AN\ /

Twentieth | i

uropean Summer School

-4 in Logic, Language
and Information

’

l

W

|
l
‘ {
l

e 5 1 bkl '.i'\| ﬂl’ s i

I

Nonmonotonic logics—recent
advances

Mirek Truszczynski

ESSLLI 2008

20th European Summer School in Logic, Language and Information
4-15 August 2008

Freie und Hansestadt Hamburg, Germany

Programme Committee. Enrico Franconi (Bolzano, Italy), Petra Hendriks (Groningen, The
Netherlands), Michael Kaminski (Haifa, Israel), Benedikt Lowe (Amsterdam, The Netherlands
& Hamburg, Germany) Massimo Poesio (Colchester, United Kingdom), Philippe Schlenker (Los
Angeles CA, United States of America), Khalil Sima’an (Amsterdam, The Netherlands), Rineke
Verbrugge (Chair, Groningen, The Netherlands).

Organizing Committee. Stefan Bold (Bonn, Germany), Hannah Kénig (Hamburg, Germany),
Benedikt Lowe (chair, Amsterdam, The Netherlands & Hamburg, Germany), Sanchit Saraf (Kan-
pur, India), Sara Uckelman (Amsterdam, The Netherlands), Hans van Ditmarsch (chair, Otago,
New Zealand & Toulouse, France), Peter van Ormondt (Amsterdam, The Netherlands).

http://www.illc.uva.nl/ESSLLI2008/
essll1li2008@science.uva.nl

INSTITUTE FOR LOGIC,

Lanouace axn COMPUTATION

ESSLLI 2008 is organized by the Universitait Hamburg under the auspices of the Association for Logic, Language and
Information (FoLLI). The Institute for Logic, Language and Computation (ILLC) of the Universiteit van Amsterdam is
providing important infrastructural support. Within the Universitdt Hamburg, ESSLLI 2008 is sponsored by the Depart-
ments Informatik, Mathematik, Philosophie, and Sprache, Literatur, Medien I, the Fakultit fiir Mathematik, Informatik
und Naturwissenschaften, the Zentrum fiir Sprachwissenschaft, and the Regionales Rechenzentrum. ESSLLI 2008 is
an event of the Jahr der Mathematik 2008. Further sponsors include the Deutsche Forschungsgemeinschaft (DFG), the
Marie Curie Research Training Site GLoRiClass, the European Chapter of the Association for Computational Linguistics,
the Hamburgische Wissenschaftliche Stiftung, the Kurt Goédel Society, Sun Microsystems, the Association for Symbolic
Logic (ASL), and the European Association for Theoretical Computer Science (EATCS). The official airline of ESSLLI 2008
is Lufthansa; the book prize of the student session is sponsored by Springer Verlag.

Mirek Truszczynski

Nonmonotonic logics—recent
advances

Course Material. 20th European Summer School in Logic, Lan-
guage and Information (ESSLLI 2008), Freie und Hansestadt Ham-
burg, Germany, 4-15 August 2008

The ESSLLI course material has been compiled by Mirek Truszczynski. Unless otherwise mentioned, the copyright lies with
the individual authors of the material. Mirek Truszczynski declares that he has obtained all necessary permissions for the
distribution of this material. ESSLLI 2008 and its organizers take no legal responsibility for the contents of this booklet.

iii

Nonmonotonic logics—recent advances

Lecture notes for ESSLLI-08; slides available at
Www. cS. uky. edu/ ai / essl |1 08Sli des. pdf

Mirostaw Truszcziyski
Department of Computer Science
University of Kentucky
Lexington, KY 40506-0046
{m rek}@s. engr. uky. edu

1 Introduction

In the late 1970s, the need for effective knowledge representation nsdihmaight attention to rules of
inference that admixceptionsand are used under the assumption of normality or, to put it differently,
when things are “as expected.”

For instance, a knowledge base concerning a university should spimference that, given no
information that might indicate otherwise, if Dr. Jones is a professor at thatnsity, then Dr. Jones
teaches. Such conclusion might be sanctioned by an inference rule statimptimally university
professors teach. In commonsense reasoning rules with exceptiorsguiaus.

The problem is that such rules do not lend themselves in any direct waynali@ations in terms
of first-order logic, unlesall exceptions are known and explicitly represented — an unrealistic ex-
pectation in practice. The reason is that standard logical inferemeristoneand proofs cannot be
defeatedvhen additional facts become available. However, in commonsense reasmshgrguments
are defeasible, as they are conditioned on implicit assumptions (most often, pre@satytions of
normality), which may turn out incorrect once we learn more about the spsitifetion about which
we reason.

Such reasoning, where additional information may invalidate conclusions, id naltenonotonic
As we have just noted, it is common. It has been a focus of extensiveesthy the knowledge
representation community and resulted in a rich fieldafimonotonic logics

First nonmonotonic logics were introduced in the late 70s and were baseditersinple ideas.
Reiter [Rei78] introducedClosed World AssumptiofCWA, for short), an inference rule that allows
us to derive an atom from a theoryT, if T' does not entail the negation af CWA is defeasible
(if T entails—a under CWA,T U {a} clearly does not), and formalizes the basic database query-
answering principle. McCarthy [McC77] introduced an early variami@umscription calledminimal
entailmentin which entailment is based on minimal models only. As some nonminimal models (which
are excluded) may turn out to be relevant once we learn more about thk therminimal entailment

is defeasible.

These early proposals drew much attention and in 1®&iicial Intelligence Journalpublished
a celebrated volume dedicated to nonmonotonic reasoning. That volume edntaiee fundamental
papers that introduced default logic (Reiter [Rei80]), circumscription&afthy [McC80]) and modal
nonmonotonic logic (McDermott and Doyle [MD80]). This last logic turned oubdawe flaws. To
address the problems pointed out by the community, McDermott [McD82] intemtlan entire family
of modal nonmonotonic logics, each based on a standard normal modal logiciotimer effort to
design a modal logic for nonmonotonic reasoning, Moore [Moo84, Moo&Ejdnced autoepistemic
logic (see also [Lev90]).

In about the same time, the logic programming community was struggling with the prolblesn
tablishing a declarative semantics for programs wigation-as-failurdwe refer to [Kow74, Kow79,
Llo84, Apt90, Doe94] for details on mainstream logic programing reseamdradditional references).
The problem was that programs with negation-as-failure do not behaveagthim first-order logic.

In fact, they behave “nonmonotonically.” Indeed, in the absence of doynivation about an atom,

we infernot p (we will write not to denote the negation-as-failure operator, to distinguish it from the
classical negation operatei). However, as soon as we include a unit rplie the programnot p no
longer holds.

Thus, apparently unaware of the knowledge representation communitisetfee logic program-
ming community was actively pursuing similar research objectives. In a majortarikesin 1978
Clark [Cla78] proposed theompletion semantidsased on a simple rewriting of a logic program as a
first-order theory, which views logic program rulesdefinitions Ultimately, the research on the se-
mantics of negation-as-failure resulted in giablesemantics [GL88] and theell-founded semantics
[VRS88, VRS91]. These semantics are now commonly accepted as peaidiorrect formalization
of the intuitive meaning of logic programs. Interestingly, around the time the staibantics was
introduced, the connections between logic programming and knowledgesespation efforts were
finally discovered. First, the stable semantics itself was strongly motivated bytaircrepresenta-
tion of a logic program as a modal theory and the interpretation of the latter giwémetsemantics
of autoepistemic logic [Gel87, Gel89]. Second, it turned out that an evea diect connection to
knowledge representation exists when [BF87, MT89b] proved that lagigramming with the stable
semantics is really nothing else but a fragment of Reiter’s default logic.

Since the time of the confluence of the efforts of the two communities, the arenafonotonic
logics has grown and matured significantly. Among the most important developarentdhe emer-
gence of the effective computational support for nonmonotonic reascdM¥I[T99, SNS02, LPF06,
GKNSO07, GLN"07] and ofanswer-set programmir1T99, Nie99], the basic paradigm of computing
with nonmonotonic logics; the discovery of deep connections between stablésranddogics such as
the logic here-and-there [Pea97, FLO5] and modal logic S4F [Tru0@Lahcept of strong and uniform
equivalence of programs, which are fundamental for modular logic anoging, and results on exten-
sions, generalizations and characterizations of these notions of eque/flléhé01, EFWO07, Wol07];
the discovery of important connections to propositional satisfiability throughdtien of a loop for-
mula [LZ02, FLLO6]; and the establishment of general algebraic foundatimomgnmonotonic reason-
ing, which offer a unified view of main nonmonotonic formalisms [DMT00a, DNAJLO

Our goal in the tutorial is to introduce the basic formalisms (we will focus oawefogic and
logic programming and only briefly mention autoepistemic logic) and to review sortieesé major
developments we mentioned above. These notes contains most of the nedeBsé#ions, key results,

and an extensive list of references.

2 Operators and their basic properties

We will often consider mappings of a special type, callgmbrators They are of interest as many
properties of default logic and logic programming can be formulated in termgesators.

Let H be a set. Aroperatoris simply a function defined o (H) and with values ifP(H). An
operatorT’ is monotonef it preserves inclusion. That is, for all subséfs, X, of H

(X1 € X3) = (T(X1) € T (X))
An operatorT’ is antimonotonef it reverses inclusion. That is, for all subsets, X, of H

(X1 € X3) = (T(X2) € T(X1)).

Given an operatdr’, its iterationsare defined inductively:

=10
T =T(1T™)
% = UnEw ™

This definition can be extended to arbitrary ordinals but it is not necefsapur purposes.
We note that when an operatbris monotone,

D CT@) CT*0) C...CT0).

Furthermore, ifl" is monotone, then for att, 7™ is monotone, too. For antimonotone operators
the situation is different: for even, 7™ is monotone. For odd, 7" is antimonotone.

Given an operatof’, a subsefX C H is calledprefixpointof 7" if 7'(X) C X. Similarly, X is a
fixpointof T"if T'(X') = X. The following result is due to Tarski and Knaster [Tar55].

Theorem 2.1 Every monotone operatdf possesses a least prefixpoint and a least fixpoint, and the
two coincide.

Theorem 2.1 does not extend to operators that are not monotone. Yeheank about the powers
of antimonotone operators allows us to handle that case to some extent.

Theorem 2.2 LetT be an antimonotone operator. Th&R possesses a least fixpoifit Moreover, for
every fixpointX of 7: F C X C T(F)

There is one more interesting property of antimonotone operators.T st an antimonotone
operator, and\/; and M> be its fixpoints. IfAM; C My, thenMy = T'(Ms) C T(M;) = M,. Hence,
we have the following result.

Theorem 2.3 Fixpoints of an antimonotone operator form an antichain.

3 Introduction to Default Logic

Default logic is a knowledge representation mechanism allowing for reagdmitne presence of in-
complete information. It handles the logical aspects of modalities such as “norniablyally”, etc.

Syntactically, default logic extends the first order logic (however, in thrial we will focus on
the propositional case) by introducing new entities caflethult rulesor, simply, defaults A default
rule is a construct of the form

r = 4/7111)1’--.7?%1
9
whereyp, 11, . .., Yy, ¥ are propositional formulas (given our focus on propositional case)forhaila
 is called thepremiseor prerequisiteof and is denoted by(r). The set{v1, ...y} is called the

set ofjustificationof r and is denoted by(r). The formula) is called theconclusionor consequentf
r and is denoted(r).

Justifications are used in default logic to explicitly represeptionsconditions blocking ap-
plicability of defaults. That is, application of a default is qualified by #fvsenceof information that
would imply inconsistency of one of the justifications of the rule. Put in yet arotfay, a default
is applicable if its premise has already been established and all its justificateoosresistent, that is,
their negations are not provable. It is precisely that presence of justifisahat allows us to model
modalities such as “normally” and “usually” within default logic.

In our format, a default rule has just one premise. This is an immaterial testriince we assume
the usual rules of logic anyway.

Default logic deals wittdefault theoriesthat is, pairg§ D, W), whereD is a collection of defaults
andW is a collection of formulas.

Defaults can be viewed as generalized inference rules, with standardnoé rules of the form
%

9
being special defaults (defaults with no justifications).

Given a default/, by [d] we denote the standard inference rule obtained fdoy “stripping” it of
its justifications. We extend this notation to sets of defaults in a standard way.

A defaulty : 91,..., 9, /0 is S-enabledif S [~ —;, fori = 1,...,m. Enabled defaults are
those defaults for which justification premises hold, if we assumeS$hata theory representing our
belief set. For a seb of defaults, we writeDg for the set ofS-enabled defaults i.

A defaulty : ¢1,..., 1, /9 is S-applicableif it is S-enabled and = . S-applicable defaults
are also called-generating. For a sé? of defaults, we writeD(.S) for the set ofS-applicable defaults
in D.

The basic idea behind the semantics of default logic is to associate with dtdb&ary A =
(D, W) a collection of theories representing possible belief sets. There are twalségetermine
this collection: first we need tguessa putative belief sef (which amounts to making assumptions on
consistency of justifications) and then we have to justify the selection. Thea &ast two different
ways that could be used in the second step. First, we can justify the cloft®yshowing thatS
is precisely what can be derived froWi and D(.S) in propositional logic (or, that the negation of no
justification assumed to be consistent can be derived fidland D(.S)). Second, we can justifg, by
showing it is precisely what we can derive fra#rin propositional calculus extended by standard rules

4

derived from allS-enabled defaults, that is, by the rulegins] (or, that no justification assumed to be
consistent can be derived in such a way).

The first approach yields the notion of arpansiorof a default theory (also referred to as a weak
extension). It was introduced in [MT89a] (see also [MT93a]). THiiss an expansion of a default
theory(D, W) if

S =Cn(W U D(S)).

The second approach yields the notion okatensiorof a default theory [Rei80], the fundamental
notion of default logic. Thus$ is an extension of a default theof, W) if

S = onlPsl(w),

whereCn® stands for the consequence operator of the formal system extendipgotifesystem of
propositional logic with inference rules iB.

Example 3.1LetW = @ andD = {£2}. We will consider two contextsS; = Cn(0)) and S, =
Cn(p). Clearly,D(S;) =0 andS; = Cn(W U ¢(D(S1))). Similarly, D(S3) = D, ¢(D(S2)) = {p},
andW = Cn(W U ¢(D(S2))). Thus,S; and S, are expansions. We note thsj is self-justified.
Indeed, the presence pin S requires using the consequent?%ﬂ, which we can only do if we already
believe inp.

In the case of extensions, the situation is different.

Example 3.2 For the same default theory as above, we haxg = 0, Ds, = {#,?} and [Dg,] =

{L}. Clearly,) = CnlP5U](W) and s0,5; is an extension. Howeves; is not. The rule? will never
be applied when we attempt to justifyit requires that we already havederived fromi¥’ by means of
propositional inference extended with ruleg ing, |, which is impossible). Thus, # CnlPS)N (W),

These two examples illustrate a key difference between expansions andandeExtensions are
based on a stronger notion of a justification that disallows circular arguments.

Here is one more larger example.
Example 3.3 LetWW = {p} and

Do o, s TS
D_{p g pionTs }
r q S

There is only one extensioff, = Cn(p, q). Indeed, to justify it, we can uge(which belongs td1’)
and inference rulesg and %, which belong tdDs]. Clearly, what can be derived are precisely the
propositional consequences f, ¢}, that is,Cn(p.q).

In the same time§ = C'n(p,) is not an extension. To justify we can usg and the ruleg’ and
%, which allows us to justify, even though we do not assume it!

Our definition of extensions is different from the original one providedRejter. For the sake of
completeness, we will now present this original definition.

Let (D, W) be a default theory. We observe that for everySehere is a least séf such that:

5

1. WCU
2.Cn(U)=U
3. Whenever1=-4m is g default rule inD, ¢ € U and—e1, . ..,), ¢ Cn(S) thend € U

We denote this set by p i) (S). We say thats is an extension of D, W) if

S =T(pw)(S)

3.1 Basic properties of default logic

Having introduced the notion of extension, we will now discuss its elementapepies. First, we
note that our definition of extension and the Reiter’'s one coincide.

Theorem 3.1 Let (D, W) be a default theory. Le$ be any theory. TheG@n!PsI(W) = T'(p y(S).
Consequentlys is an extension ofD, W) if and only if.S' = T'(p) (5).

