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Course description

Recently, much progress has been made in developing methods for learning grammars
from natural language text. The first part of the course gives an overview of such algo-
rithms, starting with those which move through a space of context-free grammars using
nonterminal chunking, merging and/or splitting. We discuss several local search heuris-
tics, as well as some global objective functions (Bayesian posterior probability, maximum
likelihood) and inference procedures (e.g. EM). We evaluate strengths and weaknesses
of these models on several metrics, and consider some extensions that work with richer
input data (phonological phrasing, semantics) and different grammatical formalisms (de-
pendency grammar, categorial grammar, TAG, DOP). In the second part of the course,
we discuss applications of these algorithms in models of language acquisition, change
and evolution. We show how the constraints on the search space necessary for successful
learning emerge automatically in iterated learning. We consider biological evolution of
the inductive bias, and look at the nativist-empiricist controversy from this perspective.
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Chapter 1

Introduction

Syntactic structure plays a central role in most theories of language, but it cannot
be directly observed. An important question, therefore, is whether there is a
relation between syntactic structure and immediately observable properties of
language, such as the statistics of the words and sentences that we hear and read.
Finding such a relation has important consequences for the problem of language
acquisition by children, as well as implications for the theory of syntax itself. It
can also be used in engineering language processing systems.

This thesis addresses the problem of finding the relation between the sur-
face statistics of a language and its hidden syntactic structure by developing a
parser which attempts to capture this relation. The parser is tested to determine
its agreement with the syntactic structure which linguists assign to utterances.
While this approach does not try to model the way humans learn and process
language, the design of the parser relies on some well-known properties of lan-
guage and language processing by humans. By selecting both the representation
of syntactic structure and the language statistics in a way which agrees well with
these properties of language, the resulting relation, as coded by the parser, is
simple.

1.1 Background

One of the more notable facts about language is that children can learn it without
explicitly being informed of its structure and meaning, as already observed by
Saint Augustine in his Confessions (I 8):

Passing hence from infancy, I came to boyhood, or rather it came
to me, displacing infancy. Nor did that depart (for whither went it?)
and yet it was no more. For I was no longer a speechless infant, but
a speaking boy. This I remember; and have since observed how I
learned to speak. It was not that my elders taught me words (as,

1



2 Chapter 1. Introduction

soon after, other learning) in any set method; but I, longing by cries
and broken accents and various motions of my limbs to express my
thoughts, that so I might have my will, and yet unable to express
all I willed, or to whom I willed, did myself, by the understanding
which Thou, my God, gavest me, practise the sounds in my memory.
When they named any thing, and as they spoke turned towards it, I
saw and remembered that they called what they would point out by
the name they uttered. And that they meant this thing and no other
was plain from the motion of their body, the natural language, as it
were, of all nations, expressed by the countenance, glances of the eye,
gestures of the limbs, and tones of the voice, indicating the affections
of the mind, as it pursues, possesses, rejects, or shuns. And thus
by constantly hearing words, as they occurred in various sentences, I
collected gradually for what they stood.1

Saint Augustine’s theory of language learning certainly may sound plausible to
the modern reader,2 but, whether correct or not, it merely describes the learning
of the meaning of words (and only of some words, for that matter). This is
at best a modest beginning, since to properly understand and use language, a
child does not only need to learn the meaning of individual words, but must also
understand how these can be combined to produce complex linguistic structures,
such as sentences. The way the words are arranged together is described by the
syntax of the language, and different languages not only use different words, but
also have different syntactic structures. A child must, therefore, not only learn the
meaning of individual words but must also learn the rules governing the syntax of
the language. Because these rules are abstract, they cannot be learned simply by
associating them with objects in the real world. At the same time, this abstract
nature of syntactic rules and their relatively loose connection with meaning have
made syntax one of the most formally described components of natural language.
For these formal syntactic systems, concrete learning algorithms can be designed
and tested. Such an algorithm is the subject of the present work.

When studying natural language learning, one may consider various methods
by which the rules governing the use and interpretation of a language can be
deduced from exposure to utterances of that language. There may be different
ways and settings in which this goal can be achieved and the way children acquire
their first language may represent only one possible method for doing so. Here
I will use language acquisition to refer to child language acquisition, the specific
process by which children learn their first language, while language learning will
refer more generally to any method of learning.

Language acquisition by children is, of course, not merely a specific instance
of natural language learning but also the most successful learning method known

1English translation by Edward Bouverie Pusey.
2who has not read Wittgenstein’s Philosophical Investigations.
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to date. This is not surprising, as it is only the successful learning of language
by children which allows natural languages to exist at all and the acquisition
process thus defines the range of possible languages (Deacon 1997; Kirby and
Hurford 2002; Zuidema 2003). The possibility remains, however, that additional
learning methods exist. This is especially true if the setting in which learning
takes place is not identical to that in which children learn their first language.
For example, a computer may be required to learn the syntax of a language from
written text. This input is clearly very different from the speech signal which a
child is exposed to when acquiring a language, and may require different learning
algorithms. This does not mean, however, that such learning algorithms are not
relevant to the study of child language acquisition. I will discuss this later on in
the introduction.

There are many ways to approach the problem of language learning and of
syntax learning in particular. These approaches differ not only in the solutions
they offer, but in the questions they pose and in the way they set out to answer
these questions. Of the many roads available, I have chosen to travel down one:
to design and test empirically (on large corpora of text) an algorithm which learns
to parse from unannotated example sentences. This thesis does not, therefore,
address the question of child language acquisition directly but is concerned with
the more general problem of language learning.

Before going down this road, the introduction is a fitting place to take a quick
look down the roads not taken. I therefore begin with a very brief mention of
other approaches to the study of language learning and acquisition: in psychology,
in theoretical linguistics and in theoretical computer science. This should allow
the reader to place the current work within a wider context, but the emphasis is
on mentioning, rather than discussing, the main alternative approaches. I then
go on to explain what one may expect to learn from the approach adopted in
this thesis, which uses real language input (though not necessarily that which is
available to children) to simulate learning on a computer (rather than observing
it in children). Next, taking a first step down the road chosen, I look more
closely at previous computer algorithms designed to learn syntactic structure in
settings similar to those I use. Having thus looked at all the roads I could have
taken, I conclude the introduction by describing the road I have taken and those
properties of it which I find most attractive.

1.2 Some Roads not Taken

1.2.1 Psychological and Linguistic Approaches

The obvious way to study language acquisition is to observe small children as
they learn their first language. This has become a thriving field of research within
modern psychology (see Ingram (1989) for work up to the late 80’s and Tomasello
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and Bates (2001) for more recent work). This research has produced an impressive
body of observations and theory, but it remained largely incompatible with most
of the theories linguists developed for adult language. This is no major problem
when studying the first stages of language acquisition in very young children, but
as older children, acquiring more complex linguistic skills, become the subject
of research, the problem becomes increasingly pressing. From the point of view
of many linguists, the psychological study of the development of language in
children has failed to deal with the true complexities of adult language which
must be acquired by children (Pinker 1984).

An alternative approach to the study of language acquisition has developed
within the field of linguistics, with the end point of the acquisition process, the
adult language, as its starting point. Following Chomsky (1965), linguists com-
pare different languages to identify those properties which all languages have in
common. This approach has become known as principles and parameters (Chom-
sky and Lasnik 1993). The assumption is that a learning procedure only has to
be defined for the idiosyncratic properties of each language while the common
properties of all languages can be assumed to be innate. This has been the
main program of Chomskian linguistics, which attempts to identify a universal
grammar for all languages and a set of parameters which distinguishes different
languages and must be learned.3 Using this framework, one could then hope to
be able to go back to the child development data and discover the exact way
in which children actually discover the values of the parameters for the specific
language they are exposed to.

Chomsky (1965) distinguished between linguistic theories which have descrip-
tive adequacy and theories which also have explanatory adequacy. A theory with
descriptive adequacy correctly describes the structures found in different lan-
guages while a theory which has explanatory adequacy must also explain how
the rules used to describe the structures of each language can be deduced from
examples of that language. Chomsky (p. 26) claims that “gross coverage of a
large mass of data can often be attained by conflicting theories; for precisely this
reason it is not, in itself, an achievement of any particular theoretical interest or
importance.” Therefore, only the condition of explanatory adequacy can allow us
to decide between the conflicting theories. In this way, the problem of language
acquisition (and specifically, the acquisition of syntax) has moved center stage in
linguistic study. Even without actually achieving explanatory adequacy (some-
thing which has not yet been achieved), the need for it has been a driving force
behind linguistic research, especially within the Chomskian tradition.

One could imagine the child and adult centered approaches to the study of lan-
guage acquisition working towards each other, but instead, two belligerent camps
have formed, with child centered approaches attempting to stretch child language

3Chomsky (1965) points out that the idea of a universal grammar goes at least as far back
as the 18th century.
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all the way up to adult language and adult centered approaches attempting to
stretch adult language all the way down to child language. Comprehensive theo-
ries covering the full process of language acquisition have been developed within
both approaches (see Tomasello (2003) for an example of the child centered ap-
proach and Pinker (1984) for an acquisition theory based on formal mechanisms
developed for adult language). The two approaches remain largely incompatible,
probably because they seem to align well with opposing stances in traditional
controversies about language and human cognition in general, such as the debate
about nativism vs. empiricism. Child centered approaches to language acqui-
sition, the modern variant of which are often usage based theories (Langacker
1987; Langacker 1991; Tomasello 2006), tend to take an empiricist stance and
emphasize the use of general cognitive capabilities of abstraction, generalization
and analogy in language acquisition and use. In contrast, adult centered theories
are based on some form or other of universal grammar, which is often complex
and is assumed to be an innate, language specific, human capability, thus taking
a nativist stance. This debate is still raging, but as it is mainly a debate about
language acquisition and not about language learning, it is of no concern to the
present work.

1.2.2 Theoretical Mathematical Models

Because much of what happens in the process of learning a language is invisible
to us, researchers have been concerned with identifying settings which allow lan-
guages to be learned in principle (whether children actually use those methods
or not). The hope is that the range of theoretical possibilities (once identified)
is sufficiently constrained to allow for the correct theory to be selected based
on the observed behavior of children. Linguists have been pursuing such a goal
in their search for universal grammar by attempting to identify the similarities
between different existing languages. As syntactic theory became increasingly
formalized in twentieth century linguistics, it became possible (and tempting) to
try to formalize the process by which the syntax of a particular language can
be learned from example sentences of that language. Researchers in the field of
computational learning theory who are interested in grammatical inference look
for mathematical models which would allow them to define learnable classes of
languages and algorithms for selecting one language out of such a class based on
example sentences from the target language.

The seminal theoretical work in this field is Gold (1967), which defined an
abstract model of the learning process and criteria for successful learning. The
learner is assumed to receive one example after the other from the target language
and can, at each step, make a guess as to the grammar of that language. The
learner is allowed to err at first, but after a finite number of steps must converge
to a correct grammar. Gold showed in his paper that if the learner assumes that
the grammar can be any context free grammar and if all the learner has to go on
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is an arbitrary sequence of sentences in the language, then there is no algorithm
which guarantees convergence to a correct grammar. In Gold’s terminology, this
means that the class of context free grammars is not learnable in the limit from
positive examples. Because most linguists believe that a grammar has to be
at least context free to allow for the phenomena observed in natural language
syntax, Gold’s negative result has been widely (and sometimes wildly) cited in
the linguistic and cognitive literature (see Johnson (2004) for discussion). It was
used, among others, to support the innateness of language or to dismiss Gold’s
paradigm of learning altogether (since, as we know, languages are learnable).

While Gold’s theorem was for many a final statement (for good or bad), for
many others (including Gold) it was only a starting point. In the decades that
followed, researchers looked for variations of the original setting which could allow
linguistically relevant classes of languages to be learnable. One possible variation
is to change the definition of success, for example by introducing a probabilistic
success criterion (e.g. Valiant 1984). Another approach is to search for specific
learnable classes of grammars within the original setting of Gold’s paper (e.g.
Kanazawa 1998). Gold’s negative results apply to large classes of grammars,
but they do not necessarily hold for sub-classes of these classes. Because many
languages in the classes Gold used are not plausible candidates for human lan-
guages, sub-classes of these classes, which better describe the range of possible
human languages, may be learnable. Several surveys of these results are available
(Lee 1996; Sakakibara 1997; de la Higuera 2005). While this line of research has
created a significant body of theoretical results, its relevance to the empirical
study of language acquisition remains limited because the grammatical systems
considered were usually not powerful enough by the standards of modern theo-
retical and computational linguistics and because even when positive learnability
results were achieved, they often made unrealistic assumptions about the input
and resources available to the learner (such as noiseless input or very long con-
vergence time). While some algorithms were implemented, most were not tested
on real natural language data.

1.3 The Road Taken: Empirical Computational

Models

Even before Gold’s theoretical work and possibly also before Chomsky’s intro-
duction of explanatory adequacy as a goal for theoretical linguistics, researchers
in artificial intelligence were attempting to build computer systems which could
learn grammars from text (Lamb 1961). These efforts continued from the early
60’s until today, ranging from simulations (working with toy grammars and lan-
guages) to systems applied to large corpora of real language. The algorithm
described in the present work falls into this last class of models and has been
applied to large collections of natural language sentences (see chapter 7).
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While some of these computer systems (and especially the simulations) were
designed to simulate the process of language acquisition by children, an important
difference between this line of research and previously mentioned approaches to
the study of language learning is that often the immediate motivation behind
the construction of language learning computer systems is not necessarily to shed
light on the problem of language acquisition by children but, instead, the need to
solve some engineering problem. This is not to say that researchers developing
such algorithms ignore the question of language acquisition by children, but it
does mean that they do not feel committed to psychologically plausible algorithms
and are driven more by the success of the algorithm on the specified task rather
than its psychological modeling accuracy.

1.3.1 The Task

When it comes to syntax, the main (but not only) engineering task studied is
parsing. A parser is an algorithm which takes an utterance as input and outputs
the syntactic structure of that utterance. Since the syntactic structure of an
utterance cannot be directly observed, different linguistic theories may assign
different syntactic structures to the same utterance. The syntactic structures
defined by some of these theories may be very complex, but at the most basic
level syntactic structure is either described in terms of dependency links (from one
word to another) or by grouping words together into syntactic units. Dependency
links indicate that some relation holds between the words (such as the relation
between an adjective and the noun it modifies or between a verb and its object).
The grouping of words into units reflects the observation that these groups of
words can function as a unit, or a constituent . For example, in the sentence
the dog barked, the two words the dog can be replaced by a single pronoun it.
This implies that in some ways the dog is a single unit. While the most obvious
examples of dependencies and constituents are non-controversial, there are many
cases which are debatable. Therefore, the construction of a parser always implies
a choice of syntactic theory. When working with annotated corpora, one often
adopts the decisions made by the annotators as to the syntactic structure. I will
do so as well, but I will also discuss some of the choices made by the annotators
in chapter 4.

The learning algorithms I study here are algorithms which learn to parse a
language by examining unannotated example sentences. This can be referred to
as unsupervised parsing , in contrast to supervised parsing, where an algorithm
learns to parse a language from syntactically annotated examples.

1.3.2 Why Study Unsupervised Parsing?

Both supervised and unsupervised parsers use some form of learning to replace
the traditional method of designing parsers by manually writing a set of gram-
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mar rules for each language. While using a supervised parser reduces the effort
involved in writing grammar rules, it also requires a significant amount of manual
labor because for each new language (and domain) to be parsed, one needs to
syntactically annotate a large enough corpus of text. In an unsupervised learn-
ing approach, however, all that one needs to do is feed the learning algorithm
with sufficiently many unannotated examples of the target language and domain.
Since large amounts of electronic text are now available for many languages,
this approach is by far the cheapest method. It is therefore appealing, from an
engineering point of view, to have algorithms which can learn to parse in an un-
supervised way. While such algorithms are yet to achieve parsing accuracy even
close to that achieved by other methods, recent years have seen a new surge of
interest in the development of unsupervised parsing algorithms, with significant
improvement over past results (Klein and Manning 2002; Klein and Manning
2004; Dennis 2005; Bod 2006a; Bod 2006b).

Beyond the engineering motivation, the implementation of learning computer
systems remains highly relevant to the study of language learning because it
is the only approach which can test what happens when a proposed algorithm
interacts with real language input. While psychological and linguistic theories
are mostly based on individual examples picked out by the researchers and while
mathematical models only make general theoretical assumptions about the input
available to the learner, implementing computer models and testing them on
large corpora of real language allows the cumulative effect of numerous examples
to be studied. In this respect, this approach is the closest to studying language
acquisition in its natural settings.

Even when a computational model is clearly not psychologically realistic, its
success in learning syntactic structure has important implications to the study
of language and language acquisition because such successful learning indicates
a relation between the surface structure of a language and its hidden syntactic
structure. Even if the method by which this relation is established is not actually
used by children acquiring a language, the relation is still an empirical property
of the language and may be used by children in some other way in the process of
language acquisition.

This brings us to another reason for developing learning algorithms for syntac-
tic structure, one which goes back to Harris (1946). In that paper, Zellig Harris
proposed a “formalized procedure for describing utterances directly in terms of
sequences of morphemes” which covers “an important part of what is usually
included under syntax.” The procedure proposed by Harris, which groups to-
gether sequences of words by the contexts in which they appear, is known as
the distributional method and has become the starting point of many modern
grammar induction algorithms. Harris himself, however, was not interested in
the problem of language acquisition but rather in providing an explicit procedure
for describing syntactic structure to replace “the use of diverse undefined terms
and a reliance on semantic rather than formal differentiation” in the description
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of syntactic structure. Harris thus attempted to establish syntactic analysis as
an empirical science which has sequences of words uttered by a speaker rather
than the cognitive processes taking place in that speaker’s mind as its subject
matter. This approach, which is behaviorist in nature, lost much of its popularity
(together with behaviorism in general) after the cognitive revolution of the 50’s.
Beyond the general shift in linguistics from the study of surface structure to the
study of the cognitive processes involved in language processing, one of the rea-
sons that linguists abandoned distributional methods in the study of grammar is
their failure to achieve significant results, just as grammar induction algorithms
failed for many years to achieve even modestly good results on real language
input. Whether a purely distributional approach can indeed teach us anything
important about the syntactic structure of language remains to be seen, but I
believe that if successful algorithms can be designed to infer syntactic structure
from unannotated examples then this should certainly have implications for the
theory of syntax and can serve as an empirical method (which does not rely on
human judgments) for discovering the syntactic structure of language. Just as one
does not need to be a behaviorist to study behavior, one does not need to deny
the relevance of cognition to linguistics in order to use distributional methods in
the study of language. While current methods are still too weak to contribute
directly to the study of syntax in the way Harris envisioned it, advances made
in recent years may indicate that algorithms can discover at least some of the
syntactic structure of a language. In this way, Harris’s original program of com-
ing up with a formalized procedure for describing an “important part of what is
usually included under syntax” remains a valid goal for research with significant
benefits to our understanding of language; if it succeeds.

1.3.3 On the Use of Meaning in Learning Syntax

Whatever the approach taken, acquisition of language by children remains rele-
vant because the fact that children can learn language without getting explicit
information about its structure means that language learning is possible, at least
in principle. Of course, there is significant debate as to the exact information
available to children when they acquire their language (and specifically syntax)
and it is clear that a computer can never be exposed to the full experiences of
the child. One central question is whether syntax can be learned independently
from meaning (semantic or pragmatic). Many theories of language acquisition,
such as Pinker (1984), are based on semantic bootstrapping, where the child first
learns the meaning of some words and then uses this acquired knowledge to de-
duce the syntactic structure of sentences in which these words appear. While this
seems to be a simple process for acquiring syntactic knowledge, it has also been
shown (Landau and Gleitman 1985; Gleitman 1990) that knowledge of syntactic
structure is necessary for the correct learning of the meaning of many words,
when a linguistic utterance can only be mapped onto an observed situation if the
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syntactic structure of the utterance is known to the child. This process of syn-
tactic bootstrapping can work together with semantic bootstrapping to learn both
meaning and syntax. How the two may be combined and which role is played by
each component remains an open question.

Implementing semantic bootstrapping in a fully formalized system has been
attempted by several researchers, both theoretically, within Gold’s paradigm of
learning (Hamburger and Wexler 1975; Tellier 1998; Dudau-Sofronie et al. 2001;
Oates et al. 2003), and in actual computer systems (Anderson 1977). The main
problem with all these systems is that they do not learn the semantics as a child
does, but take the semantic representation as input together with the utterance
describing the situation. These semantic representations are stipulated by the
designers of the algorithms, and can all be suspected of encoding syntactic in-
formation which needs to be learned by the child. The discussion whether these
properties are semantic or syntactic is irrelevant, as the question remains how a
child can learn them from the input available. Moving the syntax into the seman-
tics does not solve the problem, but only avoids it. This is also the reason why
computer systems designed to use semantics (such as Anderson’s) were toy sys-
tems designed to prove a cognitive theory rather than systems designed towards
a specific application. From an engineering point of view, to use the semantic
information required by these systems would require semantically annotated cor-
pora, so for all practical purposes it is simpler to use syntactic annotations to
begin with.

Because the most readily available input for a computer program attempt-
ing to learn the syntax of a language is unannotated sentences (without any
information about their meaning or context) most algorithms remain entirely
distributional in nature. The objection that this is not the way children learn
their language does not detract from the importance of these algorithms, if they
are successful. Success of such algorithms is both useful in constructing language
processing systems and in understanding the relations between the surface struc-
ture of language and its syntactic structure. This is also the approach I adopt in
the present work.

1.3.4 A Brief Survey of Syntactic Induction

Over the years, many systems for learning the syntax of natural languages were
proposed and implemented. This section is a brief survey of these systems and
the principles used in their design. I discuss only systems which were actually
implemented and which take unannotated example utterances of a language as
input.

Until recently, most of these systems learned a context free grammar. A
context free grammar (CFG) consists of a finite set of rules of the form X →
Y1, . . . , Yn, which can be used to replace (rewrite) the symbol X by a sequence of
symbols Y1, . . . , Yn. Beginning with a single start symbol S, rules can be applied
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repeatedly until a sequence of words is formed (X cannot be a word, so words
cannot be rewritten). Given a sentence to be parsed, a CFG parser looks for a
sequence of rule applications which generates that sentence from S. The sequence
of rule applications defines the syntactic units (constituents) of the sentence: the
sequence of words which was generated from a single symbol X is a unit and
X is the label of that unit (e.g. X = noun phrase). Since there may be more
than one way to generate a sentence with the same CFG, the parser must have
a way to select one of the possible parses. A standard way of doing so is to use
a probabilistic context free grammar (PCFG) in which every rule is assigned a
probability (the probabilities of all rules with the same left hand side must sum
to 1). The rule probabilities induce a probability for each parse and the parser
selects the most probable one.4

Most of this section is dedicated to the description of various algorithms which
learn the syntax of a language by inducing a (probabilistic) context free grammar.
At the end of this section I describe some more recent algorithms which do not
use CFG induction but instead define various ways of inducing a parser directly.
These algorithms turn out to be far more successful than the older CFG induction
algorithms and I conclude the section with a short discussion of what is, in my
opinion, the main reason for this difference.

Distributional Clustering

Many grammar induction algorithms use a method of distributional clustering
which may be traced back to Harris (1946):

The procedure [. . . ] consists essentially of repeated substitution:
e.g. child for young boy in Where did the — go?. To generalize this,
we take a form A in an environment C D and then substitute
another form B in place of A. If, after such substitution, we still have
an expression which occurs in the language concerned, i.e. if not only
CAD but also CBD occurs, we say that A and B are members of
the same substitution-class, or that both A and B fill the position

C D , or the like.

Because Harris was not interested in language induction but in structural
description, he allowed the decision as to whether CAD and CBD are in the
language to be taken by a linguist. When this procedure is used to induce a
grammar, the decision whether A and B are members of the same substitution
class is based not on the linguistic judgments of a linguist but on the occurrence
of both CAD and CBD in a corpus of utterances in the language being learned.
This method has been the cornerstone of many grammar induction algorithms

4For more detailed definitions of CFG and PCFG, see, for example, Jurafsky and Martin
(2000).
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beginning with Lamb (1961), and has since been used also by many others (Cook
et al. 1976; Wolff 1982; Mori and Nagao 1995; Adriaans et al. 2000; van Zaanen
2000; Clark 2001; Solan et al. 2005). Some additional algorithms from the 60’s
and 70’s based on this method are mentioned in the survey of Pinker (1979). The
term environment used by Harris has been replaced by context in the more recent
literature.

While the idea seems simple and straightforward, there are several funda-
mental problems in implementing it successfully. Several of these were already
mentioned in Harris’s original paper. The first problem that Harris mentions is
that:

In some languages, relatively few morphemes occur in exactly the
same environments as others: poem occurs in I’m writing a whole
— this time but house does not. Both morphemes, however, occur
in That’s a beautiful —. Shall we say that poem and house belong
in general to the same substitution class, or that they have some
environments in common and some not?

This problem worsens when it is not a linguist who has to decide whether a certain
sentence appears in a language but a corpus is used to make such decisions. Even a
large corpus contains only a small fraction of the utterances which may reasonably
be produced in a language and even if two sequences of words can, in principle,
appear in a certain environment, it may very well be that no evidence for this
will be found in the corpus. To solve this problem, algorithms generally do not
require that sequences of words appear in exactly the same contexts in order
to cluster them together and some overlap of contexts is considered sufficient.
The exact criterion used may vary from simple clustering of any two sequences
appearing in the same context (van Zaanen 2000) to complex algorithms based
on the combination of different contexts (Adriaans et al. 2000).

Part-of-Speech Induction

One task on which the clustering by context technique has proven successful is
the induction of parts-of-speech, that is, the assignment of a class label to each
word. This is a subtask of the general clustering task because it only considers
single words (rather than sequences of words) for substitution. Using only the
most frequent words in the corpus as contexts, various clustering methods have
been used to induce part-of-speech tags (Schütze 1995; Clark 2000). This is not
only a useful result in itself but may also serve as a first step in the induction
of a grammar. For this reason, most recent syntactic induction algorithms take
sequences of part-of-speech tags rather than words as their input. This con-
siderably simplifies the problem of identifying sequences appearing in identical
contexts, because both the sequences and the contexts are drawn from a much
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smaller set of possible symbols. In practice, the part-of-speech tag sequences are
often taken from an annotated corpus rather than being induced.

Identifying Constituents

A second problem with the distributional method identified by Harris is that
when sequences of words are considered for substitution, the substitution classes
created by the method may contain sequences of words which are not constituents
at all:

Since our procedure now permits us to make any substitution of
any sequences, it may become too general to produce useful results.
For example, we might take the utterance I know John was in and
substitute certainly for know John, obtaining I certainly was in. This
substitution conceals the fact that the morphemes of I know John was
in can be said as two utterances instead of as one.

Harris goes on to mention other respects in which certainly and know John differ
and then suggests that “substitution of sequences be so carried out as to satisfy
all manipulations of that environment which forms the frame of the substitution.”
Even if such a procedure can be carried out by a linguist, it certainly cannot be
carried out by an algorithm which only has a small subset of the utterances in
the language to work with and does not know how to identify all permissible
manipulations of a given environment.

For this reason, some clustering-based induction algorithms (Mori and Nagao
1995; Clark 2001) explicitly define a procedure to distinguish between sequences
(of part-of-speech tags) which are constituents and those which are not. Mori
and Nagao make the assumption that sequences (of part-of-speech tags) which
represent constituents are less constrained as to what precedes and follows them
than non-constituent sequences and implement this by setting a threshold on
appropriate conditional entropy functions for the right and left contexts of a
sequence. Clark uses a criterion which is based on the assumption that the
mutual information between the left and right context of a sequence is higher for
constituents than for non-constituents. These two methods seem to implement
similar intuitions in different ways. The algorithm of Solan et al. (2005) does not
explicitly distinguish between constituents and non-constituents but does seem to
use a method similar in nature (but not in detail) to that of Mori and Nagao (1995)
in order to detect “significant patterns” which eventually become the constituents
of the analysis. Other clustering algorithms do not have an explicit procedure
for identifying constituents, but instead rely on the grammar rule construction
procedure (described below) to implicitly prefer rules describing constituents.
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Inducing the Grammar Rules

Having clustered sequences of symbols and possibly having determined which
of these are candidate constituents, all sequences in a cluster can be replaced,
wherever they appear in the corpus, by a new single symbol representing the
cluster. This is represented by defining a set of context free rules which have the
new symbol as their left hand side and the sequences in the cluster as their right
hand side. Because the sequences in different clusters may overlap, replacing
all occurrences in the corpus of sequences from one cluster by a single symbol
can destroy the sequences which are part of another cluster. For this reason,
the induction algorithm must determine which cluster to substitute first. Having
performed the substitution, the process can be repeated.

Most algorithms (Cook et al. 1976; Wolff 1982; Mori and Nagao 1995; Clark
2001) use an objective function to decide which grammar rule to create at each
step. These objective functions are all similar in nature (but not necessarily in
detail) and may be traced back to Solomonoff (1964), who defined a Bayesian
probability function which has to be maximized by the grammar induction al-
gorithm. This probability function is P (D|G)P (G), where P (G) is the a-priori
probability of the grammar and P (D|G) is the probability of the observed data
(corpus) given the grammar. The a-priori distribution is usually taken to be such
that smaller grammars have higher probability. Maximizing the Bayesian proba-
bility function is equivalent to minimizing − log(P (D|G))− log(P (G)) which is a
description length criterion. The quantity − log(P (G)) is seen as describing the
size of the grammar and − log(P (D|G)) is seen as the length of the data after be-
ing encoded by the grammar. This is often interpreted as a compression criterion
because a good grammar which captures the regularities of a language should
allow the data to be encoded compactly. While details vary, most algorithms use
some variant of this function (either in its Bayesian or description length form) for
rule selection. An exception is Solan et al. (2005), who uses the “most significant
pattern” (which resembles the constituency criterion of Mori and Nagao 1995) as
a criterion for substitution.

Because substituting a single symbol for a constituent immediately destroys all
non-constituent sequences which overlap (but do not contain) that constituent,
the process of rule selection can potentially eliminate non-constituent clusters.
The burden of doing so correctly is placed on the objective function by which
rule selection is determined. By filtering out non-constituent clusters before the
rule selection step, Mori and Nagao (1995) and Clark (2001) increase the chances
of this happening.

The algorithms of van Zaanen (2000) and Adriaans et al. (2000) are an ex-
ception to this process in that they do not substitute and re-cluster after each
substitution but instead continue to use the clustering on the original text. While
van Zaanen (2000) proposes different heuristics to decide between conflicting con-
stituents in the text, Adriaans et al. (2000) simply create a set of rules from their
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clustering without going back to the original text (and thus do not have to deal
with conflicting constituents). Of course, when parsing with these rules, only
non-crossing units are created, but it is not entirely clear whether there is any
mechanism in the algorithm which allows constituent clusters to be preferred over
non-constituent clusters.

