this paper, we have described the results of three
tasks14 in order to get an understanding of the rela-
tionships between human free associations and sim-
ilarity measures produced by LSA. In reply to the
title’s question, we have to report that no strong cor-
relation between human associations and LSA simi-
larity could be discovered. Likewise, our prediction
results are relatively bad (as compared to those by
Wettler et al. 2005). However, Wettler et al. (2005)
have used a lemmatized corpus, which is not the case
for our study. The effect of lemmatization on the
training data should be investigated in more detail.

We did however investigate the effect of the size
of the co-occurrence window, and we have found
larger windows (of around±75 words) to provide
significantly better results in all tasks than windows
of smaller sizes.

Another effect that we have observed is that LSA
estimates for weakly associated terms are much
closer to those of humans than for strongly associ-
ated terms. Then, we have reported a regular un-
derestimation by LSA. We have also pointed out the
fact that the clear preference for one association in
human responses is not established by LSA; the av-
erage distance between the first and the second LSA
neighbor is much lower (section 5.1.2).

Furthermore, we have added some comments on
the LSA similarity estimates for different parts-of-
speech and kinds of lexical relations. Finally, we
have tried to establish some qualitative regularities
in the disagreements between LSA and human esti-
mations (section 5.2).

For further investigation it will be interesting to
look not only at the first words coming into the mind
of a subject after being presented a cue but also
at further associations. This will probably help to
understand to which domains do these associations
belong and to compare these domains with the do-
mains found for the cue by LSA.

14The files containing our results can be found at
http://www.ikw.uos.de/∼twandmac/FA-Results-WOA.zip.
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