Statistical Machine Translation

Philipp Koehn
Chris Callison-Burch
ESSLLI 2008
20th European Summer School in Logic, Language and Information
4–15 August 2008
Freie und Hansestadt Hamburg, Germany

Programme Committee. Enrico Franconi (Bolzano, Italy), Petra Hendriks (Groningen, The Netherlands), Michael Kaminski (Haifa, Israel), Benedikt Löwe (Amsterdam, The Netherlands & Hamburg, Germany) Massimo Poesio (Colchester, United Kingdom), Philippe Schlenker (Los Angeles CA, United States of America), Khalil Sima’an (Amsterdam, The Netherlands), Rineke Verbrugge (Chair, Groningen, The Netherlands).

Organizing Committee. Stefan Bold (Bonn, Germany), Hannah König (Hamburg, Germany), Benedikt Löwe (Chair, Amsterdam, The Netherlands & Hamburg, Germany), Sanchit Saraf (Kanpur, India), Sara Uckelman (Amsterdam, The Netherlands), Hans van Ditmarsch (Chair, Otago, New Zealand & Toulouse, France), Peter van Ormondt (Amsterdam, The Netherlands).

http://www.illc.uva.nl/ESSLLI2008/
esslli2008@science.uva.nl

ESSLLI 2008 is organized by the Universität Hamburg under the auspices of the Association for Logic, Language and Information (FoLLI). The Institute for Logic, Language and Computation (ILLC) of the Universität van Amsterdam is providing important infrastructural support. Within the Universität Hamburg, ESSLLI 2008 is sponsored by the Departments Informatik, Mathematik, Philosophie, and Sprache, Literatur, Medien I, the Fakultät für Mathematik, Informatik und Naturwissenschaften, the Zentrum für Sprachwissenschaft, and the Regionales Rechenzentrum. ESSLLI 2008 is an event of the Jahr der Mathematik 2008. Further sponsors include the Deutsche Forschungsgemeinschaft (DFG), the Marie Curie Research Training Site GLoRiClass, the European Chapter of the Association for Computational Linguistics, the Hamburgische Wissenschaftliche Stiftung, the Kurt Gödel Society, Sun Microsystems, the Association for Symbolic Logic (ASL), and the European Association for Theoretical Computer Science (EATCS). The official airline of ESSLLI 2008 is Lufthansa; the book prize of the student session is sponsored by Springer Verlag.
Statistical Machine Translation

Chris Callison-Burch, Johns Hopkins University
Philipp Koehn, University of Edinburgh
Various approaches

- Word-for-word translation
- Syntactic transfer
- Interlingual approaches
- Controlled language
- Example-based translation
- Statistical translation
Advantages of SMT

- Data driven
- Language independent
- No need for staff of linguists of language experts
- Can prototype a new system quickly and at a very low cost

Statistical machine translation

- Find most probable English sentence given a foreign language sentence
- Automatically align words and phrases within sentence pairs in a parallel corpus
- Probabilities are determined automatically by training a statistical model using the parallel corpus
Parallel corpus

what is more , the relevant cost dynamic is completely under control.	im übrigen ist die diesbezügliche kostenentwicklung völlig unter kontrolle .
sooner or later we will have to be sufficiently progressive in terms of own resources as a basis for this fair tax system .	früher oder später müssen wir die notwendige progressivität der eigenmittel als grundlage dieses gerechten steuersystems zur sprache bringen .
we plan to submit the first accession partnership in the autumn of this year .	wir planen , die erste beitrittspartnerschaft im herbst dieses jahres vorzulegen .
it is a question of equality and solidarity .	hier geht es um gleichberechtigung und solidarität .
the recommendation for the year 1999 has been formulated at a time of favourable developments and optimistic prospects for the european economy .	die empfehlung für das jahr 1999 wurde vor dem hintergrund günstiger entwicklungen und einer für den kurs der europäischen wirtschaft positiven perspektive abgegeben .
that does not , however , detract from the deep appreciation which we have for this report .	im übrigen tut das unserer hohen wertschätzung für den vorliegenden bericht keinen abbruch .

Probabilities

- Find most probable English sentence given a foreign language sentence

\[
p(e|f) = \frac{p(e)p(f|e)}{p(f)}
\]

\[
\hat{e} = \arg\max_e p(e|f)
\]

\[
\hat{e} = \arg\max_e p(e)p(f|e)
\]
What the probabilities represent

• $p(e)$ is the "Language model"
 - Assigns a higher probability to fluent / grammatical sentences
 - Estimated using monolingual corpora

• $p(f|e)$ is the "Translation model"
 - Assigns higher probability to sentences that have corresponding meaning
 - Estimated using bilingual corpora

For people who don't like equations

Source Language Text

Preprocessing

Global search

$e^* = \text{argmax}_e p(\text{elf}_e)$

Language model

$p(e)$

Translation model

$p(f|e)$

Postprocessing

Target Language Text
Language Model

• Component that tries to ensure that words come in the right order
• Some notion of grammaticality
• Standardly calculated with a trigram language model, as in speech recognition
• Could be calculated with a statistical grammar such as a PCFG

Trigram language model

\[
p(I\ \text{like bungee jumping off high bridges}) = \\
p(I | <s> <s>) * \\
p(like | I <s>) * \\
p(bungee | I like) * \\
p(jumping | like bungee) * \\
p(off | bungee jumping) * \\
p(high | jumping off) * \\
p(bridges | off high) * \\
p(</s> | high bridges) * \\
p(</s> | bridges </s>)
\]
Calculating Language Model Probabilities

- Unigram probabilities
 \[p(w_1) = \frac{\text{count}(w_1)}{\text{total words observed}} \]

- Bigram probabilities
 \[p(w_2|w_1) = \frac{\text{count}(w_1w_2)}{\text{count}(w_1)} \]
Calculating Language Model Probabilities

- Trigram probabilities

\[p(w_3|w_1w_2) = \frac{\text{count}(w_1w_2w_3)}{\text{count}(w_1w_2)} \]

- Can take this to increasingly long sequences of n-grams

- As we get longer sequences it's less likely that we'll have ever observed them
Back off

- Sparse counts are a big problem
- If we haven't observed a sequence of words then the count = 0
- Because we're multiplying the n-gram probabilities to get the probability of a sentence the whole probability = 0

\[0.8 \times p(w_3|w_1w_2) + \\
0.15 \times p(w_3|w_2) + \\
0.049 \times p(w_3) + \\
0.001 \]

- Avoids zero probs
Translation model

• $p(f|e)$... the probability of some foreign language string given a hypothesis English translation

• $f = \text{Ces gens ont grandi, vécu et oeuvré des dizaines d'années dans le domaine agricole.}$

• $e = \text{Those people have grown up, lived and worked many years in a farming district.}$

• $e = \text{I like bungee jumping off high bridges.}$

Translation model

• How do we assign values to $p(f|e)$?

\[
p(f|e) = \frac{\text{count}(f,e)}{\text{count}(e)}
\]

• Impossible because sentences are novel, so we'd never have enough data to find values for all sentences.
Translation model

• Decompose the sentences into smaller chunks, like in language modeling

\[p(f|e) = \sum_a p(a, f|e) \]

• Introduce another variable \(a \) that represents alignments between the individual words in the sentence pair

Word alignment
Alignment probabilities

- So we can calculate translation probabilities by way of these alignment probabilities
 \[p(f|e) = \sum_a p(a, f|e) \]
- Now we need to define \(p(a, f | e) \)
 \[p(a, f|e) = \prod_{j=1}^{m} t(f_j|e_i) \]

Calculating \(t(f_j|e_i) \)

- Counting! I told you probabilities were easy!
 \[\frac{\text{count}(f_j, e_i)}{\text{count}(e_i)} \]
- worked... fonctionné, travaillé, marché, oeuvré
- 100 times total 13 with this f. 13%
Calculating $t(f_j|e_i)$

- Unfortunately we don't have word aligned data, so we can't do this directly.
- OK, so it's not quite as easy as I said.
- There will be another lecture on how to do word alignments later in the week.

Phrase Translation Probabilities

- unter kontrolle
- under control
- im überigen
- the relative cost
- what is more
- diesbezügliche kostenentwicklung
- völlig
- die

Diagram showing word alignments.
Phrase Translation
Probabilities

Phrase Table

- Exhaustive table of source language phrases paired with their possible translations into the target language, along with probabilities

<table>
<thead>
<tr>
<th>Source Language</th>
<th>Target Language</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>das thema</td>
<td>the issue</td>
<td>.51</td>
</tr>
<tr>
<td>the point</td>
<td></td>
<td>.38</td>
</tr>
<tr>
<td>the subject</td>
<td></td>
<td>.21</td>
</tr>
</tbody>
</table>
The Search Process
AKA ``Decoding''

- Look up all translations of every source phrase, using the phrase table

- Recombine the target language phrases that maximizes the translation model probability * the language model probability

- This search over all possible combinations can get very large so we need to find ways of limiting the search space
er geht ja nicht nach hause

Search
er geht ja nicht nach hause
er geht ja nicht nach hause
Best Translation
he does not go home
The Search Space

- In the end the item which covers all of the source words and which has the highest probability wins!
- That's our best translation
 \[\hat{e} = \arg \max_e p(e) p(f|e) \]
- And there was much rejoicing!

Wrap-up:

SMT is data driven

- Learns translations of words and phrases from parallel corpora
- Associate probabilities with translations empirically by counting co-occurrences in the data
- Estimates of probabilities get more accurate as size of the data increases
Wrap-up: SMT is language independent

• Can be applied to any language pairs that we have a parallel corpus for
• The only linguistic thing that we need to know is how to split into sentences, words
• Don't need linguists and language experts to hand craft rules because it's all derived from the data

Wrap-up: SMT is cheap and quick to produce

• Low overhead since we aren't employing anyone
• Computers do all the heavy lifting / statistical analysis of the data for us
• Can build a system in hours or days rather than months or years
Evaluating Translation Quality

EuroMatrix
MT Marathon
Chris Callison-Burch

Evaluating MT Quality

- Why do we want to do it?
 - Want to rank systems
 - Want to evaluate incremental changes

- How not to do it
 - ``Back translation``
 - The vodka is *not* good
Evaluating Human Translation Quality

• Why?
 - Quality control
 - Decide whether to re-hire freelance translators
 - Career promotion

DLPT-CRT

• Defense Language Proficiency Test/Constructed Response Test

• Read texts of varying difficulty, take test

• Structure of test
 - Limited responses for questions
 - Not multiple choice, not completely open
 - Test progresses in difficulty
 - Designed to assign level at which examinee fails to sustain proficiency
DLPT-CRT

- Level 1: Contains short, discrete, simple sentences. Newspaper announcements.
- Level 2: States facts with purpose of conveying information. Newswire stories.
- Level 3: Has denser syntax, convey opinions with implications. Editorial articles / opinion.
- Level 4: Often has highly specialized terminology. Professional journal articles.