The operatol” (we drop the subscriptD, W) from the notation, when no ambiguity arises) is
antimonotone. Indeed, the larggis, the fewer defaults are applicable. Consequently, the opdrator
is monotone and has the least fixpoint. This fixpoint can be used to definsiarvefwell-founded
semanticdor default logic. We discuss this matter later in the tutorial. We also use thisagpto
define well-founded semantics for logic programs in Section 5.4.

Since the operatdr is antimonotone, its fixpoints cannot be included one in the other (itis a denera
property of antimonotone operators; see Theorem 2.3). Consequertigweehe following result.

Proposition 3.2 Extensions of a default theofy, W) form an antichain. That is, i3, 7% are exten-
sions of(D, W), andT; C T; thenT = Tb.

Next, we note that extensions of a default the@py W) are expansions diD, V).

Proposition 3.3 If 7" is an extension of D, W) thenT is an expansion ofD, W) and so, satisfies
T =Cn(WUc(D(T)))

In particular, it follows that every extension of a default the¢ry, W) is of the formCn(W U
c(D’)), for some set of default®’ C D. This property is useful for the design of algorithms to compute
extensions as it constrains the space of candidate theories. In particdier “larger” example in the
previous section, there are 8 candidate theories for an extension. fheftae formCn({p} U U),
whereU C {r, ¢, s}. Checking each of them in the way presented there, one can verifg'th{dp, ¢})
is indeed the only extension of that default theory.

We will now establish yet another characterization of extensions, this time in w@fmsts of
valuations (possible-world structures) rather than provability operafbh& characterization in the
propositional case is not particularly deep and can be obtained fronfirim@aretic characterizations
of extensions by a simple application of the completeness theorem. We desceteehiticause it leads
to the interesting extension of default logic to the predicate case discowetatsthitz [Lif90]. It is
also relevant to an algebraic treatment of default logic, we discuss later.

6

Let v be a valuation. Define
Th(v) = {p: v(p) =t}
and, for a seV/ of valuations,

Th(V) ={¢: v(p)=t, foreveryv e V}.

Clearly,
Th(V) = {Th(v): v € V}.

Finally, for a theoryS C £, define

Mod(S) = {v: v(p) =t forevery p € S}.

It follows directly from the definitions of the operatdf$ andMod, and from the definition of the
operatorCn that for everyivV C L,

Th(Mod(W)) = Cn(W).
Hence, ifiW is closed under propositional provability,
Th(Mod(W)) = W.

In order to characterize extensions of default theories in terms of vahsatior a default theory
(D, W) we introduce aroperatorXp y7, which assigns sets of valuations to sets of valuations. Our
definition relies on the following relationship between sets of valuations and theorie

Theorem 3.4 Let(D, W) be a default theory. For every set of valuatidnshe set Modl'p w (T'h(V)))
is a largest set’’ of valuations satisfying the following conditions:

1. V' C Mod(W).

2. Foreveryd € D, if p(d) € Th(V') and, for everys € j(d), =3 ¢ Th(V), thenc(d) € Th(V").

Let (D, W) be a default theory and |&t be a set of valuations. We defitg, (V') to be the
largest sel’’ of valuations satisfying the conditions (1) and (2) of Theorem 3.4. That s,

ED’W(V) = MOd(FD’W(Th(V))).
We have the following characterization of extensions in terms of fixpoints afjeeatory p yy-.

Theorem 3.5 Let (D, W) be a default theory. Then a theasyis an extension fofD, W) if and only
if S'=Th(V), for some set of valuatiorig such thatV’ = X p w (V).

3.2 Normal default logic and related modes of reasoning

In this section we discuss a fragment of default logic with a desirable gxoipert every default theory
has an extension. This is so-calledrmal default logic A normaldefault rule is a rule of the form

=t

A normal default theoryis a default theory D, W) such thatD consists of normal defaults only.
Normal default theories have several useful properties. We will lishthew. First, a normal default
theory always possesses an extension.

Theorem 3.6 A normal default theory D, W) always possesses an extension. If, in additidhjs
consistent, then all extensions(d@?, 1V) are consistent.

In Section 3.1 we proved that extensions of a default theory form an aimichirmal default
theories enjoy a stronger property.

Theorem 3.7 If (D, W) is a normal default theory and;, 7 are distinct extensions ¢, V) then
T, U Ty is inconsistent.

Finally, normal default theories have a coherence property that, intefédls us that the forward
chaining construction for normal default theories never leads astréyisTtalledsemimonotonicity

Theorem 3.8 Let Dy, Dy be collections of normal defaults. Then wheneYers an extension of
(D1, W) then there exist$’ such thatl’ is an extension ofD; U Dy, W) andT; C T.

Normal default theories may, of course, possess many extensions.

Example 3.4Let W = {-pV —q}. LetD = {-Z, -1} Then (D, W) possesses two extensions:
Cn({p, —q}) andCn({q, ~p}).

If, however,IWW U {¢(r) : r € D} is consistent, thefD, W) possesses a unique extensiom (W U
{c(r) :r € D}).

We will now discuss a mode of reasoning closely related to normal default [dgis is so-called
Closed World Reasoningvhich we mentioned in the introduction. Given a propositional thé@ry
consider

CWAW) = Cn(W U {—-p: pisanatomandV t/ p})

We say thatl” is CWA-consistentf CWAIW) is consistent.

The motivation forCWA comes from database considerations. Specifically, whenever we use
database and on the absence of information about some atomic fact in datebelsém that that
fact is false, we perform closed world assumption. Notice that @W11") is alwaysa complete
theory. It may be inconsistent, though.

Example 3.5 LetWW = {pVq}. ThenCWAW) = Cn({pV ¢, ~p, —q}. ThusW is CWAinconsistent.

Proposition 3.9 If W is a consistent Horn theory thel’ is CWA-consistent. In fact, CWW') is
precisely the theory of the least modellt

Closed World Assumption is related to normal default logic. Define
_J 7P
DCWA— { pe At}
-p
We then have the following result.

Theorem 3.10 Let W be a set of formulas of. ThenW is CWA-consistent if and only if

1. W is consistent, and

2. (Dcwa, W) possesses a unique extension.

Extensions of Dcwa, W) are always complete. A complete consistent thdony the propositional
language can be identified with a valuation. Indeed, a valuatiotefined by

1 ifpeT
0 otherwise

vr(p) = {

is a unique model of". This in turn can be identified with the set of atopnahich belong tdl’. The
following result tieg Dcwa, W) with minimal models (and, hence, with propositiona€umscriptior).
Define

Ty =Cn({p:pe MyU{-p:p ¢ M}).

Proposition 3.11 A set of atomsV/ is a minimal model otV if and only if Ty, is an extension of
(DCWA> W)

We note that normal defaults used to represent CWAsapernormal that is, they do not have
prerequisites. Such defaults are closely related to studies of nonmonot@nenice relations [Poo88,
Leh89, KLM90, LM92, Pea90].

Less secure than normal default logic is default logic where all the tiefaeseminormal Semi-
normal defaults are defaults of the form:

T_(p:w/\ﬂ
Y

In a sense, seminormal defaults are more cautious than normal ones. Tikeytltksr conclusionsy)
out of the fact that a stronger statement is possible 7). Perhaps surprisingly, semi-normal default
theories do not have all the properties of the normal ones. For instaaagill now show an example
of a seminormal default theory which has no extensions.

Example 3.6 Let W = (), and
D:{ c(pA=q) (gNA-r) (rAﬂp)}

9

p r
Then (D, W) has no extensions. Indeed, by our comments above, there are 8 padlssiies to
consider and none satisfies the equality defining extensions.

3.3 Complexity of reasoning with default logic

The results of this section were proved in [Got92, Sti92]. When nonmonotonicslagere first in-
troduced, one of the expectations was that reasoning with nonmonotonic\dgltjice more efficient.
Unfortunately, these complexity results imply that reasoning with nonmonotonisliggin fact, more
computationally complex than reasoning with propositional logic (assuming that poighloierarchy
does not collapse on one of its lower levels). However, we point out D@2, GKPS95, ST96] for a
somewhat different perspective.

We will introduce now basic reasoning tasks associated with nonmonotomialiems. These are:

EXISTENCE Given a finite default theoryD, W), decide if(D, W) has an extension;

IN-SOME Given a finite default theoryD, W) and a formulap, decide ify is in some extension for
(D, W) (credulous reasoner model

NOT-IN-ALL Given a finite default theoryD, W) and a formulap, decide if there is an extension
for (D, W) not containingy;

IN-ALL Given a finite default theoryD, W) and a formulap, decide ify is in all extensions of
(D, W) (skeptical reasoner model

We have the following result.

Theorem 3.12 The problemsEEXISTENCE IN-SOME and NOT-IN-ALL are ¥1’-com-plete. The
problemIN-ALL is IT¥-complete.

The complexity remains the same even under substantial syntactic restrictiopattitular, the
complexity remains the same if we restrict our attention to semi-normal default theBoethe nor-
mal default theories, the situations is similar. While normal default theories althaye at least one
extension (and, hence, EXISTENCE problem is trivially in P), the compleXiglloother problems
remains the same as specified in Theorem 3.12. The problem to decide méhatirenal theory has a
consistenextension is NP-complete.

We also have the following related result.

Corollary 3.13 The problem of deciding whether a finite default the@py 17) possesses at least one
consistenextension iS5’ -complete.

4 Autoepistemic Logic

In this section, we discuss autoepistemic logic introduced by Moore [Moo®$88] in a reaction
to an earlier modal nonmonotonic logic of McDermott and Doyle [MD80]. We folldasely the
presentation proposed in [BNT08].

Autoepistemic logic was introduced to provide an account of a way in whiddesily rational
agent formsbelief sets given some initial assumptions. It is a formalism in the modal langdage
generated from a set of propositional atoms, by means of boolean connectives and a (unary) modal

10

operatorK. Intuitively, a formulaK ¢ stands for { is believed.” Subsets of i are modal theo-
ries. Formulas withoutX aremodal-freeor propositional The language consisting of all modal-free
formulas is denoted by.

Let us consider a situation in which we have a rule that Professor Jorag gagniversity professor,
normally teaches. To capture this rule in modal logic, we might say that if we tlbatieve that Dr.
Jones does not teach (that is, if it is possible that she does), thenres does teach, and write it as:

Kprof ; AN ~K—teachesj D teaches. Q)
Knowing only prof ; (Dr. Jones is a professor) a rational agent should build a belief s&inomg
teaches .
We see here a similarity with default logic, where the same rule is formalized éfaald
prof (J) : teaches(J)
teaches(J)
In default logic, giveriV = {prof (J)}, the conclusiorteaches(.J) is supported as the default theory
prof (J) : teaches(J) W
teaches(J) ’

has exactly one extension and it does contadhes(.J).

The correspondence between the formula (1) and the default (2) is iataitid compelling. But
the autoepistemic logic interpretation of (1)riet the same as the default logic interpretation of (2).
We will return to this question later.

(2)

We will not review the area of modal logics. Instead, for a good introdugti@refer to [Che80,
HC84]. But we mention that many modal logics are defined by a selection of madaiaguch K, T,
D, 4, 5, etc. For instance, the axioms K, T, 4 and 5 yield the well-known moda &5. The conse-
guence operator for a modal logl; sayCngs, is defined syntactically in terms of the corresponding
provability relation forS.

We note that the consequence operdtog can often be described by a clasKoipke modelssay
C: A € Cngs(E) if and only if for every Kripke model\/ € C such thatM =x E, M =k A, where
=k stands for the relation of satisfiability of a formula or a set of formulas in a Kripkeeindebr
instance, the consequence operator in the modal Kigis characterized byniversalKripke models
(models with the total accessibility relation).

Let us come back to autoepistemic logic. What isiéeally rational agentor, more precisely,
which modal theories could be taken as belief sets of such agents? StabB@i8s][argued that to be
a belief set of an ideally rational agent a modal theBr{ £y must satisfy three closure properties.
First, E must be closed under the propositional consequence opé&rator

B1: Cn(E) C E.

We note that modal logics offer consequence operators which are stritvag the operatat'n. One
might argue that closure under one of these operators might be a mompagia for the condition
(B1). As it turns out later, it does not matter.

Next, Stalnaker postulated that theories modeling belief sets of ideally rationatisagest be
closed undepositive introspectionif an agent believes inl, then the agent believes she believes
Formally

11

B2: if Ac E,thenKA c E.

Finally, Stalnaker postulated that theories modeling belief sets of ideally ratiogaisagust also
be closed underegative introspectianf an agent does not beliew, then the agent believes she does
not believeA:

B3: if A¢ E,then-KA € E.

Stalnaker’s postulates have become commonly accepted as the definindipsopfebelief sets of
an ideally rational agent. Thus, we refer to modal theories satisfying cond{@ins(B3) simply as
belief setsThe original term used by Stalnaker wastabletheory.

Belief sets have a rich theory [MT93a]. We cite here only just two resulie.fifst one shows that
given (B2) and (B3) the choice of the consequence operator footiditoon (B1) becomes essentially
immaterial.

Proposition 4.1 If E C Lk is a belief set, therF is closed under the consequence relation in the
modal logicS5.

The second result shows that belief sets are determined by their modadiradds. This property
yields to a representation result for belief sets.

Proposition 4.2 LetT C L be closed under propositional consequence. Thea Cngs(TU{-K A |
A e L\ T})is abelief setandi N L = T'. Moreover, ifE is a belief set thefl’ = E N L is closed
under propositional consequence aht= Cngs (T U{-KA | Aec L\ T}).

Modal nonmonotonic logics are meant to provide formal means to study megtsbyswhich an
agent forms belief sets starting with a §eof initial assumptions. These belief sets must confabut
may also satisfy some additional properties. A precise mapping assigningttofarsedal formulas a
family of belief sets is what determines a modal nonmonotonic logic.

An obvious possibility is to associate with a §etC Ly all belief setsE such thatl” C E. This
choice, however, results in a formalism whichi®notone Namely, if 7" C 77, then every belief set
for T" is a belief set fofl’. Consequently, the set of “safe” beliefs — beliefs that belong to ewveligfb
set associated witli' — grows monotonically a§" gets larger. In fact, this set of safe beliefs based
onT coincides with the set of consequenced’ah the logic S5. As we aim to capture nonmonotonic
reasoning, this choice is not of interest to us here.

Another possibility is to employ a minimization principle. Minimizing entire belief sets is of little
interest as belief sets are incomparable with respect to inclusion and $opfetiem is inclusion-
minimal. Thus, this form of minimization does not eliminate any of the belief sets corgaihiand
S0, it is equivalent to the approach discussed above.

A more interesting direction is to apply the minimization principle to modal-free fragmentsief be
sets (cf. Proposition 4.2, which implies that there is a one-to-one correspomthetween belief sets
and sets of modal-free formulas closed under propositional consequé&heaksulting logic is in fact
nonmonotonic and it received some attention [HM85].

12

The principle put forth by Moore when defining the autoepistemic logic camideed as yet
another form of minimization. The conditions (B1)—(B3) imply that every belie¢flseontainingT
satisfies the inclusion

Cn(TU{KA|AecE}U{-KA|A¢E})CE.

Belief sets, for which the inclusion is proper contain beliefs that do notfdifom initial assumptions
and from the results of “introspection” and so, are undesirable. Henoeré\{Mo085] proposed to
associate witlT" only those belief set&/, which satisfy theequality.

Cn(TU{KA|A€E}U{-KA|A¢E)})=E. 3)

In fact, when a theory satisfies (3), we no longer need to assume thabieiefset — (3) implies that
itis.

Proposition 4.3 For everyT C Lk, if E C L satisfies (3) theilv satisfies (B1)—(B3), thatiis, itis a
belief set.

Moore called belief sets defined by @gble expansionsf T. We refer to them simply asxpan-
sionsof T'. We formalize our discussion in the following definition.

Definition 4.1 Let T' be a modal theory. A modal theo#y is an expansionof T' if E satisfies the
identity (3).

Belief sets have an elegant semantic characterization in terms of possiblestrodiires. Leint
be the set of all 2-valued interpretations (truth assignmentd} oPossible-world structureare subsets
of Int. Intuitively, a possible-world structure collects all interpretations theght be describing the
actual world and leaves out those that definitely do not.