Syntagmatic and Paradigmatic Merging

When a clustering algorithm creates a grammar rule and substitutes all sequences
in a cluster by the left hand side (non-terminal) symbol of the rule, it actually
makes two decisions: first, it identifies each of the sequences as a constituent
and, second, it identifies these constituents as being substitutable for each other.
Borrowing structuralist terminology, some authors (Wolff 1982; Stolcke 1994) re-
fer to these operations as syntagmatic merging (grouping words into syntactic
units) and paradigmatic merging (grouping units into substitution classes). Stol-
cke (1994) also names them chunking and merging (respectively). In a chunk
(syntagmatic merge) step, a single sequence of symbols is replaced, wherever it
appears in the corpus, by a new non-terminal symbol and an appropriate context
free rule is added to the grammar. In a merge (paradigmatic merge) step, sev-
eral different non-terminals are merged into a single non-terminal. This approach
was already applied in the algorithms of Cook et al. (1976) and Wolff (1982).
Because chunking is used, one can restrict merging (clustering) to single symbols
appearing in the same context, rather than having to cluster sequences of differ-
ent lengths as in the original Harris method. Cook et al. make use of this and
only allow merging of single symbols while Wolff seems to retain the possibility of
merging sequences of symbols (in addition to chunking). Both algorithms decide
which of the many possible chunking or merging operations to perform at each
step based on the improvement on an objective function resulting from such an
operation.

Stolcke (1994) goes one step further and does not use context at all as a
criterion for merging. Instead, merging can be performed between any two non-
terminals and which merge or chunk to perform depends only on the improvement
on an objective function resulting from such a merge. Thus, the full burden of
success is put on the shoulders of the objective function and its correct design be-
comes critical. It is interesting to note that Stolcke (p. 88) observes that chunking
often must be combined with merging to achieve an improvement on the objec-
tive function. This seems to suggest that while the separation of merging and
chunking is conceptually elegant, the two operations must be performed together
and the separation is in practice undone.
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Highest Likelihood PCFG

The induction algorithms mentioned so far are sometimes referred to as structure
search algorithms, because they search for the grammar which optimizes the
objective function by constructing a set of grammar rules. An alternative is
parameter search, in which the set of possible rules is fixed and only the probability
of each rule (in a probabilistic context free grammar) has to be determined. The
search is then for the probability distribution which maximizes the likelihood of
the observed data. This process may assign some rules a zero (or very small)
probability, thus eliminating them effectively from the grammar. It is therefore
possible to start with a relatively large set of possible rules and hope that the
parameter search will only assign large probabilities to a small subset of them.

Of the two components of the objective function used in the structural search
algorithms, we are left with only one: P (D|G), the likelihood of the data given
the probabilistic grammar. The a-priori probability of the grammar is no longer
used. This may seem to suggest that the a-priori probability of the grammar is
not needed to begin with, but this is not true. Parameter search algorithms must
restrict the possible grammar rules they allow because, otherwise, the maximum
likelihood is achieved by the trivial grammar in which every sentence in the
corpus is generated by a single rule and the probability of the rule is equal to
the relative frequency of the sentence in the corpus. The selection of the initial
set of grammar rules to which a non-zero probability may be assigned becomes
a critical issue in the design of parameter search algorithms. While this may be
difficult to achieve in a way which is not biased towards specific languages, it is
also probably not reasonable to assume that all context free grammars should
remain a-priori possible, as is assumed by most structure search algorithms.

One advantage of parameter search algorithms is that a relatively efficient
algorithm has been developed for finding a local maximum for the likelihood
function. This algorithm, called the inside-outside algorithm (Baker 1979; Lari
and Young 1990), begins with some initial setting of the rule probabilities and
re-estimates these probabilities on a corpus until a local maximum of the corpus
likelihood is reached. While this seems encouraging at first, attempts to induce
grammars using this algorithm (Carroll and Charniak 1992) proved disappointing.
One reason for failure which the authors propose is that the algorithm tends to
converge to local maxima which are not good grammars. A different reason,
suggested in Klein and Manning (2002), is a poor choice of the set of possible
grammar rules in these experiments. Later experiments (Pereira and Schabes
1992; Schabes et al. 1993) showed that this algorithm works successfully when it
is trained on bracketed sentences, but no successful application of the algorithm
to the induction of PCFGs from unannotated text is known to me.



1.3. The Road Taken: Empirical Computational Models 17

Non-CFG Syntactic Induction

Despite some slow progress, the performance of algorithms which induce a con-
text free grammar (probabilistic or not) remains disappointing. While some al-
gorithms were reported to successfully induce toy grammars, none seemed to
succeed on the task when confronted with real linguistic data. The standard syn-
tactic task in computational linguistics is parsing and it is therefore reasonable
to evaluate grammar induction algorithms on the parsing accuracy they achieve.
Even when algorithms were able to produce some output on real language input,
the accuracy of the parses remained low.

In the last decade, new induction algorithms have been proposed which no
longer rely on context free grammars. Instead, various probabilistic models of
syntactic structure are used and induction is performed by searching for the pa-
rameters which maximize the likelihood of the corpus data. The parse assigned
to a sentence is then simply the structure with the highest probability (given
the induced parameters). These algorithms use either a constituency (bracket-
ing) representation of syntactic structure (Klein and Manning 2002; Bod 2006a;
Bod 2006b; Bod 2007a) or a dependency (link) representation of syntactic struc-
ture (Yuret 1998; Paskin 2002; Klein and Manning 2004; Smith and Eisner 2005;
Smith and Eisner 2006).

The probability assigned by these models to a syntactic structure is based on
the product of the probabilities assigned to the “building blocks” of the structure.
In the case of CCM (Klein and Manning 2002), these building blocks are the
constituent and non-constituent sequences of parts-of-speech in the structure as
well as the contexts of these sequences. The probability distributions induced by
the algorithm then specify the probability of a certain sequence of parts-of-speech
(or context) as a constituent or a non-constituent (see figure 1.1 for details). In
the case of the different variants of U-DOP (Bod 2006a; Bod 2006b; Bod 2007a),
the building blocks are subtrees of the syntactic structure and the probabilities are
the probability of using each subtree in a derivation (see figure 1.2 for details).
Both these models require the syntactic trees to be binary branching. When
dependency models are used, the building blocks are the dependency links and
the probability distribution describes the probability of two parts-of-speech (or
words, in the case of Yuret 1998) being joined by a link. In DMV, Klein and
Manning (2004) also added a probability describing the non-attachment of a
head beyond its last argument (see figure 1.1 for details). This model has also
been used by Smith and Eisner (2005) and Smith and Eisner (2006) with different
likelihood maximization techniques.

Many of these recent algorithms perform significantly better than context free
grammar induction algorithms. While no CFG induction algorithm has ever been
reported to do better on English than the right-branching heuristic (which simply
brackets every word together with all words to its right), many recent algorithms
(Klein and Manning 2002; Klein and Manning 2004; Smith and Eisner 2005;
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CCM:

S - sentence (part-of-speech sequence): 0 NN 1 NNS 2 V BD 3 IN 4 NN 5

B - bracketing (boolean matrix): [ [ 0 NN 1 NNS ] 2 [ V BD 3 [ IN 4 NN 5 ] ] ]

Bij = true ⇐⇒ bracket from i to j:

0 1 2 3 4 5
t t t 0

t 1
t t 2

t t 3
t 4

5

αij - parts-of-speech from i to j (e.g. α02 = NN NNS).
xij - the context of αij (e.g. x02 = ⋄ − V BD).

CCM defines a probabilistic model P (S,B) = Pbin(B)P (S|B) with Pbin a uniform
distribution over all binary branching bracketings and

P (S|B) =
∏

i<j

P (αij|Bij)P (xij|Bij)

DMV:

Projective dependency structure D of sentence S (see section 4.1 for definitions):

NN NNS
ww

V BD
ww &&

IN
&&

NN root
yy

Each dependency d is a link from a head h to a dependent a.

DMV defines the following generative probabilistic model for P (D,S):

D(h) - dependency structure rooted at h (D = D(root)).

depsD(h, l/r) - dependents of h (in D) to the left/right of h.

adj = true iff no dependent has yet been generated in the current direction.

P (D(h)) =

∏

dir∈{l,r}





∏

a∈depsD(h,dir)

PSTOP(¬STOP|h, dir, adj) P (a|h, dir)P (D(a))





× PSTOP(STOP|h, dir, adj)

Figure 1.1: Klein and Manning’s CCM (2002) and DMV (2004) models. The EM
algorithm (with the sentences S as observed and bracketing B or dependencies D
as unobserved) is used to search for the model parameters which (locally) max-
imize the likelihood of the (unannotated) corpus. Each sentence is assigned the
most probable structure (bracketing/dependency) according to these parameters.
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Every sentence (part-of-speech
sequence) in the input corpus
is assigned all possible binary
trees:

S

NNS X

VBD X

JJ NNS

S

NNS X

X

VBD JJ

NNS

S

X

X

NNS VBD

JJ

NNS

S

X

NNS X

VBD JJ

NNS

S

X

NNS VBD

X

JJ NNS

All subtrees are extracted: S

NNS X

X

VBD X

JJ NNS

S

NNS X

X NNS

etc.

Each subtree t in this collection is assigned a probability:

U-DOP: P (t) =
|t|

∑

t′:r(t′)=r(t) |t
′|

where r(t) is the root node of t (S or X) and |t| is the number of
times t appears in the subtree collection.

UML-DOP: Expectation maximization beginning with U-DOP’s estimates.

U-DOP∗: Using the DOP∗ estimator of Zollmann and Sima’an (2005).

A derivation constructs a tree from subtrees:

S

NNS X

VBD X

JJ NNS

= S

NNS X

◦ X

VBD X

JJ NNS

The probability of a derivation is the product of the probabilities of the subtrees
it uses: P (t1 ◦ . . . ◦ tn) =

∏

i P (ti). The probability of a tree is the sum of
probabilities of all its possible derivations: P (T ) =

∑

{t1◦...◦tn=T}

∏

i P (ti). In
practice, only the most probable derivations are summed.

The parse assigned to a sentence is the tree with the highest probability.

Figure 1.2: Bod’s U-DOP (Bod 2006b), UML-DOP (Bod 2006a) and U-DOP∗

(Bod 2007a) algorithms.
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Smith and Eisner 2006; Bod 2006a; Bod 2006b; Bod 2007a) do significantly
better than this baseline (see chapter 7 for details).

1.3.5 From Grammar Induction to Parser Induction

The move away from context free grammars has significantly improved the pars-
ing accuracy of unsupervised parsers. While some of this improvement can be
attributed to the details of the design or to the use of the expectation maximiza-
tion technique, I would like to suggest that it is the move from grammar induction
to parser induction which has contributed most to the improvement.

We have seen that the construction of a context free grammar requires two
types of decisions to be made: syntagmatic (which sequences of words are con-
stituents) and paradigmatic (which sequences can be substituted for each other).
These are two aspects inherent to what we expect from any grammar and nei-
ther can be ignored in the process of induction. In contrast, unlabeled parsing,
which only requires the parser to identify the constituents (or dependency links)
but does not require them to be labeled, is purely syntagmatic (by definition).
A parser induction algorithm can therefore focus on learning to detect syntactic
units while ignoring substitutability. Indeed, none of the recent successful al-
gorithms (Klein and Manning 2002; Klein and Manning 2004; Bod 2006a; Bod
2006b; Bod 2007a) can determine which constituents are substitutable. Even
when contexts are used (as in the CCM algorithm of Klein and Manning 2002)
they are only used to determine the probability that the sequence appearing inside
the context is a constituent and not to decide which sequences can be substituted
for each other. Another example is the memory based algorithm of Dennis (2005),
which uses alignment just as in older clustering algorithms but stops short of cre-
ating substitution classes. Instead, it directly uses the alignments to make parsing
decisions.

In contrast to these parser induction algorithms, grammar induction algo-
rithms need to perform both syntagmatic and paradigmatic induction. In prac-
tice, the emphasis was always on the paradigmatic aspect of the induction. This
is implied in Stolcke’s (1994) comment that syntagmatic merges must usually be
followed by paradigmatic merges to produce any improvement on his objective
function. This shows that while formally both syntagmatic and paradigmatic re-
lations are learned, it is only the paradigmatic relation which is the driving force
behind the induction process. It is not surprising therefore that such algorithms
produce poor parsers. The few grammar induction algorithms that did incorpo-
rate some explicit mechanism to distinguish constituents from non-constituents
(Mori and Nagao 1995; Clark 2001) seem to have gained in parsing accuracy from
this. Still, it was only when the focus shifted completely from substitutability to
the detection of constituents that parsing accuracy began to improve significantly.
Substitutability, the essential idea of the Harris method, which has been seen as
a starting point for the induction process for so long, turns out to be unnecessary
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in unsupervised parsing.
This does not mean that substitutability is not an important linguistic notion

or that grammars are not an important linguistic tool (in generating new sen-
tences, for example) but it does mean that the first step in the learning of syntax,
the discovery of the structure of the utterances, can be done without them. Sub-
stitutability can then be learned based on this syntactic structure rather than
being used to determine it.

This having been said, the notion of substitutability still plays one important
role in recent unsupervised parsing algorithms: they all use part-of-speech se-
quences in place of words as their input (with the exception of Yuret 1998). One
may wonder whether this is necessary. In this thesis I suggest that the answer
is probably no and I present an unsupervised parser which completely does away
with substitutability, even at the word level.

1.4 The Road Taken: Learning to Parse Incre-

mentally

The present thesis is about parser induction. It takes the view that the identifi-
cation of syntactic units and relations in an utterance does not require the notion
of substitution or the definition of a grammar. It makes this explicit by defining
a non-deterministic parser and learning a parsing function which decides among
the various parsing options open to the non-deterministic parser.

When designing an unsupervised parser, it is useful to look at the way hu-
mans process language even if one is not interested in cognitive modeling and it
is useful to look at the common properties of languages even if one is not look-
ing for a universal grammar. Of the many properties of language and language
processing discovered by researchers, I have chosen to make primary use of three:
the incrementality of human language processing, the skewness of syntactic tree
structures and the Zipfian distribution of words. All these are fundamental and
universally accepted properties of language. The use of these properties leads to
a greedy parser in which both parsing and learning are local. As a result, learning
and parsing are fast, but not at the expense of parsing accuracy, which remains
high by current unsupervised parsing standards.

1.4.1 Incrementality

Humans interpret language as it is being heard or read, and do not have to
wait for the end of an utterance to determine the structure and meaning of its
beginning. This is referred to as the incrementality of human language process-
ing, and has been thoroughly studied by psycholinguists (see e.g. Crocker et al.
2000). While incrementality is widely acknowledged to be a property of human
language processing, most grammars are not specifically designed to be applied
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incrementally and most standard parsers are not incremental. Even in a grammat-
ical framework such as combinatory categorial grammar (Steedman 2000), which
is supposed to easily accommodate incremental parsing, wide coverage parsers
(Hockenmaier and Steedman 2002; Clark and Curran 2004) are not incremental.
Thus, in computational linguistics, incrementality is usually seen as an additional
burden on the design of a system rather than as a useful tool in its development.
But incrementality can be most useful, because it considerably constrains the
possibilities a language interpreter has to consider (Church 1980). In the specific
case discussed in the present work, this interpreter is a parser which has to de-
termine the syntactic structure of an utterance. While in most standard parsing
algorithms the end of the utterance can potentially affect the parse of the begin-
ning of the utterance, this cannot happen in an incremental parser. As a result,
an incremental parser has fewer possibilities to consider at each step. This not
only restricts the search space for the parser but also simplifies the task of the
learning algorithm because the learning algorithm only has to learn to distinguish
between the possibilities the parser may choose from.

The problem encountered by incremental parsers is that in some utterances
the structure of the beginning of the utterance remains ambiguous until a disam-
biguating word is reached. This seems to be a problem for incremental parsing,
but is actually dependent on the syntactic representation chosen: a structure
which is ambiguous in one representation is not necessarily ambiguous in another
representation, which may leave the ambiguous feature underspecified until the
disambiguating word is reached. Not every ambiguity may be solved in this way
and linguists have long been aware of the fact that humans can easily handle
some ambiguities while having problems processing others (Bever 1970). Psy-
cholinguists have developed various explanations for this difference between am-
biguities and some of these proposals are representational in nature: only the
difficult ambiguities are ambiguous in the proposed representations (Weinberg
1993; Weinberg 1995; Gorrell 1995a; Gorrell 1995b; Sturt and Crocker 1996).
This will be discussed in section 4.3. In the present work I adopt a similar ap-
proach and develop a new link based representation of syntactic structure which
is well suited for incremental parsing.

1.4.2 Skewness

The syntactic structure of natural language is skewed. This simply means that
when the syntactic structure of an utterance is represented by a tree, each node
in the tree has at least one short branch (figure 1.3a). The shorter the shortest
branch is, the greater the skewness. In chapter 4, I examine several syntactically
annotated corpora to show that a significant degree of skewness can be found in
those annotations. The syntactic representation I introduce in this thesis easily
captures this skewness.

In contrast, phrase based representations of syntactic structure, such as con-
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omdat
((

de manoo de vrouwoo ziet
eegg

omdat

de man

de vrouw
ziet

omdat

de man de vrouw
ziet

(a) This syntactic tree of a Dutch phrase is
skewed because under every node there is a
branch of length at most 2. The shortest
branch is sometimes on the left and some-
times on the right.

(b) When the syntactic tree (bottom) is de-
rived from the dependency structure (top)
by creating a node for every head and all its
direct and indirect dependents, the tree is
even more skewed because under every node
there is a branch of length 1.

Figure 1.3: An example of skewed syntactic trees.

text free grammars, allow (a-priori) any tree structure and, therefore, a learning
algorithm for such representations must discover by itself the skewness property
of syntactic trees. However, if this property is indeed universal, there is no need
to burden the learning algorithm with its discovery and it is possible to code
skewness directly into the parser.

The other extreme is taken by dependency structures (see section 4.1), in
which a head word is connected by links to all its dependents (which may, in
turn, be heads of other dependents). The straightforward way to construct con-
stituents from a dependency structure is to create for each head word a constituent
covering it together with all its direct and indirect dependents (figure 1.3b). The
resulting tree is skewed because every head word is attached immediately under
the node it heads. This skewness is too strong, however, especially for sentential
constructions that combine a subject with a predicate (see the example in fig-
ure 1.3 and chapter 4 for details). Therefore, the skewness defined by dependency
structures must be relaxed.

The syntactic representation I introduce here is based on links between words,
and can easily capture the skewness of syntactic structure in a way similar to
that of dependency structures. However, by labeling each link by a number (its
depth) the representation allows the degree of skewness to be lower than that of
dependency structures. I will argue in chapter 4 that the resulting skewness is
close to that which is actually observed in natural language.
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1.4.3 The Incremental Parser

Having defined a representation for syntactic structure, the next step is to define
an efficient parser for that representation, that is, an algorithm which takes an
utterance as input and outputs the syntactic structure of that utterance. While
the syntactic representation I use was chosen to facilitate incremental parsing, it
is the parser I describe which actually implements this incrementality. By doing
so, it also defines an exact notion of incrementality (since there are multiple ways
of doing so). From now on, I will refer to this simply as the incremental parser.

The syntactic formalism used by the parser ensures that the parser can only
output skewed syntactic structures, thus eliminating many spurious candidate
structures from the search space. The incrementality of the parser further restricts
the search space, thus simplifying parsing even further. If the incrementality and
skewness coded in the syntactic representation and parser roughly resemble those
of natural languages then this reduction of the search space should not come at
the expense of the accuracy of the parser.

The basic incremental parsing algorithm is non-deterministic: at each step it
specifies a set of links which may be added to the parse, but does not determine
which of these links to add. This is not surprising, since different languages
require different parsing decisions to be made. Classically, such idiosyncratic
properties of a language are coded for the parser by a grammar of the language.
In the case of the incremental parser, this is replaced by a parsing function which
selects, at each step, one of the options available to the parser. It is the parsing
function which has to be learned by the induction process. The learning process
is simplified if the parsing function only needs to code the idiosyncratic properties
of a language and not the universal properties of language parsing. In the present
work, skewness and incrementality were coded as universal properties.

1.4.4 Learning and the Zipfian Distribution

To learn the parsing function, the algorithm I present here makes use of the Zipfian
distribution of words. Zipf’s law states that words in a language obey a power
law probability distribution, which roughly means that there is a small number of
words which are very frequent and many words which are extremely infrequent.
This has often been seen as a curse in computational linguistics, because it means
that many words are too infrequent to collect meaningful statistics for. I suggest,
however, that one should not see the glass as half empty, but as half full: a
relatively small number of frequent words appears almost everywhere and most
words are never too far from such a frequent word. The frequent words can
therefore guide the parsing and learning process. This is also the principle behind
successful part-of-speech induction.

The Zipfian distribution is a property of words, not of parts-of-speech (which
cluster many infrequent words, such as nouns, under a single tag). Therefore, in
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contrast to most modern syntactic induction algorithms, it is not only possible
but also desirable to use the algorithm I present here directly on words and not
on part-of-speech sequences. No clustering is performed at any level and the
algorithm works entirely locally. Instead of using parts-of-speech, the algorithm
labels each side of each word by its neighbors in the text and, recursively, by the
labels of these neighbors. Parsing is then directly guided by these labels. Due
to the Zipfian distribution of words, high frequency words dominate the lists of
labels and parsing decisions for words of similar distribution are guided by the
same labels. This not only simplifies the induction process, but also allows much
greater flexibility, since the exact label used at each parse step may depend on
the parsing context. In addition, the labels on the left and right side of each word
may remain independent.

1.4.5 Bootstrapping

The final ingredient in the learning process is bootstrapping. The learning process
is nothing more than a simple process of collecting statistics which result from the
parsing process: as an utterance is parsed, the parse determines for the learning
process which statistics to collect (a somewhat similar idea can be found in Yuret
1998). The statistics of each word are simply collected from the properties of
words which are adjacent to it according to the parse. The notion of adjacency
depends on the parse assigned to the utterance and will play a central role in the
algorithm.

Because learning is merely the collection of statistics resulting from parsing,
the learning process is open-ended and additional training text can always be
added without having to re-run the learner on previous training data. Learning
does not slow parsing much and experiments show that parsing (which is at the
rate of thousands of words per second) is slowed down by about 20% when learning
is turned on. This means that, potentially, learning can always remain turned
on. This is appealing both for engineering purposes and for cognitive modeling.

One risk of using a bootstrapping process, where learning is influenced by
what has been learned before, is that incorrect conclusions reached at the be-
ginning of the learning process reinforce themselves through bootstrapping and
cannot be gotten rid of. This is similar in some respects to the problem of search
algorithms getting stuck at local minima. I will argue (section 6.2.2) that the
learning algorithm I propose does not have this problem.

1.5 Organization of this Thesis

The parsing and learning algorithms are described in chapters 2, 3 and 6. Chap-
ter 2 introduces the basic definitions of common cover links, the syntactic repre-
sentation being used, and some of their main properties. The main algorithm in
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this chapter (Algorithm 2.6.5) converts common cover link structures into equiv-
alent bracketings. This can be done incrementally, in parallel with parsing and
allows the output of the parser to be compared with standard annotation.

Chapter 3 introduces the non-deterministic incremental parsing algorithm (Al-
gorithm 3.3.1) and proves that it can indeed construct every bracketing incremen-
tally. Next, parsing functions are introduced (Definition 3.4.1) and these functions
are used to define a deterministic parsing algorithm (Algorithm 3.4.2).

Chapter 6 completes the description of the algorithm. It describes a frame-
work for inducing a parsing function based on a family of greedy parsing functions
(Definition 6.1.3). The learning process selects one of the functions in this family
based on a statistics update algorithm (Algorithm 6.2.2). This framework leaves
some aspects of the algorithm unspecified and section 6.3 specifies a simple in-
stantiation of this framework, given by a lexical update algorithm for learning
(Algorithm 6.3.1) and a weight function (section 6.3.2) for the parsing functions.

Chapters 4 and 5 describe the syntactic representation and parser in more
detail. Chapter 4 discusses the linguistic properties of the common cover link
representation and of the incremental parser. It also discusses in detail the skew-
ness of syntactic structure. Chapter 5 details all the mathematical properties
of the representation and the incremental parser and proves all claims made in
previous chapters. The chapter is technical and can be skipped in first reading.
It was written to be self-contained, so statements (such as definitions, claims and
algorithms) given in previous chapters are repeated in this chapter. To make it
easier to locate these statements, they are assigned a number in each chapter in
which they appear and both numbers are indicated when the statement is made.

Finally, chapter 7 reports on experiments conducted with the algorithm on
several real language corpora.

A short description of some of the main contributions of this work was previ-
ously published in Seginer (2007).
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tion automatique : bulletin trimestriel de l’Association pour l’Étude et le
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Introduction to Elementary Probability Theory and  

Formal Stochastic Language Theory 
 

Rens Bod 

 

1.  Introduction 
 

For a book on probabilistic approaches to a scientific discipline, it may seem 

unnecessary to start with an introduction to probability theory. The reader interested in 

probabilistic approaches will usually have a working knowledge in probability theory 

and would directly read the more specialized papers. However, the situation is 

somewhat different for linguistics. Since probability theory does not form part of a 

traditional linguistics curriculum, the area of probabilistic linguistics may not be as 

accessible as some other areas. This is further reinforced by the disciplinary gap 

between probabilistic and categorical approaches, the first being dominant in 

psycholinguistics and natural language processing, the second in generative linguistics. 

One of the goals of this book is to show that these two apparently opposing 

methodologies go very well together: while categorical approaches focus on the 

endpoints of distributions of linguistic phenomena, probabilistic approaches focus on 

the gradient middle ground. That linguistic phenomena are gradient, will not be 

discussed here, as this is extensively shown in the other chapters. But to make these 

chapters accessible to the linguistics community at large, there is a need to explain the 

most important concepts from probability theory first. Any additional concept that may 

be encountered later can be looked up in the glossary. I will only assume that the reader 

has some elementary knowledge of set theory (see Partee et al. 1990 for a linguistic 

introduction). 

 After a brief introduction to the basics of probability theory, I will show how our 

working knowledge can be put into practice by developing the concept of probabilistic 

grammar. Probabilistic grammars are at the heart of probabilistic linguistics and the 

reader must be acquainted with them before turning to the specialized chapters. Since 

many different probabilistic grammars have been proposed in the literature, there is a 

need for a theory that creates some order between them, just as Formal Language 

Theory creates order between non-probabilistic grammars. While I will only scratch the 

surface of a Formal Stochastic1 Language Theory, I will show that probabilistic 

grammars evoke their own stochastic hierarchies. 

 

 

2.  What are Probabilities? 
 

Historically, there have been two interpretations of probabilities: an objectivist and a 

subjectivist interpretation. According to the objectivist interpretation, probabilities are 

real aspects of the world that can be measured by relative frequencies of outcomes of 

experiments. The subjectivist view, on the other hand, interprets probabilities as degrees 

of belief or uncertainty of an observer rather than having any external significance. 

                                                
1 The word "stochastic" is used as a synonym for "probabilistic", but is especially used when it refers to 
results generated by an underlying probability function. 



These two contrasting interpretations are also referred to as frequentist vs. Bayesian 

(from Thomas Bayes, 1764). 

 There is much to say in favor of an objectivist interpretation of probabilities in 

linguistics: linguistic events occur with a certain frequency and a large number of 

psycholinguistic experiments shows that frequency plays a key role in both language 

comprehension and production (Jurafsky, this volume). The chapters in this book are 

therefore mostly based on a frequentist interpretation of probability. 

 Whichever of the two interpretations one prefers, probabilities are numbers 

between 0 and 1, where 0 indicates impossibility and 1 certainty (one can also use 

percentages between 0% to 100%, but this is less common). While the subjectivist thus 

relies on an observer's judgment of a probability, the objectivist measures a probability 

through an experiment or trial -- the process by which an observation is made. The 

collection of outcomes or sample points for an experiment is usually referred to as the 

sample space Ω. The concept of event is defined as any subset of Ω. In other words, an 

event may be any set of outcomes that result from an experiment. Under the assumption 

that all outcomes for an experiment are equally likely, the probability P of an event A 

can be defined as the ratio between the size of A and the size of the sample space Ω. Let 

|A| be the number of elements in a set A, then: 

 

P(A) = |A| / |Ω|        (1) 

 

To start with a simple, non-linguistic example, assume a fair die which is thrown once. 

What is the chance of getting an even number? The sample space of this trial is 

 

Ω = {1, 2, 3, 4, 5, 6} 

 

The event of interest is the subset containing all even outcomes. Let us refer to this 

event as A: 

 

A = {2, 4, 6} 

 

Thus the number of elements in A is 3, and the number of elements in Ω is 6; that is, |A| 

= 3 and |Ω| = 6. Then the probability of A is: 

 

P(A) = |A| / |Ω| = 3/6 = 0.5 

 

Let us now turn to a slightly more linguistic example: assume a small corpus consisting 

of 50 unambiguous words of which 25 are nouns, 20 are verbs and 5 are adjectives. 

Consider the experiment of selecting randomly a word W from this corpus. What is the 

probability of selecting a verb? The sample space Ω of this trial is the set of all words in 

the corpus. The event of interest A is the set of verbs, which we may write as {W : W is a 

verb}. So: 

 

P(A) = |A| / |Ω| = |{W : W is a verb}| / |Ω| = 20/50 = 0.4 

 

For the sake of brevity, we will often write P({verb}) instead of P({W : W is a verb}). 

Thus, 

 

P({verb}) = |{verb}| / |Ω| = 20/50 = 0.4 

P({noun}) = |{noun}| / |Ω| = 25/50 = 0.5 



P({adjective}) = |{adjective}| / |Ω| = 5/50 = 0.1 

 

A couple of important observations can now be made. First, note that the probability of 

selecting either a verb or a noun or an adjective is equal to 1, since in that case the event 

of interest A is {W : W is any word}, which is equal to the sample space Ω, and thus 

P(A) = |Ω| / |Ω| = 1. This corresponds to the intuition that the probability that something 

will be sampled in this experiment is equal to 1. 

 Second, note that the sum of the probabilities of each event, {verb}, {noun} and 

{adjective}, is also equal to 1, i.e. 0.4 + 0.5 + 0.1 = 1. If events do not overlap, the 

probability of sampling either of them is equal to the sum of their probabilities. This is 

known as the sum rule. For example, the probability of selecting either a verb or a noun, 

usually written as P({verb} ∪ {noun}) or P({verb, noun}), is equal to 45/50 = 0.9, 

which is also equal to the sum P({verb}) + P({noun}) = 0.4 + 0.5 = 0.9. It is important 

to note that the event {verb, noun} does not refer to the event of a word being in the 

class of words which can be both a noun and a verb. As defined above, events are 

subsets of the sample space, and {verb, noun} denotes the event of either a noun 

occurring or a verb occurring. 