Human Evaluation of Machine Translation

- One group has tried applying DLPT-CRT to machine translation
 - Translate texts using MT system
 - Have monolingual individuals take test
 - See what level they perform at

- Much more common to have human evaluators simply assign a scale directly using fluency / adequacy scales
Fluency

- 5 point scale
- 5) Flawless English
 4) Good English
 3) Non-native English
 2) Disfluent
 1) Incomprehensible

Adequacy

- This text contains how much of the information in the reference translation:
- 5) All
 4) Most
 3) Much
 2) Little
 1) None
Human Evaluation of MT v. Automatic Evaluation

- Human evaluation is
 - Ultimately what we're interested in, but
 - Very time consuming
 - Not re-usable

- Automatic evaluation is
 - Cheap and reusable, but
 - Not necessarily reliable

Goals for Automatic Evaluation

- No cost evaluation for incremental changes
- Ability to rank systems
- Ability to identify which sentences we're doing poorly on, and categorize errors
- Correlation with human judgments
- Interpretability of the score
Methodology

- Comparison against reference translations
- Intuition: closer we get to human translations, the better we're doing
- Could use WER like in speech recognition

Word Error Rate

- Levenshtein Distance (also "edit distance")
- Minimum number of insertions, substitutions, and deletions needed to transform one string into another
- Useful measure in speech recognition
 - Shows how easy it is to recognize speech
 - Shows how easy it is to wreck a nice beach
Problems with WER

• Unlike speech recognition we don't have the assumptions of
 - linearity
 - exact match against the reference

• In machine translation there can be many possible (and equally valid) ways of translating a sentence

• Also, clauses can move around, since we're not doing transcription

Solutions

• Compare against lots of test sentences

• Use multiple reference translations for each test sentence

• Look for phrase / n-gram matches, allow movement
Metrics

- Exact sentence match
- WER
- PI-WER
- Bleu
- Precision / Recall
- Meteor

Bleu

- Use multiple reference translations
- Look for n-grams that occur anywhere in the sentence
- Also has "brevity penalty"
- Goal: Distinguish which system has better quality (correlation with human judgments)
Example Bleu

R1: It is a guide to action that ensures that the military will forever heed Party commands.

R2: It is the Guiding Principle which guarantees the military forces always being under the command of the Party.

R3: It is the practical guide for the army always to heed the directions of the party.

C1: It is to insure the troops forever hearing the activity guidebook that party direct.

C2: It is a guide to action which ensures that the military always obeys the command of the party.

Example Bleu

R1: *It is a guide to action that ensures that the military will forever heed Party commands.*

R2: *It is the Guiding Principle which guarantees the military forces always being under the command of the Party.*

R3: *It is the practical guide for the army always to heed the directions of the party.*

C1: *It is to insure the troops forever hearing the activity guidebook that party direct.*

C2: *It is a guide to action which ensures that the military always obeys the command of the party.*
Example Bleu

R1: It is a guide to action that ensures that the military will forever heed Party commands.
R2: It is the Guiding Principle which guarantees the military forces always being under the command of the Party.
R3: It is the practical guide for the army always to heed the directions of the party.

C2: It is a guide to action which ensures that the military always obeys the command of the party.

Automated evaluation

- Because C2 has more n-grams and longer n-grams than C1 it receives a higher score
- Bleu has been shown to correlate with human judgments of translation quality
- Bleu has been adopted by DARPA in its annual machine translation evaluation
Interpretability of the score

- How many errors are we making?
- How much better is one system compared to another?
- How useful is it?
- How much would we have to improve to be useful?

Evaluating an evaluation metric

- How well does it correlate with human judgments?
 - On a system level
 - On a per sentence level
- Data for testing correlation with human judgments of translation quality
NIST MT Evaluation

- Annual Arabic-English and Chinese-English competitions
- 10 systems
- 1000+ sentences each
- Scored by Bleu and human judgments
- Human judgments for translations produced by each system

Final thoughts on Evaluation
When writing a paper

• If you're writing a paper that claims that
 - one approach to machine translation is better than another, or that
 - some modification you've made to a system has improved translation quality

• Then you need to back up that claim

• Evaluation metrics can help, but good experimental design is also critical

Experimental Design

• Importance of separating out training / test / development sets

• Importance of standardized data sets

• Importance of standardized evaluation metric

• Error analysis

• Statistical significance tests for differences between systems
Invent your own evaluation metric

• If you think that Bleu is inadequate then invent your own automatic evaluation metric
• Can it be applied automatically?
• Does it correlate better with human judgment?
• Does it give a finer grained analysis of mistakes?

Evaluation drives MT research

• Metrics can drive the research for the topics that they evaluate
• NIST MT Eval / DARPA Sponsorship
• Bleu has lead to a focus on phrase-based translation
• Minimum error rate training
• Other metrics may similarly change the community's focus
Afternoon Exercise

• Evaluation exercise this afternoon
• Examine translations from state-of-the-art systems (in the language of your choice!)
• Manually evaluate quality!
• Perform error analysis!
• Develop ideas about how to improve SMT!
Lexical translation

- How to translate a word → look up in dictionary

 Haus — *house, building, home, household, shell.*

- *Multiple translations*
 - some more frequent than others
 - for instance: *house*, and *building* most common
 - special cases: *Haus* of a *snail* is its *shell*

- Note: During all the lectures, we will translate from a foreign language into English
Collect statistics

- Look at a parallel corpus (German text along with English translation)

<table>
<thead>
<tr>
<th>Translation of Haus</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>house</td>
<td>8,000</td>
</tr>
<tr>
<td>building</td>
<td>1,600</td>
</tr>
<tr>
<td>home</td>
<td>200</td>
</tr>
<tr>
<td>household</td>
<td>150</td>
</tr>
<tr>
<td>shell</td>
<td>50</td>
</tr>
</tbody>
</table>

Estimate translation probabilities

- Maximum likelihood estimation

\[p_f(e) = \begin{cases}
0.8 & \text{if } e = \text{house,} \\
0.16 & \text{if } e = \text{building,} \\
0.02 & \text{if } e = \text{home,} \\
0.015 & \text{if } e = \text{household,} \\
0.005 & \text{if } e = \text{shell.}
\end{cases} \]
Alignment

- In a parallel text (or when we translate), we align words in one language with the words in the other.

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
das & Haus & ist & klein \\
\mid & \mid & \mid & \mid \\
the & house & is & small \\
1 & 2 & 3 & 4 \\
\end{array}
\]

- Word positions are numbered 1–4

Alignment function

- Formalizing alignment with an alignment function
- Mapping an English target word at position \(i\) to a German source word at position \(j\) with a function \(a : i \to j\)
- Example

\[a : \{1 \to 1, 2 \to 2, 3 \to 3, 4 \to 4\}\]
Reordering

- Words may be reordered during translation

\[
\begin{array}{cccc}
klein & ist & das & Haus \\
1 & 2 & 3 & 4 \\
\end{array}
\]

\[
\begin{array}{cccc}
the & house & is & small \\
1 & 2 & 3 & 4 \\
\end{array}
\]

\[a : \{1 \to 3, 2 \to 4, 3 \to 2, 4 \to 1\}\]

One-to-many translation

- A source word may translate into multiple target words

\[
\begin{array}{cccc}
das & Haus & ist & klitzeklein \\
1 & 2 & 3 & 4 \\
\end{array}
\]

\[
\begin{array}{cccc}
the & house & is & very & small \\
1 & 2 & 3 & 4 & 5 \\
\end{array}
\]

\[a : \{1 \to 1, 2 \to 2, 3 \to 3, 4 \to 4, 5 \to 4\}\]
Dropping words

- Words may be **dropped** when translated
 - The German article *das* is dropped

 \[
 \begin{array}{cccc}
 1 & 2 & 3 & 4 \\
 \text{das} & \text{Haus} & \text{ist} & \text{klein} \\
 \end{array}
 \]

 \[
 \begin{array}{cccc}
 1 & 2 & 3 \\
 \text{house} & \text{is} & \text{small} \\
 \end{array}
 \]

 \[a : \{1 \rightarrow 2, 2 \rightarrow 3, 3 \rightarrow 4\}\]

Inserting words

- Words may be **added** during translation
 - The English *just* does not have an equivalent in German
 - We still need to map it to something: special NULL token

 \[
 \begin{array}{cccccc}
 0 & 1 & 2 & 3 & 4 & 5 \\
 \text{NULL} & \text{das} & \text{Haus} & \text{ist} & \text{klein} \\
 \text{the} & \text{house} & \text{is} & \text{just} & \text{small} \\
 1 & 2 & 3 & 4 & 5 \\
 \end{array}
 \]

 \[a : \{1 \rightarrow 1, 2 \rightarrow 2, 3 \rightarrow 3, 4 \rightarrow 0, 5 \rightarrow 4\}\]
IBM Model 1

- **Generative model**: break up translation process into smaller steps
 - **IBM Model 1** only uses *lexical translation*

- Translation probability
 - for a foreign sentence $f = (f_1, ..., f_{l_f})$ of length l_f
 - to an English sentence $e = (e_1, ..., e_{l_e})$ of length l_e
 - with an alignment of each English word e_j to a foreign word f_i according to the alignment function $a: j \rightarrow i$

 $$ p(e, a|f) = \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)}) $$

 - parameter ϵ is a *normalization constant*

Example

<table>
<thead>
<tr>
<th>das</th>
<th>Haus</th>
<th>ist</th>
<th>klein</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>t(e</td>
<td>f)</td>
<td>e</td>
</tr>
<tr>
<td>the</td>
<td>0.7</td>
<td>house</td>
<td>0.8</td>
</tr>
<tr>
<td>that</td>
<td>0.15</td>
<td>building</td>
<td>0.16</td>
</tr>
<tr>
<td>which</td>
<td>0.075</td>
<td>home</td>
<td>0.02</td>
</tr>
<tr>
<td>who</td>
<td>0.05</td>
<td>household</td>
<td>0.015</td>
</tr>
<tr>
<td>this</td>
<td>0.025</td>
<td>shell</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[p(e, a|f) = \frac{\epsilon}{4^3} \times t(\text{the}|\text{das}) \times t(\text{house}|\text{Haus}) \times t(\text{is}|\text{ist}) \times t(\text{small}|\text{klein}) \]
\[= \frac{\epsilon}{4^3} \times 0.7 \times 0.8 \times 0.8 \times 0.4 \]
\[= 0.0028\epsilon \]

Learning lexical translation models

- We would like to *estimate* the lexical translation probabilities \(t(e|f) \) from a parallel corpus
- ... but we do not have the alignments
- **Chicken and egg problem**
 - if we had the *alignments*,
 - we could estimate the *parameters* of our generative model
 - if we had the *parameters*,
 - we could estimate the *alignments*
EM algorithm

- **Incomplete data**
 - if we had *complete data*, would could estimate *model*
 - if we had *model*, we could fill in the *gaps in the data*

- **Expectation Maximization (EM) in a nutshell**
 - initialize model parameters (e.g. uniform)
 - assign probabilities to the missing data
 - estimate model parameters from completed data
 - iterate

... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

- Initial step: all alignments equally likely
- Model learns that, e.g., *la* is often aligned with *the*
EM algorithm

... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

• After one iteration
• Alignments, e.g., between la and the are more likely

EM algorithm

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

• After another iteration
• It becomes apparent that alignments, e.g., between fleur and flower are more likely (pigeon hole principle)
EM algorithm

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

- Convergence
- Inherent hidden structure revealed by EM

\[
\begin{align*}
p(\text{la}|\text{the}) &= 0.453 \\
p(\text{le}|\text{the}) &= 0.334 \\
p(\text{maison}|\text{house}) &= 0.876 \\
p(\text{bleu}|\text{blue}) &= 0.563
\end{align*}
\]

- Parameter estimation from the aligned corpus
IBM Model 1 and EM

- EM Algorithm consists of two steps
 - **Expectation-Step**: Apply model to the data
 - parts of the model are hidden (here: alignments)
 - using the model, assign probabilities to possible values
 - **Maximization-Step**: Estimate model from data
 - take assign values as fact
 - collect counts (weighted by probabilities)
 - estimate model from counts
- Iterate these steps until convergence

- We need to be able to compute:
 - Expectation-Step: probability of alignments
 - Maximization-Step: count collection
IBM Model 1 and EM

- **Probabilities**

 \[
 p(\text{the}|\text{la}) = 0.7 \quad p(\text{house}|\text{la}) = 0.05 \\
 p(\text{the}|\text{maison}) = 0.1 \quad p(\text{house}|\text{maison}) = 0.8
 \]

- **Alignments**

 \[
 \begin{align*}
 &\text{la} \rightarrow \text{the} \\
 &\text{maison} \rightarrow \text{house}
 \end{align*}
 \]

 \[
 p(\text{e}, a|f) = 0.56 \quad p(\text{e}, a|f) = 0.035 \quad p(\text{e}, a|f) = 0.08 \quad p(\text{e}, a|f) = 0.005
 \]

 \[
 p(a|e, f) = 0.824 \quad p(a|e, f) = 0.052 \quad p(a|e, f) = 0.118 \quad p(a|e, f) = 0.007
 \]

- **Counts**

 \[
 \begin{align*}
 &c(\text{the}|\text{la}) = 0.824 + 0.052 \quad c(\text{house}|\text{la}) = 0.052 + 0.007 \\
 &c(\text{the}|\text{maison}) = 0.118 + 0.007 \quad c(\text{house}|\text{maison}) = 0.824 + 0.118
 \end{align*}
 \]

IBM Model 1 and EM: Expectation Step

- We need to compute \(p(a|e, f) \)
- Applying the *chain rule*:
 \[
 p(a|e, f) = \frac{p(e, a|f)}{p(e|f)}
 \]
- We already have the formula for \(p(e, a|f) \) (definition of Model 1)
IBM Model 1 and EM: Expectation Step

- We need to compute $p(e|f)$

$$p(e|f) = \sum_a p(e, a|f)$$

$$= \sum_{a(1)=0}^{l_f} \cdots \sum_{a(l_e)=0}^{l_f} p(e, a|f)$$

$$= \sum_{a(1)=0}^{l_f} \cdots \sum_{a(l_e)=0}^{l_f} \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

- Note the trick in the last line
 - removes the need for an exponential number of products
 - this makes IBM Model 1 estimation tractable
The trick

(case \(l_e = l_f = 2 \))

\[
\sum_{a(1)=0}^{2} \sum_{a(2)=0}^{2} = \frac{e}{3^2} \prod_{j=1}^{2} t(e_j|f_{a(j)}) = \\
= t(e_1|f_0) t(e_2|f_0) + t(e_1|f_0) t(e_2|f_1) + t(e_1|f_0) t(e_2|f_2) + \\
+ t(e_1|f_1) t(e_2|f_0) + t(e_1|f_1) t(e_2|f_1) + t(e_1|f_1) t(e_2|f_2) + \\
+ t(e_1|f_2) t(e_2|f_0) + t(e_1|f_2) t(e_2|f_1) + t(e_1|f_2) t(e_2|f_2) = \\
= t(e_1|f_0) (t(e_2|f_0) + t(e_2|f_1) + t(e_2|f_2)) + \\
+ t(e_1|f_1) (t(e_2|f_1) + t(e_2|f_1) + t(e_2|f_2)) + \\
+ t(e_1|f_2) (t(e_2|f_2) + t(e_2|f_1) + t(e_2|f_2)) = \\
= (t(e_1|f_0) + t(e_1|f_1) + t(e_1|f_2)) (t(e_2|f_2) + t(e_2|f_1) + t(e_2|f_2))
\]

IBM Model 1 and EM: Expectation Step

- Combine what we have:

\[
p(a|e, f) = \frac{p(e, a|f)}{p(e|f)} = \\
= \frac{\frac{e}{(l_f+1)t_e} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})}{\frac{e}{(l_f+1)t_e} \prod_{j=1}^{l_e} \sum_{i=0}^{l_f} t(e_j|f_i)} \\
= \prod_{j=1}^{l_e} \frac{t(e_j|f_{a(j)})}{\sum_{i=0}^{l_f} t(e_j|f_i)}
\]
IBM Model 1 and EM: Maximization Step

- Now we have to collect counts
- Evidence from a sentence pair e, f that word e is a translation of word f:

$$c(e|f; e, f) = \sum_a p(a|e, f) \sum_j^{t_e} \delta(e, e_j) \delta(f, f_{a(j)})$$

- With the same simplication as before:

$$c(e|f; e, f) = \frac{t(e|f)}{\sum_{i=0}^{t_f} t(e|f_i)} \sum_j^{t_e} \delta(e, e_j) \sum_{i=0}^{t_f} \delta(f, f_i)$$

After collecting these counts over a corpus, we can estimate the model:

$$t(e|f; e, f) = \frac{\sum_{(e, f)} c(e|f; e, f)}{\sum_f \sum_{(e, f)} c(e|f; e, f)}$$
IBM Model 1 and EM: Pseudocode

initialize $t(e|f)$ uniformly

do until convergence

set count($e|f$) to 0 for all e,f

set total(f) to 0 for all f

for all sentence pairs (e_s,f_s)

for all words e in e_s

for all words f in f_s

for all words e in e_s

for all words f in f_s

for all words e in e_s

for all words f in f_s

for all words e in e_s

for all words f in f_s

for all e

for all f

$\text{count}(e|f) += \frac{t(e|f)}{\text{total}_s(e)}$

$\text{total}(f) += \frac{t(e|f)}{\text{total}_s(e)}$

$t(e|f) = \frac{\text{count}(e|f)}{\text{total}(f)}$

Higher IBM Models

<table>
<thead>
<tr>
<th>IBM Model 1</th>
<th>lexical translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM Model 2</td>
<td>adds absolute reordering model</td>
</tr>
<tr>
<td>IBM Model 3</td>
<td>adds fertility model</td>
</tr>
<tr>
<td>IBM Model 4</td>
<td>relative reordering model</td>
</tr>
<tr>
<td>IBM Model 5</td>
<td>fixes deficiency</td>
</tr>
</tbody>
</table>

- Only IBM Model 1 has *global maximum*
 - training of a higher IBM model builds on previous model

- Computationally biggest change in Model 3
 - trick to simplify estimation does not work anymore
 → **exhaustive** count collection becomes computationally too expensive
 - **sampling** over high probability alignments is used instead
IBM Model 4

Mary did not slap the green witch

Mary not slap slap slap slap the green witch

Mary not slap slap slap slap NULL the green witch

Maria no daba una botefada a la verde bruja

Maria no daba una bofetada a la bruja verde

Word alignment

- Notion of word alignment valuable
- Shared task at NAACL 2003 and ACL 2005 workshops
Word alignment with IBM models

- IBM Models create a *many-to-one* mapping
 - words are aligned using an alignment function
 - a function may return the same value for different input (one-to-many mapping)
 - a function can not return multiple values for one input (no many-to-one mapping)
- But we need *many-to-many* mappings

Symmetrizing word alignments

- *Intersection* of GIZA++ bidirectional alignments
Symmetrizing word alignments

- **Grow** additional alignment points [Och and Ney, CompLing2003]

Growing heuristic

```
GROW-DIAG-FINAL(e2f,f2e):
  neighboring = ((-1,0),(0,-1),(1,0),(0,1),(-1,-1),(-1,1),(1,-1),(1,1))
  alignment = intersect(e2f,f2e);
  GROW-DIAG(); FINAL(e2f); FINAL(f2e);
  GROW-DIAG():
    iterate until no new points added
    for english word e = 0 ... en
      for foreign word f = 0 ... fn
        if ( e aligned with f )
          for each neighboring point ( e-new, f-new ):
            if ( ( e-new not aligned and f-new not aligned ) and
                ( e-new, f-new ) in union( e2f, f2e ) )
              add alignment point ( e-new, f-new )
  FINAL(a):
    for english word e-new = 0 ... en
      for foreign word f-new = 0 ... fn
        if ( ( e-new not aligned or f-new not aligned ) and
             ( e-new, f-new ) in alignment a )
          add alignment point ( e-new, f-new )
```
More Recent Work

- Symmetrization during training
 - symmetrize after each iteration of IBM Models
 - integrate symmetrization into models

- Discriminative training methods
 - supervised learning based on labeled data
 - semi-supervised learning with limited labeled data

- Better generative models
 - see talk by Alexander Fraser
Statistical Machine Translation

- Components: Translation model, language model, decoder

![Diagram of Statistical Machine Translation](image)

- Foreign/English parallel text
- English text
- Statistical analysis
- Translation Model
- Language Model
- Decoding Algorithm
Phrase-Based Translation

- Foreign input is segmented in phrases
 - any sequence of words, not necessarily linguistically motivated
- Each phrase is translated into English
- Phrases are reordered

Phrase Translation Table

- Phrase Translations for “den Vorschlag”:

| English | $\phi(e|f)$ | English | $\phi(e|f)$ |
|------------------|------------|-----------------------|------------|
| the proposal | 0.6227 | the suggestions | 0.0114 |
| 's proposal | 0.1068 | the proposed | 0.0114 |
| a proposal | 0.0341 | the motion | 0.0091 |
| the idea | 0.0250 | the idea of | 0.0091 |
| this proposal | 0.0227 | the proposal , | 0.0068 |
| proposal | 0.0205 | its proposal | 0.0068 |
| of the proposal | 0.0159 | it | 0.0068 |
| the proposals | 0.0159 | ... | ... |
Decoding Process

- Build translation left to right
 - *select foreign* words to be translated
Decoding Process

- Build translation left to right
 - select foreign words to be translated
 - find English phrase translation
 - add English phrase to end of partial translation
 - mark foreign words as translated