A possible-world structure is essentially a Kripke model with a total accessitslégion [Che80,
HC84]. The difference is that the universe of a Kripke model is requioedle nonempty, which
guarantees that thbeoryof the model (the set of all formulas true in the model) is consistent. Some
modal theories consistent with respect to the propositional consequdatt@rdetermine inconsistent
sets of beliefs. Allowing possible-world structures to be empty is a way to @aptuch situations and
differentiate them from those situations, in which a modal theory determines nbdetbeat all.

Possible-world structures interpret modal formulas, that is, assign to thémvéiues.

Definition 4.2 LetQ C Int be a possible-world structure antl € Int a two-valued interpretation.
We define thé&ruth function, ; inductively as follows:

1. Ho.r(p) = I(p), if pis an atom.
2. HQJ(Al VAN AQ) =tif HQJ(Al) =t andHQ,I(Ag) =1. Otherwise?—[QI(Al A Ag) =f.
3. Other boolean connectives are treated similarly.

4. Ho (K A) =t, if for every interpretation/ € @, Hg,j(A) = t. OtherwiseHg ;(KA) = f.

13

It follows directly from the definition that for every formuld € L, the truth valueHg (K A)
does not depend oh ltis fully determined by the possible-world structdpeand we will denote it by
Hq (K A), droppingl from the notation.

Thetheoryof a possible-world structur€ is the set of all modal formulas that dpelievedin Q.
We denote it byI'h(Q). Thus, formally,

Th(Q) = {A | Ho(KA) = t}.

We now present a characterization of belief sets in terms of possible-waunlttises, which we
promised earlier.

Theorem 4.4 A set of modal formulag C L is a belief set if and only if there is a possible-world
structure@ C Int such thattl = Th(Q).

Expansions of a modal theory can also be characterized in terms of possitiestructures. The
underlying intuitions arise from considering a way to revise possible-wanlttsires, given a séf
of initial assumptions. The characterization is also due to Moore. Namely, foy evedal theory
T, Moore [Moo84] defined an operatdr; on P(Int) (the space of all possible-world structures) by
setting
Dr(Q) ={I | Hg,1(A) =t, foreveryA € T'}.

The operatoiD specifies a process to revise belief sets encoded by the corresppodsigle-world
structures. Given a modal theoy C Ly, the operatorDr revises a possible-world structuég
with a possible-world structur®,(Q). This revised structure consists of all interpretations that are
acceptablayiven the current structur@ and the constraints on belief sets encoded byspecifically,
the revision consists precisely of those interpretations that make all formulagire with respect to
Q.

Fixed points of the operatdp, are of particular interest. They represent “stable” possible-world
structures (and so, belief sets) — they cannot be revised any fulithir.property is behind the role
they play in the autoepistemic logic.

Theorem 4.5 LetT C L. A set of modal formulag C L is an expansion df if and only if there
is a possible-world structur@ C 7 such that) = Dp(Q) andE = Th(Q).

This theorem implies a systematic procedure for constructing expansidimt@fmodal theories
(or, to be more precise, possible-world structures that determine expansibet us continue our
“Professor Jones” example and let us look at a theory

T = {prof ;, Kprof ; N =K —teachesj D teaches}.

There are two propositional variables in our language and, consequdentlyropositional interpreta-
tions:

I = () (neitherprof ; nor teaches j is true)

Iy = {prof ;}
I3 = {teaches ;}
I, = {prof ;, teaches s }.

14

There are 16 possible-world structures one can build of these foupiatations. Only one of them,
though,Q = {prof ;, teaches s}, satisfiesDr(Q) = @ and so, generates an expansior ofWe skip
the details of verifying it, as the process is long and tedious, and we preseore efficient method
in the next section. We note however, that for the basic “Professos'Jerample autoepistemic logic
gives the same conclusions as default logic.

We close this section by noting that the autoepistemic logic can also be obtaingqubashcase of
a general fixed point schema to define modal nonmonotonic logics propodédisrmott [McD82].
In this schema, we assume that an agent uses some modaSlg¢gitending propositional logic) to
capture her basic means of inference. We then say that a modal #ieorg i is anS-expansiorof a
modal theoryl if
E=0Cns(TU{-KA|A¢E}). 4

In this equationCns represents the consequence relation in the modal git F satisfies (4), then
E is closed under the propositional consequence relation. Morabvelosed under the necessitation
rule and soF is closed under positive introspection. Finally, sifee A | A ¢ E} C E, E'is closed
under negative introspection. It follows that solutions to (4) are belief setiming?’. They can be
taken as models of belief sets of agents reasoning by means of moda$lagit justifying what they
believe on the basis of initial assumptionslinand assumptiong@bout whatot to believe (negative
introspection). By choosing different monotone logi;sve obtain from this schema different classes
of S-expansions of .

If we disregard inconsistent expansions, autoepistemic logic can bed/ese special instance of
this schema, witls = KD45, the modal logic determined by the axioms K, D, 4 and 5 [HC84, MT93a].
Namely, we have the following result.

Theorem 4.6 LetT C Lg. If E C L is consistent, thel is and expansion df if and only if £ is
a KD45-expansion df’, that is,

FE = C??,KD45(T U {—|KA ’ A ¢ E})

5 Introduction to logic programming

A logic program is a declarative specification of one or more relational syst€ngsunderlying lan-
guage is that of first-order logic. However, the semantics is restricted tmthderbrand models.
Thus, semantically, there is no difference between a logic prodfaand its groundingyround P).
Consequently, from now on we focus almost entirely on propositional lagigrams, with atoms from
a fixed countable sedt. We note however, that effective programming requires full languagea{
least, its function-free fragment) and several interesting questions conceraingrttplexity and ex-
pressive power make only sense for programs with variables. Wetcefelo84, Apt90, Doe94] for
more detailed in-depth presentations.

5.1 Basic syntax and semantics
A program ruleor clauseis an expression of the form

C=p<qi...,qm,N0try,...,Notr,

15

wherep, ¢1,...,qm,1,-..,Ty are atoms. The atomis called theneadof rule C and is denoted by
hd(C). The expression,, ..., ¢n,notry, ..., notr, is called thebodyof C' and is denoted bigd(C).

A programis a set of rules (possibly infinite). For a progra@mby hd(P) we denote the set of the
heads of all rules iP.

A rule is calleddefinite(or Horn progran) if n = 0. That is, Horn rules are of the form

P—4q1---,49m

A definite (or Horn) program is a set of Horn program rules.

Given a progranP, its Herbrand bases the set of all atoms occurring iR. The Herbrand base
of P is denoted byAt(P). Since we are dealing with the propositional case only, the Herbrand base of
P is also denoted byl¢(P), as it consists of propositional atoms. In this tutorial, we prefer the latter
notation. For instance, if the prograbis

p < g, notr
q<—s

S

t—r

then its Herbrand basit(P) is {p, ¢, r, s, t}.

An interpretationof the Herbrand base of prograim is a mappingv : At(P) — {0,1}. An
interpretation asserts some atoms to be true and some atoms to be false. Sucly sappiguely
determined by the set of atoms on whichakes valuel. We will typically think and write about
interpretations in these terms. We note that the set of interpretations viewed inathigossesses a
natural ordering given by inclusion.

An interpretation)/ satisfies a literahot a if a ¢ M. It satisfies the body of a rule if it satisfies
all literals in the body. Next)M satisfies a rule if it satisfies the head of the rule whenever it satisfies
the body of a rule. Finally)! is a model ofP if M is a model of every rule i®. We write = for the
satisfiability relation. We note, that under this concept of satisfiability there diffeyence between
logic program rules and the corresponding propositional interpretations.

We will now associate operators with logic programs. ThusHdie a program. We define an
operatorT’p on interpretations (subsets dt) [VEK76], by setting

Tp(M)={hd(r): r€ P, M =bd(r)}

The operatofl’p is not, in general, monotone. If, however, the progr&ns a Horn program then it is
monotone. Thus we can use Theorem 2.1 to assert that it has a least fixppoiabver, we can show
that this least fixpoint is given by« ().

Theorem 5.1 If P is a Horn program theA’p is monotone and has a least fixpoint. This least fixpoint
is given byT“ (0).

Let us look at an example.

Example 5.1 The programP is

16

a «—
b —
c+—a,b
a<—d

The Herbrand basat(P) is {a, b, ¢, d}. Clearly,

T2(0) =0
Tp(0) = {a, b}
T}%(®> = {a, b, C}

All the remaining iterations are equal & (()). The least fixpoint o » is {a, b, c}.

The importance of the operators for logic programming lies in the followinglrewran Emden
and Kowalski [VEK76].

Theorem 5.2 Let P be a program. Then models of the program are precisely prefixpoitktemper-
ator Tp. Moreover, if the progranP is a Horn program, then it possesses a least model which is the
least fixpoint of the operatdfFp and is equal tal™ (().

We denote the least model of a Horn progr&y LM (P).

5.2 Supported models

Since prefixpoints of ' are models ofP, so arefixpointsof Tp. We call fixpoints of7’» supported
models ofP.

Given an interpretation/, we say that all elements @f (M) havesupportin P andM . Thus,M
is a supported model @? if M is the set of all elements that have supporPiand/. Informally, M
is a supported model @? if M supports itself througl.

Clearly, all supported models of a progrdtare contained inl¢(P). Also, if P is a Horn program,
the least model o (as a fixpoint ofl’p) is a supported model aP.

Example 5.2 Let P be the following program:

a<—b
b+ a,notc

Then and{a, b} are supported models 1.

The second supported model in Example 5.2 is of interest as it is truly selégagdg(circularly
supported). Indeed, is supported by andb is supported by: (and the absence o}.

Supported models are related to the notioprofjram completiofCla78]. Letr be a program rule.
By bd"(r) we denote the (propositional) conjunction of literals in the body @fith not replaced by
—. We now define:
empl™ (P) = {bd"(r) — hd(r): r € P}.

17

Thus, cmpl™ (P) is nothing else but a theory obtained by interpreting program rules asgitiopal
implications.

We will view all rules in P with the head: as a defnition of: (listing all cases when is true).
Thus, we define

def p(a) = \/{bd"(r): hd(r) = a}

to denote a formula defining. From this perspective, if holds def »(a) must hold too. This is
captured by the formula
cmpl™ (P) ={a — defp(a): a € At}

Thus, to capture a programin propositional logic we could use the theory
cmpl(P) = empl™ (P) U ecmpl™ (P)
This theory is known as theompletionof P [Cla78]. We have the following result connection the

completion with supported models [MS92].

Theorem 5.3 Let P be a program. A sedd/ C At is a supported model @? if and only if M is a
model ofempl(P).

In particular, it follows that supported models of a program can be compyt8a&b solvers.

5.3 Stable model semantics

Stable model semantics [GL88] is one of the most commonly accepted semanticgidqorlagrams
with negation. In this section, we will introduce this notion and describe some of itsimpsttant
properties.

Let P be a propositional logic program over a set of atodsLet M C At(P). By the Gelfond-
Lifschitz reduct ofP with respect taV/, denoted byP?, we mean the logic program obtained frdmn

by:
1. removing fromP all rules with a literahot « in the body for some € M

2. removing all negative literals from all other rulesfn
For example, consider a propositional logic progrBmonsisting of the following rules:

Q) p < g,notr
(2) p < notp
() g«

(4) r — t,nots
(5) s <+ notgq.

Let M = {p, ¢}. Then,PM consists of the following rules:

p—q
q «—

r«—t

18

The rulep < not p is eliminated because € M. Similarly, rules < not ¢ is eliminated because
g € M. Since all negative literals in all the remaining rules are of the oot for somea ¢ M, the
rules are not eliminated but their negative literals are!

Clearly, for every logic progran® and for every set of atom&/, P is a Horn program. Conse-
quently, this logic program has its least modal/ (P).

Definition 5.1 We say that a set of atormd is a stable modebf a propositional logic progran® if
M = LM (PM).

From this definition it is not at all clear thatiff is a stable model oP then it is a model. This is,
however, the case.

Proposition 5.4 If M is a stable model of a logic prograifi, thenM is a model ofP. Moreover,M
is a minimal model of.

Let us look again at prograr®® consisting of rules (1) - (5). Fa¥/ = {p, ¢}, the reductPV is
described above and it is clear that/ (PM) = M. Hence,M = {p, ¢} is a stable model oP. On
the other hand)/ = {q,r} is not. Indeed. in this cas®M consists of

p%
q(—

Tt

The least model oPM is {p, q}. Since it is different from\/ = {q,r}, M is not a stable model.
Next, we observe that stable models are supported.

Proposition 5.5 If M is a stable model of a logic prograi, then is a supported model d?.

The converse is not true in general. We have seen{thdt} is a supported model of the prografh
from Example 5.2. ClearlyP{a,b} consists of the rules — b andb — a. Its least model i§ and it
is different from{a, b}. Thus,{a, b} is not a stable model a?.

We will now describe another characterizations of stable models of proposiibgnaprograms.
For each such a program, we defiR¢o be a Horn logic program obtained frafhby treating all neg-
ative literalsnot a as distinct propositional atoms. LAt be a set of propositional variables appearing
in a programP. For a setV C At, define the progran® (V) as follows:

P(N)=PuU{nota +:a€ N}

(where literalmot a, for a € N, are treated as propositional atoms.

For instance, for the program? consisting of the rules (1) - (5) and for the set of atoMs=
{r,s,t}, P(N) consists of:

p < q,notr
p < nhotp

q<—

19

r <« t,Nots
s < notgq
notr «
nots «
nott «—

Itis easy to see that the least model of this program is
LM(P(N)) = {p,q,notr,nots,nott}.

Its “positive” part,{p, ¢}, as we saw earlier, is a stable modelrRfand it is also a “complement” of
the “negative” parfnot r, not s,nott} of LM (P(N)). Itis not coincidental. We have the following
result.

Theorem 5.6 Let P be a propositional logic program and let At be the set of atoms appeariiy i
setM C Atis a stable model aP if and only if M U {nota: a € At\ M} is the least model of the
Horn programP (At\ M).

Next, we describe some simple properties of stable model semantics. First, weowilttsat stable
model semantics extends the least model semantics for Horn programs.

Proposition 5.7 If P is a Horn program thenP has exactly one stable model. It coincides with the
least model of?, LM (P).
Next, we observe that the operator
GLp(M) = LM (PM)
(the Gelfond-Lifschitz operatdiis antimonotone. That is, it/; C M- then
GLp(Msy) C GLp(My).
Hence (Theorem 2.3), we have the following result.

Proposition 5.8 Let P be a logic program. Then, the family of its stable models forms an antichain
with respect to inclusion.

Our results on stable models for logic programs parallel, in many cases, tlits msextensions
of default theories. This is not coincidental. Logic programming with stable hremheantics can be
regarded as a special case of default logic.

A default interpretatiorof a logic program rule
C=p<—q,...,qm,n0try,..., notry,

is the default
AN o ANGm: T, ..., Ty

p
By thedefault interpretatiorof a logic programP we mean the default theofyil(P), (), where

dI(P) = {dI(C): C € P}.

di(c) = L

We have the following result relating logic programming and default logic.

20

Theorem 5.9 Let P be alogic program. A set of atonid is a stable model foP if and only ifC'n (M)
is an extension afdl(P), (). Conversely, every extension(df(P), 0)) is of the formCn (M), for some
stable modelV/ for P.

We have a similar connection to autoepistemic logic. We interpret a(‘ulgven above by the
following modal formula:

ael(C)==KriA...A=-Krp, D (@ A...ANGm D D)
By theautoepistemic interpretatioof a logic programP we mean the modal theonye!(P), where
ael(P) = {ael(C): C € P}.

For an modal theory, we denote byAt(F) the set of propositional atoms f.

Theorem 5.10 Let P be a logic program. A set/ C At is a stable model oP if and only if there is
an expansiorE of ael(P) such thatV = At(E).

5.4 Well-founded semantics

We will now describe the so-called well-founded semantics of a progrdRSP4].

Let P be a propositional program. We will consider the operatdrr whose fixpoints are stable
models of P. We recall thatGLp(M) = LM (PM). As we observed in Section 5.3, the operator
GLp is antimonotone. Thus, its second iterati6il, is a monotone operator. According to Theorem
2.2, the operatotiL% possesses a least fixpoint. We will denote itThyP). We also writeM (P) =
GLp(T(P)). One can check that/ (P) is the largest fixpoint of7L%. These fixpoints oscillate, that
is,

GLp(T(P)) = M(P) and GLp(M(P))=T(P).

Moreover, all the fixpoints ofL p (stable models) includ€(P) and are themselves includedin(P).