 The two properties we have just noted are actually the rules a so-called 

probability function should obey (plus that it should range over [0,1]). The first rule 

says that a trial will always produce an event in the event space. That is, the probability 

that something in the event space will happen, namely P(Ω), is 1: 

 

P(Ω) = 1        (2) 

 

The second rule says that if two or more events do not overlap, the probability that 

either event occurs is equal to the sum of their probabilities; i.e. for two disjoint events 

A and B: 

 

P(A ∪ B)  =  P(A) + P(B)      (3) 

 

As long as these rules hold, P is a probability function, also known as a probability 

distribution. (There are some well-studied probability distributions that appear later in 

this book, such as the binomial distribution and the normal distribution. The glossary 

gives definitions for these distributions.) 

 Note that rule (3) can be generalized to any number of events, i.e. for n disjoint 

events A1, A2, ..., An: 

 

P(A1 ∪ A2 ∪ ... ∪ An)  =  P(A1) + P(A2) + ... + P(An)  (4) 

 

The right-hand side of this sum rule is often conveniently abbreviated by the sum sign 

Σ: 

 

P(A1 ∪ A2 ∪ ... ∪ An)  =  Σi P(Ai)     (5) 

 

Recall that under the frequentist interpretation, the probability of an event is interpreted 

as its relative frequency in a series of experiments. A classical result from statistics 

shows that the relative frequency of an event converges to its true probability as the 

number of experiments increases (Law of Large Numbers). Thus, if x is an outcome of 

some experiment (e.g. throwing a die) and Count(x) is the number of times x occurs in N 



repeated experiments, then the relative frequency Count(x) / N converges to the 

probability of x if N goes to infinity. The probability of x is also written as P(X = x), 

where X is called a random variable (see also the glossary). 

 

 

3.  Joint Probabilities and Conditional Probabilities 
 

Let us now extend our notion of simple probability to that of joint probability. Joint 

probabilities are useful if we are interested in events that contain more than one 

outcome. For example, in an experiment where we randomly sample two words from 

our corpus given in section 1 (rather than just one word), what is the probability of an 

event consisting of a noun and a verb -- given that we sample with replacement2? We 

write this probability as P({noun} ∩ {verb}), or simply as P({noun},{verb}). We 

already computed the probabilities of sampling a noun and a verb separately, i.e.: 

 

P({noun}) = 0.5 

P({verb}) = 0.4 

 

Intuitively, this amounts to saying that in 50% of the cases we sample a noun, after 

which in 40% of the cases we sample a verb. This means that we sample them jointly in 

40% of 50%, i.e. in 20% of the cases (in our experiment). Thus, intuitively, the joint 

probability of sampling a noun and a verb is equal to the product of the probabilities of 

sampling them separately: P({noun},{verb}) = P({noun}) × P({verb}) = 0.5 × 0.4 = 

0.2.3 We can do this simple multiplication4 because we designed our experiment in such 

a way that sampling a verb is independent of having sampled a noun. We say that the 

events {noun} and {verb} are independent. In general, for two independent events A 

and B: 

 

P(A, B) = P(A) × P(B) if A and B are independent   (6) 

 

It often the case that two events are not independent, i.e. they are dependent. We could 

design an experiment where the probability of sampling a verb changes if we know that 

we previously sampled a noun. This is for instance the case in an experiment where we 

sample two consecutive words. Suppose that in our corpus 90% of the nouns are 

followed by verbs. For such an experiment, the probability of sampling a verb given that 

we first sampled a noun is thus 0.9 (rather than 0.4). This probability is written as 

P({verb} | {noun}) and is called the conditional probability of a verb given that we have 

seen a noun. But what is now the probability of sampling a noun and a verb in this 

particular experiment? We know that: 

 

P({noun}) = 0.5 

P({verb} | {noun}) = 0.9 

                                                
2 In this book and in probabilistic linguistics in general, the word sampling always refers to sampling with 

replacement. 
3 Note that the probabily of first sampling a verb and then a noun is also 0.2. This is because set 

intersection is commutative, i.e. {noun} ∩ {verb} = {verb} ∩ {noun} and therefore P({noun} ∩ {verb}) 

= P({verb} ∩ {noun}). This also means that the probability of sampling a noun and a verb in any order is 

equal to 0.2 + 0.2 = 0.4. 
4 In this book, multiplications are often written without the multiplication sign. Thus P(A) × P(B) is also 

written as P(A)P(B).  



 

That is, in 50% of the cases we sample a noun, after which in 90% of the cases we 

sample a verb (in this experiment). This means that we sample them jointly in 90% of 

50% of the cases, which is 45% of the cases. Thus, the joint probability 

P({noun},{verb}) is equal to the product P({noun}) × P({verb} | {noun}) = 0.5 × 0.9 = 

0.45. In general, for two events A and B: 

 

P(A, B) = P(A) × P(B | A)      (7) 

 

which reads as "the probability of A and B equals the probability of A, times the 

probability of B given A". Note that this formula generalizes over formula (6): if the 

events A and B are independent, P(B | A) is equal to P(B), and (7) reduces to (6). 

Formula (7) is generally known as the multiplication rule or product rule. The product 

rule can also be written as a general definition for conditional probability:  

 

P(B | A) = P(A, B) / P(A)      (8) 

 

Most textbooks on probability theory first define the concept of conditional probability 

from which next the formula for joint probability is derived. For the current exposition, 

it seemed more intuitive to me to do this the other way round. 

 From (8), Bayes' rule can be derived. First, write (6) as: 

 

P(H | E) = P(E, H) / P(E)      (9) 

 

where, in the context of Bayesian reasoning, P(H | E) usually reads as the probability of 

an hypothesis H given some evidence E. Second, since set intersection is commutative 

(i.e., A ∩ B = B ∩ A), the joint probability P(E, H) is equal to P(H, E), and we can 

therefore write the right-hand side of (9) also as P(H, E) / P(E), which according to (7) 

is equal to P(H) × P(E | H) / P(E). Thus, (9) can be written as: 

 

P(H | E) = P(H) × P(E | H) / P(E)     (10) 

 

This formula, known as Bayes' rule, is useful if the conditional probability P(H | E) is 

more difficult to compute than P(H) and P(E | H). We will see later in this book how 

Bayes' rule can be applied to linguistic phenomena. 

 Turning back to the concept of joint probability, the product rule (7) for two 

events can be generalized to multiple events. For example, the joint probability of three 

events A, B and C is 

 

P(A, B, C) = P(A) × P(B | A) × P(C | A, B)    (11) 

 

which reads as "the probability of A, B and C equals the probability of A, times the 

probability of B given A, times the probability of C given A and B". The proof of (11) 

follows straightforwardly when we combine the Associative property of set intersection 

(i.e., A × B × C = A × (B × C) = (A × B) × C) with formula (7): P(A, B, C) = P(A, (B, C)) 

= P(A) × P(B, C | A) = P(A) × P(B | A) × P(C | A, B). And for n events A1, A2, ..., An, the 

multiplication rule becomes: 

 

P(A1, A2, ..., An) = P(A1) × P(A2 | A1) × ... × P(An | A1, A2, ..., An-1) (12) 

 



which is also known as the chain rule. Remember that in an experiment where the 

events A1, A2, ..., An are independent, formula (12) simply reduces to: 

 

P(A1, A2, ..., An) = P(A1) × P(A2) × ... × P(An)    (13) 

 

Sometimes, each event depends only on the directly previously occurring event, in 

which case formula (12) reduces to: 

 

P(A1, A2, ..., An) = P(A1) × P(A2 | A1) × ... × P(An | An-1)   (14) 

 

Formula (14) stands for what is more commonly known as a first-order Markov model 

where each event is dependent only on its preceding event; and formula (13) 

corresponds to a zero-order Markov model. In general, a k-th order Markov model 

assumes that each event is dependent only on a fixed number of k preceding events, 

where k is called the history of the model. For several decades, Markov models were 

assumed to be inadequate for linguistics because they were applied to word sequences 

(n-grams, such as bigrams or trigrams) only, without taking into account the 

grammatical structure of these sequences. Yet, we will see in the following section that 

formulas (12) through (14) can just as well be applied to grammatical structures. 

 It is useful to introduce the product sign Π, which abbreviates long products 

(and is analogous to the sum sign Σ, which abbreviates long sums). For example, (12) is 

often written as: 

 

P(A1, A2, ..., An) = Πi P(Ai | A1, A2, ..., Ai-1)    (15) 

 

And if the events are independent, (15) reduces to (as with (13)): 

 

P(A1, A2, ..., An) = Πi P(Ai)       (16) 

 

It is important to understand the difference in use between the sum rule in (4) and the 

product rule in (6) and (7). The sum rule describes the probability that either event A or 

B occurs in some experiment, which is equal to the sum of their probabilities (provided 

that A and B are disjoint5). The product rule, on the other hand, describes the probability 

that both A and B occur as a joint event in an experiment where events can have more 

than one outcome; and this probability is equal to the product of the probabilities of A 

and B (or in the general case, to the product of the probability of A and the conditional 

probability of B given A). 

 

4.  Probabilistic Grammars 
 

We have now introduced just enough concepts from probability theory to deal with an 

example of actual linguistic interest: probabilistic grammars (also called stochastic 

grammars). As the reader will see in the following chapters, probabilistic grammars are 

used to describe the probabilistic nature of a vast number of linguistic phenomena, such 

as phonological acceptability, morphological alternations, syntactic wellformedness, 

semantic interpretation, human sentence disambiguation, sociolinguistic variation, etc. 

                                                
5 If A and B are not disjoint, there is double counting, which means that the counts of the intersection of A 

and B should be subtracted. Thus, for the general case: P(A ∪ B)  =  P(A) + P(B) − P(A ∩ B). 



One of the most widely-used probabilistic grammars is the Probabilistic Context-Free 

Grammar or PCFG (also called Stochastic Context-Free Grammar). We will explain a 

PCFG by a simple example. Suppose we have a very small treebank consisting of only 

two surface trees for the sentences Mary hates visiting relatives and John likes buzzing 

bees (figure 1). We will assume that each tree in the treebank corresponds to the 

structure as it was perceived for that sentence by some hypothetical natural language 

user. (We leave out some subcategorizations to keep the example simple.) 
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Figure 1. A treebank of two trees 

 

Note that the only difference (apart from the words) between the two structures is the 

syntactic label covering the last two words of the sentences, which is a VP in the first, 

and an NP in the second sentence. By reading the rules off the trees, we obtain the 

context-free grammar (CFG) implicit in these structures. The following table gives these 

rules together with their frequencies in the treebank. 

 

    Rule     Frequency 

  

S -> NP VP   2 

VP -> V NP  2 

VP -> V VP  1 

NP -> V NP  1 

NP -> Mary  1 

NP -> John  1 

NP -> relatives 1 

NP -> bees  1 

V -> hates  1 

V -> likes  1 

V -> visiting  1 

V -> buzzing  1 
 

     Total  14 

 

Table 1. The rules implicit in the treebank of figure 1 

 



This table allows us to derive, for example, the probability of the rule S -> NP VP in the 

treebank. Or more precisely: the probability of randomly selecting S -> NP VP from 

among all rules in the treebank. The rule S -> NP VP occurs twice in a sample space of 

14 rules, hence its probability is 2/14 = 1/7. However, usually we are not so much 

interested in the probability of a single rule, but rather in the probability of a 

combination of rules (i.e. a derivation) that generates a particular sentence. The 

grammar derived from the treebank in table 1 generates an infinite number of sentences, 

including Mary likes buzzing bees, Mary likes visiting buzzing bees, Mary likes visiting 

buzzing visiting bees etc. Thus while these sentences are not in the treebank, they can be 

generated by productively combining fragments from the treebank trees.6 For example, 

Mary likes buzzing bees can be generated by combining the following rules from table 

1: 

 

S -> NP VP,  NP -> Mary,  VP -> V NP,  V -> likes,   NP -> V NP,  V -> buzzing,   

NP -> bees. 

 

Figure 2. Treebank-rules for deriving Mary likes buzzing bees 

 

This combination of rules, or derivation, produces the following tree structure7: 
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Figure 3. Tree structure produced by the rules in figure 2 

 

Note that the sentence Mary likes buzzing bees is ambiguous, i.e., the grammar in table 

1 can also produce the following, alternative tree structure for this sentence: 

 

                                                
6 This shows that the "Chomskyan myth" that finite corpora can only generate finite numbers of sentences 
is fallacious. 
7 Without loss of generality, we will assume that a tree or a sentence is produced by a leftmost derivation. 
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Figure 4. Alternative tree structure generated by the treebank-rules in table 1  

 

One application of probability theory is to provide a ranking of the various tree 

structures for a sentence by means of their probabilities. How can we determine the 

probabilities of the two structures in figures 3 and 4? Using the concepts from sections 2 

and 3, a tree structure can be seen as an event containing the context-free rules in an 

experiment which parses a particular sentence by a (leftmost) derivation. In this 

experiment, we thus first select an S-rule from among all possible S-rules, then we 

select the next rule among the rules that can be combined with the previous rule (i.e. 

which starts with the same category as the first category of the right-hand side of the 

previous rule), and this is repeated until only terminal leaves remain. Note that this 

experiment is only well-defined if each rule can indeed be combined with the previous 

rule and if the first rule starts with an S. Thus the probability of the derivation resulting 

in the tree of figure 3 is the joint probability of: 

 

(1) selecting the rule S -> NP VP among the rules starting with an S, 

(2) selecting the rule NP -> Mary among the rules starting with an NP, 

(3) selecting the rule VP -> V NP among the rules starting with a VP, 

(4) selecting the rule V -> likes among the rules starting with a V, 

(5) selecting the rule NP -> V NP among the rules starting with an NP, 

(6) selecting the rule V -> buzzing among the rules starting with a V, 

(7) selecting the rule NP -> bees among the rules starting with an NP. 

 

Table 2. The probability of a derivation is the joint probability of selecting these rules 

 

The probability of (1) can be computed by dividing the number of occurrences of rule S 

-> NP VP by the number of occurrences of all rules that start with an S; there are two 

rules S-> NP VP in the treebank, and the total number of S-rules is also two (in fact they 

coincide); thus the probability of (1) is 2/2 = 1. Note that this probability is actually the 

conditional probability P(S -> NP VP | S) and thus the sum of the conditional 

probabilities of all rules given a certain nonterminal to be rewritten is equal to 1. 

 The probability of (2) is equal to 1/5 since the rule NP -> Mary occurs once 

among a total of 5 rules that start with an NP. 

 The probability of (3) is equal to 2/3 since the rule VP -> V NP occurs twice 

among a total of 3 rules that start with a VP. 

 The probabilities of all rules in table 2 are given in table 3: 



 

    Event            Probability 

 

(1) selecting the rule S -> NP VP among the rules starting with an S 1 

(2) selecting the rule NP -> Mary among the rules starting with an NP 1/5 

(3) selecting the rule VP -> V NP among the rules starting with a VP 2/3 

(4) selecting the rule V -> likes among the rules starting with a V  1/4 

(5) selecting the rule NP -> V NP among the rules starting with an NP 1/5 

(6) selecting the rule V -> buzzing among the rules starting with a V 1/4 

(7) selecting the rule NP -> bees among the rules starting with an NP 1/5 

 

Table 3. The probabilities of the various rules in table 2 

 

Having computed these probabilities, how can we now compute their joint probability? 

That is, are the rules to be taken dependent or independent? In other words, should we 

apply formula (12) or (13)? A crucial assumption underlying Probabilistic Context-Free 

Grammars is, as for Context-Free Grammars, that the rules in a derivation depend only 

on the nonterminal to be expanded. And this is what we already did in computing the 

probabilities above by selecting each rule from among the rules that start with the same 

nonterminal (i.e. we computed the conditional probabilities P(S -> NP VP | S), P(NP -> 

Mary | NP) etc. rather than the simple probabilities P(S -> NP VP) and P(NP -> Mary)). 

Thus, for a PCFG, the probability of a rule is independent of the derivation it occurs in, 

and can be computed off-line. Table 4 gives the PCFG-probabilities for all rules that 

were be derived from the treebank in figure 1 (see table 1). 

 

    Rule  PCFG-probability  

  

S -> NP VP   1 

VP -> V NP  2/3 

VP -> V VP  1/3 

NP -> V NP  1/5 

NP -> Mary  1/5 

NP -> John  1/5 

NP -> relatives 1/5 

NP -> bees  1/5 

V -> hates  1/4 

V -> likes  1/4 

V -> visiting  1/4 

V -> buzzing  1/4 

 

Table 4. PCFG-probabilities for the rules from the treebank in figure 1. 

 

PCFGs can of course be defined independently of how the rule probabilities are 

"learned". A PCFG which extracts the probabilities directly from a treebank, as shown 

above, is known as a Treebank grammar, which was coined by Charniak (1996) though 

used before by Bod (1993). 

 Turning back to the probability of the derivation generating the tree in figure 3, 

this can now be computed by the product of the probabilities in table 3, that is, 1 × 1/5 × 

2/3 × 1/4 × 1/5 × 1/4 × 1/5 = 2/6000 = 1/3000. This probability is small, reflecting the 

fact that the grammar produces derivations for infinitely many sentences whose 

probabilities sum up to 1 only in the limit. But what we are actually interested in is to 



compare the probability of this derivation with the probability of the other derivation for 

Mary likes buzzing bees (producing the tree in figure 4). This other derivation consists 

of the rules: 

 

S -> NP VP,  NP -> Mary,  VP -> V VP,  V -> likes,   VP -> V NP,  V -> buzzing,   

NP -> bees. 

 

Figure 5. The rules generating the tree structure in figure 4 

 

and its probability is equal to 1 × 1/5 × 1/3 × 1/4 × 2/3 × 1/4 × 1/5 = 2/3600 = 1/1800. 

Thus, the probability of the derivation producing the tree in figure 4 is higher than the 

probability of the derivation producing the tree in figure 3. Although we must keep in 

mind that our sample space of two trees is unrealistically small (most available 

treebanks contain 50,000 trees or more), it is somewhat surprising that figure 4 gets a 

higher probability than figure 3. We would expect this to be the other way round 

because the sentence Mary likes buzzing bees differs only in one word with the treebank 

sentence John likes buzzing bees, and therefore we may expect a probabilistic grammar 

to predict that Mary likes buzzing bees has as its most probable tree the same tree as 

associated with the treebank sentence John likes buzzing bees, rather than the tree 

associated with the other treebank sentence Mary hates visiting relatives, which differs 

much more with our input sentence Mary likes buzzing bees. However, as said, a crucial 

assumption underlying PCFGs is that its rules are independent. It is easy to see that this 

assumption is wrong, even for the subclass of natural language sentences that are in fact 

context-free. For example, the words buzzing and bees in the NP buzzing bees are 

probabilistically dependent: i.e. the probability of bees is not equal to the probability of 

bees given that we have first observed buzzing. But this dependency is not captured by a 

PCFG, since it takes the rules V -> buzzing and NP -> bees as being independent. Thus 

while a CFG may suffice as a grammar formalism for defining the categorical properties 

for the context-free subset of sentences, its probabilistic counterpart PCFG does not do 

the same job for the non-categorical properties of this context-free subset. 

 During the last decade, several alternative models have been proposed that aim 

to redress the shortcomings of PCFGs. These alternative probabilistic extensions of 

CFGs have resulted in probabilistic grammars that are provably stronger than PCFGs 

(we will explain more precisely what we mean by stronger in the following section). 

One such probablistic grammar makes the probabilities of the rules dependent on the 

previous rules being used in a derivation, by effectively applying formula (12) to the 

rules (Black et al. 1993). However, while such a History-Based Grammar can thus 

capture the dependency between buzzing and bees, it has problems with dependencies 

between words that are separated by other words, as for example in the sentence The old 

man died where there is a dependency between old and died but not between old and 

man, or man and died. A History-Based Grammar of the sort in Black et al. (1993) 

cannot capture this dependency because the rules are made dependent on the directly 

preceding rules, and not on any arbitrary previously used rule(s). 

 Another probabilistic grammar formalism, which has become quite influential in 

the field of natural language processing, associates each nonterminal of a context-free 

rule with its lexical head according to the treebank tree (e.g. Collins 1996; Charniak 

1997). However, such a Head-Lexicalized Probabilistic Grammar neglects 

dependencies that go beyond simple headword dependencies, as for example between 

nearest and to in the ATIS8 sentence Show the nearest airport to Denver. Since a Head-

                                                
8 Air Travel Information System (see Marcus et al. 1993). 



Lexicalized Probabilistic Grammar  considers nearest to be a non-headword of the NP 

the nearest airport, it incorrectly disambiguates this sentence (it assigns the highest 

probability to the tree where the PP to Denver is attached to Show, since the dependency 

between the headwords Show and to is more likely in the ATIS treebank than between 

the headwords airport and to). A more elaborate discussion about the shortcomings of 

Head-Lexicalized Probabilistic Grammars is given in Bod (2001b). 

 What we may learn from these different probabilistic formalisms is that the 

probability of a whole (i.e. a tree) can be computed from the combined probabilities of 

its parts, but that it is difficult to decide what the relevant parts are. In a PCFG, the 

relevant parts are assumed to be the simple CFG rules, which is clearly wrong, while in 

a head-lexicalized grammar, the parts are assumed to be the rules enriched with their 

lexical heads, which is also too limited. Another probabilistic grammar formalism, 

Probabilistic Tree-Adjoining Grammar (Schabes 1992; Resnik 1992), takes the 

elementary trees of a Tree-Adjoining Grammar as the relevant parts (see Bod 1998 for a 

critique of this formalism). 

 There is also a formalism that generalizes over most other probabilistic 

grammars. It does so by taking any subtree (of arbitrary size) as a part, including the 

entire trees from a treebank. This formalism is known as a Data-Oriented Parsing model 

or DOP model (Bod 1993, 1998), and is formally equivalent to a Probabilistic Tree 

Grammar. A DOP model captures the previously mentioned problematic dependency 

between old and died, or nearest and to, by a subtree that has the two relevant words as 

its only lexical items. Moreover, a DOP model can capture arbitrary fixed phrases and 

idiom chunks, such as to take advantage of. Note that a DOP model reduces to a PCFG 

if the size of the subtrees is limited to the smallest ones. 

 Let us illustrate with a simple example how a DOP model works. Since the 

number of subtrees tends usually to be quite large, we will use the following tiny 

treebank: 
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Figure 6. A corpus of two trees 

 

A total of 34 subtrees can be derived from this treebank (at least if we use one specific 

instantiation of DOP, known as DOP1 or Probabilistic Tree Substitution Grammar -- see 

Bod (1998)): 
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Figure 7. The subtrees derived from the trees in figure 6 

 

Notice that some subtrees occur twice: a subtree may be extracted from different trees, 

and also from a single tree if the same node configuration appears at different positions. 

 These subtrees form the underlying grammar by which new sentences are 

generated. Subtrees are combined using a node-substitution operation which is similar 

to the operation that combines context-free rules in a (P)CFG, and which we indicate by 



the symbol "°". Given two subtrees T and U, the node-substitution operation substitutes 

U on the leftmost nonterminal leaf node of T, written as T ° U. For example, the 

sentence Mary likes Susan can be generated by combining the following three subtrees 

from figure 7: 
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Figure 8. Generating Mary likes Susan by combining subtrees 

 

The probability of this derivation is the joint probability of: 

 

(1) selecting the subtree S[NP VP[V[likes] NP]] among the subtrees with root label S, 

(2) selecting the subtree NP[Mary] among the subtrees with root label NP, 

(3) selecting the subtree NP[Susan] among the subtrees with root label NP. 

 

Table 5. The probability of a derivation is the joint probability of its subtrees 

 

Thus, the probability of (1) is computed by dividing the number of occurrences of the 

subtree S[NP VP[V[likes] NP]] in figure 7 by the total number of occurrences of subtrees 

with root label S: 1/20. The probability of (2) is equal to 1/4, and the probability of (3) 

is also equal to 1/4. 

 The probability of the whole derivation is the joint probability of the three 

selections in table 5. Since each subtree selection is dependent only on the root label and 

not on the previous selections, the probability of a derivation is, as in PCFG, the product 

of the probabilities of the subtrees, which is 1/20 × 1/4 × 1/4 = 1/320. Although it is 

again assumed that the parts of our probabilistic grammar are independent, this 

assumption is now not harmful as in a PCFG, since if any larger subtree occurs in the 

treebank which includes two (or more) smaller subtrees, it can directly be used as a unit 

in a derivation thereby taking into account the co-occurrence of the smaller subtrees. 

This brings us to another feature of DOP: the fact that different derivations can produce 

the same tree. This so-called spurious ambiguity may be irrelevant for non-probabilistic 

grammars, but for probabilistic grammars it leads to a different probability model. For 

example, the same tree in figure 8 for the sentence Mary likes Susan can also be derived 

by combining the following subtrees: 
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Figure 9. A different derivation, yielding the same parse for Mary likes Susan 

 

The probability of this derivation is equal to 1/20 × 1/4 × 1/2 = 1/160, which is different 

from the probability of the derivation in figure 8, even if it produces the same tree. And 

there are many more derivations that produce this tree, each with their own probability. 

The following example is analogous to a PCFG-derivation for Mary likes Susan, in that 

each subtree exactly corresponds to a context-free rewrite rule: 
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Figure 10. Another derivation, yielding the same parse for Mary likes Susan 

 

The probability of this derivation is equal to 2/20 × 1/4 × 2/8 × 1/2 × 1/4 = 1/1280, 

which is again different from the probabilities of the other two derivations generating 

this tree. Thus in DOP there is not a one-to-one correspondence between derivation and 

tree as in a PCFG. Instead, for the same tree there may be several distinct derivations. 

The probability that a certain tree occurs is then the probability that either of its 

derivations occurs. According to rule (4) in section 2, this amounts to saying that the 

probability of a tree is the sum of the probabilities of its derivations (I leave the 

computation of the tree-probability for Mary likes Susan to the reader). Intuitively this 

means that in DOP there is an accumulation of evidence for a tree: the more derivations 

a tree has, the larger its probability tends to be. This means that if a tree can be 

constructed (also) from large parts seen in a treebank, it tends to be ranked higher than a 

tree which can be constructed only from small subtrees.  Note that if we are interested 

in the probability of generating a certain sentence, we must sum up the probabilities of 

all different trees that generate that sentence -- following the same way of reasoning as 

for the probability of a tree. It can be shown that the sum of the probabilities of all 

sentences generated by a DOP model is equal to 1 (following Chi and Geman 1998). 



 The DOP model explained here is just one of the many DOP models that have 

been proposed in the literature, and is better known as DOP1 (see Bod et al. 2002 for an 

overview). The distinctive feature of the general DOP approach, when it was proposed 

in 1992, is that (1) it directly uses sentence fragments as a grammar, and (2) it does not 

impose constraints on the size of the fragments. While (1) is now relatively 

uncontroversial in the field of probabilistic natural language processing (see Manning & 

Schütze 1999), (2) has not been generally adopted. Many approaches still work either 

with local trees, i.e. single level rules with limited means of information percolation 

such as head-words (e.g. Collins 1996; Charniak 1997), or with restricted fragments, as 

in Probabilistic Tree-Adjoining Grammar, that do not include non-lexicalized fragments 

(e.g. Schabes 1992; Chiang 2000). However, during the last few years, we can observe a 

shift towards using more and larger treebank fragments. While initial extensions of 

PCFGs limited the fragments to the locality of head-words (e.g. Collins 1996; Eisner 

1996), later models showed the importance of including context from higher nodes in 

the tree (e.g. Johnson 1998). The importance of including nonhead-words is now widely 

accepted (e.g. Collins 1999; Charniak 2000; Goodman 1998). And Collins (2000) 

argues for "keeping track of counts of arbitrary fragments within parse trees", which has 

been carried out in Collins and Duffy (2001) who use exactly the same set of all 

sentence fragments as proposed in the original DOP model by Bod (1992). 

 From a linguistic point of view, the more interesting question is whether 

language users store sentence fragments in memory, and if they do, whether they store 

arbitrarily large fragments as proposed by the DOP model. Jurafsky (this volume) 

reports that people not only store lexical items, but also frequent bigrams (i.e. two-word 

units), frequent phrases and even whole sentences. For the case of sentences, there is 

some evidence that language users not only store idioms, but also simple high-frequency 

sentences such as I love you and I don't know (Jurafsky, this volume; Bod 2001a). Thus, 

it seems that language users store sentence fragments in memory and that these 

fragments can range from two-word units to entire sentences. This suggests that 

language users need not always generate or parse sentences all over again from the rules 

of the grammar, but that they can productively reuse previously heard sentences and 

sentence-fragments. Yet, there is no evidence so far that people store all fragments they 

hear. Only high-frequency fragments seem to be memorized. However, if our language 

faculty has to learn which fragments will be stored, it will initially need to store 

everything (with the possibility of forgetting them of course), otherwise frequencies can 

never accumulate. This results in a model which continuously and incrementally updates 

its fragment memory given new input. We will see that such a model turns out to be 

important for almost all subfields of (probabilistic) linguistics, ranging from phonology 

to syntax and from psycholinguistics to sociolinguistics. 

 Another interesting linguistic question is whether DOP models are too general. 

Since DOP models essentially store all sentences, they do perhaps not provide sufficient 

constraints for defining the set of possible languages. Since this question is aptly dealt 

with by Manning (this volume), I will not go into it here. Rather than being too general, 

DOP models of the sort above are actually too constrained, since they have the 

generative power of context-free languages (this follows from the node-substitution 

operation for combining subtrees). Although context-free power may suffice for 

phonology (Pierrehumbert, this volume) and morphology (Baayen, this volume), there 

are syntactic phenomena, such as long-distance dependencies and cross-serial 

dependencies, which are known to be beyond context-free. Therefore, a model which is 

inherently context-free is deemed to be linguistically inadequate. In the last few years, 

various DOP models have been developed with a generative capacity that is richer than 

context-free. These DOP models are based on linguistic representations that also allow 



for syntactic features, functional categories and semantic forms (cf. Bod & Kaplan 

1998; Neumann 1998; Hoogweg 2002). Although a detailed description of these models 

falls beyond the scope of this chapter, it may be noteworthy that fragments of arbitrary 

size are indispensable for predicting the correct sentence structure also for these richer 

DOP models (cf. Bod 1998; Way 1999; Bod & Kaplan 2002). Manning (this volume) 

goes into some other probabilistic extensions of non-context-free grammars. 