- One to many translation
Decoding Process

<table>
<thead>
<tr>
<th>Maria</th>
<th>no</th>
<th>dio una bofetada</th>
<th>a</th>
<th>la</th>
<th>bruja</th>
<th>verde</th>
</tr>
</thead>
</table>

| Mary | did not | slap | | | | |

- Many to one translation
Decoding Process

- Reordering

- Translation finished
Translation Options

<table>
<thead>
<tr>
<th>Maria</th>
<th>no</th>
<th>dio</th>
<th>una</th>
<th>bofetada</th>
<th>a</th>
<th>la</th>
<th>bruja</th>
<th>verde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>not</td>
<td>give</td>
<td>a</td>
<td>slap</td>
<td>to</td>
<td>the</td>
<td>witch</td>
<td>green</td>
</tr>
<tr>
<td>did not</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did not</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Look up possible phrase translations
 - many different ways to segment words into phrases
 - many different ways to translate each phrase

Hypothesis Expansion

<table>
<thead>
<tr>
<th>Maria</th>
<th>no</th>
<th>dio</th>
<th>una</th>
<th>bofetada</th>
<th>a</th>
<th>la</th>
<th>bruja</th>
<th>verde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>not</td>
<td>give</td>
<td>a</td>
<td>slap</td>
<td>to</td>
<td>the</td>
<td>witch</td>
<td>green</td>
</tr>
<tr>
<td>did not</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did not</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Start with empty hypothesis
 - e: no English words
 - f: no foreign words covered
 - p: probability 1
Hypothesis Expansion

<table>
<thead>
<tr>
<th>Maria</th>
<th>no</th>
<th>dio</th>
<th>una</th>
<th>bofetada</th>
<th>a</th>
<th>la</th>
<th>bruja</th>
<th>verde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>not</td>
<td>give</td>
<td>a</td>
<td>slap</td>
<td>to</td>
<td>the</td>
<td>witch</td>
<td>green</td>
</tr>
<tr>
<td>did not</td>
<td>slap</td>
<td>to</td>
<td>the</td>
<td>green witch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td>did not give</td>
<td>slap</td>
<td>to</td>
<td>the</td>
<td>witch</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Pick **translation option**
- Create **hypothesis**
 - e: add English phrase Mary
 - f: first foreign word covered
 - p: probability 0.534

A Quick Word on Probabilities

- Not going into detail here, but...
- **Translation Model**
 - phrase translation probability $p(\text{Mary}|\text{Maria})$
 - reordering costs
 - phrase/word count costs
 - ...
- **Language Model**
 - uses trigrams:
 - $p(\text{Mary did not}) = p(\text{Mary|START}) \times p(\text{did|Mary,START}) \times p(\text{not|Mary did})$
Hypothesis Expansion

<table>
<thead>
<tr>
<th>Maria</th>
<th>no</th>
<th>dio</th>
<th>una</th>
<th>bofetada</th>
<th>a</th>
<th>la</th>
<th>bruja</th>
<th>verde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>not</td>
<td>give</td>
<td>a</td>
<td>slap</td>
<td>to</td>
<td>the</td>
<td>green</td>
<td>witch</td>
</tr>
<tr>
<td>did not</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>by</td>
<td>to</td>
<td></td>
<td>witch</td>
</tr>
<tr>
<td>did not</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>to</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- e: witch...
 f: --------
 p: .182
- e: Mary
 f: ---------
 p: .534

- Add another hypothesis

Hypothesis Expansion

<table>
<thead>
<tr>
<th>Maria</th>
<th>no</th>
<th>dio</th>
<th>una</th>
<th>bofetada</th>
<th>a</th>
<th>la</th>
<th>bruja</th>
<th>verde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>not</td>
<td>give</td>
<td>a</td>
<td>slap</td>
<td>to</td>
<td>the</td>
<td>green</td>
<td>witch</td>
</tr>
<tr>
<td>did not</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>by</td>
<td>to</td>
<td></td>
<td>witch</td>
</tr>
<tr>
<td>did not</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>to</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- e: witch...
 f: --------
 p: .182
- e: Mary
 f: ---------
 p: .534

- Further hypothesis expansion
Hypothesis Expansion

- until all foreign words *covered*
 - find *best hypothesis* that covers all foreign words
 - backtrack to read off translation

⇒ *Explosion* of search space
Explosion of Search Space

- Number of hypotheses is *exponential* with respect to sentence length

⇒ Decoding is NP-complete [Knight, 1999]

⇒ Need to *reduce search space*

 - risk free: hypothesis *recombination*

 - risky: *histogram/threshold pruning*

Hypothesis Recombination

- Different paths to the *same* partial translation
Hypothesis Recombination

- Different paths to the same partial translation
 \(\Rightarrow\) Combine paths
 - drop weaker path
 - keep pointer from weaker path (for lattice generation)

- Recombined hypotheses do not have to match completely
- No matter what is added, weaker path can be dropped, if:
 - last two English words match (matters for language model)
 - foreign word coverage vectors match (effects future path)
Hypothesis Recombination

- Recombined hypotheses do not have to match completely
- No matter what is added, weaker path can be dropped, if:
 - last two English words match (matters for language model)
 - foreign word coverage vectors match (effects future path)
⇒ Combine paths

Pruning

- Hypothesis recombination is not sufficient
⇒ Heuristically discard weak hypotheses early
- Organize Hypothesis in stacks, e.g. by
 - same foreign words covered
 - same number of foreign words covered
- Compare hypotheses in stacks, discard bad ones
 - histogram pruning: keep top n hypotheses in each stack (e.g., $n=100$)
 - threshold pruning: keep hypotheses that are at most α times the cost of best hypothesis in stack (e.g., $\alpha = 0.001$)
Hypothesis Stacks

• Organization of hypothesis into stacks
 – here: based on number of foreign words translated
 – during translation all hypotheses from one stack are expanded
 – expanded Hypotheses are placed into stacks

Comparing Hypotheses

• Comparing hypotheses with same number of foreign words covered

Maria no dio una bofetada a la bruja verde

e: Mary did not
f: **------
p: 0.154

better partial translation

e: the
f: -----**--
p: 0.354

covers easier part --> lower cost

• Hypothesis that covers easy part of sentence is preferred
 ⇒ Need to consider future cost of uncovered parts
Future Cost Estimation

- *Estimate cost* to translate remaining part of input
- Step 1: estimate future cost for each *translation option*
 - look up translation model cost
 - estimate language model cost (no prior context)
 - ignore reordering model cost
 \[\text{LM} \times \text{TM} = p(\text{to}) \times p(\text{the}|\text{to}) \times p(\text{to the}|\text{a la}) \]

Future Cost Estimation: Step 2

- Step 2: find *cheapest cost* among translation options
Future Cost Estimation: Step 3

- Step 3: find *cheapest future cost path* for each span
 - can be done *efficiently* by dynamic programming
 - future cost for every span can be *pre-computed*

Future Cost Estimation: Application

- Use future cost estimates when *pruning* hypotheses
- For each *uncovered contiguous span*:
 - look up *future costs* for each maximal contiguous uncovered span
 - *add* to actually accumulated cost for translation option for pruning
A* search

- Pruning might drop hypothesis that lead to the best path (*search error*)
- **A* search**: safe pruning
 - future cost estimates have to be accurate or underestimates
 - *lower bound* for probability is established early by
 - *depth first search*: compute cost for one complete translation
 - if cost-so-far and future cost are worse than *lower bound*, hypothesis can be safely discarded
- Not commonly done, since not aggressive enough

Limits on Reordering

- Reordering may be *limited*
 - **Monotone** Translation: No reordering at all
 - Only phrase movements of at most n words
- Reordering limits *speed* up search (polynomial instead of exponential)
- Current reordering models are weak, so limits *improve* translation quality
Word Lattice Generation

- Search graph can be easily converted into a word lattice
 - can be further mined for n-best lists
 - enables reranking approaches
 - enables discriminative training

Sample N-Best List

- Simple N-best list:

 Translation ||| Reordering LM TM WordPenalty ||| Score
 this is a small house ||| 0 -27.0908 -1.83258 -5 ||| -28.9234
 this is a little house ||| 0 -28.1791 -1.83258 -5 ||| -30.0117
 it is a small house ||| 0 -27.108 -3.21888 -5 ||| -30.3268
 it is a little house ||| 0 -28.1963 -3.21888 -5 ||| -31.4152
 this is an small house ||| 0 -31.7294 -1.83258 -5 ||| -33.5622
 this is an small house ||| 0 -32.3094 -3.21888 -5 ||| -35.5263
 this is an little house ||| 0 -33.7639 -1.83258 -5 ||| -35.5965
 this is a house small ||| 0 -31.4851 -1.83258 -5 ||| -36.3176
 this is a house little ||| 0 -33.5689 -1.83258 -5 ||| -36.4015
 it is a little house ||| 0 -34.3439 -3.21888 -5 ||| -37.5628
 it is a house small ||| 0 -31.5022 -3.21888 -5 ||| -37.7211
 this is an small house ||| 0 -32.8999 -1.83258 -5 ||| -37.7325
 it is a house little ||| 0 -31.586 -3.21888 -5 ||| -37.8049
 this is an house little ||| 0 -32.9837 -1.83258 -5 ||| -37.8163
 the house is a little ||| 0 -28.8107 -2.52573 -5 ||| -38.0364
 the is a small house ||| 0 -35.6899 -2.52573 -5 ||| -38.2156
 it is a little house ||| 0 -30.3603 -3.91202 -5 ||| -38.2723
 the house is a small ||| 0 -28.7683 -2.52573 -5 ||| -38.2942
 it's a small house ||| 0 -34.8557 -3.91202 -5 ||| -38.7677
 this house is a little ||| 0 -35.1446 -3.91202 -5 ||| -39.0566
 this house is a small ||| 0 -35.1446 -3.91202 -5 ||| -39.2139

Koehn, U Edinburgh ESSLLI Summer School Day 3
Moses: Open Source Toolkit

- **Open source** statistical machine translation system (developed from scratch 2006)
 - state-of-the-art *phrase-based* approach
 - novel methods: *factored translation models*, *confusion network decoding*
 - support for *very large models* through *memory-efficient* data structures

- Development also supported by
 - EC-funded *TC-STAR* project
 - *US* funding agencies DARPA, NSF
 - universities (Edinburgh, Maryland, MIT, ITC-irst, RWTH Aachen, ...)