Thus the least fixpoint offL3 approximates from below the intersection of all stable models, whereas
the largest fixpoint approximates from above the union of stable modélslofs important to see that

the approximation is all we get.

Example 5.3 Let P be this program
p < Notq

q < not (p)

The least fixpoint ofGL% is empty set, whereas the largest fixpoin{jisg.r}. The intersection of all
stable models i$r} and the union of all stable models{ig, ¢, r}.

Well-founded semantics is three valued. Atom§'(iP) are interpreted asue, atoms inM (P) are
interpreted apossiblytrue, and atoms not i (P) (we will denote the set of such atoms By P))
are interpreted afalse

21

5.5 Complexity

Stable model semantics has a major drawback. It is computationally complex [MT91].

Theorem 5.11 The following problems are NP-complete:

1. Given a finite propositional logic prograifi, decide whetheP has a stable model

2. Given a finite propositional logic progra® and an atonu, decide whether there is a stable
modelM of P such thats € M

The following problem is co-NP-complete:

3 Given a finite propositional logic program® and an atormu, decide whethet is in all stable
models ofP

This theorem remains true even under fairly restrictive conditions imposeideorules. For in-
stance, the assertion remains true for the class of programs in which éadtasuno positive atoms
and at most one negative literal in the body.

In contrast, well-founded semantics has very good computational propénti@st, the algorithm
follows directly from the definition of well-founded semantics. First, let uali¢hat the least model of
a finite propositional Horn program can be computed in tieize(P)), wheresize(P) denotes the
total length of all rules inP. Consequently, given a finite propositional logic progrBmnand a subset
M of the set of atoms appearing i, GLp(M) can be computed in tim@(size(P)). According to
the definition of well-founded semantics, sétand F' can be computed by iterating the operatélip
starting with the empty set of atoms. Every two iterations the head of at least orie agléed tdr’,
or the computation stops. So, the computation terminatés(ji’|) iterations. Thus, we obtain the
following result.

Theorem 5.12 There is an algorithm that, given a finite propositional logic progr&ncomputes the
well-founded semantics fd? in time O(|P| x size(P)), where| P| denotes the number of rules in
andsize(P) denotes the total length of all rules .

For more details on well-founded semantics computation we refer to [BSJ95].LT0O0

5.6 Stratification and splitting

The efficiency of stable model computation can be improved by exploiting the doofcgipatification
While most of the concepts presented in this section can be generalized to tite tdse, we will
restrict our discussion to the case of finite propositional programs.

Let P be a logic program. LeP,, ..., P, be nonempty disjoint subprograms Bfsuch thatP; U
...UP, = P. We say thatPy, ..., P, is arelaxed stratificatiorof P if forevery1 < i < j < k,
Var(P;) nhd(P;) = (. Given a relaxed stratification of a logic program we will compute stable
models forP by computing stable models fdr;, then extending them to stable modelsigfu Ps,
then extending them to stable modelsi®fu P, U P3, and so on. The intuitive explanation of the

22

correctness of this method rests on an observation that in iteratiencan only determine the status
of the heads of the rules iR;, and they have no effect on the semantic$pfJ ... U P,_;. Now, we
have the following result.

Theorem 5.13 Let Py, P, be relaxed stratification of a logic prograii. A set of atomd/ is a stable
model forP if and only if there is a subseét/; of M such that

1. M, is a stable model aP;

2. M is a stable model oP, U M;

This theorem can be extended by induction to the case of arbitrary relagétications.

The role of this theorem in stable model computation is now clear. It allows us ta@eetbla task
of computing stable models fd? with similar tasks but for simpler prograndy and P, U M, where
M is a stable model foP;. This leads to substantial pruning of the search space.

This theorem also implies a stronger result for the clasdratifiedprograms. A relaxed stratifica-
tion Py, ..., P, of alogic programP is astratificationof P if for eachi, and for each ato, if nota
appears in the body of a rule froR) thena does not appear as the head of a rule figm

While every progran® has relaxed stratification, there are programs that do not admit stratification.
Stratified programs can be viewed as an extension of Horn programsh watigvs for the use of
negation in the body of rules but preserves some key properties of Hogngms.

Theorem 5.14 Let P be stratified logic program. TheR has a unique stable model and this model
can be computed in tim@(size(P)).

5.7 Tight programs, Fages lemma

We noted that stable models are supported but the converse is not truemlg&ve will now present
a syntactic condition on programs that guarantees which guaranteesppatted models as stable.
The results we present here are due to Fages [Fag94], and Erddnfsutitz [ELO3].

We define gositive dependency graggkit (P) for a programP as follows. Elements oit(P) as
the vertices of31(P), and(a, b) is an edge irG* (P) if for somer € P, hd(r) = a, andb € bd™ (r)
(bd + (r) is the set of non-negated atoms in the body)ofA programP is tight if G (P) is acyclic.
Alternatively, a progran® is tight if there is a labeling of atoms with non-negative integers« A(a))
s.t. forevery rule- € P

A(hd(r)) > max{\(b): b € bd*(r)}

Theorem 5.15 If a program P is tight then every supported model is stable.

The assmption of tightness can be relaxed. Xe€ At(P). Then,P is tight on X if the program
consisting of rules € P such thabd™ (r) C X is tight.

Theorem 5.16 Let P be a logic program. IfP is tight on X and M is a supported model aP such
that M C X, thenM is stable.

23

We noted that SAT solvers can be used to compute supported models ofrpsogsathey are
models of the completion of the program. The results we presented here allowsaespéncases, to
compute stable models by means of SAT solvers. Clearly, there is no problemiiptiteprogram is
tight — stable and supported models coincide, so models of the completion are stable,

If the input program is not tight, but is tight oXi, we can run a SAT solver on the theaerypl (P)U
{—a: a ¢ X}. If this theory has a model, it is a stable modelraf This method is effective if we are
only interested in stable models of a program that are contained in som¥eaetvhich P is tight.

5.8 Loop formulas

Loop formulas were introduced in [LZ02]. They allow us to transform a Iggagyram into a propo-
sitional theory so that stable models correspond to models. This transformatienbiadis of highly
effective algorithms for computing stable models that utilize SAT solvers and talemtzde of ma-
jor advances in SAT technology that have taken place in recent yearsefer toht t p: / / www.
satlive. org/ forawealth of information on the topic and relevant references). In ptieggoop
formulas and their properties, we follow [FLLO6].

Let P be a logic program ant” C At(P). We define theexternal support formula fo¥” as the
disjunction of all formulasdd" (), wherer € P satisfies:

1. hd(r) €Y
2. bd"(r)NnY = 0.

The external support formula faf captures the following idea: i is to be a part of a stable model,
Y must not be self-supported through positive recursion. To put it monedfity, there must be at least
one element € Y with positive support outside df, that is, with a rule- € P such thate = hd(r)
andbd™ (r) NY = 0.

We note thatESp() = T (the emptyset is always externally supported). We also observe that
ESp({a}) = defp(a). In other words, the external support formula for a singleton set is the sz
the defining formula for its element.

We now have the following theorem.

Theorem 5.17 Let P be a logic program. The following conditions are equivalent:
1. X is a stable model of
2. X isamodel obmpl— (P)U{Y" — ESp(Y): Y C At(P)}
3. X isamodel otmpl= (P)U{YY — ESp(Y): Y C At(P)}
4. X is amodel obkmpl(P)U{Y" — ESp(Y): Y C At(P)}
5. X isamodel ofkmpl(P)U{YY — ESp(Y): Y C At(P)}

To see why (2) and (3) are equivalent to (4) and (5), respectweyjote that

empl ™ (P) C{Y" — ESp(Y): Y C At(P)}

24

and
empl” (P) C{YV — ESp(Y): Y C At(P)}

This result gives a first representation of programs as propositionaiegkediowever, it is clear
thatempl= (P) U{Y" — ESp(Y): Y C At(P)} (and all other theories given in the theorem) are
exponential in the size adP. Thus, we do not have yet an effective way to compute stable models with
SAT solvers.

To improve Theorem 5.17, we restrict the class of 3etS At(P), for which the formulay™”™ —
ESp(Y) (orYY — ESp(Y)) need to be added tonpl—(P).

Definition 5.2 Aloopis a setY” C At(P) that induces irG*(P) a strongly connected subgraph

We note that, in particular, all singleton sets are loops. Formulas of the forin— ESp(Y) are
conjunctiveloop formulas, Formulas of the forgt¥ — ESp(Y) aredisjunctiveloop formulas,

Theorem 5.18 Let P be a logic program. The following conditions are equivalent:

. X is a stable model oP
. X is amodel okmpl— (P)U{Y" — ESp(Y): Y —aloop}
X is a model obmpl— (P)U{Y"Y — ESp(Y): Y —aloop}

X is a model okmpl(P) U{Y" — ESp(Y): Y —aloop

I

X is a model obkmpl(P)U{YY — ESp(Y): Y —aloop}

This theorem shows hat stable models can be computed as models of smalleitiprogddlseories.
However, even under the restriction to loops, the size may be exponentia gizth of P. The key
to more practical algorithms is an observation [LZ02] that loop formulas can bedaddrementally.
We start a SAT solver on the theoyhpl(P). When a model is found, it is a supported modelRof
If it is stable, we are done. If it is not stable, it gives rise to a loop formulaithaot satisfied by it.
We add this loop formula and start the SAT solver again. We continue until weafsteble model
or the program terminates without finding models. Here also, in the worstwas®ay need to add
exponentially many loop formulas before we terminate. However, in many prisitications, there
are either few loops or a stable model is found only after just a small humber pffdtomulas are
added.

5.9 Strong and uniform equivalence of programs

Itis commonly accepted that modular program (or knowledge base) desifuridamental to facilitate
development, verification and maintenance. For instance, to improve perfog@re might want to
focus on a single module and replace its present implementation with an optimizdabfore, moving

on to the next module. However, it is important that the replacement doeshange the overall
meaning of the program or knowledge base. Thus, deciding when tvgogrns (or knowledge bases
areequivalent for substitutiois a fundamental problem in or declarative programming and knowledge
representation.

25

If a knowledge base is a theory in propositional logic, equivalence tastgution coincides with
the standard logical equivalence: theorie@end(are equivalent for substitution if and only if they
are logically equivalent.

In nonmonotonic logics, the situation is more complex. In particular, in logic programming with
the semantics of stable models [GL88], having the same stable models doesnaotggiaquivalence
for substitution. Before we demonstrate this, we will formally define the notion. Fulgp{iPV01],
where it was introduced, we use the testrong equivalencastead ofequivalence for substitution

Definition 5.3 Logic programsP and @ are strongly equivalenif for every logic programR, P U R
and@ U R have the same stable models.

To show that standard nonmonotonic equivalence (having the same staldshi®dot enough to
ensure strong equivalence, let us consider programs:

P ={p} and @ = {p < not(q)}.

They the same stable models (each program{pass itsonly stable model). Howevel? U {¢} and
Q@ U {¢} havedifferentstable models. The only stable model®fJ {¢} is {p, ¢} and the only stable
model ofQU{q} is{¢}. Similarly, PU{q < not (p)} has one stable moddly}, andQuU{q « not (p)}
has two stable modelg} and{q}.

[LPVO1] presented a characterization of strong equivalence of negieddiigrams by exploiting
properties of the logitiere-and-ther¢gHey30]. [Tur01, Lin02, Tur03] continued these studies and ob-
tained simple characterizations of strong equivalence in terres-afodelswithout explicit references
to the logichere-and-there

[EFO03] introduced one more notion of equivalence,uh#dorm equivalencef logic programs with
answer-set semantics.

Definition 5.4 Logic programsP and () are uniformly equivalentif for every setR of facts P U R
and(@ U R have the same stable models.

[EF03] presented a characterizationusfiform equivalencén terms ofse-modelsaand then, for
finite programs, in terms afe-modelswhich are se-models with some additional properties.

We will now present key notions and results. First, given a progPawe say that a paifX,Y),
with X, Y sets of atoms, is ase-modebf P if

1. XCY
2.YEP
3. X = PY.

We denote bySE(P) the set of all se-models dP. The following characterization is due to Turner
[Tur03].

Theorem 5.19 ProgramsP and are strongly equivalent if and only #E(P) = SE(Q).

26

Se-models can also be used to characterize uniform equivalence. |lbiwérfg result comes from
[EFO3].

Theorem 5.20 Let P and () be programs. The® and are uniformly equivalent if and only if

1. for everyY C At, Y is a model ofP if and only ifY" is a model of))

2. for every(z,y) € SE(P) such thatX C Y, there isU C At such thatX C U C Y and
(U,Y) e SE(Q)

3. for every(z,y) € SE(Q) such thatX C Y, there isU C At such thatX C U C Y and
(U,Y) € SE(P)

For finite programs we have a simpler characterization. An se-njédél’) of P is aue-modebf
PifforeveryU suchthatX c U C Y, (U,Y) € SE(P) impliesU =Y. We writeU E(P) for the
set of ue-models oP.

Theorem 5.21 Finite programsP and @ are uniformly equivalent if and only f E(P) = UE(Q).

We note that all these results have extensions to the case of disjunctivpiogiams (in fact, even
general logic programs). We also note that it is coNP-complete to decidg sigoiivalence or uniform
equivalence for normal (non-disjunctive) logic programs. When weangvto disjunctive programs,
the complexity of deciding strong equivalence remains the same but the compfaietyiding uniform
equivalence goes up 1@’ -complete.

5.10 General logic programs

In this section, we follow [FLO5]. All results we provide come from that papé@/e also refer to
[LTT99] for a slightly different perspective (closely related but, in sorsgests, more general).

Formulasare build from atoms and the symbol(“false”) by means of the connectives v and
—. Thus, the language with which we work here igeatrictedlanguage of propositional logic. We
introduce other connectives as shorthands:

1. " F:=F— L
2. T=1— 1
B F—Gu=(F-G)NG—F)
As in other places, we consider sets of atoms as interpretations and defgagigfiability relation=

in a standard propositional logic way.

An occurrence of an atom in a formulaF is positive if the number of implications containing
this occurrence ofi in the antecedent is even. Otherwise, ihegative An occurrence of in F' is
strictly positiveif no implication contains this occurrence ofin the antecedent. In particulasF’,
being actuallyf" — _L has no strict occurrences of any atom.

We will be interested here in trtable-modesemantics of theories in the language we described.
To this end, we define first the notion of thedluct

27

Definition 5.5 Thereductof a formulaF with respect to a seX of atoms is the formul&* obtained
by replacing inF' each maximal subformula d@f that is not satisfied by with L.

Example 5.4 Let F = (—p — ¢q) A (—g — p) and X = {p}. We observe that:

1. -p=p— 1,andX | —p — ¢. Thus,—p is a maximal subformula not satisfied &y

2. \q=q— L1, X }£ q, X | —q. Thus,q is a maximal subformula not satisfied Ay
Thus,FX = (L — ¢) A ((L — L) — p). Itis classically equivalent tp.

The following properties facilitate the computation of the reduct:

1. 1X =1

2. Fora an atom, ifa € X, a* = a; otherwiseg® = 1

3. f X EFoG, (FoG)X = FXoG¥; otherwise(F o G)X = L (o stands for any of\, v, —)
4. If X = F, (-F)X = L; otherwise(—~F)X = (F — 1) = (L — 1) =T.

Now, we define stable models.

Definition 5.6 Let F be a formula. A seX of atoms is astable modedf a formulaF if X is a minimal
model ofF.

One can verify that stable models of a prograhf{according to the original definition) coincide
with stable models (according to this definition) of the representatiafl aé the conjunction of the
implications corresponding to its ruleg\{cmpl= (r): r € P}. Thus, the language of propositional
formulas can be regarded as a generalization of logic programs (assumgagcfoformalism we use
the corresponding stable-model semantics).

We note the following properties of the formalism of general logic prograatsstktend the familiar
properties we discussed earlier. First, we define an attorbe aheadatom of a formulal” if at least
one occurrence af in F' is strictly positive.

Theorem 5.22 If X is a stable model of a formul& then X consists of head atoms 6&f

Theorem 5.23 A Horn theory (conjunction of definite Horn clauses given as implicatidghnglas a
unigque stable model. It is the least modelof

Formulas of the form F' areconstraints

Theorem 5.24 A setX is a stable model of a formul& A =G if and only if X is a stable model of’
and X = —-G.