 

5.  Formal Stochastic Language Theory 
 

We have seen that a DOP model (or actually DOP1 model) generalizes over a PCFG. 

But we have not yet shown that DOP is also probabilistically "richer" than a PCFG. 

That is, we have not proved that it is impossible to create a PCFG for every DOP model. 

This brings us to the question as to how two probabilistic grammars can be compared. 

First note that in comparing probabilistic grammars, we are not interested in the 

traditional notion of generative capacity, since e.g. DOP1, PCFG, History-Based 

Grammar and Head-Lexicalized Grammar are all context-free. Instead, we are interested 

in the probability distributions that these probabilistic grammars define over sentences 

and their trees. 

 Recall that two of the main concepts in traditional Formal Language Theory are 

weak equivalence and strong equivalence. That is, two grammars are said to be weakly 

equivalent if they generate the same strings, and two grammars are said to be strongly 

equivalent if they generate the same strings with the same trees. The set of strings 

generated by a grammar G is also called the string language of G, while the set of trees 

generated by G is called the tree language of G. 

 Analogously, the two main concepts in Formal Stochastic Language Theory are 

weak stochastic equivalence and strong stochastic equivalence. But before defining 

these two concepts, we need to introduce the notions of stochastic string language and 

stochastic tree language. 

 

The stochastic string language generated by a probabilistic grammar G is the set of 

pairs <x, P(x)> where x is a string from the string language generated by G and P(x) the 

probability of that string. 
 

The stochastic tree language generated by a probabilistic grammar G is the set of pairs 

<x, P(x)> where x is a tree from the tree language generated by G and P(x) the 

probability of that tree. 

 

Now we can define weak and strong stochastic equivalence. 

 

Two probabilistic grammars are called weakly stochastically equivalent, iff9 they 

generate the same stochastic string language. 
 

Two probabilistic grammars are called strongly stochastically equivalent, iff they 

generate the same stochastic tree language. 

 

Note that if two probabilistic grammars are strongly stochastically equivalent they are 

also weakly stochastically equivalent. 

 As an illustration of how Formal Stochastic Language Theory can be used to 

compare different formalisms, we will investigate whether PCFG and DOP are strongly 

                                                
9 The word "iff" stands for "if and only if". 



stochastically equivalent (for some other comparisons, see Bod 1998 and Carroll and 

Weir 2000). Since our instantiation of DOP in this chapter is equal to a Probabilistic 

Tree-Substitution Grammar (PTSG), we will refer to this DOP model as a PTSG (in 

accordance with Manning & Schütze 1999: 446-448). Our question is: 

 

Is there a PTSG for which there is a strongly equivalent PCFG but no strongly 

stochastically equivalent PCFG? 

 

The answer is: yes, there is such a PTSG, and this can be easily shown as follows. 

Consider the very simple PTSG G in figure 11 consisting of three subtrees that are all 

assigned a probability of 1/3.10  
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                t1                t2     t3 

 

Figure 11. A PTSG consisting of three elementary trees 

 

The string language generated by G is {a, ab, abb, abbb, abbbb, ...} which can be 

abbreviated as {ab*}. The only PCFG G' which is strongly equivalent with G consists 

of the following productions: 
 

 S → Sb (1) 

 S → a  (2) 

 

G' would also be strongly stochastically equivalent with G if it assigned the same 

probabilities to the parse trees in the tree language as assigned by G. Let us consider the 

probabilities of two trees generated by G, i.e. the trees represented by t1 and t3.11 The 

tree represented by t3 has exactly one derivation, which consists of the subtree t3. The 

probability of generating this tree is hence equal to 1/3. The tree represented by t1 has 

two derivations: by selecting subtree t1, or by combining the subtrees t2 and t3. The 

probability of generating this tree is equal to the sum of the probabilities of its two 

derivations, which is equal to 1/3 + (1/3 × 1/3) = 4/9. 

 If G' is strongly stochastically equivalent with G, it should assign the 

probabilities 4/9 and 1/3 to (at least) the trees represented by t1 and t3 respectively. The 

tree t3 is exhaustively generated by production (2); thus the probability of this 

production should be equal to 1/3: P(S→a) = 1/3. The tree t1 is exhaustively generated 

by applying productions (1) and (2); thus the product of the probabilities of these 

                                                
10 This PTSG would correspond to a DOP model of which the subtrees are taken from a treebank 
consisting only of tree t1. 
11 Note that the trees t1 and t3 are both elements of the set of subtrees of G and of the tree language 

generated by G. 



productions should be equal to 4/9: P(S→Sb) × P(S→a) = 4/9. By substitution we get: 

P(S→Sb) × 1/3 = 4/9, from which we derive that P(S→Sb) = 4/3. This means that the 

probability of the production S→Sb should be larger than 1, which is not allowed. Thus, 

G' cannot be made strongly stochastically equivalent with G. 

 What this proof shows is that there exists a PTSG for which there is no strongly 

stochastically equivalent PCFG (even if it's strongly equivalent). On the other hand, one 

can show that for every PCFG there exists a strongly stochastically equivalent PTSG. 

The proof of the latter is even simpler, because for any rule in any PCFG one can create 

a minimal one-level subtree (with the same probability) covering exactly the 

corresponding rule. 

 Now, if for every PCFG there is a strongly stochastically equivalent PTSG, but 

not the other way round, then the set of stochastic tree languages generated by the class 

of PCFGs is a proper subset of the set of stochastic tree languages generated by the 

class of PTSGs. This is what we meant when we said that PTSGs are "richer" than 

PCFGs. 

 The goal of this section was to present a framework in which different 

probabilistic grammars can be compared. The importance of such a comparison should 

not be underestimated. If we invent a new formalism and next find out that for each 

grammar in this formalism we can create a strongly stochastically equivalent PCFG, 

then we haven't made much progress. Thus, rather than being interested in a grammar's 

place in the Chomsky hierarchy, we are often more interested in its place in the 

stochastic hierarchy within one and the same class of the Chomsky hierarchy. 

 

6.  Conclusion 
 

In this chapter I have given the minimum background knowledge to get started with this 

book. The glossary contains a number of additional concepts that may be encountered in 

the subsequent chapters. I have only scratched the surface of probability theory and 

probabilistic grammars. Important topics that have not been touched on include 

probabilistic regular grammars (which are equivalent to Markov models), probabilistic 

attribute-value grammars (which generalize over several richer probabilistic grammars) 

and consistency requirements for probabilistic grammars (which turn our to be 

particularly interesting for DOP models -- see Bod 2000; Johnson 2002). If the reader 

feels cheated and wants to know the full picture, then my aim has been achieved. There 

are excellent textbooks and overview articles on probability theory and formal 

stochastic language theory, some of which are mentioned below. However, for 

understanding this book, the current chapter together with the glossary should suffice. 

At this point, the reader may of course ask whether we really need probabilities and 

probability theory to cope with gradiency and frequency effects in language, or whether 

these effects can just as well be accounted for by other approaches such as Optimality 

Theory (OT) or Connectionism. Then it is really time to dive into the following 

chapters: probabilistic approaches nowadays cover the entire spectrum of linguistics, 

and other approaches are increasingly turning to probabilistic models, including OT and 

Connectionism. 

 

7.  Further Reading 
 

There are many good introductory textbooks on probability theory and statistics. A very 

accessible introduction is Moore and McCabe (1989), which focuses on probability 

distributions. Other textbooks include Ross (2000) and Feller (1970). For an 



introduction from a Bayesian standpoint, see DeGroot (1989). Krenn and Samuelsson 

(1997) give a tutorial on probability theory aimed at a natural language processing 

readership. Oakes (1998) gives an overview of the use of statistics in corpus linguistics. 

More advanced textbooks include Breiman (1973) and Shao (1999). An interesting 

survey on the emergence of probability in the history of thought is Hacking (1975). 

 Probabilistic grammars were first studied outside linguistics: Grenander (1967) 

used probabilistic grammars for pattern recognition, and Booth (1969) studied 

mathematical properties of probabilistic context-free grammars. Horning (1969) showed 

that PCFGs can be learned from positive data alone; this result turns out to be quite 

important for probabilistic linguistics (see Manning, this volume). One of the first 

papers that argues for PCFGs from a linguistic standpoint is Suppes (1970). Manning 

and Schütze (1999) give a good overview of the various properties of PCFGs and 

discuss several enhancements. Jurafsky and Martin (2000) go into the psycholinguistic 

relevance of PCFGs. Chi and Geman (1998) show that proper probability distributions 

are obtained if the probabilities of the PCFG-rules are estimated directly from a 

treebank (as proposed in Bod 1993 and Charniak 1996). 

 An overview of various probabilistic extensions of CFGs is included in Charniak 

(1997), Bod (1998, 2001b) and Manning and Schütze (1999). Probabilistic grammars 

for languages richer than context-free are developed by Abney (1997), Bod and Kaplan 

(1998) and Johnson et al. (1999), among others. DOP models are covered in Bod (1998) 

and Bod et al. (2002). For the properties of various probability models for DOP, see Bod 

(2000), Bonnema (2002), Goodman (2002) and Johnson (2002). 
 Initial comparisons between different probabilistic grammars focused on their 

stochastic string languages (e.g. Fu 1974, Levelt 1974, Wetherell 1980). Bod (1993) 

distinguishes between weak and strong stochastic equivalence, and Bod (1998) uses 

these concepts to compare different probabilistic extensions of CFGs, suggesting a 

hierarchy of probabilistic grammars within the classes of the Chomsky hierarchy. Abney 

et al. (1999) investigate the exact relationship between probabilistic grammars and 

probabilistic automata. Carroll & Weir (2000) show the existence of a subsumption 

lattice of probabilistic grammars where PCFG is at the bottom and DOP at the top. 
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Abstract

Recent research on unsupervised grammar induction has focused on inducing ac-
curate bracketing of sentences. Here we present an efficient, Bayesian algorithm
for the unsupervised induction of syntactic categories from such bracketed text.
Our model gives state-of-the-art results on this task, using gold-standard bracket-
ing, outperforming the recent semi-supervised approach of (Haghighi and Klein,
2006), obtaining an F1 of 76.8% (when appropriately relabeled). Our algorithm
assigns comparable likelihood to unseen text as the treebank PCFG. Finally, we
discuss the metrics used and linguistic relevance of the results.

1 Introduction

If the unsupervised induction of grammar is still a key open problem in machine learning, it is
not for lack of trying: at least since (Solomonoff, 1964), much talent and effort has been invested
in finding algorithms for learning syntactic structure from plain text or semantically or phonetically
enriched input data. Almost every combination of reasonable choices for syntactic formalism, search
procedure, success criterion and input data has been tried, but little of this work is remembered today.
Useful reviews from 3 past decades are (Pinker, 1979; Angluin and Smith, 1983; Sakakibara, 1997).
In the last 5 years, new efforts have been made to evaluate such algorithms on manually annotated
corpora such as ATIS (Hemphill et al., 1990) and the Penn WSJ corpus (Marcus et al., 1993). An
important breakthrough was the CCM algorithm of (Klein and Manning, 2002a), which assigns
brackets to sentences in a corpus and was the first to outperform a right-branching base-line onm
English. Since then, several other algorithms have been described that also score better than this
base-line (Klein and Manning, 2004; Dennis, 2005; Bod, 2006; Seginer, 2007). These models have
in common that they do not label constituents with syntactic categories and do not use a generative,
PCFG probability model1.

Although accurate bracketing is important, it is clear that it is only a first, intermediate step. For
cognitive plausibility, as well as for most NLP applications, we need at least an account of how
constituents are categorized. This task is similar to POS-tagging, and because the latter can be done
very accurately with existing techniques, the former is often assumed to be an easy task too. There-
fore, it has not received as much attention as it deserves. However, we know of no empirical results
that back-up this intuition, and only of one paper (Haghighi and Klein, 2006) that actually evaluates
an EM-based unsupervised constituent labeling algorithm (as a baseline for a much better semi-

1Instead, these algorithms use (i) a specialized, generative constituent-distituent model (Klein and Manning,
2002a), (ii) a generative dependency model (Klein and Manning, 2004), (iii) a non-generative exemplar-based
model (Dennis, 2005), (iv) a generative tree-substitution model (Bod, 2006) and a non-generative dependency-
like model (Seginer, 2007).
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supervised model), but with disappointing results (see section 7). Even the issue of the evaluation
of the categories is by no means trivial, and no standardized measure is agreed upon until now.

In this paper, we develop an unsupervised constituent labeling algorithm that outperforms the EM-
based algorithm and has comparable performance to the supervised treebank PCFG on the devel-
opment set. We base ourselves on the elegant framework proposed by (Stolcke, 1994; Stolcke and
Omohundro, 1994), called Bayesian Model Merging (henceforth, BMM). Unlike this work, our al-
gorithm takes bracketed sentences as input; like the full BMM, our algorithm proceeds by merging
nonterminal labels to maximize a Bayesian objective function. The initial conditions, merge op-
eration and objective function are described in section 2. In section 3 we give our optimizations
that allow for empirical evaluation on large, benchmark corpora, and in sections 4 experimental re-
sults and an analysis of the model’s strengths and weaknesses. Apart from evaluating the categories
against a manually annotated gold standard, we are also interested in a theory-independent measure
of performance. In section 4 we present results that compare the likelihood of the parses of the
grammar induced by our labeling algorithm to the parses of the treebank grammar on a test set. Fi-
nally, in section 5 we describe a version of the algorithm that does complete unsupervised induction,
involving both labeling and bracketing, but show that our objective function is not appropriate for
this task.

2 Search and Objective Function

BMM defines a heuristic, greedy search for an optimal probabilistic context free grammar (PCFG)
according to the Bayesian criterion of maximum a posteriori probability. In the present version,
a single operator MERGE(G, X1, X2) 7→ G′ defines possible transitions between grammars (Cook
et al., 1976): it replaces non-terminal X2 with non-terminal X1 throughout grammar G, yielding
a new grammar G′. MERGE creates generalizations by forming disjunctive groups (categories) of
patterns that occur in the same contexts. In the search, all candidate merges are considered, and a
single one is selected that most improves the objective function. The process is iterated until a state
is reached where no single merge improves the objective function anymore. The search is augmented
with a look-ahead procedure, that looks at a sequence of by default 10 subsequent merges.

The algorithm takes as input unlabeled sentences, with bracket information from the treebank (or
from a specialized unsupervised bracketing algorithm). The initial rules of the grammar are read off
from all productions implicit in the bracketed corpus, where every constituent, except for the start
symbol, is given a unique label. The vast number of unique labels thus obtained is reduced to about
half its size by merging, in a preprocessing step, labels of constituents which have exactly the same
descendants. For example, the annotated sentence (S (NP-SBJ (NNP Mr.) (NNP Ehrlich)) (VP (MD
will) (VP (VB continue) (PP-CLR (IN as) (NP (NP (DT a) (NN director)) (CC and) (NP (DT a) (NN
consultant))))))), is incorporated in the grammar as follows:

S → X0 X1 (1)
X0 → NNP NNP (1)
X1 → MD X2 (1)
X2 → V B X3 (1)

X3 → IN X4 (1)
X4 → X5 CC X5 (1)
X5 → DT NN (2)

(1)

Possible merges are evaluated by the posterior probability of the resulting grammar. The maximum
a posteriori (MAP) hypothesis,MMAP is the hypothesis that maximizes the posterior probability.
With Bayes Law: MMAP ≡ argmaxMP (M |X) = argmaxMP (X |M) · P (M) where P (X |M)
is the likelihood of data X given grammarM , and P (M) is the prior probability of the grammar.
Maximizing P (X |M) · P (M) is equivalent to minimizing

−logP (M)− logP (X |M) ≈ GDL + DDL = DL

This equation is interpreted in information theory as the total description length (DL): The Gram-
mar Description Length GDL = −logP (M) is the number of bits needed to encode the gram-
mar (rounded to an integer number and assuming an optimal, shared code) and the Data Descrip-
tion Length DDL = −logP (X |M) is code-length needed to describe the data given the model
(Solomonoff, 1964). The MAP hypothesis is therefore the grammar with Minimum Description
Length.
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Structure Prior Using the description length interpretation allows for an intuitive way to choose
the prior probability such that smaller grammars are favored2. We adopted the encoding scheme
from (Petasis et al., 2004), which divides the grammar into top-productions (the set R1), lexical
productions (R2) and other non-lexical productions (R3). Rules from R1 need one symbol less to
encode than rules from R3, because their LHS is fixed. Nr is the number of non-terminals in the
RHS of a production r. Each non-terminal symbol requires log(N + 1) bits to encode, where N
is the number of unique nonterminals, and the 1 is for an end marker. T is the number of terminals
(|R2| = T ), and 2 further end symbols are needed as separators of the three rule sets. Hence, the
grammar description length is given by:

GDL = log(N + 1) ·
∑

r∈R1
(Nr + 1) + (log (N + 1) + log(T )) · T

+ log(N + 1) ·
∑

r∈R3
(Nr + 2) + log(N + 1) · 2 (2)

Likelihood Assuming independence between the sentences, the likelihood of the corpus is the
product of the likelihood of the sentences.

P (X |M) =
∏

x∈X

∑

der: yield(der)=x

P (der|M) (3)

The BMM algorithm makes two further approximations in the calculation of the likelihood (Stolcke
and Omohundro, 1994). First, it is assumed that most of the probability mass of the sentence is
concentrated in the Viterbi parse (the most probable derivation), so that the contribution of all non-
Viterbi parses to the sentence probability and hence to the likelihood are ignored. Secondly, it is
assumed that the merging operation preserves the Viterbi parse. This means that after a merge
operation the Viterbi parse of the sentence is generated by exactly the same sequence of rewrite
rules as before, except for the rules affected by the merge. We will come back to the validity of
these approximations in section 5.

Using these approximations, we can compute the data likelihood directly from the grammar, if we
keep track of the number of times that every rule is used in the entire corpus. This can be seen by
rearranging the equation of likelihood, regrouping the rules used in all the samples according to their
left hand side (Stolcke, 1994):

P (X |M) =
∏

x∈X

∑

yield(der)=x P (der) ≈
∏

x∈X P (der(X)V ) (4)

=
∏

x∈X

∏

ri∈derV
P (ri)

Ci

∏

A∈VN

∏

ri:A=lhs(ri)
P (ri)

CCi

where der is a derivation, derV is the Viterbi parse, ri ∈ R is a rewrite rule,A ∈ VN a nonterminal,
Ci the count of rules occurring within a single derivation and CCi the count of rules occurring in
the Viterbi parses of the entire corpus.

3 Forecasting DL-gain

In our search for the grammar that maximizes the objective function, we will need to consider an
enormous grammar space. At each time step, the number of alternative grammars reachable with
one merge is quadratic in the number of nonterminals. It is therefore computationally intractable to
calculate the posterior probability of each candidate grammar. Evaluating the BMM algorithm on
realistically sized corpora therefore seemed infeasible (Klein, 2005; Clark, 2001). However, (Petasis
et al., 2004) show that the DL-gain of chunks and merges can be efficiently predicted without having
to consider a complete alternative grammar for every candidate search operation. Their equations
can be adapted for the various choices of objective functions discussed above. The complexity of
finding the best chunk is reduced from O(N 2) to O(N ), while the complexity of finding the best
merge is reduced from O(N 3) to O(N 2) (Petasis et al., 2004).

After the application of a merge, the grammar is made smaller through elimination of duplicate
rules: Ω1 is the set of rules from R1 that are eliminated, and Ω3 is the set of rules from R3 that are

2We are aware that there is much more to be said about the relation between Bayesian Inference and MDL,
and that there might be much more linguistically motivated ways to choose priors (see e.g. (Eisner, 2002)). Here
we take a pragmatic approach, however, aimed at defining simple priors that nevertheless force the algorithm
to generalize beyond the training data.
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eliminated. The change of the GDL as a result of the merge is (Petasis et al., 2004):

∆GDLM = log

(

N

N + 1

)

×

(

∑

r∈R1∩R3

(Nr + 1) + T + |R3| + 2

)

− log(N ) ·
∑

r∈Ω1∩Ω3

(Nr + 1) (5)

As before, the first term expresses the fact that the number of bits needed to encode any single
non-terminal is changed due to the decrease in the total number of non-terminals, and this term is
independent of the choice of the merge.

For the computation of the gain in data description length (DDL) as a result of merging the non-
terminals X and Y, we can best view the merging process as two subprocesses:

M1 the rule sets with LHSs X and Y are joined (receive same LHS), changing the conditional
probability of those rules and thus the DDL.

M2 duplicate rules that may occur as a result of the merge are eliminated in the entire grammar.

Although (Petasis et al., 2004) make this observation, their equations for ∆DDL cannot be used
in our model, because they (implicitly) assume rule probabilities are uniformly distributed. That
is, their E-GRIDS model assumes CFGs, whereas we work with PCFGs and, like (Stolcke, 1994),
assume that rule probabilities are proportional to their frequencies in the Viterbi parses. This requires
a modification of the formulas expressing the contribution of the merging operator to DDL.

From eq. 4, we see that the contribution of a non-terminal to the DDL is given by:

DDLX = −
∑

r: X=lhs(r)

Fr ·
(

log

(

Fr

FTotX

)

)

where Fr is the frequency of a rule r with LHS X , and FTotX
is the sum of the frequencies of all

rules with LHSX .

By joining the rules with LHS X and with LHS Y into a single set of rules, the relative frequency
of a single rule is changed from ( Fr

FT otX

) to ( Fr

FT otX+Y

). This results in an overall gain in DDL of:

∆DDLM1 = −
∑

r:X=lhs(r)

(

Fr · log(
FTotX

FTotX+Y

)

)

−
∑

r:X=lhs(r)

(

Fr · log(
FTotY

FTotX+Y

)

)

(6)

The gain in DDL from elimination of duplicate rules is given by:

∆DDLM2 = −
∑

W∈θ

∑

ω∈ΩW

[

∑

r∈ω

Fr · log(
∑

k∈ω

Fk/
∑

l:lhs(l)=W

Fl)

−
∑

r∈ω

(

Fr · log(Fr/
∑

l:lhs(l)=W

Fl)
)

]

(7)

where θ is the set of LHS nonterminals of the duplicate rules resulting from mergingX and Y . We
thus sum over all LHS non-terminalsW that have duplicate rules, and over all sets ω of duplicate
rules. (For efficiency, our implementation maintains a datastructure that represents the DL gain of
every pair of nonterminals that can be potentially merged, and updates this at every merge.)

4 Metrics and experimental evaluation

The BMM algorithm was trained and evaluated on the entire WSJ10 corpus. WSJ10 is the portion
of 7422 sentences of length ≤ 10, after removal of punctuation and traces, extracted from the Penn
Treebank Wall Street Journal (WSJ) (Marcus et al., 1993). It has been the prime benchmark used
in recent grammar induction research. The POS-sequences are used as input for the induction algo-
rithm, resulting in a vocabulary of 35 POS-tags. We left out sentences consisting of a single word
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and sentences consisting of a repetition of the same word, to avoid spurious merges. Using the opti-
mizations described above, the run on the 7422 sentences of the WSJ10 corpus lasted approximately
10 hours on a PC with 0.5 Gb memory.

Evaluating the quality of induced syntactic categories is difficult, and no widely agreed upon mea-
sure exists. We use two different metrics, related to those used in supervised parsing (labeled pre-
cision/recall) and speech recognition (likelihood/perplexity). For the first, the difficulty is that in
unsupervised labeling algorithms, categories receive arbitrary internal labels; in order to evaluate
them using labeled precision and recall, the induced labels must somehow be mapped onto the
treebank labels. We follow (Haghighi and Klein, 2006), who use for their unsupervised baseline
model a greedy remapping of the induced labels to the best matching tree bank label. This style
of remapping, however, allows for multiple induced labels to map to a single target label. With a
fixed number of categories that is no major problem, but with many more induced non-terminals
the measure is too optimistic: in the extreme case of a unique induced label for every constituent it
would give 100% precision and recall. Since in most of our experiments the number of experimen-
tal labels exceeded the number of treebank labels by a large number, we measured labeled recall by
defining the remapping the other way round, from the treebank labels to the induced labels. That is,
we replace each tree bank label with its best matching induced label, and measure recall with this
transformed treebank as gold standard. The F-score is still defined as the harmonic mean of LP and
LR: F1 = 2∗LP∗LR

LP+LR
.

The motivation for this way of calculating precision and recall is somewhat involved. Consider that
syntactic categories are meant to be defining substitutability. Every label X that is used for NX

constituents in the induced trees, thus defines NX · (NX − 1) substitutions that are grammatical
according to the induced grammar Gi. If out of these NX constituents,MX,Y constituents receive
the same label Y in the gold-standard treebank, that means that at least MX,Y · (MX,Y − 1) of
the substitutions that are grammatical according to Gi are also grammatical according to the gold-
standard grammarGg . Although there might be other categories Y

′ that permit other substitutions,
the portion of the NX × (NX − 1) substitutions that is also permitted by Gg will be dominated
by Zmax = argmaxZMX,Z . Hence, MZmax

is a lower bound and a good approximation of the
square root of the number ofX-substitutions permitted byGg (“substitutability precision”). Similar
reasoning on the number of treebank substitution permitted byGi (“substitutability recall”) leads to
the measures proposed (ignoring for the moment some issues with averaging results).

A drawback of this style of evaluating, is that it is still completely dependent on the manual treebank
annotation, which is far from theory-neutral. In fact, all state-of-the-art supervised parsing and
language models, can be viewed as redefining the treebank nonterminal labels. Our second style
of evaluation avoids this dependency. It is based on splitting the corpus in a train and test set, and
measuring the likelihood (or perplexity) of the test set according to the induced grammar. Grammars
that overfit the trainset, or generalize too much to unlikely or ungrammatical sentences, will give low
likelihood to test set sentences. For these experiments we use the traditional sections 2-21 of WSJ10
as trainset, and section 22 as test set (section 23 is kept for future evaluations).

In table 1(a) we report our relabeled recall and precision scores. For comparison, we also give the
baseline results (Haghighi and Klein, 2006) obtained by running the Inside-Outside algorithm on
grammar initialized with all binary rules that can be built from the treebank syntactic categories.
We also copy their results with a semi-supervised “proto-type” driven induction algorithm run on
the same data. Our unsupervised algorithm obtained a (relabeled) F-score of 76.8, which compares
favorably to the (labeled) F-score of 71.1 from that paper. Note however, that different definitions
of LP and LR are used. In table 1(b) we give the relabeled precision scores of the 7 most frequent
categories (after relabeling) in our induced trees. For most frequent categories (leaving out the S
category) precision is near or above 90% except for the NP category.

For a second set of experiments, the algorithmwas trained on sections 2-21 of WSJ10, and evaluated
on section 22. Figure 1(a) gives the sum of the likelihood of all testset sentences, as parsed by the
baseline “unlabeled” (the treebank PCFG after all nonterminals have been replaced by an X), the
treebank PCFG (labeled TBG) and the grammar that results from our BMM-algorithm (the latter
grammar failed to parse 6 sentences up to length 20, and 4 up to length 10. These were excluded
from all evaluations.) Figure 1(b) shows that the vast majority of the sentences in the test set receives
higher likelihood from the grammar induced by BMM than from either the treebank PCFG or the
unlabeled grammar. Note that the grammar that uses a unique nonterminal for every constituent in
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(a)

Model LP LR F
In-Out 47.0 57.2 51.6
Proto 64.8 78.7 71.1

BMM (all) 75.1 78.5 76.8 (b)

Label LP Freq
NP 57.8 38.5%
VP 92.0 22.3%
PP 89.0 8.1%
ADVP 100.0 4.0%
ADJP 100.0 2.7%
QP 89.3 1.6%
SBAR 100.0 1.4%

Table 1: (a) Results of several algorithms on the unsupervised labeling task (using gold standard bracketing).
The results with the unsupervised Inside-Outside algorithm and the semi-supervised Prototype-Driven Gram-
mar Induction-algorithm (labeled Proto) are from (Haghighi and Klein, 2006). (b) Relabeled precision scores
per category (after mapping to the treebank categories).

the treebank, such as BMM uses as initial condition, would score even worse: it assigns a likelihood
of 0 to all unseen sentences (i.e. -log likelihood of∞ to the testset).

G s ∈WSJ10 WSJ20

TBG 7196 47266
BMM 6783 46612
unlab 8592 55961

(a)
∑

s
− log P (s|G) (b) TBG-BMM (c) unlabeled-BMM

Figure 1: (a) The summed -log likelihood of sentences from section 22, (b) Log likelihood differences between
TBG and BMM on all sentences of WSJ10 (y-axis gives the P(sen—G), x-axis gives rank when sentences are
ordered on y-axis value), (c) Log likelihood differences between the unlabeled grammar and BMM.

5 Combining Unsupervised Labeling with Unsupervised Bracketing

We have also tried to use the BMM algorithm for the task of simultaneous bracketing and labeling.
For this purpose, we add the chunk operator: CHUNK(G, X1, X2) 7→ G′, which takes a sequence
of two nonterminals X1 and X2 and creates a unique new nonterminal Y that expands to X1X2.
The merging and chunking operations now proceed in two alternating phases: in the merging phase,
the search is iterated until a state is reached where no single merge improves the objective function
anymore. In the chunking phase only one best chunk is selected. As in (Stolcke and Omohundro,
1994), the initial rules of the grammar are set to incorporate the complete samples, and the bracketing
information from the treebank is discarded.

By adding the chunk operation, we have effectively recovered the full Bayesian Model Merging
algorithm of (Stolcke and Omohundro, 1994). Because of our optimizations, we are able to perform
the first evaluation of that algorithm on the benchmark test WSJ10. Tables 2 summarize results
from experiments with the BMM algorithm on WSJ10 (our best results use the “Poisson prior” with
µ = 3; for details see (Stolcke, 1994)). Unfortunately, the completely unsupervised BMM algorithm
does not meet up to the standards of previous work on unsupervised bracketing and even to the right
branching baseline (R-B).

We investigated a number of possible explanations for the poor performance. First, we considered
the possibility that our assumption that Viterbi parses are mostly preserved after the application of
chunks and merges (section 2) does not hold. We parsed the entire corpus again with the induced
grammar, and compared the resulting parses with the parses assumed in the approximation. The
differences were relatively minor when measured with the same metric as used for comparison
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(a)

WSJ-10 UP UR F
R-B 70.0 55.1 61.7
CCM (Klein and Manning, 2002b) 64.2 81.6 71.9
DMV+CCM (Klein and Manning, 2004) 69.3 88.0 77.6
U-DOP (Bod, 2006) 70.8 88.2 78.5
E-GRIDS (Petasis et al., 2004) 59.3 37.8 46.2
BMM (this paper) 57.6 43.1 49.3

(b)

( ×106) DL GDL DDL
Init .295 .066 .226
Final .276 .041 .235

UP UR F
Init 90.1 88.6 89.4
Final 64.3 74.8 69.2

Table 2: (a) Results of BMM compared to previous work on the same data; (b) BMM initialized with the
treebank grammar

against gold-standard parses, with UP = UR = 95.9 on OVIS, and UP = 95.1 and UP = 94.2 on
WSJ10. Hence, our approximations seem to be justified. A second possibility is that the heuristic
search procedure used is unable to find the high-accuracy regions of the search space. To test this, we
used the treebank PCFG as the initial grammar of the BMM algorithm, which yields comparatively
very high UP and UR scores. As table 2(b) shows, this treebank grammar is not an optimum of the
objective function used: the BMM algorithm continues for a long time to improve the description
length, whilst the F-score against the gold standard parses monotonously decreases.