Phrase-based models
Phrase-based translation

- Foreign input is segmented in phrases
 - any sequence of words, not necessarily linguistically motivated
- Each phrase is translated into English
- Phrases are reordered

Phrase-based translation model

- Major components of phrase-based model
 - phrase translation model $\phi(f|e)$
 - reordering model $\omega^{d(start_i - end_{i-1} - 1)}$
 - language model $p_{LM}(e)$
- Bayes rule
 $$\argmax_e p(f|e) = \argmax_e p(f|e)p(e) = \argmax_e \phi(f|e) p_{LM}(e) \omega^{d(start_i - end_{i-1} - 1)}$$
- Sentence f is decomposed into I phrases $\tilde{f}_I = \tilde{f}_1, \ldots, \tilde{f}_I$
- Decomposition of $\phi(f|e)$
 $$\phi(\tilde{f}_I|\tilde{e}_I) = \prod_{i=1}^I \phi(\tilde{f}_i|\tilde{e}_i) \omega^{d(start_i - end_{i-1} - 1)}$$
Advantages of phrase-based translation

- *Many-to-many* translation can handle non-compositional phrases
- Use of *local context* in translation
- The more data, the *longer phrases* can be learned

Phrase translation table

- Phrase translations for *den Vorschlag*

| English | \(\phi(e|f)\) | English | \(\phi(e|f)\) |
|----------------|---------------|----------------|---------------|
| the proposal | 0.6227 | the suggestions| 0.0114 |
| 's proposal | 0.1068 | the proposed | 0.0114 |
| a proposal | 0.0341 | the motion | 0.0091 |
| the idea | 0.0250 | the idea of | 0.0091 |
| this proposal | 0.0227 | the proposal, | 0.0068 |
| proposal | 0.0205 | its proposal, | 0.0068 |
| of the proposal| 0.0159 | it | 0.0068 |
| the proposals | 0.0159 | ... | ... |
How to learn the phrase translation table?

- Start with the **word alignment**:

```
<table>
<thead>
<tr>
<th>Maria no</th>
<th>daba</th>
<th>una</th>
<th>a</th>
<th>la</th>
<th>verde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>did</td>
<td>not</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>not</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>slap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>green</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>witch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

- Collect all phrase pairs that are **consistent** with the word alignment

Consistent with word alignment

- **Consistent with the word alignment** := phrase alignment has to **contain all alignment points** for all covered words

\[
(\overline{e}, \overline{f}) \in BP \Leftrightarrow \forall e_i \in \overline{e} : (e_i, f_j) \in A \rightarrow f_j \in \overline{f} \\
\text{AND} \forall f_j \in \overline{f} : (e_i, f_j) \in A \rightarrow e_i \in \overline{e}
\]
Word alignment induced phrases

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green),
(Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the),
(bruja verde, green witch)
Word alignment induced phrases

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green),

(Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the),
(bruja verde, green witch), (Maria no daba una bofetada, Mary did not slap),
(no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch)

Word alignment induced phrases

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green),

(Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the),
(bruja verde, green witch), (Maria no daba una bofetada, Mary did not slap),
(no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch),

(Maria no daba una bofetada a la, Mary did not slap the),
(daba una bofetada a la bruja verde, slap the green witch)
Word alignment induced phrases (5)

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green).

(Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the),
(bruja verde, green witch), (Maria no daba una bofetada, Mary did not slap),
(no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch),
(Maria no daba una bofetada a la, Mary did not slap the), (daba una bofetada a la bruja verde, slap the green witch), (no daba una bofetada a la bruja verde, did not slap the green witch).

(Maria no daba una bofetada a la bruja verde, Mary did not slap the green witch).

Probability distribution of phrase pairs

- We need a **probability distribution** $\phi(f|\bar{e})$ over the collected phrase pairs

⇒ Possible **choices**

- **relative frequency** of collected phrases: $\phi(f|\bar{e}) = \frac{\text{count}(f, \bar{e})}{\sum_{\bar{f}} \text{count}(\bar{f}, \bar{e})}$

- or, conversely $\phi(\bar{e}|\bar{f})$

- use **lexical translation probabilities**
Reordering

- **Monotone** translation
 - do not allow any reordering
 - worse translations
- **Limiting** reordering (to movement over max. number of words) helps
- **Distance-based** reordering cost
 - moving a foreign phrase over \(n \) words: cost \(\omega^n \)
- **Lexicalized** reordering model

Lexicalized reordering models

- Three **orientation** types: **monotone**, **swap**, **discontinuous** [from Koehn et al., 2005, IWSLT]
- Probability \(p(\text{swap}|e, f) \) depends on foreign (and English) **phrase** involved
Learning lexicalized reordering models

- Orientation type is learned during phrase extractions
- Alignment point to the top left (monotone) or top right (swap)?
- For more, see [Tillmann, 2003] or [Koehn et al., 2005]
Syntax-Based Translation: The Good, The Bad, and How to Win Big

Adam Lopez

with thanks to Ondřej Bojar
(and apologies to Richard P. Gabriel)

- Why do we care about syntax-based MT?
- How does it work?
- What are the open problems?

Disclaimer
Fast-moving field, we only scratch the surface
Although north wind howls, but sky still extremely limpid.

Phrase-based models are good, but not perfect

- computing all possible reorderings is NP-complete
- can’t generalize
- can’t model long-distance dependencies
- can’t model grammaticality
The Good

Syntax-based models aim to solve these problems

- polynomial complexity
- can generalize
- can model long-distance dependencies
- can model grammaticality
NP → DT₁JJ₂NN₃/DT₁NN₃JJ₁

NP → DT₁JJ₂JJ₃NN₄/DT₁NN₄JJ₂JJ₃
Problem Stack decoding doesn’t apply

 Idea Decoding is parsing
Problem Phrase-based decoding with full reordering has exponential complexity.

Idea Use binary-bracketing SCFG for polynomial complexity.
Problem Phrase-based cannot model grammaticality.

Idea Constrain SCFG to target-side syntax.
The Bad
It doesn’t really work.
- Bracketing grammar doesn’t capture all alignments.
- Tree isomorphism at production level is too strict.

Where do we go next?
- More theory?
- More articulated models?

Modeling translational equivalence using weighted finite state transducers is like approximating a high-order polynomial with line segments... the relatively low expressive power of weighted finite state transducers limits the quality of SMT systems.

–Burbank et al. 2005

But language is hierarchical.

–anonymous MT researcher

I think phrases are a passing fad.

–anonymous MT researcher
This type of difficulty has happened in other research areas.

Lisp = syntax-based models
Unix and C++ = phrase-based models

Simplicity the design must be simple, both in implementation and interface. It is more important for the interface to be simple than the implementation.

Correctness the design must be correct in all observable aspects. Incorrectness is simply not allowed.

Consistency the design must not be inconsistent. A design is allowed to be slightly less simple and less complete to avoid inconsistency. Consistency is as important as correctness.

Completeness the design must cover as many important situations as is practical. All reasonably expected cases must be covered. Simplicity is not allowed to overly reduce completeness.

The Right Thing
Simplicity the design must be simple. Simplicity is the most important consideration in a design.

Correctness the design must be correct in all observable aspects. It is slightly better to be simple than correct.

Consistency the design must not be overly inconsistent. It is better to drop those parts of the design that deal

Worse is Better

Completeness the design must cover as many important situations as is practical. Completeness can be sacrificed in favor of any other quality. In fact, completeness must sacrificed whenever implementation simplicity is jeopardized.

The good news is that in 1995 we will have a good operating system and programming language. The bad news is that they will be Unix and C++.

–Richard Gabriel

In 2018, will we have a good translation system based on phrases?
How to Win Big

Observation Phrase-based models good at local reordering.
Idea Use phrases to reorder phrases.
Observation Phrase-based models good, but not grammatical.

Idea Add syntax, but keep the phrases.
Current status

- Syntax-based models competitive with phrase-based
 - Slightly better for Chinese-English
 - Slightly worse for Arabic-English
 - Open question for European languages
 - Language models make a bigger difference
- Not as fast as advertised
 - With 5-gram language model – $O(n^{11})$
 - Easy tricks in phrase-based models not applicable
 - Work on clever search algorithms
- Parsing progress – 1997: 88.1%, 2007: 92.4%

Many, many more angles

- Different formal models with different properties
 - Dependency grammar
 - Synchronous tree substitution grammar
 - Synchronous tree adjoining grammar
- Parsing: source, target, or both?

See handout for some further reading
Additional Notes on Syntax-based Translation

Ondřej Bojar, Adam Lopez

1 Overview

The lecture that accompanies this handout only scratches the surface of a wide and deep field of study. Most researchers in syntax-based translation are motivated to solve one or more problems of phrase-based translation using more expressive models based on various notions of syntax, either formal or linguistic. However, added modeling power comes with added modeling challenges, and meeting these challenges is currently an area of much active research. There are many different approaches. One primary axis of classification of these approaches is the underlying syntactic formalism.

The lecture deals mainly with synchronous context free grammars (constituent trees). These are known in different guises as syntax-directed translation (Lewis and Stearns, 1968), inversion transduction grammar (Wu, 1995), head transducers (Alshawi et al., 2000), and a number of other names. A formalism that generalizes these is multitext grammar (Melamed, 2003). Chiang and Knight (2006) provides a good overview of SCFG and several related variants. Lopez (2008) briefly reviews some additional formalisms in the context of a wider survey on statistical machine translation. However, neither of these are complete references. In the remaining sections, we describe some important grammatical formalisms that are useful for European languages, which have application in translation. This text should be viewed as an advanced primer that gives pointers to more complete descriptions found in the literature.

2 Dependency vs. Constituency Trees

Syntactic structure of sentences can be represented using constituency trees or dependency trees.

Constituency trees indicate recursive “bracketing” of the sentence–sequences of words are grouped together to form constituents:

(1) John (loves Mary)

Dependency trees indicate which words depend on which. Nivre (2005) gives a good review of dependency-based formalisms and dependency parsing.
Figure 1: A constituency and a dependency tree. Non-terminals in bold mark heads. Following the trail of heads, we find the terminal node with the same label as the node in a dependency tree would have.

Figure 1 illustrates a constituency tree and a dependency tree. In constituency trees, each non-terminal node (labelled in capital letters) represents a constituent. There are no non-terminals in dependency trees. If we choose one of the sons in each constituent to be the head of the constituent, e.g. the VP to be the head of the S, we can convert the constituency tree to a dependency tree by “lifting” the terminals up along paths marked with heads.

An unordered dependency tree is a connected rooted directed acyclic graph in graph-theoretic sense. An unordered dependency tree does not capture any linear order of words, just pure dependencies. We cannot speak about projectivity (see below) of unordered dependency trees.

An ordered dependency tree is an unordered dependency tree with a specified linear order of the nodes. We can thus draw the nodes in the tree from left to right (and the drawing actually means something).

A constituency tree can be defined e.g. as a term, using this recursive definition: 1) a terminal is a term, 2) if \(t_1, \ldots, t_n \) are terms and \(N \) is a non-terminal, then \(N(t_1, \ldots, t_n) \) is a term. In the graph-theoretic view, a constituency tree is a tree with linearly ordered sons of each non-terminal.

2.1 Crossing Brackets, Non-Projectivity

Here is a simple example of a sentence with “crossing brackets”:

(2) Mary, John loves.

Constituency trees cannot represent structures where a constituent was “moved” outside of its father’s span (unless we use empty constituents, sometimes called “traces”, i.e. constituents spanning no words, optionally co-indexed with the “moved” words). Because there are no non-terminals in
dependency trees to represent the derivation history, some of the “crossing brackets” structures just disappear, see Figure 2.\footnote{See the difference between a D-tree and a DR-tree as defined by Holan et al. (1998).}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{dependency_tree.png}
\caption{An example of a crossing-bracket yet projective structure.}
\end{figure}

There are however structures, such as the Dutch “cross-serial” dependencies where, even dependency trees become \textbf{non-projective}, i.e. there is a “gap” in the span of a subtree. Representing non-projectivity in dependency trees is easy and natural, see Figure 3.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{non_projective_tree.png}
\caption{Dutch “cross-serial” dependencies, a non-projective tree with one gap caused by \textit{saw} within the span of \textit{swim}.}
\end{figure}

Non-projective structures can be relatively rare in English but amount to 23% of sentences in Czech, a Slavic language with relatively free word order (Debusmann and Kuhlmann, 2007).

\subsection{Gap Degree and Well-Nestedness}

Holan et al. (1998) and Kuhlmann and Möhl (2007) define a measure of non-projectivity: \textbf{gap degree} is the number of gaps in a dependency structure. Gap-zero structures are projective structures.
Kuhlmann and Möhl (2007) define another constraint on dependency structures: in well-nested structures, disjoint subtrees must not interleave. Debusmann and Kuhlmann (2007) evaluated that in the Prague Dependency Treebank (Hajič et al., 2006), 99.5% of structures are well-nested and up to gap-1, despite the fact that Czech grammar in principle allows unbounded pumping of gap-degree. The construction is based on two verbs and intermixed modifiers where the dependency relations are disambiguated based on syntactic criteria (e.g. obligatory reflexive particle se or subcategorization for a particular preposition or case) and semantic criteria (e.g. verb in past tense cannot accept time modifier referring to future):

(3)

Proti odmítnutí se zítra Petr v práci rozhodl protestovat
Against dismissal aux-refl tomorrow Peter at work decided to object

Peter decided to object against the dismissal at work tomorrow.

The non-projective dependencies are se and Peter depending on the main verb decided but appearing within the span of dependents of to object: against dismissal, tomorrow, at work. With the main verb itself, there are 3 gaps within the yield of to object.

3 Tree Grammars

Tree grammars are one type of finite formal means to define (infinite) sets of trees.

Tree-adjoining grammars (TAG, tag (), see also the review by Joshi et al. (1990)) start from a set of initial trees and use tree substitution and tree adjunction to derive a tree. The tree substitution operation attaches a treelet to a frontier (leaf non-terminal). The tree adjunction splits a tree in a non-terminal and stitches a treelet in between, see Figure 4. Tree-substitution grammars (TSG, Eisner (2003) or e.g. Bojar and Čmejrek (2007)) are like TAG but allow only tree substitution, no tree adjunction.

Figure 5 illustrates how a sentence is analyzed using a constituency-based TSG and a dependency-based TSG. The difference between constituency- and dependency-based TSG is the type of underlying trees. Non-terminal nodes in a dependency-based TSG can appear as leaves of unfinished trees only and have to be substituted by a tree later in the derivation.
Figure 4: Tree substitution at frontier F and tree adjunction at internal node A.

Figure 5: Derivation of a sentence using constituency-based and dependency-based tree substitutions. The substitution is indicated by ‘.’.

3.1 Constituency vs. Dependency Tree Adjunction

TAG defines the adjunction operation for constituency trees only. The same definition cannot be casted to dependency-based TSG (dep-TSG) because there are no internal non-terminals to adjoin at. However, we can still think of the “linguistic adjunction” in dep-TSG. This operation adds adjuncts to a node. In terms of TSG, a little tree gets attached to an internal node instead at a frontier. dep-TSG adjunction thus allows to add siblings to an already existing node.

The trouble starts if we consider ordered dependency trees. Where is the new dependent placed with respect of the existing dependents? And is the newly attached subtree attached projectively, or can older nodes in the tree introduce gaps into it? (And where the gaps are allowed to be?) E.g. Quirk et al. (2005) use a probabilistic model to interleave old dependents and newly adjoint dependents but do not seem allow non-projective attachments.
3.2 Remarks on Generative Capacity

This is by no means a complete survey.

Gaifman (1965) shows that projective dependency structures are weakly equivalent to CFG. We have already illustrated how marking of heads is used to convert a constituency tree to a dependency tree in Figure 1.

Joshi et al. (1990) describe various formalisms for so-called mildly context sensitive (MCS) grammars. The term MCS refers to various grammars beyond CFG but still parsable in polynomial time. TAG is one of them and was motivated by the need to represent Dutch cross-serial dependencies (Figure 3). Naturally, TAG needs traces in its constituency trees.

Kuhlmann and Möhl (2007) shows that lexicalized TAG (LTAG) is equivalent to well-nested dependency structures with at most one gap. Kuhlmannmohl:2007:ACLMain also define an infinite hierarchy of mildly context-sensitive dependency structures (i.e. parsable in polynomial time) of ever growing weak generative power.

Plátek (2001) defines a special type of formal automata to define a hierarchy of languages beyond CFG. Jurdziński et al. (2008) shows that already the class of languages accepted by a quite restricted from of the automaton contains NP-complete languages and is thus not much useful for efficient parsing.

3.3 Translation Direction

When designing an MT system, one should consider the properties of the source and target languages.

For instance, when translating from Czech to English, source-side non-projectivities have to be accounted for. Alternatively, a non-projective dependency parser such as (McDonald et al., 2005) can be used and the resulting dependency tree can be tranfered to the target language using e.g. STSG.

When translating from English to Czech, significant portion of non-projective structures can be disregarded because there exists a grammatically correct reordering that reduces the gap degree. For instance, the sentence in Example 3 could be translated from the English gloss as Petr se rozhodl proti odmítnutí zítra v práci protestovat., rendering no gap at all. However, the position of the reflexive particle se is fairly rigid (the "second" position in the sentence) and constraints on topic-focus articulation often lead to a gap-1 structure. Forcing projective word order by e.g. CFG as Galley et al. (2006) do on the target side would lead to mildly disfluent output.
4 References

Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
- Planned Work
Statistical machine translation today

• Best performing methods based on phrases
 – short sequences of words
 – no use of explicit syntactic information
 – no use of morphological information
 – currently best performing method
• Progress in syntax-based translation
 – tree transfer models using syntactic annotation
 – still shallow representation of words and non-terminals
 – active research, improving performance

One motivation: morphology

• Models treat car and cars as completely different words
 – training occurrences of car have no effect on learning translation of cars
 – if we only see car, we do not know how to translate cars
 – rich morphology (German, Arabic, Finnish, Czech, ...) → many word forms
• Better approach
 – analyze surface word forms into lemma and morphology, e.g.: car +plural
 – translate lemma and morphology separately
 – generate target surface form
Factored translation models

- **Factored representation** of words

 \[
 \begin{array}{c|c}
 \text{Input} & \text{Output} \\
 \text{word} & \text{word} \\
 \text{lemma} & \text{lemma} \\
 \text{part-of-speech} & \text{part-of-speech} \\
 \text{morphology} & \text{morphology} \\
 \text{word class} & \text{word class} \\
 \end{array}
 \]

- **Goals**
 - **Generalization**, e.g. by translating lemmas, not surface forms
 - **Richer model**, e.g. using syntax for reordering, language modeling

Related work

- **Back off** to representations with richer statistics (lemma, etc.)
- Use of additional annotation in **pre-processing** (POS, syntax trees, etc.)
 [Collins et al., 2005, Crego et al, 2006]
- Use of additional annotation in **re-ranking** (morphological features, POS, syntax trees, etc.)
 [Och et al. 2004, Koehn and Knight, 2005]

 → we pursue an **integrated approach**

- Use of syntactic **tree structure**

 → may be **combined** with our approach
Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
- Planned Work

Decomposing translation: example

- **Translate** lemma and syntactic information *separately*