We say that a formul&’ is strongly equivalent to a formuld’ if for every formulaG, F A G and
F' A G have the same stable models.

We say that X, Y) is anse-modebf Fif Y CAt, X CY,Y | FandX = FY.

28

Theorem 5.25 The following conditions are equivalent:

1. FormulasF andG are strongly equivalent
2. For every sefX of atoms,FX andGX are equivalent in classical logic
3. F'andG have the same se-models

4. F and@ are equivalent in the logic here-and-there (details later)
Finally, we mention a generalization of the splitting theorem.

Theorem 5.26 Let F' and G be formulas such that’ does not contain any of the head atomg-ofA
setX is a stable model of' A G if and only if there is a stable mod&! of F' such thatX is a stable
model ofG A A\ Y.

6 Modal Logics and Modal Nonmonotonic Logic S4F

In this section, we follow [Tru07]. Our overall goal in this section is to shovi ttmmmonotonic modal
logic S4F can be regarded as central to nomonotonic reasoning. We itieaithwief overview of basic
concepts related to modal logics and modal nonmonotonic logics.

We refer to [HC84, MT93a] for a detailed discussion of topics related to hoglias and a general
discussion of modal nonmonotonic logics. We consider the propositional modaidge determined
by a setAt (possibly infinite) of propositional atoms, a constantthe usual boolean connectives
V, A, —, and a single modal operatéf. The constantl represents a “generic€ontradictionand K
is read as “known”. An inductive definition of a formula, given in the BNF tiota is as follows:

pu=Llp|Ke|-pleVeloAple— o,

wherep € At. We denote the language consisting of such formulag bywe drop references tdt¢
from the notation as it is fixed). We writé for the set ofK -free (modal-free) formulas i i .

Modal logics differ in the properties of the modaliy. A modal logicS is defined semantically
by its entailmentrelation =g, specified byKripke interpretationsor proof-theoretically by means of
proofs based on a set of modal axiomsSof

Let S be a modal logic with the entailment relati¢ns. For every theoryl C Ly, a theory
T C Lk is anS-expansiorof I [MD80, McD82] if
T = {QO € Lxk: IU-KT |:5 (,0},

where-KT = {-Ky: ¢ € Lk \ T}. Thenonmonotonic logicS is a formalism, in which the
semantics of a theory C L is given by itsS-expansions. This definition coincides with the one we
gave earlier, which relied on the equivalent proof-theoretic presentafimmodal logics that used the
consequence operatoh,s.

If A C L is a propositional theory theA has auniqueS5-expansion, where S5 is a well-known
modal logic whose entailment relation is given by Kripke interpretations with thetsalaccessibility
relation. According to Proposition 4.2, this unique expansion is given by

Cngs(AU{~Kp: p € L\ A})

29

We will denote this unique expansion Bf(A)!. We use this notation in the following result, which
gives us a way to represent expansions.

Theorem 6.1 If S is a modal logic contained in S5 amtl C £, then STA) is the uniqueS-expansion
of A. Moreover, for ever{f” C L, if E is anS-expansion of, thenE = ST(A), whereA = E N L.

6.1 Logic S4F

The modal logicS4F is fundamental to nonmonotonic reasoning [Seg71, Vo091, MT93a, STH)
nonmonotonic logiG4F captures, under some direct and intuitive encodings [Tru91a, SiF@A{dis-
junctive) logic programming with the stable-model (answer-set) semanticsljGttge (disjunctive)
default logic [Rei80, GLPT91], the logic of grounded knowledge [LI58@e logic of minimal belief
and negation as failure [Lif94] and the logic of minimal knowledge and belie®f3.T

The logicS4F is a modal logic with the semantics given Kyipke S4F-interpretations(or simply,
S4F-interpretations, that is, tuplesV, W, 7), where

1. V andW arenonemptyand disjoint sets ofvorlds and

2. wis afunction assigning to each worlde V U W a set of atoms (w), representing proposi-
tional truth valuation forw.

Given anS4F-interpretationM = (V, W, r), we define thesatisfaction relationM, w = ¢, where
w eV UW andy € Lk, as follows:

1 Mwle L

2. M,w Epif p € m(w) (forp € At)

3. IfweV,thenM,w = Ky if M,v |= ¢ foreveryv €¢ VUW
4. Ifw e W, thenM,w = Ky if M,v = ¢ foreveryv e W

5. The induction over boolean connectives is standard. For instarce, = o A ¢ if M w = ¢
and M, w = 9.

An S4F-interpretationM = (V, W, 7) is anS4F-model ofp € Lk, written M = o, if for every
weVUW, Mjw = ¢. We writep =g4r ¥ if every S4F-model of p is anS4F-model of. The
notation extends in a standard waymodal theoriesthat is, subsets of . We note that=g,4r has a
proof-theoretic characterization based on the necessitation inferena@ntubxiom schemata K, T, 4
and F [Seg71, MT93a].

From now on we focus on the nonmonotonic logid'. We start with a result characteriziSgF-
expansions (a slight restatement of a result from [Sch92b]). F8dBrinterpretationM = (V, W, x),
we write L »¢ (Un) for the set of all formulas fronf (propositional formulas) that hold in every truth
assignment (v), wherev € V (r(w), wherew € W, respectively).

1The notation reflects the fact that expansions siebletheories [Sta80, McD82], cf. also our earlier discussion of
autoepistemic logic.

30

Theorem 6.2 Let] C L. AtheoryT C L is anS4F-expansion of if and only if there is arB4F-
modelM of I such thatl’ = STUn,); L = Uayg; and for evenyS4F-modelN of I with Uy = Uy,
Un C Ly

6.2 Modal defaults

We will now use the nonmonotonic logiztF to generalize default logic.
A modal defaulis defined inductively (in the BNF notation) as:

pu=Ky|Ko|-ploVeleAple— o,
wherey € L. Informally, modal defaults are built according to standard rules for lamot®nnectives
and K of formulasK+, wherey € £. A modal default theoris set of modal defaults.

When we restrict to modal defaults and theories the semantics simplifieS4®Jpair is a pair
(L,U), whereL,U C L are propositional theories closed under propositional entailment.

For anS4F-pair (L, U) and a modal defaulp, we define two satisfiability relationd, U) =; ¢
and(L,U) =, ¢ inductively as follows:

1. Forp = K, wherey € L, we define(L,U) =, ¢ if ¢ € U; and we definéL,U) |, ¢ if
YveLnU

2. We handle boolean connectives in the standard way. For instamge,$0—, where is a
modal default, we definel, U) |=, ¢ if (L,U) W, ¢; and(L,U) = ¢ if (L,U) & 9

3. Fory = K1, wherey is a modal default, we defing., U) =, ¢ if (L,U) =, ¢; and we define
<L7 U> ’:l ¥ if <L7 U>):l (0 and<L> U> |:u (0
We write (L, U) = @ if (L, U) = p and(L,U) =, ¢.

If M is anS4F-interpretation theq L, Uprq) is anS4F-pair. Also, for everyS4F-pair (L, U)
there is arB4F-interpretationM = (V, W.rr) such thatL.,, = L andUx = U.

There is a close connection betweeg,r and the relationg=;, =, andf=,,4.

Proposition 6.3 Let M = (V, W, 7r) be anS4F-interpretation andp a modal default.

1. Foreveryyw € V:
M, v = pifand only if (L, Unm) =

2. Foreveryw € W:
M, w = pifandonly if (L, Upm) Eu @

3. M E=pifandonly if (La, Upm) Fmd ¢-

And now we have a simpler characterizatiorbd¥-expansions that works for modal default theo-
ries.

Theorem 6.4 Let I C Lx be a modal default theory. A theofly C Lk is an S4F-expansion of
I if and only if there isU C L such thatU is closed under propositional entailmerft, = STU),
(U,U) Ema I, and for eveny34F-pair (L,U), (L,U) =pmq I impliesU C L.

31

An se-interpretations anS4F-pair (L, U) such thatl C U. If I is a modal default theory then an
se-interpretatiodL, U) such that{ L, U) = I is anse-modebf I. It turns out that that for modal default
theories se-interpretations suffice to characteriz&#ieentailment. For a modal default theakyand
a modal defaulty we write I |=. ¢ if every se-model of is an se-model op.

Theorem 6.5 Let I C Lx be a modal default theory and let € Lx be a modal default. Then
I Egur pifand only ifI =g .

Corollary 6.6 Letl C Lx be a modal default theory. A theody C L is anS4F-expansion of if
and only if there id/ C £ such thatU is closed under propositional entailmefit= STU), (U, U) is
an se-model fo¥, and for every se-modeéL, U) for I, U = L.

Let I C Lg. An se-interpretatioqU, U) is anse-expansionf [if (U,U) = I and for every
se-modelL,U) of I, L = U. Our results show that there is a one-to-one correspondence between
S4F-expansions and se-expansions.

Corollary 6.7 LetI C Lx be a modal default theory. A theofy C L is anS4F-expansion of if
and only if there is an se-expansi¢ii, U) of I such thatl’ = STU).

6.3 Strong equivalence for the nonmonotonic logic S4F

We will now characterize strong equivalence of modal default thedréesl I’ (modal default theories
I, I are strongly equivalentf for every modal default theory/, I U J and I’ U J have the same
S4F-expansions, or equivalently, the same se-expansions.

Theorem 6.8 Let I, I’ C Lk be modal default theories. The following conditions are equivalent:

1. I and’ are strongly equivalent

2. I andI’ have the same se-models.

6.4 Uniform equivalence for the nonmonotonic logic S4F

We will use the following notation for a set of (modal) formulas:KX = {Ky: ¢ € X}. Let

P,@Q C Li be modal theories. We say th&tand@ areuniformly equivalentf for every setX C L,
PUKX and@ U K X have the samg4F-expansions. If? and(@ are modal default theories then for
everyX C £, PUK X andQ U K X are modal default theories, too. It turns out that se-interpretations
can also be used to characterize uniform equivalence. Namely, weheafalowing theorem.

Theorem 6.9 Default modal theorie®, Q C L are uniformly equivalent if and only if the following
three conditions hold:

1. for every se-interpretatio/, U), (U,U) =q P ifand only if (U, U) =4 Q

2. for every se-interpretatio(”, U), if L C U and(L,U) =4 P then there is an se-interpretation
(L',U)ysuchthatL C L' C U and(L",U) =4 Q

32

3. for every se-interpretatio(L, U), if L C U and(L,U) =4 Q then there is an se-interpretation
(L',U)suchthatL C L' c U and(L",U) =q P

As in the case of logic programs, we can introduce the notion wé-anodeland, derive from
Theorem 6.9 a simpler characterization of uniform equivalendmité modal default theories in terms
of ue-models.

6.5 Modal programs

We will now considemodal programsa special class of modal default theories consistinmoflal
rules As it will become clear later, modal programs are equivalent to generialpoggrams. The two
formalisms can be viewed as notational invariants of one another.

A formal inductive definition of anodal rule given in the BNF notation, is as follows:

pu=Kp|Kp|-pleVeloAp|lp— o,

wherep € At U {L}. A modal programs a set of modal rules.

If X C L, we write Cn(X) for the set of all propositional consequencesXf A simple se-
interpretationis any se-interpretation of the for@@'n(L), Cn(U)), whereL, U C At. To characterize
S4F-expansions of modal programs it suffices to restrict to simple se-intetipretalndeed, the fol-
lowing results state the key property of modal rules.

Theorem 6.10 If ¢ is a modal rule and L, U) is an se-interpretation the(L, U) = ¢ if and only if
(Cn(L N At),Cn(U N At)) = ¢.

Corollary 6.11 If T and I’ are modal programs, thehand I’ have the same se-models if and only if
they have the same simple se-models.

These results allow us to strengthen the characterization of strong eqaivahethe case of modal
programs.

Corollary 6.12 LetI, I’ C L be modal programs. The following conditions are equivalent:

1. I and’ are strongly equivalent

2. I andI’ have the same simple se-models.

Using a similar argument we can also strengthen the characterization of tbenuetjuivalence of
modal programs (Theorem 6.9) by consistently replacing se-interpretatibnsinvple se-interpretations.

6.6 The Logic Here-and-There

There is a strong connection between simple se-interpretations and modelsaassinal proposi-
tional logic known as the logibere-and-ther¢Hey30, Pea97, FLO5].

33

We will introduce the logic here-and-there and mention its connection to gdogialprograms.
We will also note that it can be embedded in the Idgié’.

The language of the logic here-and-there has three primitive binaryectwes/, v and—, and
a constantL to represent a generic contradiction (thus, it is the same as the languagees@igogic
programs). And we use the same shorthands as before.

The semantics of the logic here-and-there is given by HT-interpretatianblTAinterpretationis a
pair (L,U), whereL C U C At are sets of atoms. We define the satisfiability relatibnl/) =; ¢,
wherep € Ly, by induction as follows:

1. (LU) L

2. Fore = p, wherep € At, we define(L,U) =y pif p€ L
3. (L,U) =p o A if (L, U) Ep @ and(L,U) p

4. (L, U) Fn o Vo it (L,U) =n o or (L U) e ¢

5. (L,U) few @ — 9 if () (L,U) P @ or (LU) b= 95 and (i) U = ¢ — 4 (in standard
propositional logic).

An HT-interpretation(U, U) is anequilibrium modebf A C Ly, if (U,U) =5 A and for every
L CU,if(L,U) EFn AthenL = U [Pea97]. Itis easy to see that equilibrium models correspond
to stablemodels of general logic programs [FLO5] (cf. our earlier discussioh)s,Tthere is a direct
connection between the two formalisms.

We will now show that the logic here-and-there can be embedded in the logid&4his end, for
every propositional formule € L;; we define a formulag - x_x to be a modal rule obtained from
¢ by replacing eacla € At U {1} in ¢ with ~K—Ka (intuitively, -K—K represents a modality
exhibiting properties of thbelief modality). We note that all formulas_ - are modal rules.

Next, for every propositional formula € £, we define the corresponding modal rylg,, induc-
tively as follows:

1. app = Kaforae At U {l}
2. (P ANY)mp = Cmp A Ymp @A (O V V) imp = @mp V Yy
3. (30 - ¢)mp = (Spmp - wmp) A (@Z) - @)ﬂKﬁK-

We extend this notation to sets of formulas: for adet L, we defined,,, = {omplp € A}.

We have the following result establishing the connection between the logi@ahdréhere and the
logic S4F.

Theorem 6.13 Let A C L;; andp € Ly;. The following conditions are equivalent:

1. A):ht 2
2. Amp ':se Pmp

3. Amp |:S4F Pmp-

34

Corollary 6.14 Let A C L,; andU C At¢. The following conditions are equivalent:

1. U is a stable model oft
2. (U,U) is an equilibrium model ofA
3. (Cn(U),Cn(U)) is an se-expansion of

4. STU) is anS4F-expansion of4,,,,,.

6.7 Logic of nested defaults

Let % be a disjunctive default [GLPT91]. By encoding it with a modal default

KanK-KBN...NK-KB, — Ky V...V Ky,

we obtain an embedding of (disjunctive) default theorieg jnwhich establishes a one-to-one corre-
spondence between extensions 8nH-expansions [Tru91a]. Thus, the class of modal default theories
with the semantics of4F-expansions (or se-expansions) can be regarded as a genenalafatine
disjunctive default logic. In fact, we can regard it as a general dtelfagic of nested defaults as it
covers, for instance, the case of formulas of the form

KaAK-KBiA...NK-KB, — Kn V...V Ky,

whereq, 3; and~; are arbitrary modal defaults rather than formulas ft&m

We also note that by exploiting the embedding given above, our results org stguivalence
of modal default theories can be specialized to results on strong equeabérdisjunctive default
theories, first obtained by Turner [Tur03]. Our results on uniforeietence of modal default theories
generalize those obtained by Trusziczki [Tru06].

7 Algebraic approach to nonmonotonic reasoning

This section closely follows [DMT00a],

7.1 Preliminaries from lattice theory

A lattice is a partially ordered sét., <) such that every two element set, y} C L has deast upper
bound lub(x,y), and agreatest lower boundylb(x, y). A lattice (L, <) is completaf every subset of
L has both least upper and greatest lower bounds. Consequently, etmhatiice has a least element
(L) and a greatest element).