A qualitative analysis of the merges and chunks in the process further shows a number of problems.
First, there are many ungrammatical chunks, which are formed by cutting across constituent bound-
aries, e.g. put the, on the, and a, up and. This is explained by the fact that the prime criterion
for selecting a chunk is the bigram frequency. Second, there is a tendency for categories to over-
generalize. This effect seems to be self-reinforcing. Merging errors are carried over to the chunking
phase and vice versa, causing a snow ball effect. Eventually, most categories cluster together. These
experiments indicate that it is not a failure of the approximations or the search algorithm which pre-
vents the algorithm from reaching the optimal grammar, but rather a wrong choice of the objective
function. Better choices for the prior probability distribution are a major topic for future research.

6 Discussion and Conclusions

In this paper we have studied the problem of labeling constituents in a bracketed corpus. We have
argued that this is an important task, complementing the task of unsupervised bracketing on which
much progress has been made in recent years (Klein and Manning, 2002b; Bod, 2006). Together,
unsupervised bracketing and unsupervised labeling hold the promise of (i) accounting for the unsu-
pervised acquisition of grammar by children, and (ii) relieving research in (multilingual) NLP of its
sparseness of annotated data. Our algorithm uses the PCFG formalism and starts out with a gram-
mar that models the training data perfectly, but does not generalize beyond it. It is important to note
that the right sequence of merges can take us to any PCFG consistent with the bracketing. Although
natural language contains some constructions that are difficult or, in exceptional cases, impossible
to model with PCFGs, the formalism is rich enough to encode extremely accurate grammars if (and
only if) the traditional linguistic categories are dropped (see e.g. (Petrov et al., 2006))3. The key
question is thus how to guide the model merging algorithm through the space of possible PCFGs.

3For smoothing, (Petrov et al., 2006) use information internal to non-terminal labels, which takes their
model outside the class of PCFGs. However, without smoothing they already obtain surprisingly good results.
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We have used a Bayesian objective function, in the tradition of (Solomonoff, 1964), to guide this
search, and implemented a number of heuristics to perform this search efficiently, using techniques
from (Cook et al., 1976), (Stolcke and Omohundro, 1994) and (Petasis et al., 2004). We have found
that our BMM-algorithm performs better than state-of-the-art unsupervised labeling algorithms on
(re)labeled precision and recall metrics. We have further shown that the likelihood our induced
grammars assign to unseen sentences, rivals that of the treebank PCFG (although it presumably
performs worse than state-of-the-art supervised language models). These positive results suggest it
is possible to devise hybridmodels, where specialized bracketers such as (Klein andManning, 2004)
and (Bod, 2006), can be combined with BMM as a specialized unsupervised labeling algorithm.

In section 5, we have demonstrated briefly that, contrary to received wisdom (Klein and Manning,
2005), (Clark, 2001) the full BMM framework of (Stolcke and Omohundro, 1994), which includes
bracketing, can be evaluated on large corpora. We think this is an important step in its own right.
There is a rich body of research from previous decades on unsupervised grammar induction. We
have shown that it can be worthwhile to use an older algorithm, and evaluate it according to current
experimental methodology. However, the performance of completely unsupervised BMM on real
languages is rather disappointing. The fact that BMM can still optimize the description length when
initialized with the treebank grammar indicates that the problem is probably not with the search, but
with the applicability of the objective function for natural languages. The distinction BMM makes
between prior, likelihood and heuristic search, allows us to now focus our attention on the prior,
without having to replace the entire technical apparatus we and others developed.

The finding that the same objective function is appropriate for merging, but not at all for chunking,
is interesting in its own right. Because the structure of natural language reflects the learning biases
of language learners (Kirby et al., 2007; Zuidema, 2003), this finding might be relevant for theories
of language acquisition. Perhaps children use distributional information, such as exploited by our
algorithm, to a large extent for discovering syntactic categories, while relying on other information
(semantic integrity, phonological phrasing) for identifying constituents in the first place. The finding
that induced syntactic categories outperform traditional linguistic categories is in concordance with
theories in cognitive linguistics that deny universal status of these categories, and view them as
derived from specific linguistic constructions rather than as a-priori given (Croft, 2001).

Acknowledgements WZ is funded by the Netherlands Organisation for Scientific Research (EW),
project nr. 612.066.405; many thanks to Yoav Seginer, Remko Scha and Rens Bod for their com-
ments.
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Abstract

We investigate generalizations of the all-
subtrees "DOP" approach to unsupervised
parsing. Unsupervised DOP models assign
all possible binary trees to a set of sentences
and next use (a large random subset of) all
subtrees from these binary trees to compute
the most probable parse trees. We will test
both a relative frequency estimator for
unsupervised DOP and a maximum
likelihood estimator which is known to be
statistically consistent. We report state-of-
the-art results on English (WSJ), German
(NEGRA) and Chinese (CTB) data. To the
best of our knowledge this is the first paper
which tests a maximum likelihood estimator
for DOP on the Wall Street Journal, leading
to the surprising result that an unsupervised
parsing model beats a widely used
supervised model (a treebank PCFG).

1   Introduction

The problem of bootstrapping syntactic structure
from unlabeled data has regained considerable
interest. While supervised parsers suffer from
shortage of hand-annotated data, unsupervised
parsers operate with unlabeled raw data of which
unlimited quantities are available. During the last
few years there has been steady progress in the field.
Where van Zaanen (2000) achieved 39.2%
unlabeled f-score on ATIS word strings, Clark
(2001) reports 42.0% on the same data, and Klein
and Manning (2002) obtain 51.2% f-score on ATIS
part-of-speech strings using a constituent-context

model called CCM. On Penn Wall Street Journal p-
o-s-strings ≤ 10 (WSJ10), Klein and Manning
(2002) report 71.1% unlabeled f-score with CCM.
And the hybrid approach of Klein and Manning
(2004), which combines constituency and
dependency models, yields 77.6% f-score.

Bod (2006) shows that a further improve-
ment on the WSJ10 can be achieved by an unsuper-
vised generalization of the all-subtrees approach
known as Data-Oriented Parsing (DOP). This
unsupervised DOP model, coined U-DOP, first
assigns all possible unlabeled binary trees to a set of
sentences and next uses all subtrees from (a large
subset of) these trees to compute the most probable
parse trees. Bod (2006) reports that U-DOP not
only outperforms previous unsupervised parsers but
that its performance is as good as a binarized super-
vised parser (i.e. a treebank PCFG) on the WSJ.

A possible drawback of U-DOP, however,
is the statistical inconsistency of its estimator
(Johnson 2002) which is inherited from the DOP1
model (Bod 1998). That is, even with unlimited
training data, U-DOP's estimator is not guaranteed
to converge to the correct weight distribution.
Johnson (2002: 76) argues in favor of a maximum
likelihood estimator for DOP which is statistically
consistent. As it happens, in Bod (2000) we already
developed such a DOP model, termed ML-DOP,
which reestimates the subtree probabilities by a
maximum likelihood procedure based on
Expectation-Maximization. Although cross-
validation is needed to avoid overlearning, ML-DOP
outperforms DOP1 on the OVIS corpus (Bod
2000).

This raises the question whether we can
create an unsupervised DOP model which is also



statistically consistent. In this paper we will show
that an unsupervised version of ML-DOP can be
constructed along the lines of U-DOP. We will start
out by summarizing DOP, U-DOP and ML-DOP,
and next create a new unsupervised model called
UML-DOP. We report that UML-DOP not only
obtains higher parse accuracy than U-DOP on three
different domains, but that it also achieves this with
fewer subtrees than U-DOP. To the best of our
knowledge, this paper presents the first
unsupervised parser that outperforms a widely used
supervised parser on the WSJ, i.e. a treebank
PCFG. We will raise the question whether the end
of supervised parsing is in sight.

2  DOP

The key idea of DOP is this: given an annotated
corpus, use all subtrees, regardless of size, to parse
new sentences. The DOP1 model in Bod (1998)
computes the probabilities of parse trees and
sentences from the relative frequencies of the
subtrees. Although it is now known that DOP1's
relative frequency estimator is statistically
inconsistent (Johnson 2002), the model yields
excellent empirical results and has been used in
state-of-the-art systems. Let's illustrate DOP1 with a
simple example. Assume a corpus consisting of
only two trees, as given in figure 1.

NP VP

S

NP

Mary

V

likes

John

NP VP

S

NPVPeter

hates Susan

Figure 1. A corpus of two trees

New sentences may be derived by combining
fragments, i.e. subtrees, from this corpus, by means
of a node-substitution operation indicated as °.
Node-substitution identifies the leftmost
nonterminal frontier node of one subtree with the
root node of a second subtree (i.e., the second
subtree is substituted on the leftmost nonterminal
frontier node of the first subtree). Thus a new
sentence such as Mary likes Susan can be derived by

combining subtrees from this corpus, shown in
figure 2.

NP VP

S

NPV

likes

NP

Mary

NP

Susan NP VP

S

NPMary V

likes Susan

=° °

Figure 2. A derivation for Mary likes Susan

Other derivations may yield the same tree, e.g.:

NP VP

S

NPV

NP

Mary NP VP

S

NPMary V

likes Susan

=

Susan

V

likes

° °

Figure 3. Another derivation yielding same tree

DOP1 computes the probability of a subtree t as the
probability of selecting t among all corpus subtrees
that can be substituted on the same node as t. This
probability is computed as the number of
occurrences of t in the corpus, | t |, divided by the
total number of occurrences of all subtrees t' with
the same root label as t.1 Let r (t) return the root label
of t. Then we may write:

P(t)  =   

| t |

Σ  t': r(t')= r(t)  | t' |

The probability of a derivation t1°...°tn is computed
by the product of the probabilities of its subtrees t i:

P(t1°...°tn)  =  Πi P(ti)

As we have seen, there may be several distinct
derivations that generate the same parse tree. The
probability of a parse tree T is the sum of the

1 This subtree probability is redressed by a simple
correction factor discussed in Goodman (2003: 136)
and Bod (2003).



probabilities of its distinct derivations. Let tid be the
i-th subtree in the derivation d that produces tree T,
then the probability of T is given by

P(T)  =  ΣdΠi P(tid)

Thus DOP1 considers counts of subtrees of a wide
range of sizes: everything from counts of single-
level rules to entire trees is taken into account to
compute the most probable parse tree of a sentence.
A disadvantage of the approach may be that an
extremely large number of subtrees (and
derivations) must be considered. Fortunately there
exists a compact isomorphic PCFG-reduction of
DOP1 whose size is linear rather than exponential in
the size of the training set (Goodman 2003).
Moreover, Collins and Duffy (2002) show how a
tree kernel can be applied to DOP1's all-subtrees
representation. The currently most successful
version of DOP1 uses a PCFG-reduction of the
model with an n-best parsing algorithm (Bod 2003).

3  U-DOP

U-DOP extends DOP1 to unsupervised parsing
(Bod 2006). Its key idea is to assign all unlabeled
binary trees to a set of sentences and to next use (in
principle) all subtrees from these binary trees to
parse new sentences. U-DOP thus proposes one of
the richest possible models in bootstrapping trees.
Previous models like Klein and Manning's (2002,
2005) CCM model limit the dependencies to
"contiguous subsequences of a sentence". This
means that CCM neglects dependencies that are
non-contiguous such as between more and than in
"BA carried more people than cargo". Instead, U-
DOP's all-subtrees approach captures both
contiguous and non-contiguous lexical dependen-
cies.

As with most other unsupervised parsing
models, U-DOP induces trees for p-o-s strings
rather than for word strings. The extension to word
strings is straightforward as there exist highly
accurate unsupervised part-of-speech taggers (e.g.
Schütze 1995) which can be directly combined with
unsupervised parsers.

To give an illustration of U-DOP, consider
the WSJ p-o-s string NNS VBD JJ NNS which
may correspond for instance to the sentence
Investors suffered heavy losses. U-DOP starts by

assigning all possible binary trees to this string,
where each root node is labeled S and each internal
node is labeled X. Thus NNS VBD JJ NNS has a
total of five binary trees shown in figure 4 -- where
for readability we add words as well.

NNS VBD JJ NNS

Investors suffered heavy losses

X

X

S

  

NNS VBD JJ NNS

Investors suffered heavy losses

X

X

S

NNS VBD JJ NNS

Investors suffered heavy losses

X
X

S

  

NNS VBD JJ NNS

Investors suffered heavy losses

X

X

S

NNS VBD JJ NNS

Investors suffered heavy losses

XX

S

Figure 4. All binary trees for NNS VBD JJ NNS
(Investors suffered heavy losses)

While we can efficiently represent the set of all
binary trees of a string by means of a chart, we need
to unpack the chart if we want to extract subtrees
from this set of binary trees. And since the total
number of binary trees for the small WSJ10 is
almost 12 million, it is doubtful whether we can
apply the unrestricted U-DOP model to such a
corpus. U-DOP therefore randomly samples a large
subset from the total number of parse trees from the
chart (see Bod 2006) and next converts the subtrees
from these parse trees into a PCFG-reduction
(Goodman 2003). Since the computation of the
most probable parse tree is NP-complete (Sima'an
1996), U-DOP estimates the most probable tree
from the 100 most probable derivations using
Viterbi n-best parsing. We could also have used the
more efficient k-best hypergraph parsing technique
by Huang and Chiang (2005), but we have not yet
incorporated this into our implementation.

To give an example of the dependencies that
U-DOP can take into account, consider the
following subtrees in figure 5 from the trees in



figure 4 (where we again add words for readability).
These subtrees show that U-DOP takes into account
both contiguous and non-contiguous substrings.

NNS VBD

Investors suffered

X

X

S

VBD

suffered

X

X

NNS NNS

Investors losses

X

X

S

JJ NNS

heavy losses

XX

S

JJ NNS

heavy losses

X

NNS VBD

Investors suffered

X

VBD JJ

suffered heavy

X

Figure 5. Some subtrees from trees in figure 4

Of course, if we only had the sentence Investors
suffered heavy losses in our corpus, there would be
no difference in probability between the five parse
trees in figure 4. However, if we also have a
different sentence where JJ NNS (heavy losses)
appears in a different context, e.g. in Heavy losses
were reported, its covering subtree gets a relatively
higher frequency and the parse tree where heavy
losses occurs as a constituent gets a higher total
probability.

4  ML-DOP

ML-DOP (Bod 2000) extends DOP with a
maximum likelihood reestimation technique based
on the expectation-maximization (EM) algorithm
(Dempster et al. 1977) which is known to be
statistically consistent (Shao 1999). ML-DOP
reestimates DOP's subtree probabilities in an
iterative way until the changes become negligible.
The following exposition of ML-DOP is heavily
based on previous work by Bod (2000) and
Magerman (1993).

It is important to realize that there is an
implicit assumption in DOP that all possible
derivations of a parse tree contribute equally to the

total probability of the parse tree. This is equivalent
to saying that there is a hidden component to the
model, and that DOP can be trained using an EM
algorithm to determine the maximum likelihood
estimate for the training data. The EM algorithm for
this ML-DOP model is related to the Inside-Outside
algorithm for context-free grammars, but the
reestimation formula is complicated by the presence
of subtrees of depth greater than 1. To derive the
reestimation formula, it is useful to consider the
state space of all possible derivations of a tree.

The derivations of a parse tree T can be
viewed as a state trellis, where each state contains a
partially constructed tree in the course of a leftmost
derivation of T. st denotes a state containing the tree
t which is a subtree of T. The state trellis is defined
as follows.

The initial state, s0, is a tree with depth zero,
consisting of simply a root node labeled with S. The
final state, sT, is the given parse tree T.

A state st is connected forward to all states
stf such that tf  = t ° t', for some t' . Here the
appropriate t'  is defined to be tf − t.

A state st is connected backward to all states
stb such that t = tb ° t', for some t' . Again, t'  is
defined to be t − tb.

The construction of the state lattice and
assignment of transition probabilities according to
the ML-DOP model is called the forward pass. The
probability of a given state, P(s), is referred to as
α(s). The forward probability of a state st is
computed recursively

α(st) = Σ α(st  ) P(t − tb).b
stb

The backward probability of a state, referred to as
β(s), is calculated according to the following
recursive formula:

β(st) = Σ β(st  ) P(tf − t)f

f
st

where the backward probability of the goal state is
set equal to the forward probability of the goal state,
β(sT) = α(sT).

The update formula for the count of a
subtree t is (where r(t) is the root label of t):



ct(t) =      Σ
      β(st  )α(st  )P(t | r (t))f b

α(sgoal)st  :∃st ,tb°t=tfb f

The updated probability distribution, P'(t | r(t)), is
defined to be

P'(t | r(t)) =  
ct(t)

ct(r (t))

where ct(r (t)) is defined as

ct(r (t)) = Σ ct(t')
t ': r( t')=r ( t)

In practice, ML-DOP starts out by assigning the
same relative frequencies to the subtrees as DOP1,
which are next reestimated by the formulas above.
We may in principle start out with any initial
parameters, including random initializations, but
since ML estimation is known to be very sensitive
to the initialization of the parameters, it is convenient
to start with parameters that are known to perform
well.

To avoid overtraining, ML-DOP uses the
subtrees from one half of the training set to be
trained on the other half, and vice versa. This cross-
training is important since otherwise UML-DOP
would assign the training set trees their empirical
frequencies and assign zero weight to all other
subtrees (cf. Prescher et al. 2004). The updated
probabilities are iteratively reestimated until the
decrease in cross-entropy becomes negligible.
Unfortunately, no compact PCFG-reduction of ML-
DOP is known. As a consequence, parsing with
ML-DOP is very costly and the model has hitherto
never been tested on corpora larger than OVIS
(Bonnema et al. 1997). Yet, we will show that by
clever pruning we can extend our experiments not
only to the WSJ, but also to the German NEGRA
and the Chinese CTB. (Zollmann and Sima'an 2005
propose a different consistent estimator for DOP,
which we cannot go into here).

5  UML-DOP

Analogous to U-DOP, UML-DOP is an
unsupervised generalization of ML-DOP: it first
assigns all unlabeled binary trees to a set of

sentences and next extracts a large (random) set of
subtrees from this tree set. It then reestimates the
initial probabilities of these subtrees by ML-DOP on
the sentences from a held-out part of the tree set.
The training is carried out by dividing the tree set
into two equal parts, and reestimating the subtrees
from one part on the other. As initial probabilities
we use the subtrees' relative frequencies as described
in section 2 (smoothed by Good-Turing -- see Bod
1998), though it would also be interesting to see
how the model works with other initial parameters,
in particular with the usage frequencies proposed by
Zuidema (2006).

As with U-DOP, the total number of
subtrees that can be extracted from the binary tree
set is too large to be fully taken into account.
Together with the high computational cost of
reestimation we propose even more drastic pruning
than we did in Bod (2006) for U-DOP. That is,
while for sentences ≤ 7 words we use all binary
trees, for each sentence ≥ 8 words we randomly
sample a fixed number of 128 trees (which
effectively favors more frequent trees). The resulting
set of trees is referred to as the binary tree set. Next,
we randomly extract for each subtree-depth a fixed
number of subtrees, where the depth of subtree is
the longest path from root to any leaf. This has
roughly the same effect as the correction factor used
in Bod (2003, 2006). That is, for each particular
depth we sample subtrees by first randomly
selecting a node in a random tree from the binary
tree set after which we select random expansions
from that node until a subtree of the particular depth
is obtained. For our experiments in section 6, we
repeated this procedure 200,000 times for each
depth. The resulting subtrees are then given to ML-
DOP's reestimation procedure. Finally, the
reestimated subtrees are used to compute the most
probable parse trees for all sentences using Viterbi
n-best, as described in section 3, where the most
probable parse is estimated from the 100 most
probable derivations.

A potential criticism of (U)ML-DOP is that
since we use DOP1's relative frequencies as initial
parameters, ML-DOP may only find a local
maximum nearest to DOP1's estimator. But this is
of course a criticism against any iterative ML
approach: it is not guaranteed that the global
maximum is found (cf. Manning and Schütze 1999:
401). Nevertheless we will see that our reestimation



procedure leads to significantly better accuracy
compared to U-DOP (the latter would be equal to
UML-DOP under 0 iterations). Moreover, in
contrast to U-DOP, UML-DOP can be theoretically
motivated: it maximizes the likelihood of the data
using the statistically consistent EM algorithm.

6  Experiments: Can we beat supervised by
unsupervised parsing?

To compare UML-DOP to U-DOP, we started out
with the WSJ10 corpus, which contains 7422
sentences ≤ 10 words after removing empty
elements and punctuation. We used the same
evaluation metrics for unlabeled precision (UP) and
unlabeled recall (UR) as defined in Klein (2005: 21-
22). Klein's definitions differ slightly from the
standard PARSEVAL metrics: multiplicity of
brackets is ignored, brackets of span one are ignored
and the bracket labels are ignored. The two metrics
of UP and UR are combined by the unlabeled f -
score F1 which is defined as the harmonic mean of
UP and UR: F1 = 2*UP*UR/(UP+UR).

For the WSJ10, we obtained a binary tree
set of 5.68 * 105 trees, by extracting the binary trees
as described in section 5. From this binary tree set
we sampled 200,000 subtrees for each subtree-
depth. This resulted in a total set of roughly 1.7 *
106 subtrees that were reestimated by our
maximum-likelihood procedure. The decrease in
cross-entropy became negligible after 14 iterations
(for both halfs of WSJ10). After computing the
most probable parse trees, UML-DOP achieved an
f-score of 82.9% which is a 20.5% error reduction
compared to U-DOP's f-score of 78.5% on the
same data (Bod 2006).

We next tested UML-DOP on two
additional domains which were also used in Klein
and Manning (2004) and Bod (2006): the German
NEGRA10 (Skut et al. 1997) and the Chinese
CTB10 (Xue et al. 2002) both containing 2200+
sentences ≤ 10 words after removing punctuation.
Table 1 shows the results of UML-DOP compared
to U-DOP, the CCM model by Klein and Manning
(2002), the DMV dependency learning model by
Klein and Manning (2004) as well as their
combined model DMV+CCM.

Table 1 shows that UML-DOP scores better
than U-DOP and Klein and Manning's models in all
cases. It thus pays off to not only use subtrees rather

than substrings (as in CCM) but to also reestimate
the subtrees' probabilities by a maximum-likelihood
procedure rather than using their (smoothed) relative
frequencies (as in U-DOP). Note that UML-DOP
achieves these improved results with fewer subtrees
than U-DOP, due to UML-DOP's more drastic
pruning of subtrees. It is also noteworthy that UML-
DOP, like U-DOP, does not employ a separate class
for non-constituents, so-called distituents, while
CCM and CCM+DMV do. (Interestingly, the top
10 most frequently learned constituents by UML-
DOP were exactly the same as by U-DOP -- see the
relevant table in Bod 2006).

Model English German Chinese
(WSJ10) (NEGRA10) (CTB10)

CCM 71.9 61.6 45.0

DMV 52.1 49.5 46.7

DMV+CCM 77.6 63.9 43.3

U-DOP 78.5 65.4 46.6

UML-DOP 82.9 67.0 47.2

Table 1. F-scores of UML-DOP compared to
previous models on the same data

We were also interested in testing UML-DOP on
longer sentences. We therefore included all WSJ
sentences up to 40 words after removing empty
elements and punctuation (WSJ40) and again
sampled 200,000 subtrees for each depth, using the
same method as before. Furthermore, we compared
UML-DOP against a supervised binarized PCFG,
i.e. a treebank PCFG whose simple relative
frequency estimator corresponds to maximum
likelihood (Chi and Geman 1998), and which we
shall refer to as "ML-PCFG". To this end, we used
a random 90%/10% division of WSJ40 into a
training set and a test set. The ML-PCFG had thus
access to the Penn WSJ trees in the training set,
while UML-DOP had to bootstrap all structure from
the flat strings from the training set to next parse the
10% test set -- clearly a much more challenging
task. Table 2 gives the results in terms of f-scores.

The table shows that UML-DOP scores
better than U-DOP, also for WSJ40. Our results on
WSJ10 are somewhat lower than in table 1 due to
the use of a smaller training set of 90% of the data.
But the most surprising result is that UML-DOP's f-



score is higher than the supervised binarized tree-
bank PCFG (ML-PCFG) for both WSJ10 and
WSJ40. In order to check whether this difference is
statistically significant, we additionally tested on 10
different 90/10 divisions of the WSJ40 (which were
the same splits as in Bod 2006). For these splits,
UML-DOP achieved an average f-score of 66.9%,
while ML-PCFG obtained an average f-score of
64.7%. The difference in accuracy between UML-
DOP and ML-PCFG was statistically significant
according to paired t-testing (p≤0.05). To the best of
our knowledge this means that we have shown for
the first time that an unsupervised parsing model
(UML-DOP) outperforms a widely used supervised
parsing model (a treebank PCFG) on the WSJ40.

Model       WSJ10  WSJ40

U-DOP 78.1 63.9

UML-DOP 82.5 66.4

ML-PCFG 81.5 64.6

Table 2. F-scores of U-DOP, UML-DOP and a
supervised treebank PCFG (ML-PCFG) for a
random 90/10 split of WSJ10 and WSJ40.

We should keep in mind that (1) a treebank PCFG
is not state-of-the-art: its performance is mediocre
compared to e.g. Bod (2003) or McClosky et al.
(2006), and (2) that our treebank PCFG is binarized
as in Klein and Manning (2005) to make results
comparable. To be sure, the unbinarized version of
the treebank PCFG obtains 89.0% average f-score
on WSJ10 and 72.3% average f-score on WSJ40.
Remember that the Penn Treebank annotations are
often exceedingly flat, and many branches have arity
larger than two. It would be interesting to see how
UML-DOP performs if we also accept ternary (and
wider) branches -- though the total number of
possible trees that can be assigned to strings would
then further explode.

UML-DOP's performance still remains
behind that of supervised (binarized) DOP parsers,
such as DOP1, which achieved 81.9% average f-
score on the 10 WSJ40 splits, and ML-DOP, which
performed slightly better with 82.1% average f-
score. And if DOP1 and ML-DOP are not
binarized, their average f-scores are respectively
90.1% and 90.5% on WSJ40. However, DOP1 and

ML-DOP heavily depend on annotated data whereas
UML-DOP only needs unannotated data. It would
thus be interesting to see how close UML-DOP can
get to ML-DOP's performance if we enlarge the
amount of training data.

7  Conclusion: Is the end of supervised
parsing in sight?

Now that we have outperformed a well-known
supervised parser by an unsupervised one, we may
raise the question as to whether the end of
supervised NLP comes in sight. All supervised
parsers are reaching an asymptote and further
improvement does not seem to come from more
hand-annotated data but by adding unsupervised or
semi-unsupervised techniques (cf. McClosky et al.
2006). Thus if we modify our question as: does the
exclusively supervised approach to parsing come to
an end, we believe that the answer is certainly yes.

Yet we should neither rule out the
possibility that entirely unsupervised methods will
in fact surpass semi-supervised methods. The main
problem is how to quantitatively compare these
different parsers, as any evaluation on hand-
annotated data (like the Penn treebank) will
unreasonably favor semi-supervised parsers. There
is thus is a quest for designing an annotation-
independent evaluation scheme. Since parsers are
becoming increasingly important in applications like
syntax-based machine translation and structural
language models for speech recognition, one way to
go would be to compare these different parsing
methods by isolating their contribution in improving
a concrete NLP system, rather than by testing them
against gold standard annotations which are
inherently theory-dependent.

The initially disappointing results of
inducing trees entirely from raw text was not so
much due to the difficulty of the bootstrapping
problem per se, but to (1) the poverty of the initial
models and (2) the difficulty of finding theory-
independent evaluation criteria. The time has come
to fully reappraise unsupervised parsing models
which should be trained on massive amounts of
data, and be evaluated in a concrete application.

There is a final question as to how far the
DOP approach to unsupervised parsing can be
stretched. In principle we can assign all possible
syntactic categories, semantic roles, argument



structures etc. to a set of given sentences and let the
statistics decide which assignments are most useful
in parsing new sentences. Whether such a massively
maximalist approach is feasible can only be
answered by empirical investigation in due time.
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Abstract 

How far can we get with unsupervised 

parsing if we make our training corpus 

several orders of magnitude larger than has 

hitherto be attempted? We present a new 

algorithm for unsupervised parsing using 

an all-subtrees model, termed U-DOP*, 

which parses directly with packed forests 

of all binary trees. We train both on Penn’s 

WSJ data and on the (much larger) NANC 

corpus, showing that U-DOP* outperforms 

a treebank-PCFG on the standard WSJ test 

set. While U-DOP* performs worse than 

state-of-the-art supervised parsers on hand-

annotated sentences, we show that the 

model outperforms supervised parsers 

when evaluated as a language model in 

syntax-based machine translation on 

Europarl. We argue that supervised parsers 

miss the fluidity between constituents and 

non-constituents and that in the field of 

syntax-based language modeling the end of 

supervised parsing has come in sight. 

1    Introduction 
 

A major challenge in natural language parsing is 

the unsupervised induction of syntactic structure. 

While most parsing methods are currently 

supervised or semi-supervised (McClosky et al. 

2006; Henderson 2004; Steedman et al. 2003), they 

depend on hand-annotated data which are difficult 

to come by and which exist only for a few 

languages. Unsupervised parsing methods are 

becoming increasingly important since they 

operate with raw, unlabeled data of which 

unlimited quantities are available. 

There has been a resurgence of interest in 

unsupervised parsing during the last few years. 

Where van Zaanen (2000) and Clark (2001) 

induced unlabeled phrase structure for small 

domains like the ATIS, obtaining around 40% 

unlabeled f-score, Klein and Manning (2002) 

report 71.1% f-score on Penn WSJ part-of-speech 

strings ≤ 10 words (WSJ10) using a constituent-

context model called CCM. Klein and Manning 

(2004) further show that a hybrid approach which 

combines constituency and dependency models, 

yields 77.6% f-score on WSJ10. 