```plaintext
lemma ⇒ lemma
part-of-speech ⇒ part-of-speech
```
Decomposing translation: example

- **Generate surface** form on target side

Translation process: example

Input: *Autos, Auto, NNS*

1. Translation step: lemma ⇒ lemma

 * (?, car, ?), (?, auto, ?)*

2. Generation step: lemma ⇒ part-of-speech

 * (?, car, NN), (?, car, NNS), (?, auto, NN), (?, auto, NNS)*

3. Translation step: part-of-speech ⇒ part-of-speech

 * (?, car, NN), (?, car, NNS), (?, auto, NNP), (?, auto, NNS)*

4. Generation step: lemma, part-of-speech ⇒ surface

 * (car, car, NN), (cars, car, NNS), (auto, auto, NN), (autos, auto, NNS)*
Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
- Planned Work

Model

- Extension of phrase model
- Mapping of foreign words into English words broken up into steps
 - translation step: maps foreign factors into English factors (on the phrasal level)
 - generation step: maps English factors into English factors (for each word)
- Each step is modeled by one or more feature functions
 - fits nicely into log-linear model
 - weight set by discriminative training method
- Order of mapping steps is chosen to optimize search
Phrase-based training

- Establish word alignment (GIZA++ and symmetrization)

⇒ natürlich hat john — naturally john has

Phrases:
- natürlich hat john
- spass am spiel
- has fun with the game

Koehn, U Edinburgh ESSLLI Summer School Day 5
Factored training

- Annotate training with factors, extract phrase

⇒ \textit{ADV V NNP} — \textit{ADV NNP V}

Training of generation steps

- Generation steps map target factors to target factors
 - typically trained on target side of parallel corpus
 - may be trained on additional monolingual data
- Example: \textit{The/DET man/NN sleeps/VBZ}
 - count collection
 - count(\textit{the},\textit{DET})++
 - count(\textit{man},\textit{NN})++
 - count(\textit{sleeps},\textit{VBZ})++
 - evidence for probability distributions (max. likelihood estimation)
 - p(\textit{DET}|\textit{the}), p(\textit{the}|\textit{DET})
 - p(\textit{NN}|\textit{man}), p(\textit{man}|\textit{NN})
 - p(\textit{VBZ}|\textit{sleeps}), p(\textit{sleeps}|\textit{VBZ})
Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
- Planned Work

Phrase-based translation

- Task: *translate this sentence* from German into English

 er geht ja nicht nach hause
Translation step 1

- Task: translate this sentence from German into English

\[
er \quad \text{geht} \quad \text{ja} \quad \text{nicht} \quad \text{nach} \quad \text{hause}
\]

- Pick phrase in input, translate

Translation step 2

- Task: translate this sentence from German into English

\[
er \quad \text{geht} \quad \text{ja} \quad \text{nicht} \quad \text{nach} \quad \text{hause}
\]

- Pick phrase in input, translate
 - it is allowed to pick words out of sequence (reordering)
 - phrases may have multiple words: many-to-many translation
Translation step 3

- Task: translate this sentence from German into English

er geht ja nicht nach hause

- Pick phrase in input, translate

Translation step 4

- Task: translate this sentence from German into English

er geht ja nicht nach hause

- Pick phrase in input, translate
Translation options

<table>
<thead>
<tr>
<th>er</th>
<th>geht</th>
<th>ja</th>
<th>nicht</th>
<th>nach</th>
<th>hause</th>
</tr>
</thead>
<tbody>
<tr>
<td>he</td>
<td>is</td>
<td>yes</td>
<td>not</td>
<td>after</td>
<td>to</td>
</tr>
<tr>
<td>it</td>
<td>are</td>
<td>is</td>
<td>do not</td>
<td>to</td>
<td>according to</td>
</tr>
<tr>
<td>, it</td>
<td>goes</td>
<td>, of course</td>
<td>does not</td>
<td>in</td>
<td>home</td>
</tr>
<tr>
<td>, he</td>
<td>goes</td>
<td>does not</td>
<td>is not</td>
<td>under house</td>
<td>return home</td>
</tr>
</tbody>
</table>

- Many translation options to choose from
 - in Europarl phrase table: 2727 matching phrase pairs for this sentence
 - by pruning to the top 20 per phrase, 202 translation options remain

The machine translation decoder does not know the right answer

→ Search problem solved by heuristic beam search
Decoding process: precompute translation options

er geht ja nicht nach hause

Decoding process: start with initial hypothesis

er geht ja nicht nach hause
Decoding process: hypothesis expansion

er geht ja nicht nach hause

Decoding process: hypothesis expansion

er geht ja nicht nach hause

he are
Decoding process: hypothesis expansion

Decoding process: find best path
Factored model decoding

- Factored model decoding introduces *additional complexity*
- Hypothesis expansion not any more according to simple translation table, but by *executing a number of mapping steps*, e.g.:
 1. translating of *lemma* → *lemma*
 2. translating of *part-of-speech, morphology* → *part-of-speech, morphology*
 3. generation of *surface form*
- Example: `haus|NN|neutral|plural|nominative` → `{ `houses|house|NN|plural, homes|home|NN|plural, buildings|building|NN|plural, shells|shell|NN|plural `}`
- Each time, a hypothesis is expanded, these mapping steps have to applied

Efficient factored model decoding

- Key insight: executing of mapping steps can be *pre-computed* and stored as translation options
 - apply mapping steps to all input phrases
 - store results as *translation options*
 → decoding algorithm *unchanged*
Efficient factored model decoding

- Problem: *Explosion* of translation options
 - originally limited to 20 per input phrase
 - even with simple model, now 1000s of mapping expansions possible
- Solution: *Additional pruning* of translation options
 - *keep only the best* expanded translation options
 - current default 50 per input phrase
 - decoding only about 2-3 times slower than with surface model

Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
- Outlook
Adding linguistic markup to output

Input Output

word word
part-of-speech

- Generation of POS tags on the target side
- Use of high order language models over POS (7-gram, 9-gram)
- Motivation: syntactic tags should enforce syntactic sentence structure model not strong enough to support major restructuring

Some experiments

- English–German, Europarl, 30 million word, test2006

<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>best published result</td>
<td>18.15</td>
</tr>
<tr>
<td>baseline (surface)</td>
<td>18.04</td>
</tr>
<tr>
<td>surface + POS</td>
<td>18.15</td>
</tr>
</tbody>
</table>

- German–English, News Commentary data (WMT 2007), 1 million word

<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>18.19</td>
</tr>
<tr>
<td>With POS LM</td>
<td>19.05</td>
</tr>
</tbody>
</table>

- Improvements under sparse data conditions
- Similar results with CCG supertags [Birch et al., 2007]
Sequence models over morphological tags

- Violation of noun phrase agreement in gender
 - *das schwarze* and *schwarze Himmel* are perfectly fine bigrams
 - but: *das schwarze Himmel* is not
- If relevant n-grams does not occur in the corpus, a lexical n-gram model would *fail to detect* this mistake
- Morphological sequence model: $p(N\text{-}male|J\text{-}male) > p(N\text{-}male|J\text{-}neutral)$

Local agreement (esp. within noun phrases)

- High order language models over POS and morphology
- Motivation
 - *DET-sgl NOUN-sgl* good sequence
 - *DET-sgl NOUN-plural* bad sequence
Agreement within noun phrases

- Experiment: 7-gram POS, morph LM in addition to 3-gram word LM
- Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Agreement errors in NP</th>
<th>devtest</th>
<th>test</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>15% in NP ≥ 3 words</td>
<td>18.22 BLEU</td>
<td>18.04 BLEU</td>
</tr>
<tr>
<td>factored model</td>
<td>4% in NP ≥ 3 words</td>
<td>18.25 BLEU</td>
<td>18.22 BLEU</td>
</tr>
</tbody>
</table>

- Example
 - baseline: ... zur zwischenstaatlichen methoden ...
 - factored model: ... zu zwischenstaatlichen methoden ...

- Example
 - baseline: ... das zweite wichtige änderung ...
 - factored model: ... die zweite wichtige änderung ...

Morphological generation model

- Our motivating example
- Translating lemma and morphological information more robust
Initial results

- Results on 1 million word News Commentary corpus (German–English)

<table>
<thead>
<tr>
<th>System</th>
<th>In-domain</th>
<th>Out-of-domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>18.19</td>
<td>15.01</td>
</tr>
<tr>
<td>With POS LM</td>
<td>19.05</td>
<td>15.03</td>
</tr>
<tr>
<td>Morphgen model</td>
<td>14.38</td>
<td>11.65</td>
</tr>
</tbody>
</table>

- What went wrong?
 - why back-off to lemma, when we know how to translate surface forms?
 → loss of information

Solution: alternative decoding paths

- Allow both surface form translation and morphgen model
 - prefer surface model for known words
 - morphgen model acts as back-off
Results

- Model now beats the baseline:

<table>
<thead>
<tr>
<th>System</th>
<th>In-domain</th>
<th>Out-of-domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>18.19</td>
<td>15.01</td>
</tr>
<tr>
<td>With POS LM</td>
<td>19.05</td>
<td>15.03</td>
</tr>
<tr>
<td>Morphgen model</td>
<td>14.38</td>
<td>11.65</td>
</tr>
<tr>
<td>Both model paths</td>
<td>19.47</td>
<td>15.23</td>
</tr>
</tbody>
</table>

Adding annotation to the source

- Source words may lack sufficient information to map phrases
 - English-German: what case for noun phrases?
 - Chinese-English: plural or singular
 - pronoun translation: what do they refer to?

- Idea: add additional information to the source that makes the required information available locally (where it is needed)

- see [Avramidis and Koehn, ACL 2008] for details
Case Information for English–Greek

- Detect in English, if noun phrase is subject/object (using parse tree)
- Map information into case morphology of Greek
- Use case morphology to generate correct word form

Obtaining Case Information

- Use syntactic parse of English input
 (method similar to semantic role labeling)
Results English-Greek

- Automatic BLEU scores

<table>
<thead>
<tr>
<th>System</th>
<th>devtest</th>
<th>test07</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>18.13</td>
<td>18.05</td>
</tr>
<tr>
<td>enriched</td>
<td>18.21</td>
<td>18.20</td>
</tr>
</tbody>
</table>

- Improvement in verb inflection

<table>
<thead>
<tr>
<th>System</th>
<th>Verb count</th>
<th>Errors</th>
<th>Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>311</td>
<td>19.0%</td>
<td>7.4%</td>
</tr>
<tr>
<td>enriched</td>
<td>294</td>
<td>5.4%</td>
<td>2.7%</td>
</tr>
</tbody>
</table>

- Improvement in noun phrase inflection

<table>
<thead>
<tr>
<th>System</th>
<th>NPs</th>
<th>Errors</th>
<th>Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>247</td>
<td>8.1%</td>
<td>3.2%</td>
</tr>
<tr>
<td>enriched</td>
<td>239</td>
<td>5.0%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>

- Also successfully applied to English-Czech

Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
- Planned Work
Using POS in reordering

- **Reordering** is often due to syntactic reasons
 - French-English: $NN \ ADJ \rightarrow \ ADJ \ NN$
 - Chinese-English: $NN1 \ F \ NN2 \rightarrow \ NN1 \ NN2$
 - Arabic-English: $VB \ NN \rightarrow \ NN \ VB$

- Extension of lexicalized reordering model
 - already have model that learns $p(\text{monotone}|\text{bleue})$