Earlier, we discussed operators on families of sets. Now, we generaliziisthession to a more
abstract setting. IfL, <) is a lattice, functions froni to L areoperatorson the lattice. An operator
O on L is monotoneif for every z,y € L, z < y impliesO(x) < O(y). An operatorO on L is
antimonotonef for everyz < y, O(y) < O(xz).

We have the following two simple properties.

35

Proposition 7.1 If the operatorsO; : L. — L, O, : L — L are antimonotone, then the operator
01 o Oy is monotone.

Proposition 7.2 If an operatorO : L — L is monotone and antimonotone then it is constant.

Tarski-Knaster theorem [Tar55] also generalizes to the abstract setipgi@tors on lattices. An
elementr € L is aprefixpointof a lattice operatoL, if O(z) < x, and dfixpointof L, if O(z) = «.

Theorem 7.3 Let O be a monotone operator on a complete lattiée <). Then,0O has a least prefix-
point and a least fixpoint and the two coincide.

We denote the least fixpoint of an operatdby Ifp(O).

An elementz € L is approximatedoy a pair(z,y) € L? if < z < y. Approximations of the
form (z, z) are calledexact There is a straightforward one-to-one correspondence betiveed the
set of exact elements @f.

The setZ? can be given with two orderings. First, tatice ordering< is given by

(l’,y) < (ajhyl) Zf r < 1 and Yy < Y1-

Second, thenformationordering, <;, which captures the intuition of increased precision of the ap-
proximation, is given by
(z,y) <i (z1,91) if © <21 and y1 < y.

With each of these two orderinds is a complete lattice.

A pair (z,y) € L? is consistenif < y. Otherwise, it is callednconsistent Consistent pairs
can be viewed as descriptions of, in general, incomplete knowledge abmérdtefromL that they
approximate. The information ordering when applied to consistent pairs nesdkeir precision, when
applied to inconsistent pairs measures the “degree of inconsistency”.

The collection of consistent pairs does not form a sublattidg?ofndeed, each element of the form
(z,z) is a maximal consistent element bf. By allowing inconsistent approximations, we obtain a
duality between consistent and inconsistent pairs, and between the dégreeision and the degree
of inconsistency. Consequently, we obtain a richer algebraic structdra arore elegant theory.

A pair of elements;, y € L is anoscillating pairfor an operato© on L if y = O(x) andz = O(y).
An oscillating pair(z, y) is extremeif for every oscillating pair(2’, y') for O, (z,y) <; («/,4') and

(z,y) <; (v/,2") (or equivalentlyr < 2/, 3 < y). If (z,y) is an extreme oscillating pair then< y.
Moreover, if an extreme oscillating pair exists, it is unique.

Theorem 7.4 Let O be an antimonotone operator on a complete lattjiée<). Then,0? has a least
fixpoint and a greatest fixpoint ar{dfp(0?), O(ifp(O?))) is the unique extreme oscillating pair 6.

Let A be an operator oA, Let us denote byl and A? the functions froml? to L such that

Az, y) = (Al(z,y), A(z,)).

We say thatd is symmetridf Al(z,y) = A%(y,z). If an operatord : L2 — L? is symmetric then
for everyx € L, Al(z,x) = A%(z,x). In the remainder of this document, we consider symmetric
operators only.

36

We now have several useful characterizations and properties of symopsdrators that are mono-
tone wrt<; and/or<.

Proposition 7.5 A symmetric operator : L? — L? is <;-monotone if and only if for every € L,
A'(-,y) is monotone and for every € L, A'(x,-) is antimonotone (or equivalently, if and only if for
everyy € L, A%(-,y) is antimonotone and for everyc L, A%(x,-) is monotone).

Proposition 7.6 A symmetric operatod : L? — L? is <-monotone if and only if for every,y € L,
Al(z,-) and A'(-,y) are monotone (or, equivalently, if and only if for everyy € L, A%(x,-) and
A%(-,y) are monotone).

Proposition 7.7 An operatorA : L? — L? is symmetric and monotone with respect to bethand
< if and only if there is a monotone operator : L. — L such that for every,y € L, A(z,y) =

(O(2), O(y))-

Proposition 7.8 An operatorA : L? — L? is symmetric<;-monotone and-antimonotone if and
only if there is an antimonotone operatér : L — L such that for everyr,y € L, A(z,y) =

(O(y), O(x)).

By Propositions 7.7 and 7.8 there is a one-to-one correspondence beheeeione (antimono-
tone, respectively) operators drand<;-monotone angl-monotone €;-monotone aneg-antimonotone,
respectively) operators af?.

When L is a complete lattice, Knaster-Tarski Theorem Theorem 7.4 imply that,amonotone
and <-antimonotone operatot : L? — L? has<;-least and<;-greatest fixpoints and €-extreme
oscillating pair. Let us denote the;-least fixpoint ofA by ¢4, and the<;-greatest fixpoint ofA by
Q 4. Similarly, let us denote the-extreme oscillating pair foA by (e4, F4).

If A:L? — L?is, in addition, symmetric, by Proposition 7.8, there is an antimonotone operator
O : L — LsuchthatA(z,y) = (O(y),O(x)). Let us denote by the least fixpoint o£? and byQ the
greatest fixpoint of)? (Tarski-Knaster Theorem applies @38 is monotone). The following theorem,
due essentially to Fitting, summarizes the relations between the fixpoints and exaesdefined
above.

Theorem 7.9 Let L be a complete lattice. Let : L? — L? be a symmetric<;-monotone anc-
antimonotone operator oh?. Then:

1.ga=(¢,Q),Qa=(Q,9),ea=(g,9), Fa = (Q,Q)
2. ga = glbgi(eA,EA) andQA = lubgi(eA,EA)

3. epA = glbg(qA,QA) andEA = lubg(qA,QA).

7.2 Approximating operators
Definition 7.1 An operatorA : L? — L? extendsan operatorO : L — L if for everyz € L,

A(z,x) = (O(x),0(x)). An operatorA : L> — L? is extendingif for everyz € L, there isy € L
such thatA(z, x) = (y,y).

37

Thediagonalof L? is the set{(x,z) : € L} If an operatorA : L2 — L? extendsO : L — L
then the behavior ofl on the diagonal determines the behaviotof

Proposition 7.10 Let O be an operator on a latticé and let A be an operator on.? extendingO.
Then,z is a fixpoint ofO if and only if(x, z) is a fixpoint ofA.

If Ais symmetric then for each lattice elementA® (z,z) = A?(x,z). HenceA(x, z) is exact
and, consequently is extending.

Proposition 7.11 If an operatorA : L? — L? is symmetric ther is extending.

To study fixpoints of an operat@ one might construct an appropriate extending operdtand
study its fixpoints instead. Exact fixpoints of the operatgprovide a description of the fixpoints of
O. A situation is especially interesting if is symmetric and<;-monotone.

Definition 7.2 An operatorA : L? — L? approximatesn operatorO : L — L if A is symmetric,
extendsO and is <;,-monotone. An operatod : L? — L? is approximatingf it is symmetric and
<;-monotone.

We say that an operatot : L? — L? is consistentf it maps consistent pairs to consistent pairs.
Proposition 7.12 If A : L? — L? is an approximating operator, thes is consistent.

Corollary 7.13 LetA : L? — L? be an approximating operator for an operator: L — L. Then,A
has a<;-least fixpoint. This fixpoint is consistent and approximates everyifixpbO.

If the <;-least fixpoint of an approximating operatdrfor an operato) is exact, say of the form
(z,z), thenz is the only fixpoint ofO. Since in the case of logic programming, the concept of the
<;-least fixpoint of an approximating operator to the operdipmives Kripke-Kleene semantics, we
refer to the<;-least fixpoint of an approximating operatdras theKripke-Kleene fixpoinof A. We
denote this fixpoint by 4.

Let O be a monotone operator dn By Proposition 7.7, the operatety(x,y) = (O(z),O(y))
is <;,-monotone. It is also symmetric, consistent and extends the opé&atbtence, Ao is an ap-
proximating operator fo€. By Proposition 7.7 Ao is <-monotone. In fact, Proposition 7.7 implies
that Ao is a unique approximating operator forthat is <-monotone. The least;-fixpoint of Ap
is (ifp(O), Ifp(O)). We will call Ap the canonicalapproximating operator for a monotone operator
O. This algebraic property of monotone operators explains why all major nostmmic semantics
coincide on the class of Horn theories (or programs) and are giveredgdbt fixpoint construction.

Similarly, if A is an antimonotone operator drthen, by Proposition 7.8, the operatép (x, y) =
(O(y),O(x)) is <;-monotone. In additiond, is symmetric, consistent and it externds Hence, it is
an approximating operator f@». By Proposition 7.84, is <-antimonotone and, in fact, it is a unique
approximating operator fap that is <-antimonotone. We will calid, the canonicalapproximating
operator for an antimonotone operator Theorem 7.9 characterizes the fixpoints and the extreme
oscillating pair of the trivial approximating operator for an antimonotone opefato

38

7.3 Stable operator and well-founded fixpoint

In this section we describe an algebraic construction that assigns to<€yengnotone operatad on
a bilattice L? its stableoperatorC 4 defined also ori.?.

Definition 7.3 Let L be a complete lattice. Let an operater : L? — L? on a bilattice L? be
symmetric and<;-monotone.

1. Thecomplete stable operator fot, C4 : L — L, is defined byCa(y) = ifp(A'(-,y)) (or,
equivalently, byC'(y) = Ifp(A%(y,)))-

2. Thestable operator fod, C4 : L? — L? is defined by 4 (z,y) = (Ca(y), Ca(x)).

Since for every € L the operatorst! (-, y) andA?(y, -) are monotone (Proposition 7.5), the operators
C4 andC4 are well-defined.

Let us consider an operatar that is both<;- and <-monotone. Such operators are described in
Proposition 7.7. They are of the fordh(x, y) = (O(z), O(y)), whereO is monotone. It follows that
Ca(y) = lfp(O) and does not depend gn Thus, we get the following result.

Proposition 7.14 Let L be a complete lattice. Let : L? — L? be an operator monotone with respect
to <; and<. ThenC,4 is constant.

If an operatorA is <;-monotone and-antimonotone then, by Proposition 7.8, there is an anti-
monotone operatad such thatd(z,y) = (O(y),O(x)). ConsequentlyA(-,y) = O(y). It follows
thatC4(y) = O(y), that is, the stable operator for the operatas A itself.

Proposition 7.15 Let L be a complete lattice. Let : L? — L? be an operator monotone with respect
to <; and antimonotone with respectta ThenC4 = A.

The next several results establish properties of the stable opératand its fixpoints. Our first
result shows that fixpoints @f4 are<-minimal fixpoints ofA.

Theorem 7.16 Let L be a complete lattice. Let an operatdr: 1> — L? on a bilattice L? be <;-
monotone. Every fixpoint of the stable operataris a <-minimal fixpoint ofA.

Theorem 7.16 shows, in particular, that4dfis <;-monotone, a fixpoint of 4 is also a fixpoint of
A. We will call every fixpoint of the stable operatfy; a stablefixpoint of A.

Directly from the definition of the operatols, and from Proposition 7.5 it follows that' 4 is
antimonotone. Consequently, by Proposition Z.8js <;-monotone ang-antimonotone.

Proposition 7.17 Let L be a complete lattice. Let be a symmetric<;-monotone operator o>
Then,C4 is an antimonotone operator oh andC 4 is a <;-monotone and&-antimonotone operator
onL2.

Propositions 7.15 and 7.17 imply the following corollary that states that applyast#fility con-
struction to a stable operator does not lead to a new operator anymore.

39

Corollary 7.18 Let L be a complete lattice. Let be a symmetriel;-monotone operator ofi?. Then
Cc, =Ca.

It is also easy to see th&ty is symmetric and extends the operafg. Thus, we obtain the
following corollary to Proposition 7.17.

Corollary 7.19 Let L be a complete lattice. Let be a<;-monotone operator on?. Then, the stable
operatorC 4 is a trivial approximation of the complete stable operafty.

The <;-least fixpoint ofC 4 is of particular interest as it provides an approximation to every stable
fixpoint of A. We call the<;-least fixpoint ofC 4 thewell-founded fixpoindf a <;-monotone operatot
and denote it bys 4. The choice of the term is dictated by the fact that in the case of logic progiag,
the least fixpoint of the stable operator for the 4-valued van Emden-Kowaggskator7p yields the
well-founded semantics.

The following result gathers several properties of the well-foundegubfiX of an operator that
generalize properties of the well-founded model of a logic program.

Theorem 7.20 Let L be a complete lattice. Let : L? — L? be a<;-monotone symmetric operator.

The Kripke-Kleene fixpoint, and the well-founded fixpointy satisfya s <; 64
For every stable fixpoint of A, 64 <;

If 54 is exact then it is the only consistent stable fixpoint of

A W N PF

The operatoC 4 is consistent and, consequently, is consistent, too.

We will now assume thatl is an approximating operator for an operatdr . — L and discuss
the relationship between the fixpoints@®f and fixpoints ofO.

Proposition 7.21 Let L be a complete lattice. Let: L? — L? be an approximating operator for an
operatorO: L — L. If (x, x) is a fixpoint ofC 4 thenz is a <-minimal fixpoint ofO.

It follows from Proposition 7.21 that i is an approximating operator for an operaforthen
fixpoints of O corresponding to exact fixpoints of the stable oper@tpform an antichain.

We will next consider the case whénis monotone and use the canonical approximatio® pf
Ao.

Proposition 7.22 Let L. be a complete lattice. I : L — L is a monotone operator, then for every
z e L,Cay(z,y) = (Ifp(0O),lfp(0)) (thatis,C4,, is constant).

If O is monotone, its canonical approximatidy may have many fixpoints in general and many
exact fixpoints, in particular. However, by Proposition 7.22, the stableatqefor Ao has only one
fixpoint and it corresponds precisely to the least fixpoinQofln the context of logic programming,
this result says that a Horn logic programhas a unique stable model and that it coincides with the
least Herbrand model a?.

40

7.4 Applications in knowledge representation

The results presented here provide us with a uniform framework for denstimdies of major knowl-
edge representation formalisms: logic programming, autoepistemic logic andtdefac. Namely,
all major semantics for each of these formalisms can be derived from a sipgjlator.

In the case of logic programming, our results extend an algebraic apppoapbsed in [Fit02].
The lattice of interest here is that of 2-valued interpretations of the Hetlivase of a given program
P. We will denote it by A;. The corresponding bilatticel, x A5 is isomorphic with the bilattice
Ay of 4-valued interpretations (in 4-valued Belnap logic). Our results imply treténtral role in
logic programming is played by the 4-valued van Emden-Kowalski opefatatefined on the bilat-
tice A, x As (or, equivalently, on bilatticed,). First, the operato?p» approximates the 2-valued van
Emden-Kowalski operatdfp. Second, fixpoints of p represent 4-valued supported models, consis-
tent fixpoints of7p represent partial (3-valued) supported models and exact fixpoirfs describe
supported models aP. The <;-least fixpoint of 7p (it exists as7p is approximating) defines the
Kripke-Kleene semantics a?p.

Perhaps most importantly, it turns out that our general construction asgitpeistable operator to
every approximating operator when appliedZie yields the 4-valued Przymusinski operat®}, and
the 2-valued Gelfond-Lifschitz operat6fLp. That is, the stable operator f@p coincides with¥’,
and the complete stable operator #Gf coincides withG L p. Thus, the semantics of 4-valued, partial
(3-valued) and 2-valued stable models can also be derived from thatopés. The same is true for
the well-founded semantics since it is determined by<théeast fixpoint of the stable operator 6.
The structure of the family of operators and semantics for logic programmibhgahde derived from
the operatof/p is presented in Figure 1.