While Klein and Manning’s approach may 

be described as an “all-substrings” approach to 

unsupervised parsing, an even richer model 

consists of an “all-subtrees” approach to 

unsupervised parsing, called U-DOP (Bod 2006). 

U-DOP initially assigns all unlabeled binary trees 

to a training set, efficiently stored in a packed 

forest, and next trains subtrees thereof on a held-

out corpus, either by taking their relative 

frequencies, or by iteratively training the subtree 

parameters using the EM algorithm (referred to as 

“UML-DOP”). The main advantage of an all-

subtrees approach seems to be the direct inclusion 

of discontiguous context that is not captured by 

(linear) substrings. Discontiguous context is 

important not only for learning structural 

dependencies but also for learning a variety of non-

contiguous constructions such as nearest … to… or 

take … by surprise. Bod (2006) reports 82.9% 

unlabeled f-score on the same WSJ10 as used by 

Klein and Manning (2002, 2004). Unfortunately, 

his experiments heavily depend on a priori 

sampling of subtrees, and the model becomes 

highly inefficient if larger corpora are used or 

longer sentences are included. 

In this paper we will also test an 

alternative model for unsupervised all-subtrees 
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parsing, termed U-DOP*, which is based on the 

DOP* estimator by Zollmann and Sima’an (2005), 

and which computes the shortest derivations for 

sentences from a held-out corpus using all subtrees 

from all trees from an extraction corpus. While we 

do not achieve as high an f-score as the UML-DOP 

model in Bod (2006), we will show that U-DOP* 

can operate without subtree sampling, and that the 

model can be trained on corpora that are two 

orders of magnitude larger than in Bod (2006). We 

will extend our experiments to 4 million sentences 

from the NANC corpus (Graff 1995), showing that 

an f-score of 70.7% can be obtained on the 

standard Penn WSJ test set by means of 

unsupervised parsing. Moreover, U-DOP* can be 

directly put to use in bootstrapping structures for 

concrete applications such as syntax-based 

machine translation and speech recognition. We 

show that U-DOP* outperforms the supervised 

DOP model if tested on the German-English 

Europarl corpus in a syntax-based MT system. 

In the following, we first explain the 

DOP* estimator and discuss how it can be 

extended to unsupervised parsing. In section 3, we 

discuss how a PCFG reduction for supervised DOP  

can be applied to packed parse forests. In section 4, 

we will go into an experimental evaluation of U-

DOP* on annotated corpora, while in section 5 we 

will evaluate U-DOP* on unlabeled corpora in an 

MT application.  

 

2     From DOP* to U-DOP* 
 

DOP* is a modification of the DOP model in Bod 

(1998) that results in a statistically consistent 

estimator and in an efficient training procedure 

(Zollmann and Sima’an 2005). DOP* uses the all-

subtrees idea from DOP: given a treebank, take all 

subtrees, regardless of size, to form a stochastic 

tree-substitution grammar (STSG). Since a parse 

tree of a sentence may be generated by several 

(leftmost) derivations, the probability of a tree is 

the sum of the probabilities of the derivations 

producing that tree. The probability of a derivation 

is the product of the subtree probabilities. The 

original DOP model in Bod (1998) takes the 

occurrence frequencies of the subtrees in the trees 

normalized by their root frequencies as subtree 

parameters. While efficient algorithms have been 

developed for this DOP model by converting it into 

a PCFG reduction (Goodman 2003), DOP’s 

estimator was shown to be inconsistent by Johnson 

(2002). That is, even with unlimited training data, 

DOP's estimator is not guaranteed to converge to 

the correct distribution.  

Zollmann and Sima’an (2005) developed a 

statistically consistent estimator for DOP which is 

based on the assumption that maximizing the joint 

probability of the parses in a treebank can be 

approximated by maximizing the joint probability 

of their shortest derivations (i.e. the derivations 

consisting of the fewest subtrees). This assumption 

is in consonance with the principle of simplicity, 

but there are also empirical reasons for the shortest 

derivation assumption: in Bod (2003) and Hearne 

and Way (2006), it is shown that DOP models that 

select the preferred parse of a test sentence using 

the shortest derivation criterion perform very well. 

On the basis of this shortest-derivation 

assumption, Zollmann and Sima’an come up with a 

model that uses held-out estimation: the training 

corpus is randomly split into two parts proportional 

to a fixed ratio: an extraction corpus EC and a 

held-out corpus HC. Applied to DOP, held-out 

estimation would mean to extract fragments from 

the trees in EC and to assign their weights such 

that the likelihood of HC is maximized. If we 

combine their estimation method with Goodman’s 

reduction of DOP, Zollman and Sima’an’s 

procedure operates as follows: 

 

(1) Divide a treebank into an EC and HC 

(2) Convert the subtrees from EC into a PCFG 

reduction 

(3) Compute the shortest derivations for the 

sentences in HC (by simply assigning each 

subtree equal weight and applying Viterbi 

1-best) 

(4) From those shortest derivations, extract the 

subtrees and their relative frequencies in 

HC to form an STSG 

 

Zollmann and Sima’an show that the resulting 

estimator is consistent. But equally important is the 

fact that this new DOP* model does not suffer 

from a decrease in parse accuracy if larger subtrees 

are included, whereas the original DOP model 

needs to be redressed by a correction factor to 

maintain this property (Bod 2003). Moreover, 

DOP*’s estimation procedure is very efficient, 

while the EM training procedure for UML-DOP 
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proposed in Bod (2006) is particularly time 

consuming and can only operate by randomly 

sampling trees. 

 Given the advantages of DOP*, we  will 

generalize this model in the current paper to 

unsupervised parsing. We will use the same all-

subtrees methodology as in Bod (2006), but now 

by applying the efficient and consistent DOP*-

based estimator. The resulting model, which we 

will call U-DOP*, roughly operates as follows: 

 

(1) Divide a corpus into an EC and HC 

(2) Assign all unlabeled binary trees to the 

sentences in EC, and store them in a 

shared parse forest 

(3) Convert the subtrees from the parse forests 

into a compact PCFG reduction (see next 

section) 

(4) Compute the shortest derivations for the 

sentences in HC (as in DOP*) 

(5) From those shortest derivations, extract the 

subtrees and their relative frequencies in 

HC to form an STSG 

(6) Use the STSG to compute the most 

probable parse trees for new test data by 

means of Viterbi n-best (see next section) 

 

We will use this U-DOP* model to investigate our 

main research question: how far can we get with 

unsupervised parsing if we make our training 

corpus several orders of magnitude larger than 

has hitherto be attempted?  

 

3  Converting shared parse forests into 

PCFG reductions 
 

The main computational problem is how to deal 

with the immense number of subtrees in U-DOP*. 

There exists already an efficient supervised 

algorithm that parses a sentence by means of all 

subtrees from a treebank. This algorithm was 

extensively described in Goodman (2003) and 

converts a DOP-based STSG into a compact PCFG 

reduction that generates eight rules for each node 

in the treebank. The reduction is based on the 

following idea: every node in every treebank tree is 

assigned a unique number which is called its 

address. The notation A@k denotes the node at 

address k where A is the nonterminal labeling that 

node. A new nonterminal is created for each node 

in the training data. This nonterminal is called Ak. 

Let aj represent the number of subtrees headed by 

the node A@j, and let a represent the number of 

subtrees headed by nodes with nonterminal A, that 

is a = Σj aj. Then there is a PCFG with the 

following property: for every subtree in the 

training corpus headed by A, the grammar will 

generate an isomorphic subderivation. For 

example, for a node (A@j (B@k, C@l)), the 

following eight PCFG rules in figure 1 are 

generated, where the number following a rule is its 

weight.  

 
Aj → BC       (1/aj) A → BC        (1/a) 

Aj → BkC      (bk/aj) A → BkC      (bk/a) 

Aj → BCl      (cl/aj) A → BCl         (cl/a) 

Aj → BkCl     (bkcl/aj) A → BkCl       (bkcl/a) 

 

Figure 1. PCFG reduction of supervised DOP 

 

By simple induction it can be shown that this 

construction produces PCFG derivations 

isomorphic to DOP derivations (Goodman 2003: 

130-133). The PCFG reduction is linear in the 

number of nodes in the corpus. 

While Goodman’s reduction method was 

developed for supervised DOP where each training 

sentence is annotated with exactly one tree, the 

method can be generalized to a corpus where each 

sentence is annotated with all possible binary trees 

(labeled with the generalized category X), as long 

as we represent these trees by a shared parse forest. 

A shared parse forest can be obtained by adding 

pointers from each node in the chart (or tabular 

diagram) to the nodes that caused it to be placed in 

the chart. Such a forest can be represented in cubic 

space and time (see Billot and Lang 1989). Then, 

instead of assigning a unique address to each node 

in each tree, as done by the PCFG reduction for 

supervised DOP, we now assign a unique address 

to each node in each parse forest for each sentence. 

However, the same node may be part of more than 

one tree. A shared parse forest is an AND-OR 

graph where AND-nodes correspond to the usual 

parse tree nodes, while OR-nodes correspond to 

distinct subtrees occurring in the same context. The 

total number of nodes is cubic in sentence length n. 

This means that there are O(n
3
) many nodes that 

receive a unique address as described above, to 

which next our PCFG reduction is applied. This is 

a huge reduction compared to Bod (2006) where 
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the number of subtrees of all trees increases with 

the Catalan number, and only ad hoc sampling 

could make the method work. 

Since U-DOP* computes the shortest 

derivations (in the training phase) by combining 

subtrees from unlabeled binary trees, the PCFG 

reduction in figure 1 can be represented as in 

figure 2, where X refers to the generalized category 

while B and C either refer to part-of-speech 

categories or are equivalent to X. The equal 

weights follow from the fact that the shortest 

derivation is equivalent to the most probable 

derivation if all subtrees are assigned equal 

probability (see Bod 2000; Goodman 2003). 

 
Xj → BC        1  X → BC        0.5 

Xj → BkC      1  X → BkC       0.5 

Xj → BCl       1  X → BCl         0.5 

Xj → BkCl      1  X → BkCl       0.5 

 

Figure 2. PCFG reduction for U-DOP* 

 

Once we have parsed HC with the shortest 

derivations by the PCFG reduction in figure 2, we 

extract the subtrees from HC to form an STSG. 

The number of subtrees in the shortest derivations 

is linear in the number of nodes (see Zollmann and 

Sima’an 2005, theorem 5.2). This means that U-

DOP* results in an STSG which is much more 

succinct than previous DOP-based STSGs. 

Moreover, as in Bod (1998, 2000), we use an 

extension of Good-Turing to smooth the subtrees 

and to deal with ‘unknown’ subtrees. 

Note that the direct conversion of parse 

forests into a PCFG reduction also allows us to 

efficiently implement the maximum likelihood 

extension of U-DOP known as UML-DOP (Bod 

2006). This can be accomplished by training the 

PCFG reduction on the held-out corpus HC by 

means of the expectation-maximization algorithm, 

where the weights in figure 1 are taken as initial 

parameters. Both U-DOP*’s and UML-DOP’s 

estimators are known to be statistically consistent. 

But while U-DOP*’s training phase merely 

consists of the computation of the shortest 

derivations and the extraction of subtrees, UML-

DOP involves iterative training of the parameters. 

Once we have extracted the STSG, we 

compute the most probable parse for new 

sentences by Viterbi n-best, summing up the 

probabilities of derivations resulting in the same 

tree (the exact computation of the most probable 

parse is NP hard – see Sima’an 1996). We have 

incorporated the technique by Huang and Chiang 

(2005) into our implementation which allows for 

efficient Viterbi n-best parsing.  

 

4    Evaluation on hand-annotated corpora 
 

To evaluate U-DOP* against UML-DOP and other 

unsupervised parsing models, we started out with 

three corpora that are also used in Klein and 

Manning (2002, 2004) and Bod (2006): Penn’s 

WSJ10 which contains 7422 sentences ≤ 10 words 

after removing empty elements and punctuation, 

the German NEGRA10 corpus and the Chinese 

Treebank CTB10 both containing 2200+ sentences 

≤ 10 words after removing punctuation. As with 

most other unsupervised parsing models, we train 

and test on p-o-s strings rather than on word 

strings. The extension to word strings is 

straightforward as there exist highly accurate 

unsupervised part-of-speech taggers (e.g. Schütze 

1995) which can be directly combined with 

unsupervised parsers, but for the moment we will 

stick to p-o-s strings (we will come back to word 

strings in section 5). Each corpus was divided into 

10 training/test set splits of 90%/10% (n-fold 

testing), and each training set was randomly 

divided into two equal parts, that serve as EC and 

HC and vice versa. We used the same evaluation 

metrics for unlabeled precision (UP) and unlabeled 

recall (UR) as in Klein and Manning (2002, 2004). 

The two metrics of UP and UR are combined by 

the unlabeled f-score F1 = 2*UP*UR/(UP+UR). 

All trees in the test set were binarized beforehand, 

in the same way as in Bod (2006). 

 For UML-DOP the decrease in cross-

entropy became negligible after maximally 18 

iterations. The training for U-DOP* consisted in 

the computation of the shortest derivations for the 

HC from which the subtrees and their relative 

frequencies were extracted. We used the technique 

in Bod (1998, 2000) to include ‘unknown’ 

subtrees. Table 1 shows the f-scores for U-DOP* 

and UML-DOP against the f-scores for U-DOP 

reported in Bod (2006), the CCM model in Klein 

and Manning (2002), the DMV dependency model 

in Klein and Manning (2004) and their combined 

model DMV+CCM.  
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Model English 

(WSJ10) 

German 

(NEGRA10) 

Chinese 

(CTB10) 

CCM 71.9 61.6 45.0 

DMV 52.1 49.5 46.7 

DMV+CCM 77.6 63.9 43.3 

U-DOP 78.5 65.4 46.6 

U-DOP* 77.9 63.8 42.8 

UML-DOP 79.4 65.2 45.0 

 

Table 1. F-scores of U-DOP* and UML-DOP 

compared to other models on the same data. 
 

It should be kept in mind that an exact comparison 

can only be made between U-DOP* and UML-

DOP in table 1, since these two models were tested 

on 90%/10% splits, while the other models were 

applied to the full WSJ10, NEGRA10 and CTB10 

corpora. Table 1 shows that U-DOP* performs 

worse than UML-DOP in all cases, although the 

differences are small and was statistically 

significant only for WSJ10 using paired t-testing. 

As explained above, the main advantage of 

U-DOP* over UML-DOP is that it works with a 

more succinct grammar extracted from the shortest 

derivations of HC. Table 2 shows the size of the 

grammar (number of rules or subtrees) of the two 

models for resp. Penn WSJ10, the entire Penn WSJ 

and the first 2 million sentences from the NANC 

(North American News Text) corpus which 

contains a total of approximately 24 million 

sentences from different news sources. 

 

Model Size of 

STSG 

for WSJ10 

Size of 

STSG 

for Penn 

WSJ 
 

Size of STSG 

for 2,000K 

NANC  

U-DOP* 2.2 x 104 9.8 x 105 7.2 x 106 

UML-DOP 1.5 x 106 8.1 x 107 5.8 x 109 

 

Table 2. Grammar size of U-DOP* and UML-DOP 

for WSJ10 (7,7K sentences), WSJ (50K sentences) 

and the first 2,000K sentences from NANC. 

 

Note that while U-DOP* is about 2 orders of 

magnitudes smaller than UML-DOP for the 

WSJ10, it is almost 3 orders of magnitudes smaller 

for the first 2 million sentences of the NANC 

corpus. Thus even if U-DOP* does not give the 

highest f-score in table 1, it is more apt to be 

trained on larger data sets. In fact, a well-known 

advantage of unsupervised methods over 

supervised methods is the availability of almost 

unlimited amounts of text. Table 2 indicates that 

U-DOP*’s grammar is still of manageable size 

even for text corpora that are (almost) two orders 

of magnitude larger than Penn’s WSJ. The NANC 

corpus contains approximately 2 million WSJ 

sentences that do not overlap with Penn’s WSJ and 

has been previously used by McClosky et al. 

(2006) in improving a supervised parser by self-

training. In our experiments below we will start by 

mixing subsets from the NANC’s WSJ data with 

Penn’s WSJ data. Next, we will do the same with 2 

million sentences from the LA Times in the NANC 

corpus, and finally we will mix all data together for 

inducing a U-DOP* model. From Penn’s WSJ, we 

only use sections 2 to 21 for training (just as in 

supervised parsing) and section 23 (≤100 words) 

for testing, so as to compare our unsupervised 

results with some binarized supervised parsers. 

The NANC data was first split into 

sentences by means of a simple discriminitive 

model. It was next p-o-s tagged with the the TnT 

tagger (Brants 2000) which was trained on the 

Penn Treebank such that the same tag set was used. 

Next, we added subsets of increasing size from the 

NANC p-o-s strings to the 40,000 Penn WSJ p-o-s 

strings. Each time the resulting corpus was split 

into two halfs and the shortest derivations were 

computed for one half by using the PCFG-

reduction from the other half and vice versa. The 

resulting trees were used for extracting an STSG 

which in turn was used to parse section 23 of 

Penn’s WSJ. Table 3 shows the results. 

 

# sentences added  f-score by 

adding WSJ 

data 

f-score by 

adding LA 

Times data 

0 (baseline) 62.2 62.2 

100k 64.7 63.0 

250k 66.2 63.8 

500k 67.9 64.1 

1,000k 68.5 64.6 

2,000k 69.0 64.9 

 

Table 3. Results of U-DOP* on section 23 from 

Penn’s WSJ by adding sentences from NANC’s 

WSJ and NANC’s LA Times 
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Table 3 indicates that there is a monotonous 

increase in f-score on the WSJ test set if NANC 

text is added to our training data in both cases, 

independent of whether the sentences come from 

the WSJ domain or the LA Times domain. 

Although the effect of adding LA Times data is 

weaker than adding WSJ data, it is noteworthy that 

the unsupervised induction of trees from the LA 

Times domain still improves the f-score even if the 

test data are from a different domain.  

We also investigated the effect of adding 

the LA Times data to the total mix of Penn’s WSJ 

and NANC’s WSJ. Table 4 shows the results of 

this experiment, where the baseline of 0 sentences 

thus starts with the 2,040k sentences from the 

combined Penn-NANC WSJ data. 

 

Sentences added 

from LA Times to 

Penn-NANC WSJ 

f-score by 

adding LA 

Times data 

0 69.0 

100k 69.4 

250k 69.9 

500k 70.2 

1,000k 70.4 

2,000k 70.7 

 

Table 4. Results of U-DOP* on section 23 from 

Penn’s WSJ by mixing sentences from the 

combined Penn-NANC WSJ with additions from 

NANC’s LA Times. 

 

As seen in table 4, the f-score continues to increase 

even when adding LA Times data to the large 

combined set of Penn-NANC WSJ sentences. The 

highest f-score is obtained by adding 2,000k 

sentences, resulting in a total training set of 4,040k 

sentences. We believe that our result is quite 

promising for the future of unsupervised parsing.  

In putting our best f-score in table 4 into 

perspective, it should be kept in mind that the gold 

standard trees from Penn-WSJ section 23 were 

binarized. It is well known that such a binarization 

has a negative effect on the f-score. Bod (2006) 

reports that an unbinarized treebank grammar 

achieves an average 72.3% f-score on WSJ 

sentences ≤ 40 words, while the binarized version 

achieves only 64.6% f-score. To compare U-

DOP*’s results against some supervised parsers, 

we additionally evaluated a PCFG treebank 

grammar and the supervised DOP* parser using 

the same test set. For these supervised parsers, we 

employed the standard training set, i.e. Penn’s WSJ 

sections 2-21, but only by taking the p-o-s strings 

as we did for our unsupervised U-DOP* model. 

Table 5 shows the results of this comparison. 

 

Parser f-score 

U-DOP* 70.7 

Binarized treebank PCFG 63.5 

Binarized DOP* 80.3 

 

Table 5. Comparison between the (best version of) 

U-DOP*, the supervised treebank PCFG and the 

supervised DOP* for section 23 of Penn’s WSJ 

 

As seen in table 5, U-DOP* outperforms the 

binarized treebank PCFG on the WSJ test set. 

While a similar result was obtained in Bod (2006), 

the absolute difference between unsupervised 

parsing and the treebank grammar was extremely 

small in Bod (2006): 1.8%, while the difference in 

table 5 is 7.2%, corresponding to 19.7% error 

reduction. Our f-score remains behind the 

supervised version of DOP* but the gap gets 

narrower as more training data is being added to 

U-DOP*.  

 

5   Evaluation on unlabeled corpora in a 

practical application 
 

Our experiments so far have shown that despite the 

addition of large amounts of unlabeled training 

data, U-DOP* is still outperformed by the 

supervised DOP* model when tested on hand-

annotated corpora like the Penn Treebank. Yet it is 

well known that any evaluation on hand-annotated 

corpora unreasonably favors supervised parsers. 

There is thus a quest for designing an evaluation 

scheme that is independent of annotations. One 

way to go would be to compare supervised and 

unsupervised parsers as a syntax-based language 

model in a practical application such as machine 

translation (MT) or speech recognition.  

 In Bod (2007), we compared U-DOP* and 

DOP* in a syntax-based MT system known as 

Data-Oriented Translation or DOT (Poutsma 2000; 

Groves et al. 2004). The DOT model starts with a 

bilingual treebank where each tree pair constitutes 

an example translation and where translationally 

equivalent constituents are linked. Similar to DOP, 
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the DOT model uses all linked subtree pairs from 

the bilingual treebank to form an STSG of linked 

subtrees, which are used to compute the most 

probable translation of a target sentence given a 

source sentence (see Hearne and Way 2006).   

What we did in Bod (2007) is to let both 

DOP* and U-DOP* compute the best trees directly 

for the word strings in the German-English 

Europarl corpus (Koehn 2005), which contains 

about 750,000 sentence pairs. Differently from U-

DOP*, DOP* needed to be trained on annotated 

data, for which we used respectively the Negra and 

the Penn treebank. Of course, it is well-known that 

a supervised parser’s f-score decreases if it is 

transferred to another domain: for example, the 

(non-binarized) WSJ-trained DOP model in Bod 

(2003) decreases from around 91% to 85.5% f-

score if tested on the Brown corpus. Yet, this score 

is still considerably higher than the accuracy 

obtained by the unsupervised U-DOP model, 

which achieves 67.6% unlabeled f-score on Brown 

sentences. Our main question of interest is in how 

far this difference in accuracy on hand-annotated 

corpora carries over when tested in the context of a 

concrete application like MT. This is not a trivial 

question, since U-DOP* learns ‘constituents’ for 

word sequences such as Ich möchte (“I would like 

to”) and There are (Bod 2007), which are usually 

hand-annotated as non-constituents. While U-

DOP* is punished for this ‘incorrect’ prediction if 

evaluated on the Penn Treebank, it may be 

rewarded for this prediction if evaluated in the 

context of machine translation using the Bleu score 

(Papineni et al. 2002). Thus similar to Chiang 

(2005), U-DOP can discover non-syntactic 

phrases, or simply “phrases”, which are typically 

neglected by linguistically syntax-based MT 

systems. At the same time, U-DOP* can also learn 

discontiguous constituents that are neglected by 

phrase-based MT systems (Koehn et al. 2003). 

In our experiments, we used both U-DOP* 

and DOP* to predict the best trees for the German-

English Europarl corpus. Next, we assigned links 

between each two nodes in the respective trees for 

each sentence pair. For a 2,000 sentence test set 

from a different part of the Europarl corpus we 

computed the most probable target sentence (using 

Viterbi n best). The Bleu score was used to 

measure translation accuracy, calculated by the 

NIST script with its default settings. As a baseline 

we compared our results with the publicly 

available phrase-based system Pharaoh (Koehn et 

al. 2003), using the default feature set. Table 6 

shows for each system the Bleu score together with 

a description of the productive units. ‘U-DOT’ 

refers to ‘Unsupervised DOT’ based on U-DOP*, 

while DOT is based on DOP*. 

 

System Productive Units Bleu-score 

U-DOT / U-DOP* Constituents and Phrases 0.280 

DOT / DOP* Constituents only 0.221 

Pharaoh Phrases only 0.251 

 

Table 6. Comparing U-DOP* and DOP* in syntax-

based MT on the German-English Europarl corpus 

against the Pharaoh system. 

 

The table shows that the unsupervised U-DOT 

model outperforms the supervised DOT model 

with 0.059. Using Zhang’s significance tester 

(Zhang et al. 2004), it turns out that this difference 

is statistically significant (p < 0.001). Also the 

difference between U-DOT and the baseline 

Pharaoh is statistically significant (p < 0.008). 

Thus even if supervised parsers like DOP* 

outperform unsupervised parsers like U-DOP* on 

hand-parsed data with >10%, the same supervised 

parser is outperformed by the unsupervised parser 

if tested in an MT application. Evidently, U-DOP’s 

capacity to capture both constituents and phrases 

pays off in a concrete application and shows the 

shortcomings of models that only allow for either 

constituents (such as linguistically syntax-based 

MT) or phrases (such as phrase-based MT). In Bod 

(2007) we also show that U-DOT obtains virtually 

the same Bleu score as Pharaoh after eliminating 

subtrees with discontiguous yields. 

 

6    Conclusion: future of supervised parsing 
 

In this paper we have shown that the accuracy of 

unsupervised parsing under U-DOP* continues to 

grow when enlarging the training set with 

additional data. However, except for the simple 

treebank PCFG, U-DOP* scores worse than 

supervised parsers if evaluated on hand-annotated 

data. At the same time U-DOP* significantly 

outperforms the supervised DOP* if evaluated in a 

practical application like MT. We argued that this 

can be explained by the fact that U-DOP learns 
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both constituents and (non-syntactic) phrases while 

supervised parsers learn constituents only. 

What should we learn from these results? 

We believe that parsing, when separated from a 

task-based application, is mainly an academic 

exercise. If we only want to mimick a treebank or 

implement a linguistically motivated grammar, 

then supervised, grammar-based parsers are 

preferred to unsupervised parsers. But if we want 

to improve a practical application with a syntax-

based language model, then an unsupervised parser 

like U-DOP* might be superior. 

 The problem with most supervised (and 

semi-supervised) parsers is their rigid notion of 

constituent which excludes ‘constituents’ like the 

German Ich möchte or the French Il y a. Instead, it 

has become increasingly clear that the notion of 

constituent is a fluid which may sometimes be in 

agreement with traditional syntax, but which may 

just as well be in opposition to it. Any sequence of 

words can be a unit of combination, including non-

contiguous word sequences like closest X to Y. A 

parser which does not allow for this fluidity may 

be of limited use as a language model. Since 

supervised parsers seem to stick to categorical 

notions of constituent, we believe that in the field 

of syntax-based language models the end of 

supervised parsing has come in sight. 
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Abstract 
We present a new model of language learning which is based on the following idea: if a language 
learner does not know which phrase-structure trees should be assigned to initial sentences, s/he 
allows (implicitly) for all possible trees and lets linguistic experience decide which is the ‘best’ 
tree for each sentence. The best tree is obtained by maximizing ‘structural analogy’ between a 
sentence and previous sentences, which is formalized by the most probable shortest combination 
of subtrees from all trees of previous sentences. Corpus-based experiments with this model on the 
Penn Treebank and the Childes database indicate that it can learn both exemplar-based and rule-
based aspects of language, ranging from phrasal verbs to auxiliary fronting. By having learned the 
syntactic structures of sentences, we have also learned the grammar implicit in these structures, 
which can in turn be used to produce new sentences. We show that our model mimicks children’s 
language development from item-based constructions to abstract constructions, and that the model 
can simulate some of the errors made by children in producing complex questions. 
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1  Introduction 
 

It used to be a cliché that humans produce and understand new utterances by constructing 
analogies with utterances they experienced previously.1 A formal articulation of this idea was, 
however, lacking for a long time. Although the notion of analogy has been successfully worked 
out for phonology (e.g. MacWhinney 1978) and morphology (e.g. Skousen 1989), linguistic theory 
seems to have given up on the problem of developing a formal notion of syntactic analogy. 
Common wisdom has had it that analogy is intrinsically flawed for syntax where unlimited 
generative capacity is needed.  

In Bod (1998) we argued that this common wisdom is wrong. We developed a model of 
syntactic analysis which derives new sentences by combining fragments from a corpus of 
previously derived sentences. This model, known as Data-Oriented Parsing (DOP) (Scha 1990), 
was general enough to be instantiated for various linguistic representations, such as lexical-
functional grammar (Bod and Kaplan 1998), head-driven phrase-structure grammar (Neumann and 
Flickinger 2002) and tree-adjoining grammar (Hoogweg 2003). The original  DOP model (Bod 
1998) operates on simple phrase-structure trees and maximizes a notion of “structural analogy” 
between a sentence and a corpus of previous sentence-structures. That is, it produces a new 
sentence-structure out of largest and most frequent overlaps with structures of previously 
experienced sentences. The model could used both for sentence analysis and sentence generation. 
While the DOP approach was successful in some respects, for instance in modeling acceptability 
judgments (Bod 2001), ambiguity resolution (Scha et al. 1999) and construction learning 
(Borensztajn et al. 2008), it had an important shortcoming as well: The approach did not account 
for the acquisition of initial structures. The DOP approach assumes that the structures of previous 
linguistic experiences are given and stored in a corpus. As such, DOP can at best account for adult 
language, and has nothing to say about how these structures are acquired. While we conjectured in 
Bod (2006a) that the approach can be extended to language learning, we left a gap between the 
intuitive idea and its concrete instantiation. 

In the current paper we want to start to close that gap. We propose a generalization of DOP, 
termed U-DOP (“Unsupervised DOP”), which starts with the notion of tree structure. Our 
cognitive claim is that if a language learner does not know which tree structures should be 
assigned to initially perceived sentences, s/he allows (implicitly) for all possible tree structures and 
lets linguistic experience decide which structures are most useful for parsing new input. Similar to 
DOP, U-DOP analyzes a new sentence out of largest and most frequent subtrees from trees of 
previous sentences. The fundamental difference with the supervised DOP approach is that U-DOP 
takes into account subtrees from all possible (binary) trees of previous sentences rather than from 
a set of manually annotated trees.  

Although we do not claim that the U-DOP model in this paper provides any near-to-
complete theory of language acquisition, we will show that it can learn various linguistic 
phenomena, ranging from phrasal verbs to auxiliary fronting. Once we have learned the syntactic 
structures of sentences, we have also learned the grammar implicit in these structures, which can 
be used to produce new sentences. We will test this implicit grammar against children’s language 
production from the Childes database, which indicates that children learn discontiguous 
dependencies at a very early age. We will show that complex syntactic phenomena, such as 
auxiliary fronting, can be learned by U-DOP without having seen them in the linguistic input and 

                                                           
1 Chomsky (1966) argues that he found this view in Bloomfield, Hockett, Paul, Saussure, Jespersen, and “many 
others”. For an historical overview, see Esper (1973). 
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without assuming that they are hard-wired in the mind. Instead, we will demonstrate that 
phenomena such as auxiliary fronting can be learned from simpler sentences by means of 
structural analogy. We argue that our results may shed new light on the well-known Poverty of the 
Stimulus argument according to which linguistic evidence is hopelessly underdetermined such that 
innate prior knowledge is needed (Chomsky 1965, 1971). 