 - can be extended to $p(\text{monotone}|\text{ADJ})$

- Gains in preliminary experiments

Shallow syntactic features

- **the paintings of the old man are beautiful**
 - plural - - - singular plural -
 - $B-NP \ I-NP \ B-PP \ I-PP \ I-PP \ I-PP \ V \ B-ADJ$
 - $SBJ \ SBJ \ OBJ \ OBJ \ OBJ \ OBJ \ V \ ADJ$

- Shallow syntactic tasks have been formulated as sequence labeling tasks
 - base noun phrase chunking
 - syntactic role labeling
Long range reordering

- **Long range** reordering
 - movement often not limited to local changes
 - German-English: $SBJ \ AUX \ OBJ \ V \rightarrow SBJ \ AUX \ V \ OBJ$

- **Asynchronous** models
 - some factor mappings (POS, syntactic chunks) may have longer scope than others (words)
 - larger mappings form template for shorter mappings
 - computational problems with this

Discriminative Training
Overview

- Evolution from generative to discriminative models
 - IBM Models: purely generative
 - MERT: discriminative training of generative components
 - More features \rightarrow better discriminative training needed
- Perceptron algorithm
- Problem: overfitting
- Problem: matching reference translation

The birth of SMT: generative models

- The definition of translation probability follows a mathematical derivation
 \[
 \arg\max_e p(e|f) = \arg\max_e p(f|e) \ p(e)
 \]
- Occasionally, some independence assumptions are thrown in
 for instance IBM Model 1: word translations are independent of each other
 \[
 p(e|f, a) = \frac{1}{Z} \prod_i p(e_i|f_{a(i)})
 \]
- Generative story leads to straight-forward estimation
 - maximum likelihood estimation of component probability distribution
 - EM algorithm for discovering hidden variables (alignment)
Log-linear models

- IBM Models provided mathematical justification for factoring components together
 \[p_{LM} \times p_{TM} \times p_D \]
- These may be weighted
 \[p_{LM}^{\lambda_{LM}} \times p_{TM}^{\lambda_{TM}} \times p_D^{\lambda_D} \]
- Many components \(p_i \) with weights \(\lambda_i \)
 \[\prod_i p_i^{\lambda_i} = \exp(\sum_i \lambda_i \log(p_i)) \]
 \[\log \prod_i p_i^{\lambda_i} = \sum_i \lambda_i \log(p_i) \]

Knowledge sources

- Many different knowledge sources useful
 - language model
 - reordering (distortion) model
 - phrase translation model
 - word translation model
 - word count
 - phrase count
 - drop word feature
 - phrase pair frequency
 - additional language models
 - additional features
Set feature weights

- Contribution of components p_i determined by weight λ_i
- Methods
 - manual setting of weights: try a few, take best
 - automate this process
- Learn weights
 - set aside a development corpus
 - set the weights, so that optimal translation performance on this development corpus is achieved
 - requires automatic scoring method (e.g., BLEU)

Discriminative training

- Model
 - generate n-best list
- change feature weights
 - score translations
 - find feature weights that move up good translations
Discriminative vs. generative models

- Generative models
 - translation process is broken down to steps
 - each step is modeled by a probability distribution
 - each probability distribution is estimated from the data by maximum likelihood

- Discriminative models
 - model consist of a number of features (e.g. the language model score)
 - each feature has a weight, measuring its value for judging a translation as correct
 - feature weights are optimized on development data, so that the system output matches correct translations as close as possible

Discriminative training

- Training set (development set)
 - different from original training set
 - small (maybe 1000 sentences)
 - must be different from test set

- Current model translates this development set
 - n-best list of translations (n=100, 10000)
 - translations in n-best list can be scored

- Feature weights are adjusted

- N-Best list generation and feature weight adjustment repeated for a number of iterations
Learning task

- Task: find weights, so that feature vector of the correct translations ranked first

<table>
<thead>
<tr>
<th>TRANSLATION</th>
<th>LM</th>
<th>TM</th>
<th>WP</th>
<th>SER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mary not give slap witch green .</td>
<td>-17.2</td>
<td>-5.2</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>2 Mary not slap the witch green .</td>
<td>-16.3</td>
<td>-6.7</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>3 Mary not give slap of the green witch .</td>
<td>-18.1</td>
<td>-4.9</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>4 Mary not give of green witch .</td>
<td>-16.5</td>
<td>-5.1</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>5 Mary did not slap the witch green .</td>
<td>-20.1</td>
<td>-4.7</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>6 Mary did not slap green witch .</td>
<td>-15.9</td>
<td>-3.2</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>7 Mary not slap of the witch green .</td>
<td>-19.2</td>
<td>-5.3</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>8 Mary did not give slap of witch green .</td>
<td>-23.2</td>
<td>-5.8</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>9 Mary did not give slap of the green witch .</td>
<td>-21.8</td>
<td>-4.8</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>10 Mary did slap the witch green .</td>
<td>-15.5</td>
<td>-5.3</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>11 Mary did not slap the green witch .</td>
<td>-17.4</td>
<td>-5.3</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>12 Mary did slap witch green .</td>
<td>-16.9</td>
<td>-6.3</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>13 Mary did slap the green witch .</td>
<td>-14.3</td>
<td>-7.1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>14 Mary did not slap of green witch .</td>
<td>-24.2</td>
<td>-5.3</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>15 Mary did not give slap of the witch green .</td>
<td>-25.2</td>
<td>-6.5</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

Och’s minimum error rate training (MERT)

- Line search for best feature weights

 given: sentences with n-best list of translations
 iterate n times
 randomize starting feature weights
 iterate until convergences
 for each feature
 find best feature weight
 update if different from current
 return best feature weights found in any iteration
Methods to adjust feature weights

- **Maximum entropy** [Och and Ney, ACL2002]
 - match *expectation* of feature values of model and data
- **Minimum error rate** training [Och, ACL2003]
 - try to *rank best translations first* in n-best list
 - can be adapted for various error metrics, even BLEU
- **Ordinal regression** [Shen et al., NAACL2004]
 - separate k worst from the k best translations

BLEU error surface

- Varying one parameter: a rugged line with many local optima
Unstable outcomes: weights vary

<table>
<thead>
<tr>
<th>component</th>
<th>run 1</th>
<th>run 2</th>
<th>run 3</th>
<th>run 4</th>
<th>run 5</th>
<th>run 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>distance</td>
<td>0.059531</td>
<td>0.071025</td>
<td>0.069061</td>
<td>0.120828</td>
<td>0.120828</td>
<td>0.072891</td>
</tr>
<tr>
<td>lexdist 1</td>
<td>0.093565</td>
<td>0.044724</td>
<td>0.097312</td>
<td>0.108922</td>
<td>0.108922</td>
<td>0.062848</td>
</tr>
<tr>
<td>lexdist 2</td>
<td>0.021165</td>
<td>0.008882</td>
<td>0.008607</td>
<td>0.013950</td>
<td>0.013950</td>
<td>0.030890</td>
</tr>
<tr>
<td>lexdist 3</td>
<td>0.083298</td>
<td>0.049741</td>
<td>0.024822</td>
<td>-0.000598</td>
<td>-0.000598</td>
<td>0.023018</td>
</tr>
<tr>
<td>lexdist 4</td>
<td>0.051842</td>
<td>0.108107</td>
<td>0.090298</td>
<td>0.111243</td>
<td>0.111243</td>
<td>0.047508</td>
</tr>
<tr>
<td>lexdist 5</td>
<td>0.043290</td>
<td>0.047801</td>
<td>0.020211</td>
<td>0.028672</td>
<td>0.028672</td>
<td>0.050748</td>
</tr>
<tr>
<td>lexdist 6</td>
<td>0.083848</td>
<td>0.056161</td>
<td>0.103767</td>
<td>0.032869</td>
<td>0.032869</td>
<td>0.050240</td>
</tr>
<tr>
<td>lm 1</td>
<td>0.042750</td>
<td>0.056124</td>
<td>0.052090</td>
<td>0.049561</td>
<td>0.049561</td>
<td>0.059518</td>
</tr>
<tr>
<td>lm 2</td>
<td>0.019881</td>
<td>0.012075</td>
<td>0.022896</td>
<td>0.035769</td>
<td>0.035769</td>
<td>0.026414</td>
</tr>
<tr>
<td>lm 3</td>
<td>0.059497</td>
<td>0.054580</td>
<td>0.044363</td>
<td>0.048321</td>
<td>0.048321</td>
<td>0.056282</td>
</tr>
<tr>
<td>ttable 1</td>
<td>0.052111</td>
<td>0.045096</td>
<td>0.046655</td>
<td>0.054519</td>
<td>0.054519</td>
<td>0.046538</td>
</tr>
<tr>
<td>ttable 1</td>
<td>0.052888</td>
<td>0.036831</td>
<td>0.040820</td>
<td>0.058003</td>
<td>0.058003</td>
<td>0.066308</td>
</tr>
<tr>
<td>ttable 1</td>
<td>0.042151</td>
<td>0.066256</td>
<td>0.043265</td>
<td>0.047271</td>
<td>0.047271</td>
<td>0.052853</td>
</tr>
<tr>
<td>ttable 1</td>
<td>0.034067</td>
<td>0.031048</td>
<td>0.050794</td>
<td>0.037589</td>
<td>0.037589</td>
<td>0.031939</td>
</tr>
<tr>
<td>phrase-pen.</td>
<td>0.059151</td>
<td>0.062019</td>
<td>-0.037950</td>
<td>0.023414</td>
<td>0.023414</td>
<td>-0.069425</td>
</tr>
<tr>
<td>word-pen</td>
<td>-0.200963</td>
<td>-0.249531</td>
<td>-0.247089</td>
<td>-0.228469</td>
<td>-0.228469</td>
<td>-0.252579</td>
</tr>
</tbody>
</table>

Unstable outcomes: scores vary

- Even different scores with different runs (varying 0.40 on dev, 0.89 on test)

<table>
<thead>
<tr>
<th>run</th>
<th>iterations</th>
<th>dev score</th>
<th>test score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>50.16</td>
<td>51.99</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>50.26</td>
<td>51.78</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>50.13</td>
<td>51.59</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>50.10</td>
<td>51.20</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>50.16</td>
<td>51.43</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>50.02</td>
<td>51.66</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>50.25</td>
<td>51.10</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>50.21</td>
<td>51.32</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>50.42</td>
<td>51.79</td>
</tr>
</tbody>
</table>
More features: more components

- We would like to add more components to our model
 - multiple language models
 - domain adaptation features
 - various special handling features
 - using linguistic information

→ MERT becomes even less reliable
 - runs many more iterations
 - fails more frequently

More features: factored models

- Factored translation models break up phrase mapping into smaller steps
 - multiple translation tables
 - multiple generation tables
 - multiple language models and sequence models on factors

→ Many more features
Millions of features

- Why mix of discriminative training and generative models?
- Discriminative training of all components
 - phrase table [Liang et al., 2006]
 - language model [Roark et al., 2004]
 - additional features
- Large-scale discriminative training
 - millions of features
 - training of full training set, not just a small development corpus

Perceptron algorithm

- Translate each sentence
- If no match with reference translation: update features