N

2-valued supported models — Tp CTP = GLp

4- and 3-valued supported models
Kripke-Kleene semantics

<«—— stable models

CTP = \I/’P <« 4-and 3-valued stable models
well-founded semantics

Figure 1:Operators and semantics associated with logic programming

In [DMT98, DMTO0O0b] we developed an algebraic approach to semarnticautoepistemic and
default logics. In both cases, our approach can be regarded a&gialsmase of the general approach
presented here. In the investigations of autoepistemic and default logiosnsieler the latticaV of
possible-world structures (sets of 2-valued interpretations) and thespamding bilatticés of belief
pairs [DMT98]. In the case of autoepistemic logic, the central place ispiedby the operatoDr
(T is a given modal theory) defined on the bilattice of belief pairs and introduc@dMT98]. It
turns out to be an approximating operator for the operatprused by Moore to define the notion of
an expansion [Moo84]. Thus, the concepts of partial expansionsxpahsions can be derived from
Dr. Similarly, the Kripke-Kleene semantics can be obtained fidmas its least fixpoint. The stable
operator forD; and its complete counterpart lead to semantics for autoepistemic logic that to the bes
of our knowledge have not been studied in the literature: the semantickeok®ons, partial extensions
and the well-founded semantics, that are closely related to the corrésgaedhantics for default logic
[DMTOO0b]. The emerging structure of operators and semantics for pisteenic logic is depicted in

41

Figure 2.

partial expansions

Kripke-Kleene semantics > Dr
expansions by Moore — / \ .
Dr Cp, <« expansions
tial i
CDT — partial expansions

well-founded semantics

Figure 2:Operators and semantics associated with autoepisteniéc log

A very similar picture emerges in the case of default logic, too. In [DMTQ@b]described an
operatorEa on the bilattice of belief pairs and argued that all major semantics for defgidtdan be
derived from it. Among them are the semantics of weak extensions [MTB&#g]al weak extensions
and the corresponding Kripke-Kleene semantics for default logic. tlitiad, the complete stable
operator forA coincides with the Guerreiro-Casanova operator characterizing etsri&C90] and
the <;-least fixpoint of the stable operat6g, for £ yields the well-founded semantics for default
logic described by Baral and Subrahmanian in [BS91]. The semanticscape of default logic is
depicted in Figure 3.

partial weak extensions
Kripke-Kleene semantics >

En
weak extensions . / \
EA ESAt

st
gA

<«—— extensions by Reiter

partial extensions
well-founded semantics

Figure 3:Operators and semantics associated with default logic

The similarity between the families of the semantics for logic programming, defaudt éogl
autoepistemic logic is striking. It has been long known that logic prograns c#a be interpreted as
default rules [MT89b, BF91]. Namely, a logic program rule

a <+ by,...,by,no0tcy, ..., Notc,

can be interpreted as a default
bi A . Aby: —er, ..., e,

a
It turns out that under this translation the opera@ssand&, py are very closely relatedY(P) stands
for the default theory obtained from the logic progrdby means of the translation given above).
Namely, let us observe that each interpretatioran be associated with the possible-world structure
consisting of all interpretationg such that/(p) = t implies J(p) = t. Thus, the latticed, can
be viewed as a sublattice ®¥ and the restriction of the operat8R p) to this sublattice essentially
coincides withZp. It follows that all the derived operators are similarly related, and wdbtperfect
match between the semantics for logic programming and the semantics for ttefanlt

Similarly, in [Kon88] it was proposed to interpret a default

ﬁlA---/\ﬂmi_"Yl,-'w—"Yn
(&%

42

as a modal formula
KGOiN. .. KB AN-K—-y A...AN=K=y, Da.

It turns out that under this translations the operat(sandDra) coincide (heré'(A) is the modal
image of a default theorA under Konolige’s translation). As before, all corresponding pairs ef de
rived operators also coincide. Thus, we obtain a perfect match betiweesemantics for default and
autoepistemic theoriés

8 Bibliographical and Historical Comments

The area of nonmonotonic reasoning and logic programming was establlstet?8 years ago. Sev-
eral research monographs devoted to the subject are now availabl@ [B#&839, Bre91b, MT93a,
Ant97, BDK97, Boc01, Boc05, Mak05]. The area has also its two agenfie series: Nonmono-
tonic Reasoning Workshops (NMR workshopis) { p: / / www. kr . or g/ NVR/), andInternational
Conference on Logic Programming and Nonmonotonic ReaspoingPNMR conferences. NMR
meetings are always collocated with Knowledge Representation and ReaskKRtihgdnferences
(htt p://ww kr. org). It does not have formal proceedings but all papers since NMR- 20e
available in electronic form. LPNMR is a biannual event started in 1991, wiabgedings now pub-
lished by Springer.

Our presentation of default logic follows that in [MT93a]. It differs onligktly from the original
approach by Reiter [Rei80]. Perhaps the most significant difference isntiphasis we put on proof-
theoretic techniques in our study of default logic. Most of the proofs efésults we presented here
can be found in [MT93a].

Basic properties of default logic have been established by the foumdiefault logic, Raymond
Reiter, in [Rei80]. In particular the operatbris introduced there. A characterization of default ex-
tensions in terms of sets of possible worlds is due to Guereiro and Casgp0@d]. Characteri-
zations of default extensions in terms of modal nhonmonotonic systems are algo.kMde refer to
[Tru9lb, Tru9la, DMTO00a] for more details. Extensions and variantiefult logic are discussed in
[GLPT91, Bre91la, Sch92a, MT93b, BDK97].

The complexity results for default logic are due to Gottlob [Got92] and, indigty, Stillman
[Sti92]. Basic algorithms for computation of extensions were proposed in [MT%3detailed treat-
ment of algorithmic issues related to default logic can be found in [Cho96a,3bh&ho95a]. An
automated reasoning system based on default logic, DeReS, is desafiGdiT96, CMMT99].

The presentation of basics of logic programming follows [MT93a] and [Apt®be basic charac-
terization of the least model of a Horn program comes from [VEK76]. Therdign to compute the
least model of a finite propositional logic program has was first given inrd}G

Stable models of logic programs were introduced by Gelfond and LifschitzLiB3{ Basic prop-
erties of stable models come from that paper and from [MT93a, BTK93E tdnslation of stable
semantics of logic programs into default logic, is due to [BF91] and waswised independently in
[MT89b].

Well-founded semantics for logic programs have been introduced by ¥ateG Ross and Schlipf

2However, this correspondence does not align expansions by Modextensions by Reiter. These two semantics occupy
different locations in the corresponding hierarchies. A more detailetisison of this issue can be found in [DMTOOb].

43

in [VRS91]. The alternating (oscillating) fixpoint characterization, that yieltisaalgorithm to com-
pute well-founded semantics, was stated and proved in [Van89]. Gizadmm of well-founded seman-
tics to default logic based on the idea of the alternating fixpoint constructiorscsided in [BS91].

The technique of stratification, that is, a syntactic restriction guaranteeingrsgésand unigueness
of a stable model, is due to [CH85] and was fully developed and studied in [@BBWThe relaxed
stratification generalization used in these notes, that guarantees neitheroexisberuniqueness of
stable models but can be viewed as a divide-and-conquer approacbleoratadel computation, was
developed in [Cho96b, Cho95a]. It was discovered in the setting of laggrams in [LT94] and has
been since known aplitting.

First algorithms and implementations of algorithms for computing stable models go back to mid
1990s [NS96]. Since then, a new computational paradigamsiver-set programmingas proposed in
[MT99, Nie99], which brought a tremendous advances in the perfarenahstable-model computing
software [SNS02, LZ02, BL0O2, LP6, GKNSO07]. For the discussion of the performance of these and
other solvers, we refer to [GLND7], which discusses the results of the first answer-set programming
competition. The concept of a loop and the result by Lin and Zhao [LZ02]fwadamental to some
of the most efficient solvers and established a critical link to SAT solvers.

The connection between stable-model semantics and the hegicand-therdHey30] is due to
Pearce [Pea97]. Itlead to further studies of this connection, which cuiedinaan elegant presentation
of general logic programming in [FLO5]. We note though that indepenglerdiursors of general logic
programming are Lifschitz-Woo programs [LW92] and its later generalizaiosgrams with nested
expressions [LTT99]. An alternative treatment of general logic @agning in the modal logic S4F
appeared in [Tru07]. An extension of the connection to generalizediltiédgic is presented there,
too.

The research originated by Pearce [Pea97] also resulted in fundametidas of strong and uni-
form program equivalence [LPVO1]. It resulted in one of the most vibtapic in logic programing
research with a great number of papers [Lin02, Tur03, 1S04, ET\®EB®/07, OJ06, OTWO07, Wol07].
An algebraic account of strong and uniform equivalence can bealfwufTru06]. An account of strong
and uniform equivalence in a modal logic S4F is given in [Tru07]. Exterssif these concepts of
equivalence to the semantics of supported and supported minimal models iadj].

44

References

[ABWSS]

[ANt97]

[Apto0]

[BDK97]

[Bes89]

[BF87]

[BF91]

[BLOZ]

[BNTOS]

[BocO1]

[Boc05]

[Bre9la]

[Bre91b]

[BS91]

[BSJ95]

K. Apt, H.A. Blair, and A. Walker. Towards a theory of decldva knowledge. In
J. Minker, editorFoundations of deductive databases and logic programnppages 89—
142. Morgan Kaufmann, 1988.

G. Antoniou.Nonmonotonic ReasoninilIT Press, 1997.

K. Apt. Logic programming. In J. van Leeuven, editdandbook of theoretical computer
sciencepages 493-574. Elsevier, Amsterdam, 1990.

G. Brewka, J. Dix, and K. Konolige.Nonmonotonic Reasoning, An OvervieWSLI
Publications, 1997.

P. BesnardAn Introduction to Default LogicSpringer, Berlin, 1989.

N. Bidoit and C. Froidevaux. Minimalism subsumes default logic@rmumscription. In
Proceedings of IEEE Symposium on Logic in Computer Science, LIC%f§es 89-97.
IEEE Press, 1987.

N. Bidoit and C. Froidevaux. Negation by default and unstratiitdgic programsThe-
oretical Computer Scien¢&8(1, (Part B)):85-112, 1991.

Y. Babovich and V. Lifschitz.Cmodels package2002. ht t p: / / www. ¢cs. ut exas.
edu/ users/tag/ cnodel s. htm .

G. Brewka, I. Niemdl, and M. Truszczyski. Nonmonotonic reasoning. In V. Lifschitz,
B. Porter, and F. van Harmelen, editoriandbook of Knowledge Representatipages
239-284. Elsevier, 2008.

Alexander BochmanA Logical Theory of Nonmonotonic Inference and Belief Change
Springer, Berlin, 2001.

Alexander BochmanExplanatory Nonmonotonic Reasonjnglume 4 ofAdvances in
Logic. World Scientific, 2005.

G. Brewka. Cumulative default logic: in defense of nonmonotiofécence rulesArtifi-
cial Intelligence 50(2):183—-205, 1991.

G. BrewkaNonmonotonic Reasoning: Logical Foundations of Commonsgokene 12
of Cambridge Tracts in Theoretical Computer Scien@ambridge University Press, Cam-
bridge, UK, 1991.

C. Baral and V.S. Subrahmanian. Dualities between alternatmarges for logic pro-
gramming and nonmonotonic reasoning (extended abstract). In A. N&bdéarek, and
V.S. Subrahmanian, editoilspgic programming and non-monotonic reasoning (Washing-
ton, DC, 1991)pages 69-86, Cambridge, MA, 1991. MIT Press.

K. Berman, J. Schlipf, and J.Franco. Computing the well-foundedrstics faster. In
Logic Programming and Nonmonotonic Reasoning (Lexington, KY, 198k)me 928 of
Lecture Notes in Artificial Intelligen¢gages 113-125. Springer, 1995.

45

[BTK93]

[CDS94]

[CH85]

[Che80]

[Cho954]

[Cho95D]

[Cho964]

[Cho96b]

[Cla78]

[CMMT99]

[CMT96]

[DG84]

[DMTO98]

[DMT00a]

[DMTOO0b]

A. Bondarenko, F. Toni, and R.A. Kowalski. An assumption-lstaamework for non-
monotonic reasoning. In A. Nerode and L. Pereira, edilopgjc programming and non-
monotonic reasoning (Lisbon, 199®ages 171-189, Cambridge, MA, 1993. MIT Press.

M. Cadoli, F. M. Donini, and M. Schaerf. Is intractability of norenotonic reasoning a
real drawback? IfProceedings of the 12th National Conference on Artificial Intelligence
(AAAI-1994) pages 946—-951. AAAI Press, 1994.

A. K. Chandra and D. Harel. Horn clause queries and géinatians. Journal of Logic
Programming 2(1):1-15, 1985.

B.F. ChellasModal logic. An introductionCambridge University Press, Cambridge-New
York, 1980.

P. Cholewiski. Reasoning with stratified default theories. Limgic programming and
nonmonotonic reasoning (Lexington, KY, 199%)lume 928 ofLecture Notes in Com-
puter Sciencgpages 273-286, Berlin, 1995. Springer.

P. Cholewiski. Stratified default theories. Romputer science logic (Kazimierz, 1994)
volume 933 ol_ecture Notes in Computer Scienpages 456—470, Berlin, 1995. Springer.

P. Cholewinski.Automated Reasoning with Default Logi®hD thesis, University of
Kentucky, 1996.

P. Cholewiski. Seminormal stratified default theorieg®snnals of Mathematics and Arti-
ficial Intelligence 17(3-4):213-234, 1996.

K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, edittusgic and data
basespages 293-322. Plenum Press, New York-London, 1978.

P. Cholewnski, W. Marek, A. Mikitiuk, and M. Truszc#yski. Computing with default
logic. Artificial Intelligence 112:105-146, 1999.

P. Cholewnski, W. Marek, and M. Truszchgki. Default reasoning system deres. In
Proceedings of KR-96pages 518-528. Morgan Kaufmann, 1996.

W.F. Dowling and J.H. Gallier. Linear-time algorithms for testing the satisfialility
propositional Horn formulaeJournal of Logic Programmingl(3):267—284, 1984.

M. Denecker, V. Marek, and M. Truszcagki. Fixpoint 3-valued semantics for autoepis-
temic logic. InProceedings of the 15th National Conference on Artificial Intelligence
(AAAI-1998) pages 840 — 845. AAAI Press, 1998.

M. Denecker, V. Marek, and M. Truszdzski. Approximations, stable operators, well-
founded fixpoints and applications in nonmonotonic reasoning. In J. Mied#ar,Logic-
Based Artificial Intelligencepages 127-144. Kluwer Academic Publishers, 2000.

M. Denecker, V. Marek, and M. Truszaagki. Unified semantic treatment of default and
autoepistemic logics. IRrinciples of Knowledge Representation and Reasoning, Pro-
ceedings of the 7th International Conference (KR20payes 74 — 84. Morgan Kaufmann
Publishers, 2000.

46

[DMTO03] M. Denecker, V. Marek, and M. Truszcagki. Uniform semantic treatment of default and
autoepistemic logicsAtrtificial Intelligence Journal143:79-122, 2003.

[Doe94] K. Doets. From Logic to Logic Programming Foundations of Computing Series. MIT
Press, Cambridge, MA, 1994,

[EF03] T. Eiter and M. Fink. Uniform equivalence of logic programs emthe stable model
semantics. IrProceedings of the 19th International Conference on Logic Programming
(ICLP 2003) volume 2916 of. NCS pages 224—238. Springer, 2003.

[EFWO7] T. Eiter, M. Fink, and S. Woltran. Semantical characterizatiodscamplexity of equiv-
alences in answer set programmingCM Transactions on Computational Logig(3),
July 2007. 53 pages.

[ELO3] E. Erdem and V. Lifschitz. Tight logic program$heory and Practice of Logic Program-
ming 3(4-5):499-518, 2003.

[Eth88] D. W. EtheringtonReasoning with incomplete informatioResearch Notes in Atrtificial
Intelligence. Pitman Publishing, Ltd., London-Boston, MA, 1988.

[ETWO5] T. Eiter, H. Tompits, and S. Woltran. On solution correspondeincaisswer-set program-
ming. InProceedings of the 19th International Joint Conference on Atrtificial Intelloge
(I3CAI 2005) pages 97-102. Morgan Kaufmann, 2005.

[Fag94] F. Fages. Consistency of Clark’s completion and existence d¢ stedulels. Journal of
Methods of Logic in Computer Sciende51-60, 1994.

[Fit02] M. C. Fitting. Fixpoint semantics for logic programming — a survidyeoretical Computer
Science278:25-51, 2002.

[FLO5] P. Ferraris and V. Lifschitz. Mathematical foundations of anseeprogramming. In S.N.
Artémov, H. Barringer, A.S. d'Avila Garcez,is.C. Lamb, and J. Woods, editowse Will
Show Them! Essays in Honour of Dov Gabbpsiges 615-664. College Publications,
2005.

[FLLO6] P. Ferraris, J. Lee, and V. Lifschitz. A generalization of the laa theoremAnn. Math.
Artif. Intell., 47(1-2):79-101, 2006.