In the following section, we will first give a review of Data-Oriented Parsing. In Section 3, 
we will show how DOP can be generalized to language learning, resulting in the U-DOP model. In 
Section 4, we show how the approach can accurately learn structures for adult language, and in 
Section 5, we will extend our experiments to child language from the Childes database showing 
that the model can simulate the incremental learning of separable particle verbs. We will 
generalize our approach to language generation in Section 6 and perform some experiments with 
producing complex yes/no questions with auxiliary fronting. We end with a conclusion in Section 
7. 
 

2  Review of DOP: integrating rules and exemplars 
 

One of the main motivations behind the DOP framework was to integrate rule-based and 
exemplar-based approaches to language processing (Scha 1990; Bod 1992, 1998; Kaplan 1996; 
Zollmann and Sima’an 2005; Zuidema 2006). While rules or generalizations are typically the 
building blocks in grammar-based theories of language (Chomsky 1965; Pinker 1999), exemplars 
or “stored linguistic tokens” are taken to be the primitives in usage-based theories (cf. Barlow and 
Kemmer 2000; Bybee 2006). However, several researchers have emphasized that both rules and 
exemplars play a role in language use and acquisition (Langacker 1987; Goldberg 2006; Abbott-
Smith and Tomasello 2006). The DOP model is consonant with this view but takes it one step 
further: It proposes that rules and exemplars are part of the same distribution, and that both can be 
represented by subtrees from a corpus of tree structures of previously encountered sentences (Bod 
2006a). DOP uses these subtrees as the productive units by which new sentences are produced and 
understood. The smallest subtrees in DOP correspond to the traditional notion of phrase-structure 
rule, while the largest subtrees correspond to full phrase-structure trees. But DOP also takes into 
account the middle ground between these two extremes which consists of all intermediate subtrees 
that are larger than phrase-structure rules and smaller than full sentence-structures.  

To give a very simple example, assume that the phrase-structure tree for Mary saw John in 
Figure 1 constitutes our entire corpus. Then the set of all subtrees from this corpus is given in 
Figure 2.  
 
 

S

NPV

VPNP

Mary

saw John  
 

Figure 1. Phrase structure tree for Mary saw John  
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Figure 2. Subtrees from the tree in Figure 1 
 
Thus the top-leftmost subtree in Figure 2 is equivalent to the traditional context-free rewrite rule S 

→ NP VP, while the bottom-rightmost subtree corresponds to a phrase-structure tree for the entire 
sentence. But there is also a set of intermediate subtrees between these two endpoints that 
represent all other possible exemplars, such as Mary V John, NP saw NP, Mary V NP, etcera. The 
key idea of DOP which has been extensively argued for in Bod (1998) is the following: Since we 

do not know beforehand which subtrees are important, we should not restrict them but take them 

all and let the statistics decide. The DOP approach is thus congenial to the usage-based view of 
construction grammar where patterns are stored even if they are fully compositional (Croft 2001). 

DOP generates new sentences by combining subtrees from a corpus of previously analyzed 
sentences. To illustrate this in some detail, consider a corpus of two sentences with their syntactic 
analyses given in Figure 3. 
 

the
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on rack
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V

wanted

VP
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           the

NPP
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PP
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VP

V

VP

NP

she

S

 
 

Figure 3. An extremely small corpus of two phrase-structure trees 
 

On the basis of this corpus, the (new) sentence She saw the dress with the telescope can for 
example be derived by combining two subtrees from the corpus, as shown in Figure 4. The 
combination operation between subtrees is referred to as label substitution. This operation, 
indicated as °, identifies the leftmost nonterminal leaf node of the first subtree with the root node 

of the second subtree, i.e., the second subtree is substituted on the lefmost nonterminal leaf node 
of the first subtree provided that their categories match. 
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Figure 4. Analyzing a new sentence by combining subtrees from Figure 3 
 

Notice that in Figure 4, the sentence She saw the dress with the telescope is interpreted 
analogously to the corpus sentence She saw the dog with the telescope: both sentences receive the 
same phrase structure where the prepositional phrase with the telescope is attached to the VP saw 

the dress.  
We can also derive an alternative phrase structure for the test sentence, namely by 

combining three (rather than two) subtrees from Figure 3, as shown in Figure 5. We will write (t ° 

u) ° v  as t ° u ° v with the convention that ° is left-associative. 
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Figure 5. A different derivation for She saw the dress with the telescope 
 
In Figure 5, the sentence She saw the dress with the telescope is analyzed in a different way where 
the PP with the telescope is attached to the NP the dress, corresponding to a different meaning 
than the tree in Figure 4. Thus the sentence is ambiguous in that it can be derived in (at least) two 
different ways which is analogous either to the first tree or to the second tree in Figure 3.  

Note that an unlimited number of sentences can be generated by combining subtrees from 
the corpus in Figure 3, such as She saw the dress on the rack with the telescope and She saw the 

dress with the dog on the rack with the telescope, etc. Thus we obtain unlimited productivity by 
finite means. Note also that most sentences generated by this DOP model are highly ambiguous: 
many different analyses can be assigned to each sentence due to a combinatorial explosion of 
different prepositional-phrase attachments. Yet, most of the analyses are not plausible: They do 
not correspond to the interpretations humans perceive. There is thus a question how to rank 
different candidate-analyses of a sentence (or in case of generation, how to rank different 
candidate-sentences for a meaning to be conveyed). Initial DOP models proposed an exclusively 
frequency-based metric where the most probable tree or sentence was computed from the 
frequencies of the subtrees in the corpus (Bod 1998). 
 While it is well known that the frequency of a structure is an important factor in language 
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comprehension and production (see Jurafsky 2003), it is not the only factor. Discourse context, 
semantics and recency also play an important role. DOP can straightforwardly take into account 
semantic and discourse information if we have e.g. semantically annotated corpora from which we 
take the subtrees (Bonnema et al 1997). The notion of recency can furthermore be incorporated by 
a frequency-adjustment function which adjusts subtrees from recently perceived trees upwards 
while less recently perceived subtrees are adjusted downwards, possibly down to zero (Bod 1998, 
1999).  

There is, however, an important other factor which does not correspond to the notion of 
frequency: this is the simplicity of a structure (cf. Chater 1999). In Bod (2000 2002), we 
formalized the simplest structure by the shortest derivation of a sentence, i.e. consisting of the 
fewest subtrees from the corpus. Note that the shortest derivation will include the largest possible 
subtrees from the corpus, thereby maximizing the structural commonality between a sentence and 

previous sentence-structures. Only in case the shortest derivation is not unique, the frequencies of 
the subtrees are used to break ties. That is, DOP selects the tree with most frequent subtrees from 
the shortest derivations. This so-called ‘best tree’ of a sentence under DOP is defined as the Most 
Probable tree generated by the Shortest Derivation (“MPSD”) of the sentence.  

Rather than computing the most probable tree for a sentence per se, this model thus 
computes the most probable tree from among the distribution of trees that share maximal overlaps 
with previous sentence-structures. The MPSD maximizes what we call the structural analogy 
between a sentence and previous sentence-structures.2 The shortest derivation may be seen as a 
formalization of the principle of ‘least effort’ or ‘parsimony’, while the notion of probability of a 
tree may be seen as a general memory-based frequency bias (cf. Conway and Christiansen 2006). 
 We can illustrate DOP’s notion of structural analogy with the linguistic example given in the 
figures above. DOP predicts that the tree structure in Figure 4 is preferred because it can be 
generated by just two subtrees from the corpus. Any other tree structure, such as in Figure 5, 
would need at least three subtrees from the training set in Figure 3. Note that the tree generated by 
the shortest derivation indeed has a larger overlap with a corpus tree than the tree generated by the 
longer derivation. 
 Had we restricted the subtrees to smaller sizes -- for example to depth-1 subtrees, which 
makes DOP equivalent to a simple (probabilistic) context-free grammar -- the shortest derivation 
would not be able to distinguish between the two trees in Figures 3 and 5 as they would both be 
generated by 9 rewrite rules. The same is true if we used subtrees of maximal depth 2 or 3. As 
shown by Carroll and Weir (2000) only if we do not restrict the subtree depth, can we take into 
account arbitrarily far-ranging dependencies – both structurally and sequentially -- and model new 
sentences as closely as possible on previous sentence-analyses. 

When the shortest derivation is not unique, DOP selects the tree with most frequent subtrees 
from the shortest derivations, i.e. the MPSD. Of course, even the MPSD may not be unique, in 
which case there is more than one best tree for the particular sentence; but such a situation does 
never occur in practice. In the following, we will define how the frequencies of the subtree that 
make up a parse tree can be compositionally combined to compute the MPSD. It is convenient to 
first give definitions for a parse tree under DOP and the shortest derivation. 

 

                                                           
2 We prefer the term “analogy” to other terms like “similarity” since it reflects DOP’s property to analyze a new 
sentence analogously to previous sentences, that is, DOP searches for relations between parts of a sentence(-structure) 
and corpus sentence(s) and maps the structure of previous sentences to new ones. This is consonant with the use of 
analogy in Gentner and Markman (1997). 
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Definition of a tree of a sentence generated by DOP 

Given a corpus C of trees T1, T2,..,Tn, and a leftmost label substitution operation °, then a tree of a 

word string W with respect to C is a tree T such that (1) there are subtrees t1, t2,..,tk in T1, T2,..,Tn 

for which t1 ° t2 °  ... ° tk = T, and (2) the yield of T is equal to W. 

 
The tree generated by the shortest derivation, Tsd according to DOP is defined as follows: 

 
Definition of the shortest derivation of a sentence 

Let L(d) be the length of derivation d in terms of its number of subtrees, that is, if d = t1°...°tk then 

L(d) = k. Let dT be a derivation which results in tree T. Then Tsd is the tree which is produced by a 

derivation of minimal length: 
 

Tsd  =  argmin L(dT) 

       T  
 
If Tsd is not unique, DOP selects from among the trees produced by the shortest derivations the 

tree with highest probability. The probability of a tree is defined in terms of the probabilities of the 
derivations that generate it, which are in turn defined in terms of the probabilities of the subtrees 
these derivations consist of, as defined below. 
 
Definition of the probability of a subtree 

The probability of a subtree t, P(t), is the number of occurrences of t in any tree in the corpus, 
written as | t |, divided by the total number of occurrences of subtrees in the corpus that have the 
same root label as t.3 Let r(t) return the root label of t. Then we may write: 

 

P(t)  =   

| t |

Σ t': r(t')=r(t)  | t' |  
 
Definition of the probability of a derivation 

The probability of a derivation t1°...°tk is defined as the product of the probabilities of its subtrees 

ti: 

 

P(t1°...°tk)  =  Πi P(ti) 

 
Definition of the probability of a tree 

Since DOP’s subtrees can be of arbitrary size, it is typically the case that there are several 
derivations that generate the same parse tree. The probability of a tree T is defined as the sum of 
the probabilities of its distinct derivations. Let tid be the i-th subtree in the derivation d that 

produces tree T, then the probability of T is given by 
 

                                                           
3 The subtree probabilities are smoothed by simple Good-Turing estimation (see Bod 1998: 85). 
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P(T)  =  ΣdΠi P(tid) 

 
Definition of the best tree of a sentence 

The best tree is the most probable tree from among the trees generated by the shortest derivation of 
a given sentence, also called the MPSD. The best tree, Tbest maximizes the probability of Tsd 

given word string W: 
 

Tbest  =  argmax P(Tsd | W) 

  Tsd  
 

We will give a concrete illustration of how the best tree can be computed in the following section 
when we generalize DOP to language acquisition. Although we have only dealt with the 
probabilities of derivations and trees, the model can also provide probabilities for each sentence 
generated by DOP, being the sum of the probabilities of all derivations generating that sentence. 
While DOP has mainly been applied to parsing, it was extended in Bonnema et al. (1997) to 
semantic interpretation and generation: given a meaning to be conveyed (e.g. a logical form), 
DOP’s MPSD computes the best sentence for that meaning. We will come back to sentence 
generation in Section 6. The Appendix gives a summary of efficient algorithms for DOP. 
 Formally, the DOP model explained above is equivalent to a probabilistic tree-substitution 
grammar (PTSG). The grammatical backbone of a PTSG is a generalization over the well-known 
context-free grammars (CFG) and a subclass of Tree Adjoining Grammars (Joshi 2004). The 
original DOP model in Bod (1992), which only computed the most probable tree of each sentence 
(DOP1), had an inconsistent estimator: Johnson (2002) showed that the most probable trees do not 
converge to the correct trees when the corpus grows to infinity. However, Zollmann and Sima’an 
(2005) showed that a DOP model based on the shortest derivation is statistically consistent. 
Consistency is not to be confused with “tightness”, i.e. the property that the total probability mass 
of the trees generated by a probabilistic grammar is equal to one (Chi and Geman 1998). Since 
DOP’s PTSGs are weakly stochastically equivalent to so-called Treebank-PCFGs (Bod 1998), the 
probabilities of all trees for all sentences sum up to one (see Chi and Geman 1998). 

 

3  U-DOP: generalizing DOP to language learning  
 

In the current paper we generalize DOP to language learning by using the same principle as 
before: language users maximize the structural analogy between a new sentence and previous 
sentences by computing the most probable shortest derivation. However, in language learning we 
cannot assume that the phrase-structure trees of sentences are already given. We therefore propose 
the following straightforward generalization of DOP which we refer to as “Unsupervised DOP” or 
U-DOP: if a language learner does not know which phrase-structure tree should be assigned to a 

sentence, s/he initially allows for all possible trees and let linguistic experience decide which is 

the ‘best’ tree by maximizing structural analogy. As a first approximation we will limit the set of 
all possible trees to unlabeled binary trees. However, we can easily relax the binary restriction, and 
we will briefly come back to learning category labels at the end of this paper. Conceptually, we 
can distinguish three learning phases under U-DOP (though we will see that U-DOP operates 
rather differently from a computation point of view): 
 
 (i) Assign all possible (unlabeled binary) trees to a set of given sentences 



 9

 (ii) Divide the binary trees into all subtrees 
 (iii) Compute the best tree (MPSD) for each sentence 
 

The only prior knowledge assumed by U-DOP is the notion of tree and the concept of structural 
analogy (MPSD). U-DOP thus inherits the agnostic approach of DOP: we do not constrain the 
units of learning beforehand, but take all possible fragments and let a statistical notion of analogy 
decide.  

In the following we will illustrate U-DOP with a simple example, by describing each of the 
three learning phases above separately. 
 

(i) Assign all unlabeled binary trees to a set of sentences  
Suppose that a hypothetical language learner hears the two sentences watch the dog and the dog 

barks. How could the learner figure out the appropriate tree structures for these sentences? U-DOP 
conjectures that a learner does so by allowing (initially) any fragment of the heard sentences to 
form a productive unit and to try to reconstruct these sentences out of most probable shortest 
combinations. 
 The set of all unlabeled binary trees for the sentences watch the dog and the dog barks is 
given in Figure 6, which for convenience we shall again refer to as the “corpus”. Each node in 
each tree in the corpus is assigned the same category label X, since we do not (yet) know what 
label each phrase will receive. To keep our example simple, we do not assign category labels X to 
the words, but this can be done as well (and will be done later). 
 

watch the dog

X

X

    

X

watch the dog

X

 
 

the dog

X

X

barks       

X

X

the dog barks  
 

Figure 6. The unlabeled binary tree set for watch the dog and the dog barks 
 
Although the number of possible binary trees for a sentence grows exponentially with sentence 
length, these binary trees can be efficiently represented in quadratic space by means of a “chart” or 
“tabular diagram”, which is a standard technique in computational linguistics (see e.g. Kay 1980; 
Manning and Schütze 1999; Huang and Chiang 2005). By adding pointers between the nodes we 
obtain a structure known as a “shared parse forest” (Billot and Lang 1989). However, for 
explaining the conceptual working of U-DOP we will mostly exhaustively enumerate all trees, 
keeping in mind that the trees are usually stored by a compact parse forest. 
 

(ii) Divide the binary trees into all subtrees  
Figure 7 lists the subtrees that can be extracted from the trees in Figure 6. The first subtree in each 
row represents the whole sentence as a chunk, while the second and the third are “proper” 
subtrees.  
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watch the dog

X

X

dog

X

X

watch the

X

 
 

X

watch the dog

X

X

watch

X the dog

X

 
 

the dog

X

X

barks

  

X

X

barks

  

the dog

X

 
 

X

X

the dog barks

X

X

the

X

dog barks

 
 

Figure 7. The subtree set for the binary trees in Figure 6. 
 
Note that while most subtrees occur once, the subtree [the dog]X occurs twice. The number of 

subtrees in a binary tree grows exponentially with sentence length, but there exists an efficient 
parsing algorithm that parses a sentence by means of all subtrees from a set of given trees. This 
algorithm converts a set of subtrees into a compact reduction which is linear in the number of tree 
nodes (Goodman 2003). We will come back to this reduction method below under (iii). 
 

(iii) Compute the MPSD for each sentence  
From the subtrees in Figure 7, U-DOP can compute the ‘best trees’ (MPSD) for the corpus 
sentences as well as for new sentences. Consider the corpus sentence the dog barks. On the basis 
of the subtrees in Figure 7, two phrase-structure trees can be generated by U-DOP for this 
sentence, shown in Figure 8. Both tree structures can be produced by two different derivations, 
either by trivially selecting the largest possible subtrees from Figure 7 that span the whole 
sentence or by combining two smaller subtrees.  
 

X

X

the dog barks  is generated by    

X

X

the dog barks  and by   

X

X

the

X

dog barks

o

 
 

the dog

X

X

barks

  

is generated by    the dog

X

X

barks

  

and by   

X

X

barks

  

the dog

Xo

 
 

Figure 8. Parsing the dog barks from the subtrees in Figure 7 
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Thus the shortest derivation is not unique: the sentence the dog barks can be trivially parsed by 
any of its fully spanning trees, which is a direct consequence of U-DOP’s property that subtrees of 
any size may play a role in language learning. This situation does not usually occur when 
structures for new sentences are learned. For example, the shortest derivation for the new 
‘sentence’ watch dog barks (using subtrees from Figure 7) is unique and given in Figure 9.  
 

watch

X

X

X

dog barks

o

 
 

Figure 9. Unique shortest derivation for watch dog barks from the subtrees in Figure 7 
 
But to decide between the trees in Figure 8 we need the subtree frequencies to break ties, that is, 
U-DOP computes the most probable tree from among the trees produced by the shortest 
derivations of the dog barks. The probability of a tree is computed from the frequencies of its 
subtrees in the same way as in the supervised version of DOP. Since the subtree [the dog] is the 
only subtree that occurs more than once, we can predict that the most probable tree corresponds to 
the structure [[the dog] barks] in Figure 7 where the dog is a constituent. This can also be shown 
formally by applying the probability definitions given in Section 2. 
 Thus the probability of the tree structure [the [dog barks]], is equal to the sum of the 
probabilities of its derivations in Figure 8. The probability of the first derivation consisting of the 
fully spanning tree is simply equal to the probability of selecting this tree from the space of all 
subtrees in Figure 7, which is 1/12. The probability of the second derivation of [the [dog barks]] in 

Figure 8 is equal to the product of the probabilities of selecting the two subtrees which is 1/12 × 
1/12 = 1/144. The total probability of the tree is the probability that it is generated by any of its 
derivations which is the sum of the probabilities of the derivations: 
 

P([the [dog barks]]) = 1/12 + (1/12 × 1/12) = 13/144.  
 

Similarly, we can compute the probability of the alternative tree structure, [[the dog] barks], which 
follows from its derivations in Figure 8. Note that the only difference is the probability of the 

subtree [the dog] being 2/12 (as it occurs twice). The total probability of this tree structure is: 
 

P([[the dog] barks]) =  1/12 + (1/12 × 2/12) = 14/144.  
 
Thus the second tree wins, although with just a little bit. We leave the computation of the 
conditional probabilities of each tree given the sentence the dog barks to the reader (these are 
computed as the probability of each tree divided by the sum of probabilities of all trees for the dog 

barks). The relative difference in probability is small because the derivation consisting of the 
entire tree takes a considerable part of the probability mass (1/12). This simple example is only 
intended to illustrate U-DOP’s probability model. In our experiments we will be mostly interested 
in learning structures for new sentences, where it is not the case that every sentence can be parsed 
by all fully spanning trees, as occurred with the example watch dog barks in Figure 9 which leads 
to a unique shortest derivation of largest possible chunks from the corpus. 
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For the sake of simplicity, we only used trees without lexical categories. But it is straightforward 
to assign abstract labels X to the words as well. If we do so for the sentences in Figure 6, then one 
of the possible subtrees for the sentence watch the dog is given in Figure 10. This subtree has a 
discontiguous yield watch X dog, which we will therefore refer to as a discontiguous subtree. 
 

X

watch dog

X

X X X

 
 

Figure 10. A discontiguous subtree 
 

Discontiguous subtrees are important for covering a range of linguistic constructions, as those 
given in italics in sentences (1)-(6): 
 

(1) BA carried more people than cargo in 2005. 
(2) What’s this scratch doing on the table? 
(3) Don’t take him by surprise. 
(4) Fraser put dollie nighty on.         
(5) Most software companies in Vietnam are small sized.    
 

These constructions have been discussed at various places in the literature (e.g. Bod 1998, 
Goldberg 2006), and all of them are discontiguous. They range from idiomatic, multi-word units 
(e.g. (1)-(3)) and particle verbs (e.g. (4)) to regular syntactic phenomena as in (5). The notion of 
subtree can easily capture the syntactic structure of these discontiguous constructions. For 
example, the construction more ... than … in (1) may be represented by the subtree in Figure 11.  
  

more than

XX

X X

X

X X

 
 

Figure 11. Discontiguous subtree for the construction more...than... 

 
In our experiments in the following sections we will isolate the contribution of non-adjacent 
dependencies in learning the correct structures of utterances as well as in learning syntactic facets 
such as auxiliary fronting. 

We should stress that the illustration of U-DOP’s (and DOP’s) working above has been 
mainly conceptual: in practice we do not compute the MPSD by first extracting all subtrees but by 
using a compact reduction of DOP proposed in Goodman (1996, 2003). This reduction is 
explained in the Appendix at the end of this paper and reduces the exponentially large number of 
corpus-subtrees to exactly 8 indexed ‘PCFG’ (Probabilistic Context-Free Grammar) rules for each 
internal node in a corpus-tree. This set of indexed PCFG rules generates the same derivations with 
the same probabilities as DOP and U-DOP and is therefore said to be isomorphic to (U-)DOP 
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(even though the term ‘PCFG’ is not entirely correct since the set of ‘indexed PCFG rules’ does 
not correspond to a standard PCFG in the literature – see the Appendix). The importance of the 
PCFG reduction method can hardly be overestimated, as may be illustrated by the combinatorial 
explosion of subtrees before applying the reduction method. For example, for the WSJ10 corpus of 
7422 sentences no longer than 10 words, the number of subtrees assigned by U-DOP corresponds 
to almost 500 million while the number of indexed rules in the PCFG reduction is “only” 328 
thousand (which is not a particularly large number in the current parsing systems – see Section 4). 
For conceptual reasons, we will often talk about ‘subtrees’ rather than ‘indexed PCFG rules’ as 
long as no confusion arises.  

 

4  Experiments with Adult language 
 

The illustration of U-DOP in the previous section was mainly based on artificial examples. How 
well does U-DOP learn constituent structures for sentences from more realistic settings? In this 
section we will carry out a (corpus-based) experiment with adult language, after which we will 
extend our experiments to child language in the following section. The main reason to test U-DOP 
on adult language is that it allows for comparing the model against a state-of-the-art approach to 
structure induction (Klein and Manning 2004). Only in Sections 5 and 6 will we investigate U-
DOP’s capacity to learn specific syntactic facets such as particle verbs and auxiliary inversion. 
 

4.1 Experiments with the Penn, Negra and Chinese treebank 
The Penn treebank (Marcus et al. 1993) has become a gold standard in evaluating natural language 
processing  systems (see Manning and Schütze 1999) and has also been employed in linguistic 
research (Pullum and Scholz 2002). More recently, the Penn treebank has been used to evaluate 
unsupervised language learning models as well. Early approaches by van Zaanen (2000) and Clark 
(2001) tested on Penn’s ATIS corpus, as did Solan et al. (2005), while Klein and Manning (2002, 
2004, 2005) tested their systems on the larger Wall Street Journal corpus in the Penn treebank, as 
well as on the Chinese Treebank and the German Negra corpus. While these corpora are limited to 
specific domains of adult language use, it has been argued that relative frequencies of words, 
phrases etc. are rather stable across different domains (see Clark 2005).  
 U-DOP distinguishes itself from other learning models by its agnostic approach: All 
subtrees, be they contiguous or discontiguous, may contribute to learning the correct constituent 
structures. This is different from other learning approaches, including the well-known Constituent-
Context Model (CCM) by Klein and Manning (2002, 2005). While CCM takes into account “all 
contiguous subsequences of a sentence” (Klein and Manning 2005: 1410), it neglects 
dependencies that are non-contiguous such as between closest and to in the closest station to 

Union Square. Moreover, by learning from linear subsequences only, CCM may underrepresent 
structural context. It is therefore interesting to experimentally compare U-DOP to these 
approaches and to assess whether there is any quantitative contribution of U-DOP’s discontiguous 
subtrees.  

As a first test, we evaluated U-DOP on the same data as Klein and Manning (2002, 2004, 
2005): the Penn treebank WSJ10 corpus, containing human-annotated phrase-structure trees for 
7422 sentences ≤ 10 words after removing punctuation, the German NEGRA10 corpus (Skut et al. 
1997) and the Chinese CTB10 treebank (Xue et al. 2002) both containing annotated tree structures 
for 2200+ sentences ≤ 10 words after removing punctuation. As with most other unsupervised 
parsing models, we train and test on word strings that are already enriched with the Penn treebank 
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part-of-speech sequences rather than on word sequences directly. The actual goal is of course to 
directly test on word sequences, which will be carried out in the following sections.  

For example, the word string Investors suffered heavy losses is annotated with the part-of-
speech string NNS VBD JJ NNS, and is next assigned a total of five binary trees by U-DOP, listed 
in Figure 12 (where NNS stands for plural noun, VBD for past tense verb, and JJ for adjective).  

 

NNS VBD JJ NNS

Investors suffered heavy losses

X

X

X

   

NNS VBD JJ NNS

Investors suffered heavy losses

X

X

X

     

NNS VBD JJ NNS

Investors suffered heavy losses

X
X

X

 
 

NNS VBD JJ NNS

Investors suffered heavy losses

X

X

X

    

NNS VBD JJ NNS

Investors suffered heavy losses

XX

X

 
 

Figure 12. All binary trees for the WSJ sentence Investors suffered heavy losses 
 
 We used Goodman’s reduction method to convert the set of U-DOP’s trees (and subtrees) 
into a compact set of indexed PCFG rules (see Appendix). For the 7422 sentences from the WSJ10 
corpus, this resulted in 328,018 different indexed PCFG-rules. This number is not exceptionally 
large in the field of natural language processing: Current parsing models often use more than one 
million rules (Collins and Duffy 2002; Bod 2003) or even several millions of rules (Chiang 2007).  

We will use the same evaluation metrics as Klein and Manning (2002, 2004), i.e. ‘unlabeled 
precision’ (UP) and ‘unlabeled recall’ (UR). These metrics compute respectively the percentage of 
correctly predicted constituents with respect to all constituents predicted by the model (UP), and 
the percentage of correctly predicted constituents with respect to the constituents in the treebank 
(UR). The two metrics of UP and UR are combined by the f-score F1 which is the harmonic mean 
of UP and UR: F1 = 2*UP*UR/(UP+UR). It should be kept in mind that this evaluation metric is 
taken from the evaluation procedures of supervised parsing systems which aim at mimicking the 
treebank annotations. Since the trees in the Penn treebank are quite shallow, this evaluation metric 
punishes systems that learn binary trees. Therefore, the treebank trees are (automatically) binarized 
in the same way as Klein and Manning (2002, 2004). For our first experiment we test on the full 
corpora, just as in Klein and Manning’s work, after which we will employ n-fold cross-validation. 

Tabel 1 shows the unlabeled precision (UP), unlabeled recall (UR) and the f-scores (F1, 
given in bold) of U-DOP against the scores of the CCM model in Klein and Manning (2002), the 
dependency learning model DMV in Klein and Manning (2004) as well as their combined model 
DMV+CCM which is based on both constituency and dependency. The table also includes a 
previous experiment with U-DOP in Bod (2006b), which we refer to as U-DOP’2006, where only 
a random sample of the subtrees was used.  
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Model English 

(WSJ10) 
 UP      UR     F1 

German 

(NEGRA10) 
UP      UR     F1 

Chinese 

(CTB10) 
UP      UR     F1 

CCM 64.2   81.6   71.9 48.1   85.5   61.6 34.6   64.3   45.0 

DMV 46.6   59.2   52.1 38.4   69.5   49.5 35.9   66.7   46.7 

DMV+CCM 69.3   88.0   77.6 49.6   89.7   63.9 33.3   62.0   43.3 

U-DOP’2006 70.8   88.2   78.5 51.2   90.5   65.4 36.3   64.9   46.6 

U-DOP 75.9   90.9   82.7 52.4   91.0   66.5 37.6   65.7   47.8 

 
Table 1. Unlabeled Precision, Unlabeled Recall and F1-scores of U-DOP tested on the full English 

WSJ10, German NEGRA10 and Chinese CTB10, compared to other models. 
 

The table indicates that U-DOP obtains competitive results compared to Klein and Manning’s 
models, for all three metrics. The relatively high scores of U-DOP may be explained by the fact 
that the model takes into account (also) non-contiguous context in learning trees. We will 
investigate this hypothesis below. Note that the precision and recall scores differ substantially, 
especially for German. While most models obtain good recall scores (except for Chinese), the 
precision scores are disappointingly low. The table also shows that U-DOP’s use of the entire 
subtree-set outperforms the experiment in Bod (2006b) where only a sample of the subtrees was 
used. More subtrees apparently lead to better predictions for the correct trees (we will come back 
to this in more detail in Section 5.3). Note that the scores for German and Chinese are lower than 
for English; we should keep in mind that the WSJ10 corpus is almost four times as large as the 
NEGRA10 and CTB10 corpora. It would be interesting to study the effect of reducing the size of 
the WSJ10 to roughly the same size as NEGRA10 and CTB10. We therefore carried out the same 
experiment on a smaller, random selection of 2200 WSJ10 sentences. On this selection, U-DOP 
obtained an f-score of 68.2%, which is comparable to the f-score on German sentences (66.5%) 
but still higher than the f-score on Chinese sentences (47.8%). This result is to some extent 
consonant with work in supervised parsing of Chinese which generally obtains lower results than 
parsing English (cf. Hearne and Way 2004). 