```plaintext
set all lambda = 0
do until convergence
  for all foreign sentences f
    set e-best to best translation according to model
    set e-ref to reference translation
    if e-best != e-ref
      for all features feature-i
        lambda-i += feature-i(f,e-ref) - feature-i(f,e-best)
```

Koehn, U Edinburgh ESSLLI Summer School Day 5
Problem: overfitting

- Fundamental problem in machine learning
 - what works best for training data, may not work well in general
 - rare, unrepresentative features may get too much weight
- Especially severe problem in phrase-based models
 - long phrase pairs explain well individual sentences
 - ... but are less general, suspect to noise
 - EM training of phrase models [Marcu and Wong, 2002] has same problem

Solutions

- Restrict to short phrases, e.g., maximum 3 words (current approach)
 - limits the power of phrase-based models
 - ... but not very much [Koehn et al, 2003]
- Jackknife
 - collect phrase pairs from one part of corpus
 - optimize their feature weights on another part
- IBM direct model: only one-to-many phrases [Ittycheriah and Salim Roukos, 2007]
Problem: reference translation

- Reference translation may be anywhere in this box

- If produceable by model \rightarrow we can compute feature scores
- If not \rightarrow we can not

Some solutions

- **Skip sentences**, for which reference can not be produced
 - invalidates large amounts of training data
 - biases model to shorter sentences
- Declare candidate translations closest to reference as **surrogate**
 - closeness measured for instance by smoothed BLEU score
 - may be not a very good translation: odd feature values, training is severely distorted
Experiment

- Skipping sentences with unproduceable reference hurts

<table>
<thead>
<tr>
<th>Handling of reference</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>with skipping</td>
<td>25.81</td>
</tr>
<tr>
<td>w/o skipping</td>
<td>29.61</td>
</tr>
</tbody>
</table>

- When including all sentences: surrogate reference picked from 1000-best list using maximum smoothed BLEU score with respect to reference translation

- Czech-English task, only binary features
 - phrase table features
 - lexicalized reordering features
 - source and target phrase bigram

- See also [Liang et al., 2006] for similar approach

Better solution: early updating?

- At some point the reference translation falls out of the search space
 - for instance, due to unknown words:

 Reference: The group attended the meeting in Najaf ...
 System: The group meeting was attended in UNKNOWN ...

 only update features involved in this part

- Early updating [Collins et al., 2005]:
 - stop search, when reference translation is not covered by model
 - only update features involved in partial reference / system output
Conclusions

• Currently have proof-of-concept implementation
• Future work: Overcome various technical challenges
 – reference translation may not be produceable
 – overfitting
 – mix of binary and real-valued features
 – scaling up
• More and more features are unavoidable, let’s deal with them