[GC9a0] R. Guerreiro and M. Casanova. An alternative semantics faulldogic. Preprint. The
3rd International Workshop on Nonmonotonic Reasoning, South Lake Taége,

[Gel87] M. Gelfond. On stratified autoepistemic theoriesPiaceedings of AAAI-§pages 207—
211. Morgan Kaufmann, 1987.

[Gel89] M. Gelfond. Autoepistemic logic and formalization of commonsense naagoprelim-
inary report. InNonmonotonic reasoning (Grassau, 1988)lume 346 of_ecture Notes
in Computer Scienggages 176-186, Berlin-New York, 1989. Springer.

[GKNSO07] M. Gebser, B. Kaufmann, A. Neumann, and T. Schalbasp: A conflict-driven answer
set solver. In C. Baral, G. Brewka, and J.S. Schlipf, editopgjc Programming and Non-
monotonic Reasoning, 9th International Conference, LPNMR 2007 eBdiegsvolume
4483 of LNCS pages 260—-265. Springer, 2007.

47

[GKPS95] G. Gogic, H. Kautz, Ch. Papadimitriou, and B. Selman. The catipadinguistics of
knowledge representation. 18CAI-95, Vol. 1, 2 (Montreal, PQ, 1995pages 862—-869,
San Francisco, CA, 1995. Morgan Kaufmann.

[GL88] M. Gelfond and V. Lifschitz. The stable semantics for logic program$roceedings of
the 5th International Conference on Logic Programming (ICLP 19B8yes 1070-1080.
MIT Press, 1988.

[GL91] M. Gelfond and V. Lifschitz. Classical negation in logic programsl alisjunctive
databasedNew Generation Computing:365-385, 1991.

[GLNT07] M. Gebser, L. Liu, G. Namasivayam, A. Neumann, T. Schaub, antri¥zczyiski. The
first answer set programming system competition. In C. Baral, G. Brewikia]).aSchlipf,
editors,Proceedings of the 9th International Conference on Logic Programnmidg\son-
monotonic Reasoning (LPNMR 200volume 4483 of NCS pages 3—17. Springer, 2007.

[GLPT91] M. Gelfond, V. Lifschitz, H. Przymuiika, and M. Truszczski. Disjunctive defaults.
In Principles of knowledge representation and reasoning (Cambridge,1d81) Mor-
gan Kaufmann Series in Representation and Reasoning, pages 238a@3Vateo, CA,
1991. Morgan Kaufmann.

[Got92] G. Gottlob. Complexity results for nonmonotonic logidsurnal of Logic and Computa-
tion, 2(3):397-425, 1992.

[HC84] G.E. Hughes and M.J. Cresswefl. companion to modal logicMethuen and Co., Ltd.,
London, 1984.

[Hey30] A. Heyting. Die formalen Regeln der intuitionistischen Logiitzungsberichte der
Preussischen Akademie von Wissenschaften. Physikalisch-mathem#tiasse pages
42-56, 1930.

[HM85] J.Y. Halpern and Y. Moses. Towards a theory of knowledge ignorance (preliminary
report). In K. Apt, editorLogics and models of concurrent systems (La Colle-sur-Loup,
1984) volume 13 oNATO ASI Series F: Computer and Systems Sciepegges 459-476,
Berlin, 1985. Springer.

[1S04] Katsumi Inoue and Chiaki Sakama. Equivalence of logic progrander updates. In
Proceedings of the 9th European Conference on Logics in Atrtificial Intelig¢JELIA-
04), volume 3229 otf_ecture Notes in Computer Scienpages 174—-186. Springer, 2004.

[KLM90] S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasgnpreferential models
and cumulative logicsArtificial Intelligence Journal44:167—-207, 1990.

[Kon88] K. Konolige. On the relation between default and autoepistemic Iojitificial Intelli-
gence 35(3):343-382, 1988.

[Kow74] R. Kowalski. Predicate logic as a programming languag®rtceedings of the Congress
of the International Federation for Information Processing (IFIP-197#8ges 569-574,
Amsterdam, 1974. North Holland.

48

[Kow79]

[Leh89]

[LevaO0]

[Lif90]

[Lif94]

[Lin02]

[LIo84]

[LM92]

[LPF+06]

[LPVO1]

[LS90]

[LT94]

[LTOO]

[LTT99]

[LW92]

R. Kowalski. Logic for Problem SolvingNorth Holland, Amsterdam, 1979.

D.J. Lehmann. What does a conditional knowledge base entaiProtreedings of the
1st International Conference on Principles of Knowledge RepresentatidrReasoning,
KR-89 pages 212-222. Morgan Kaufmann, 1989.

N.G. Leveson. Formal methods in software engineering, ddesige on.IEEE Transac-
tion on Software Engineering6:929-1103, 1990.

V. Lifschitz. On open defaults. In J. Lloyd, editoBroceedings of the Symposium on
Computational Logicpages 80-95. Springer, 1990.

V. Lifschitz. Minimal belief and negation as failureArtificial Intelligence 70:53-72,
1994.

F. Lin. Reducing strong equivalence of logic programs to entaitrimeclassical proposi-
tional logic. InProceedings of the 8th International Conference on Principles of Knowl-
edge Representation and Reasoning (KR 200Bygan Kaufmann, 2002.

J. W. Lloyd. Foundations of logic programmingsymbolic Computation. Artificial Intel-
ligence. Springer, Berlin-New York, 1984.

D. Lehmann and M. Magidor. What does a conditional knowledagebentail ?Artificial
Intelligence Journgl55:1-60, 1992.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, an8darcello. The dlv
system for knowledge representation and reasoi@dy Transactions on Computational
Logic, 7(3):499-562, 2006.

V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivdléogic programs. ACM
Transactions on Computational Logi2(4):526-541, 2001.

F. Lin and Y. Shoham. Epistemic semantics for fixed-points nonmoiwdtmgics. InThe-
oretical aspects of reasoning about knowledge (Pacific Grove, 820)LMorgan Kauf-
mann Series in Representation and Reasoning, pages 111-120, San Mgta89Q.
Morgan Kaufmann.

V. Lifschitz and H. Turner. Splitting a logic program. In P. Van Hemryck, editor,
Proceedings of the 11th Internationall Conference on Logic Programifi®igP 1994)
pages 23-37, 1994.

Z. Lonc and M. Truszcziyski. On the problem of computing the well-founded semantics.
In Proceedings of the 1st International Conference on Computational LGie200Q
pages 673-687. Springer, 2000. Lecture Notes in Artificial Intelligevize, 1861.

V. Lifschitz, L. R. Tang, and H. Turner. Nested expressiimlogic programsAnnals of
Mathematics and Atrtificial Intelligen¢@ages 369—389, 1999.

V. Lifschitz and T.Y.C. Woo. Answer sets in general nonmonotoe#&soning. IrPro-
ceedings of the 3rd international conference on principles of knowleejgesentation
and reasoning, KR '92pages 603-614, San Mateo, CA, 1992. Morgan Kaufmann.

49

[LZ02]

[MakO05]

[McC77]

[McC80]

[McD82]

[MD8O]

[Moo084]

[Moo085]

IMS92]

[MT89a]

[MT89b]

[MT91]

[MT93a]

[MT93D]

F. Lin and Y. Zhao. ASSAT: Computing answer sets of a logic progby SAT solvers.
In Proceedings of the 18th National Conference on Artificial Intelligence (AAARR
pages 112-117. AAAI Press, 2002.

D. Makinson.Bridges from Classical to Nonmonotonic Logwlume 5 ofTexts in Com-
puting King's College Publications, 2005.

J. McCarthy. Epistemological problems of Artificial Intelligence.Proceedings of the
5th Interational Joint Conference on Artificial Intelligengeges 1038-1044, 1977.

J. McCarthy. Circumscription — a form of non-monotonic reasonifAgificial Intelli-
gence 13(1-2):27-39, 1980.

D. McDermott. Nonmonotonic logic Il: nonmonotonic modal theoridsurnal of the
ACM, 29(1):33-57, 1982.

D. McDermott and J. Doyle. Nonmonotonic logicArtificial Intelligence 13(1-2):41-72,
1980.

R.C. Moore. Possible-world semantics for autoepistemic logicProteedings of the
Workshop on Non-Monotonic Reasonipgges 344—354, 1984. Reprinted in: M. Gins-
berg, ed.,Readings on Nonmonotonic Reasonipgges 137-142, Morgan Kaufmann,
1990.

R.C. Moore. Semantical considerations on nonmonotonic logitificial Intelligence
25(1):75-94, 1985.

W. Marek and V.S. Subrahmanian. The relationship between stwipported, default
and autoepistemic semantics for general logic prograrheoretical Computer Science
103(2):365-386, 1992.

W. Marek and M. TruszcAski. Relating autoepistemic and default logics.Phoceed-
ings of the 1st International Conference on Principles of Knowledged?eptation and
Reasoning (Toronto, ON, 1989)ages 276-288, San Mateo, CA, 1989. Morgan Kauf-
mann.

W. Marek and M. Truszc#yski. Stable semantics for logic programs and default theories.
In E.Lusk and R. Overbeek, editoBroceedings of the North American Conference on
Logic Programmingpages 243-256. MIT Press, 1989.

W. Marek and M. TruszcZyski. Autoepistemic logic.Journal of the ACM38(3):588—
619, 1991.

W. Marek and M. Truszczaski. Nonmonotonic Logic; Context-Dependent Reasaning
Springer, Berlin, 1993.

A. Mikitiuk and M. Truszczyski. Rational default logic and disjunctive logic program-
ming. In A. Nerode and L. Pereira, editotggic programming and non-monotonic rea-
soning (Lisbon, 1993pages 283-299, Cambridge, MA, 1993. MIT Press.

50

[MT99]

[Nie99]

[INS96]

[0J06]

[OTWO07]

[Pea90]

[Pead7]

[Po088]

[Rei78]

[Rei80]
[Sch92a]

[Scho2b]

[Seg71]

[SNS02]

[ST94]

V.W. Marek and M. Truszczyski. Stable models and an alternative logic programming
paradigm. In K.R. Apt, W. Marek, M. Truszcagki, and D.S. Warren, editor§he Logic
Programming Paradigm: a 25-Year Perspectipages 375-398. Springer, Berlin, 1999.

I. Niemeh. Logic programming with stable model semantics as a constraint programming
paradigm.Annals of Mathematics and Artificial Intelligenc@5(3-4):241-273, 1999.

I. Niemeh and P. Simons. Efficient implementation of the well-founded and stable model
semantics. IiProceedings of JICSLP-9MIT Press, 1996.

E. Oikarinen and T. Janhunen. Modular Equivalence fomébt ogic Programs. IfPro-
ceedings of the 17th European Conference on Artificial Intellig€B€®Al 2006, pages
412-416. 10S Press, 2006.

J. Oetsch, H. Tompits, and S. Woltran. Facts do not Cease to Baé¢stuse They are
Ignored: Relativised Uniform Equivalence with Answer-Set ProjectionProceedings
of the 22nd National Conference on Atrtificial Intelligence (AAAI-20@&ges 458-464.
AAAI Press, 2007.

Judea Pearl. System Z: A natural ordering of defaults with Iblaeca@plications to non-
monotonic reasoning. IRroceedings of the 3rd Conference on Theoretical Aspects of
Reasoning about Knowledge, TARK-p@ges 121-135. Morgan Kaufmann, 1990.

D. Pearce. A new logical characterisation of stable models awdiasets. In drgen Dix,
Luis Moniz Pereira, and Teodor C. Przymusinski, editdien-Monotonic Extensions of
Logic Programming, NMELP '96volume 1216 ofLecture Notes in Computer Science
pages 57-70. Springer, 1997.

D. Poole. A logical framework for default reasonidgificial Intelligence 36(1):27-47,
1988.

R. Reiter. On closed world data bases. In H. Gallaire and J. Mieki#ors,Logic and
data basespages 55-76. Plenum Press, 1978.

R. Reiter. A logic for default reasoningurtificial Intelligence 13(1-2):81-132, 1980.

T. Schaub. On constrained default theorie®réweedings of the 11th European Confer-
ence on Artificial Intelligence, ECAI'9Dages 304-308. Wiley and Sons, 1992.

G.F. Schwarz. Minimal model semantics for nonmonotonic modal Idgiéyoceedings
of LICS-92 pages 34-43, 1992.

K. Segerberg.An essay in classical modal logicNumber 13 in Filosofiska Studier.
Filosofiska Breningen och Filosofiska Institutionen vid Uppsala Universitet, Uppsala,
1971.

P. Simons, I. Niem&] and T. Soininen. Extending and implementing the stable model
semanticsArtificial Intelligence 138:181-234, 2002.

G.F. Schwarz and M. Truszazski. Minimal knowledge problem: a new approadti-
ficial Intelligence 67(1):113-141, 1994.

51

[ST96]

[Stas0]
[Sti92]

[Tar55]

[Tru9la]

[Tru9lb]

[Tru06]

[Tru07]

[Tur01]

[Tur03]

[TWO8]

[Van89]

[VEK76]

[Voo91]

G.F. Schwarz and M. Truszdzski. Nonmonotonic reasoning is sometimes simplerir-
nal of Logic and Computatiqré(2):295-308, 1996.

R.C. Stalnaker. A note on nonmonotonic modal logic. Unpublished roaoi4.980.

J. Stillman. The complexity of propositional default logics. AAAI-92. Proceedings,
10th National Conference on Artificial Intelligence (San Jose, CA, 199@)es 794—
799, Menlo Park, CA, 1992. American Association for Artificial Intelligenbgrgan
Kaufmann.

A. Tarski. Lattice-theoretic fixpoint theorem and its applicatidtaific Journal of Math-
ematics 5:285-309, 1955.

M. Truszczpski. Modal interpretations of default logic. FProceedings of IJCAI-91
pages 393-398. Morgan Kaufmann, 1991.

M. Truszczyski. Modal nonmonotonic logic with restricted application of the negation
as failure to prove ruleFundamenta Informaticad 4(3):355-366, 1991.

M. Truszczyiski. Strong and uniform equivalence of nonmonotonic theories — an alge-
braic approach. In P. Doherty, J. Mylopoulos, and C.A. Welty, edifersceedings of the
10th International Conference on Principles of Knowledge RepresentatidiReasoning
(KR 2006) pages 389—-399. AAAI Press, 2006.

M. Truszczyski. The modal logic S4F, the default logic, and the logic here-and-there.
In Proceedings of the 22nd National Conference on Artificial Intelligence (A28aF)
AAAI Press, 2007.

H. Turner. Strong equivalence for logic programs and defaaories (made easy). In
Proceedings of Logic Programming and Nonmonotonic Reasoning @ocks LPNMR
2001, volume 2173, pages 81-92. Lecture Notes in Artificial Intelligence, Serj2®01.

H. Turner. Strong equivalence made easy: nested expnesand weight constraints.
Theory and Practice of Logic Programming 609-622, 2003.

M. Truszczyski and S. Woltran. Hyperequivalence of logic programs with regpesttp-
ported models. IfProceedings of the 23rd National Conference on Atrtificial Intelligence
(AAAI 2008) AAAI Press, 2008.

A. Van Gelder. The alternating fixpoints of logic programs with tiega In ACM Sym-
posium on Principles of Database Systepages 1-10, 1989.

M.H. van Emden and R.A. Kowalski. The semantics of predicate lageprogramming
language Journal of the ACM23(4):733-742, 1976.

F. Voorbraak. The logic of objective knowledge and ratiordidb. In Proceedings of the
European Workshop on Logics in Al (JELIA 199@lume LNCS 478, pages 499-515.
Springer, 1991.

52

[VRS8S]

[VRS91]

[Wol07]

A. Van Gelder, K.A. Ross, and J.S. Schlipf. Unfounded sedsnagil-founded semantics
for general logic programs. IACM Symposium on Principles of Database Syst@ages
221-230, 1988.

A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-foundadantics for general logic
programs.Journal of the ACM38(3):620-650, 1991.

S. Woltran. A Common View on Strong, Uniform, and Other Notions ofiizajence in
Answer-Set Programming. In D. Pearce, A. Polleres, A. ValverditSaWoltran, editors,
Proceedings of the 1st Workshop Correspondence and Equivafendéonmonotonic
Theories (CENT'07)volume 265 ofCEUR Workshop Proceedingsages 13—-24. CEUR-
WS.org, 2007.

53