We now come to isolating the effect of non-linear context in structure learning, as encoded 
by discontiguous subtrees, a feature which is not in the models of Klein and Manning. In order to 
test for statistical significance, we divide each of the three corpora into 10 training/test set splits 
where each training set constitutes 90% of the data and each test set 10% of the data (10-fold 
cross-validation). The strings in each training set were assigned all possible binary trees that were 
employed by U-DOP to compute the best tree for each string from the corresponding test set. For 
each of the 10 splits, we performed two experiments: one with all subtrees and one without 
discontiguous subtrees – or isomorphic PCFG-reductions thereof (Goodman 2003, p. 134, showed 
that his reduction method can just as well be applied to restricted subtree sets rather than DOP’s 
full subtree set – see the Appendix). In Figure 13, subtree (a) is discontiguous, while the other two 
subtrees (b) and (c) are contiguous.  
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NNS NNS

Investors losses

X

X

X

   

NNS VBD

Investors suffered

X

X

X

   

JJ NNS

heavy losses

X

 
  

(a)      (b)         (c) 
 

Figure 13. One discontiguous subtree and two contiguous subtrees from Figure 12 
 
Table 2 shows the results of these experiments, where we focus on the average f-scores of U-DOP 
using all subtrees and of U-DOP using only contiguous subtrees. We also added the f-scores 
obtained by Klein and Manning’s CCM, DMV and DMV+CCM models that were tested on the 
entire corpora. 
 

Model English 

 (WSJ10) 
German 

 (NEGRA10) 
Chinese 

 (CTB10) 

U-DOP With All Subtrees 80.3 64.8 46.1 

U-DOP Without Discontiguous Subtrees  72.1 60.3 43.5 

CCM 71.9 61.6 45.0 

DMV 52.1 49.5 46.7 

DMV+CCM 77.6 63.9 43.3 

 
Table 2. F-scores of U-DOP for WSJ10 with and without discontiguous subtrees using 10-fold 

cross-validation 
 
As seen in the table, the full U-DOP model scores consistently better than the U-DOP model 
without discontiguous information.4 All differences in f-scores were statistically significant 
according to paired t-testing (p<0.02 or smaller). The f-scores of Klein and Manning’s models are 
only added for completeness, since they were obtained on the entire corpus, rather than on 10 
splits. Although exact comparison is not possible, it is interesting that without discontiguous 
subtrees U-DOP obtains results that are similar to the CCM model which is based on contiguous 
dependencies only. In any case, our experiments show that discontiguous dependencies contribute 
to significantly higher f-score in predicting the correct trees. This result is consonant with U-
DOP’s cognitive claim that all possible subtrees should be taken into account, or in other words, 
that no structural-lexical relation should be neglected in learning the syntactic analyses of 
sentences. We will go into a more qualitative analysis of discontiguous subtrees in the following 
sections. The coverage (i.e. the percentage of sentences that could be parsed) by U-DOP was 
100% for all training/test set splits. This is not surprising, because every label X can be substituted 
into every other label X in U-DOP. The actual challenge is to find the best structure for a sentence.  
 We should keep in mind that all experiments so far have been carried out with tagged 
sentences. Children do not learn language from sentences enriched with part-of-speech categories, 
and if we want to investigate the cognitive plausibility of U-DOP we need to apply the model 

                                                           
4 Note that the best f-scores in Table 2 are somewhat lower than U-DOP’s f-scores in Table 1. This is due to testing on 
smaller parts of the corpora (n-fold testing) rather than testing on the full corpora. 



 17

directly to word strings from child language, which we will do so in Section 5. For completeness 
we mention that an experiment with U-DOP on WSJ10 word strings yielded only 51.7% f-score. 
By adding an unsupervised part-of-speech tagger based on distributional clustering (Clark 2000), 
we obtain an f-score of 76.4%, which is just 6% lower than by testing on the WSJ10 part-of-
speech sequences. It would be interesting to generalize unsupervised part-of-speech tagging to 
German and Chinese, and test U-DOP on these data as well, but this falls beyond the scope of this 
paper. 
 

4.2 The problem of ‘distituents’ 
There is an important question as to whether U-DOP does not overlearn highly frequent word 
combinations that are non-constituents, also known as ‘distituents’. For example, word 
combinations consisting of a preposition followed by a determiner, such as in the, on the, at the 
etc., occur in the top four most frequent co-occurences in the Wall Street Journal, and yet they do 
not form a constituent. The constituent boundary always lies between the preposition and the 
determiner, as in [in [the city]], which in the Penn treebank part-of-speech notation corresponds to 
[IN [DT NN]]. There are many types of combinations that are far less frequent than IN DT and 
that do form constituents. How does U-DOP deal with this? 

Let’s have a look at the most frequent constituent types learned by U-DOP in our 
experiments on the WSJ10 (Table 1) and compare them with the most frequent substrings from the 
same corpus. As in Klein and Manning (2002), we mean by a constituent type a part-of-speech 
sequence that constitutes a yield (i.e. a sequence of leaves) of a subtree in the best tree. Table 3 
shows the 10 most frequently induced constituent types by U-DOP together with the 10 actually 
most frequently occurring constituent types in the WSJ10, and the 10 most frequently occurring 
part-of-speech sequences (which turn out all to be bigrams). We thus represent the constituent 
types by their corresponding lexical categories. For instance, DT NN in the first column refers to a 
determiner-(singular)noun pair, while DT JJ NN refers to determiner-adjective-(singular)noun 
triple.5 

 

                                                           
5 The full list of lexical categories in the Penn Treebank II (Marcus et al. 1993) are: CC - Coordinating conjunction; 
CD - Cardinal number; DT - Determiner; EX - Existential there; FW - Foreign word; IN - Preposition or subordinating 
conjunction; JJ – Adjective; JJR - Adjective, comparative; JJS - Adjective, superlative; LS - List item marker; MD – 
Modal; NN - Noun, singular or mass; NNS - Noun, plural; NNP - Proper noun, singular; NNPS - Proper noun, plural; 
PDT – Predeterminer; POS - Possessive ending; PRP - Personal pronoun; PRP$ - Possessive pronoun; RB – Adverb; 
RBR - Adverb, comparative; RBS - Adverb, superlative; RP – Particle; SYM – Symbol; TO – to; UH – Interjection; 
VB - Verb, base form; VBD - Verb, past tense; VBG - Verb, gerund or present participle; VBN - Verb, past participle; 
VBP - Verb, non-3rd person singular present; VBZ - Verb, 3rd person singular present; WDT - Wh-determiner; WP - 
Wh-pronoun; WP$ - Possessive wh-pronoun; WRB - Wh-adverb. 
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Rank Most frequent  

U-DOP constituents 
Most frequent 

WSJ10 constituents 
Most frequent 

WSJ10 substrings 

1 DT NN DT NN NNP NNP 

2 NNP NNP NNP NNP DT NN 

3 DT JJ NN CD CD JJ NN 
4 IN DT NN JJ NNS IN DT 

5 CD CD DT JJ NN NN IN 

6 DT NNS DT NNS DT JJ 

7 JJ NNS JJ NN JJ NNS 

8 JJ NN CD NN NN NN 

9 VBN IN IN NN CD CD 

10 VBD NNS IN DT NN NN VBZ 

 

Table 3. Most frequently learned constituent types by U-DOP for WSJ10, compared with most 
frequently occurring constituent types in Penn treebank WSJ10, and the most frequently occurring 

part-of-speech sequences in Penn treebank WSJ10 
 

In the table we see that a distituent type like IN DT (in the, on the, at the etc.) occurs indeed very 
frequently as a substring in the WSJ10 (third column), but not among U-DOP’s induced 
constituents in the first column, and neither among the hand-annotated constituents in the middle 
column. Why is this? First note that there is another substring DT NN which occurs even more 
frequently than the substring IN DT (see third column of Table 3). U-DOP's probability model will 
then favor a covering subtree for IN DT NN which consists of a division into IN X and DT NN 
rather than into IN DT and X NN. As a consequence IN DT will not be assigned a constituent in 
the most probable tree. The same kind of reasoning can be made for a subtree for DT JJ NN where 
the constituent JJ NN occurs more frequently as a substring than the distituent DT JJ. In other 
words: while distituents like IN DT and DT JJ occur in the top most frequent part-of-speech 
strings, they are not learned as constituents by U-DOP’s probability model. This shows that the 
influence of frequency is more subtle than often assumed. For example, in Bybee and Hopper 
(2001:14) we read that “Constituent structure is determined by frequency of co-occurrence [...]: 
the more often two elements occur in sequence the tighter will be their constituent structure”). This 
idea, as attractive as it is, is incorrect. It is not the simple frequency of co-occurrence that 
determines constituent learning, but the probability of the structure of that co-occurrence. (This is 
not to say that a collocation of the form IN DT cannot form a phonetic phrase. What we have 
shown is that the learning of syntactic phrases, such as noun phrase and prepositional phrase, is 
more complex than applying simple frequency.) 
  

5  Experiments with the Childes database  
 
To test U-DOP on child language, we used the Eve corpus (Brown 1973) in the Childes database 
(MacWhinney 2000). Our choice was motivated by the accurate syntactic annotations that have 
recently been released for this corpus (Sagae et al. 2007), as well as its central role in child 
language acquisition research (cf. Moerk 1983). The Eve corpus consists of 20 chronologically 
ordered files each of about 1-1.5 hour dialog between child and adult that cover the period of 
Eve’s language development from age 1;6 till age 2;3 (with two-week intervals). During this 
period, Eve’s language changes from two-word utterances like More cookie and Papa tray to 
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relatively long sentences like Someone’s in kitchen with Dinah and I made my baby sit in high 

chair. In our learning experiments in this section we only use the files that were manually 
annotated and checked, which correspond to the first 15 files of the Eve corpus covering the age 

span 1;6-2;1 (but note that in section 6 we will use all files in our generation experiments). The 

hand-annotations contain dependency structures for a total of 65,363 words. Sagae et al. (2007) 
labeled the dependencies by 37 distinct grammatical categories, and used the part-of-speech 
categories as described in MacWhinney (2000). Of course there is a question whether the same 
categories can be applied to different stages of child language development. But since we will 
discard the category labels in our unlabeled trees in our evaluations (as U-DOP does not learn 
categories), we will not go into this question for the moment. We will see that unlabeled tree 
structures are expressive enough to distinguish, for example, between holophrases (as represented 
by fully lexicalized subtrees) and constructions with open slots (as represented by partially 
lexicalized subtrees). 

The annotations in Sagae et al (2007) were automatically converted to unlabeled binary 
constituent structures using standard techniques (Xia and Palmer 2001). Arities larger than 2 were 
converted into binary right-branching such that we obtained a unique binary tree for each 
dependency structure. This resulted in a test corpus of 18,863 fully hand-annotated, manually 
checked utterances, 10,280 adult and 8,563 child. For example, the binary tree structure for the 
Eve sentence (from file 15) I can blow it up is given in Figure 14.  
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Figure 14. Binary tree for Childes sentence I can blow it up (Eve corpus) 
 

5.1 Learning structures for the Eve corpus by U-DOP 
Our main goal is to investigate in how far U-DOP can be used to incrementally model child 
language development. But as a baseline we first evaluate the non-incremental U-DOP model on 
the Eve corpus. We applied U-DOP to the word strings from the 15 annotated Eve files, where we 
distinguished between two subcorpora: Child (8,563 utterances) and Adult (10,280 utterances). As 
before, we used a PCFG reduction of U-DOP which resulted in a total of 498,826 indexed PCFG 
rules (remember that the number of subtrees and indexed PCFG rules increases when we add 
abstract labels to the words, as done for the Eve corpus). 

As a first experiment we wanted to test in how far U-DOP could learn structures for the 
Child utterances on the basis of the Adult utterances only. This can be carried out by assigning all 
binary trees to the Adult utterances by which the best structures for Child utterances were 
computed (after which the outcome was evaluated against the hand annotations). However, for 
comparison we also lumped the Adult and Child utterances together as input, and used 
respectively the Child’s structures as output. Additionally, we also carried out an experiment 
where the Child utterances are used as input and the Child structures as output (even though a 
child does of course not learn the structures entirely from its own language). Next, we did the 
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same for Adult utterances as input and Adult structures as output. Finally, to make our first set of 
experiments ‘complete’ we used Child utterances as input and Adult structures as output. 

We should keep in mind that we did not use any part-of-speech annotations from the Eve 
corpus: we directly learned structures for word strings. This leads to the problem of unknown 
words, especially for the experiment from Child to Adult. As in Bod (1998, 2003), we assigned 
wildcards to unknown words such that they could match with any known word. Table 4 shows the 
results (unlabeled precision, unlabeled recall and f-score) where we again distinguish between 
using all subtrees and only contiguous subtrees. To the best of our knowledge these are the first 
published results on unsupervised structure induction for Childes data evaluated against the hand-
assigned structures by Sagae et al. (2007).  
 

Experimental Setting 

 

Full U-DOP 

 

 
   UP      UR        F1 

U-DOP without 

discontiguous subtrees 

 
    UP       UR         F1 

Adult to Child 77.0     87.2      81.8    75.2     85.9       80.2 

Child to Adult   45.5     51.4      48.3    44.1     50.3       47.0 

Full corpus to Child   85.8     92.7     89.1    84.7     91.4       87.9 

Full corpus to Adult   79.6     89.6     84.3  79.0     88.3       83.4 

Child to Child   86.6     91.3     88.9  85.2     90.8       87.9 

Adult to Adult   79.7     89.9     84.5  78.4     89.5        83.6 

 
Table 4. Unlabeled Precision, Unlabeled Recall and F1-scores of  U-DOP against hand-annotated 

Eve data in the Childes, under different experimental settings 
 
The first thing that strikes us in Table 4 is the relatively low f-score for Child to Adult (48.3%). 
This low score is actually not surprising since the lexicon, as well as the grammar, of an adult are 
much larger than those of a child, which makes it hard to learn to parse adult sentences from child 
utterances only. Even when we discard all Adult sentences that have unknown words in the Child 
data, we still obtain an f-score of just 58.0%. What is more interesting, is that the cognitively more 
relevant experimental setting, Adult to Child, obtains a relatively high f-score of 81.8%. While this 
f-score is lower than Child to Child (88.9%), and the differences were statistically significant 
according to 10-fold cross-validation (p < 0.01), it is of course harder for U-DOP to learn the 
Child structures from Adult utterances, than it is to learn the Child structures from the child’s own 
utterances. Yet, children do not learn a language by just listening to their own sentences, thus the 
Adult to Child setting is more relevant to the goal of modeling language learning. On the other 
hand, we should not rule out the possibility that children’s utterances have an effect on their own 
learning. This is reflected by the Full corpus to Child setting, which obtains slightly better results 
than the Child to Child setting (the differences were not statistically significant according to 10-
fold cross-validation) but it definitely obtained better results than Adult to Child (for which the 
differences were statistically significant, p < 0.01). 

Table 4 shows that the use of all subtrees consistently outperforms the use of only 
contiguous subtrees. This is consonant with our results in the previous section. An additional 
experiment with 10-fold testing showed that the differences in f-score between full U-DOP and U-
DOP without discontiguous subtrees are statistically significant for all data (p < 0.05 or smaller).6 
                                                           
6
 For reasons of completeness we have also evaluated several other versions of  U-DOP. By testing U-DOP by means 
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Note that the precision and recall scores for each setting differ much less than in the experiments 
on adult language in Section 4 (Table 1), which can be considered an improvement with respect to 
the adult language experiments.  
 

5.2 Extending U-DOP towards incremental learning  
We will now extend U-DOP towards incremental learning by inducing the structures for the child 
utterances of each Eve file on the basis of the accumulated files of previous utterances up to the 
particular file. We took (respectively) the total Child utterances up to a certain file, the total Adult 
utterances up to certain file, and the total Child and Adult utterances taken together (i.e. what we 
called Full corpus above) in order to derive the structures for Eve for a particular (non-
accumulated) file – which had the same file number as the last file of the accumulated files. In this 
way we create a first extension of U-DOP towards incremental learning: each file in the Eve 
corpus corresponds to a certain stage in Eve’s language development, and we want to figure out in 
how far the structures for Eve can be derived from the accumulated language experiences (of 
Child, Adult and Full corpus) at each stage. Figure 15 gives the f-scores for each file where we 
distinguish between Accumulated Child to Child (Series 1), Accumulated Adult to Child (Series 
2), and Accumulated Child and Adult to Child (Series 3). Remember that file 1 corresponds to age 
1;6 and file 15 to age 2;1, with 2 week intervals between consecutive files. 
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of the most probable tree only (i.e. without the shortest derivation), significantly lower f-scores were obtained both 
with and without discontiguous subtrees. It thus seems to be important to first compute the distribution of structurally 

most analogous trees, after which the statistics is applied. To investigate other notions of “distribution of most 
analogous trees”, we have tested also varieties of U-DOP by using the k-shortest (second shortest, third shortest etc.) 
derivations instead of the shortest derivation alone. While such an approach slightly improved the f-score for 
supervised DOP (cf. Bod 2002), it significantly deteriorated the f-scores for U-DOP. 
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Figure 15. F-scores for the Eve corpus, where U-DOP is tested on Accumulated Child to Child 

(Series1), Accumulated Adult to Child (Series2), and Accumulated Child and Adult to Child 

(Series3). 
 
Figure 15 supports the observation that Adult to Child (Series2) is mostly harder than Child to 
Child (Series1), except for files 11 and 12 where Adult to Child outperforms Child to Child 
(remember that the f-scores are only computed on the most recent non-accumulated Child file). 
We do not know why this is; a closer look at the utterances gave no more hints than that Eve uses 
for the first time gerunds (e.g. Sue giving some milk), which occurred earlier and more frequently 
in Adult data than in Child data, and were parsed correctly only in the Adult to Child setting. Note 
that the Full corpus to Child (Series3) results obtains the best f-score in most cases. However, only 
for the Adult to Child setting there is a global increas in f-score from file 1 to file 15, while for the 
other two settings there is no improvement from file 1 to file 15. This is perhaps not surprising 
since the structure induction for Eve is accomplished in these settings by using Eve’s utterances 
themselves as well (which is not the case in Adult to Child setting where U-DOP induced Eve’s 
structures by means of the Adult utterances alone). 
 It may also be interesting to have a closer look at what happens with the f-score at file 3: 
Child to Child decreases while Adult to Child increases. This may indicate that there are new 
syntactic constructs that appear in file 3 which were not (yet) in the Child data but already 
available in the Adult data. A qualitative comparison between files 2 (age 1;6) and 3 (age 1;7) 
seemed to support this. For example, in file 3 Eve uses full-fledged sentences with the auxiliary is 
as in the dog is stuck (which previously would only occur as dog stuck). Moreover, Eve uses in file 
3 for the first time verb combinations like ‘d help in I’d help stool away. These kind of 
constructions are very hard to process without examples from Adults.  

Although an incremental model is cognitively more realistic than a non-incremental model, 
we should keep in mind that the data in the Eve corpus is not dense enough to model each step in 
Eve’s language development. Yet, this data sparseness may perhaps be overcome if we apply U-
DOP within one and the same Eve-file. In this way, we can test U-DOP’s performance in a 
sentence-by-sentence way on Eve’s data (rather than on a file-by-file way). One of the phenomena 
we have been interested in is the acquisition of discontiguous constructions, such as separable 
particle verbs. How does U-DOP simulate this learning process? To deal with this question, we 
applied the incremental version of U-DOP (using the Adult and Child to Child setting) to a 
sequence of Eve’s utterances with the separable particle verb blow … up from file 15. Figure 16 
lists these utterances with blow … up.  
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1. *CHI: I trying a blow it up Fraser . 

2. *CHI: there I blow it up . 

3. *CHI: there I blow it up . 

4. *CHI: I can't . 

5. *CHI: there I blow it up . 

6. *CHI: I blow . 

7. *CHI: I have blow it up up big . 

8. *CHI: yeah . 

9. *MOT: you have to blow it up big ? 

10.*MOT: well I don't think you can Eve . 

11.*MOT: because there's knot in the balloon that I cannot get untied . 

12.*MOT: we'll have to get another one . 

13.*CHI: I can blow this up . 

14.*MOT: I don't think you can . 

15.*CHI: I can blow it in my mouth . 

 

Figure 16. Dialog between Eve and her mother with the discontiguous phrase blow … up  
 

Up to sentence 5 (in Figure 16), Eve seems to use the phrase blow it up as one unit in that there is 
no evidence for any internal structure of the phrase. U-DOP learned at sentence 2 that blow it up is 
a separate constituent, but was not able to induce any further internal structure for this constituent, 
and thus left open all possibilities (i.e. it maintained two different trees for blow it up). In sentence 
6 Eve produces I blow, which led U-DOP to induce that blow is a separate constituent, but without 
being able to decide whether it is attached to blow or to up. The next major sentence is 13: I can 

blow this up. The new word this occurs between blow and up which led U-DOP to induce two 
possible subtrees: [[blow X] up] and [blow [X up]] without breaking ties yet. Finally, in sentence 
15, Eve produces blow it without up, which led U-DOP to assign the subtree [[blow X] up] a 
higher frequency than [blow [X up]]. This means that (1) U-DOP has correctly learned the 
separable particle verb blow … up at this point, and (2) DOP’s MPSD will block the production at 
this point of ‘incorrect’ constructions such as blow up it since only the larger (learned) 
construction will lead to the shortest derivation (we will extensively come back to generation in 
the next section).   

A limitation of the experiment above may be that U-DOP could only learn the particle verb 
construction from the utterances produced by both her mother and by Eve herself (i.e. the Child 
and Adult to Child set-up). It would be interesting to explore whether U-DOP can also learn 
discontiguous phrasal verbs from adult utterances alone (i.e. Adult to Child set-up), such as the 
particle verb  put … in, as shown in Figure 17. 

 
1. *MOT: well we can put it in . 

2. *MOT: yeah . 

3. *MOT: Mom can put the stick in . 

4. *MOT: we just can't put any air in . 

 
Figure 17. Mother utterances from the Eve corpus with discontiguous phrase put … in 

 
The four sentences in Figure 17 suffice for U-DOP to learn the construction put X in. At sentence 
3, U-DOP induced that can put it in and can put the stick in are generalized by can put X in. But 
the internal structure remains unspecified. At sentence 4, U-DOP additionally derived that put X in 
can occur separately from can, resulting in an additional constituent boundary. Thus by initially 
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leaving open all possible structures, U-DOP incrementally rules out incorrect structures until the 
correct construction put X in is learned. In this example, U-DOP was not able to decide on any 
further internal structure for put X in, leaving open all (i.e. two) possibilities at this point. This is 
equivalent to saying that according to U-DOP put X in has no internal structure at this point.  

Note that in both examples (i.e. blow it up and put it in), U-DOP follows a route from 
concrete constructions to more abstract constructions with open slots. The subtrees that partake in 
U-DOP’s MPSD initially correspond to ‘holophrases’ after which they get more abstract resulting 
in the discontiguous phrasal verb. This is consonant with studies of child language acquisition 
(Peters 1983; Tomasello 2003) which indicate that children move from item-based constructions 
to contructions with open positions. Although this is an interesting result, we must keep in mind 
that Eve’s files are separated by two-week time intervals during which there were important 
learning steps that have not been recorded and that can therefore not be modeled by U-DOP. Yet, 
we will see in Section 6 that the grammar underlying U-DOP’s induced structures triggers some 
interesting new experiments regarding language generation. 
 

5.3 The effect of subtree size 
Before going into generation experiments with U-DOP/DOP, we want to test whether we can 
obtain the same (or perhaps better) f-scores by putting constraints on U-DOP. By limiting the size 
of U-DOP’s subtrees we can instantiate various other models. We define the size of a subtree by 
its depth, which is the length of the longest path from root to leaf in a subtree. For example, by 
restricting the maximum depth of the subtrees to one, we obtain an unsupervised version of 
probabilistic context-free grammar or PCFG (such a PCFG should not be confused with a ‘PCFG’-
reduction of DOP’s PTSG for which each node in the tree receives 8 indexed PCFG-rules, and 
which is not equal to the standard notion of a PCFG – see Appendix). When we allow subtrees of 
at most depth 2, we obtain an extension towards a lexicalized tree-substitution grammar. The 
larger the depth of the subtrees, and consequently the width, the more (sequential and structural) 
dependencies can be taken into account. But there is a question whether we need subtrees of 
arbitrary depth to get the highest f-score. In particular, do we need such large productive units for 
the earliest stages of Eve’s language development? To test this, we split the hand-annotated part of 
the Eve corpus into three equal periods, each of which contains 5 files. 

Table 5 shows the f-scores of U-DOP on the Adult to Child learning task for the three 
different periods with different maximum subtree depths. The average sentence length (a.s.l.) is 
also given for each period. 
 

Maximum 

Subtree Depth 

File 1-5 

a.s.l. = 1.84 

File 6-10 

a.s.l. = 2.59 

File 11-15 

a.s.l. = 3.01 

1 (PCFG) 49.5 44.2 35.6 

2 76.2 64.0 57.9 

3 88.7 78.6 68.1 
4 88.6 80.5 74.0 

5 88.7 84.9 75.8 
6 88.6 84.9 76.3 

All (U-DOP) 88.7 84.9 77.8 

 
Table 5. F-scores of U-DOP on the Adult to Child learning task for three periods, where the 

subtrees are limited to a certain maximum depth. The a.s.l. refers to the average number of words 
per sentence (average sentence length). For all periods there are subtrees larger than depth 6. 



 25

 
The table shows that for the first period (file 1-5; age 1;6-1;8) the f-score increases up to subtree 
depth 3, while for the second period (age 1;8-1;10) the f-score increases up to subtree depth 5, and 
in the third period (age 1;11-2;1) there is a continuous increase in f-score with increasing subtree 
size. Thus the f-score decreases if the subtrees are limited to a simple PCFG, for all periods, and 
the subtree-depth for which maximum f-score is obtained increases with age (and corresponding 
average sentence length). This suggests that children’s grammars move from small building blocks 
to grammars based on increasingly larger units. It is remarkable that the f-score continues to grow 
in the third period. We will study the qualitative effect of subtree-size in more detail in our 
generation experiment below. 
 

6  Generation experiments with auxiliary fronting  
 
So far we have shown how U-DOP can infer to some extent the syntactic structures of Child 
utterances from Adult utterances. But once we have learned these structures, we have also learned 
the grammar implicit in these structures by which we can generate new utterances, namely by 
combining subtrees from the learned structures. This DOP/PTSG model will of course 
overgenerate due to its lack of labels and absence of semantics. In principle, we need a DOP 
model that computes the best string for a given meaning representation, such as in Bod (1998). But 
in the absence of meaning in the current version of U-DOP, we can at least test whether the 
derived PTSG correctly generates certain syntactic facets of (child) language. In this section we
will test our method on the phenomenon known as auxiliary fronting. We will deal with the 
phenomenon in two ways: first in a ‘logical’ way, similar to Clark and Eyraud (2006); next, in an 
empirical way by using the induced structures from the Eve corpus.  

The phenomenon of auxiliary fronting is often taken to support the well-known “Poverty of 
the Stimulus” argument and is called by Crain (1991) the “parade case of an innate constraint”. 
Let’s start with the typical examples which are the same as those used in Crain (1991), 
MacWhinney (2005), Clark and Eyraud (2006) and many others: 
 
(5) The man is hungry 
 
If we turn sentence (5) into a (polar) interrogative, the auxiliary is is fronted, resulting in sentence 
(6). 
 
(6) Is the man hungry? 
 
A language learner might derive from these two sentences that the first occurring auxiliary is 
fronted. However, when the sentence also contains a relative clause with an auxiliary is, it should 
not be the first occurrence of is that is fronted but the one in the main clause: 
 
(7) The man who is eating is hungry 
 
(8) Is the man who is eating hungry? 
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Many researchers have argued that there is no reason that children should favor the correct 
auxiliary fronting. Yet children do produce the correct sentences of the form (7) and rarely of the 
form (9) even if they have not heard the correct form before (Crain and Nakayama 1987).9 
 
(9) *Is the man who eating is hungry? 
 
According to the nativist view and the poverty of the stimulus argument, sentences of the type in (8) 
are so rare that children must have innately specified knowledge that allows them to learn this 
facet of language without ever having seen it (Crain and Nakayama 1987). On the other hand, it 
has been claimed that this type of sentence can be learned from experience (Lewis and Elman 
2001; Reali and Christiansen 2005). We will not enter the controversy on this issue (see Pullum 
and Scholz 2002; Kam et al. 2005), but believe that both viewpoints overlook an alternative 
possibility, namely that auxiliary fronting needs neither be innate nor in the input data to be 
learned, but that its underlying rule may be an emergent property of a structure learning algorithm. 
We will demonstrate that by U-DOP’s shortest derivation, the phenomenon of auxiliary fronting 
does not have to be in the input data and yet can be learned.  
 

6.1 Learning auxiliary fronting from a constructed example 
The learning of auxiliary fronting can proceed when we have induced tree structures for the 
following two sentences (we will generalize over these sentences in Section 6.2): 
 
(10) The man who is eating is hungry  
(11) Is the boy hungry? 
 
Note that these sentences do not contain an example of complex fronting where the auxiliary 
should be fronted from the main clause rather than from the relative clause. The tree structures for 
(10) and (11) can be derived from exactly the same sentences as in Clark and Eyraud (2006): 
 
(12) The man who is eating mumbled 
(13) The man is hungry 
(14) The man mumbled 
(15) The boy is eating 
 
The best trees for (10) and (11) computed by U-DOP from (10)-(15) are given in Figure 18.  
 

                                                           
9 Crain and Nakayama (1987) found that children never produced the incorrect form (9). But in a more detailed 
experiment on eliciting auxiliary fronting questions from children, Ambridge et al. (2008) found that the correct form 
was produced 26.7% of the time, the incorrect form in (9) was produced 4.55% of the time, and auxiliary doubling 
errors were produced 14.02% of the time. The other produced questions corresponded to shorter forms of the 
questions, unclassified errors and other excluded responses.  
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Figure 18. Tree structures for the man who is eating is hungry and is the boy hungry? learned by 
U-DOP from the sentences (10)-(15) 

 
Given these trees, we can easily prove that the shortest derivation produces the correct auxiliary 
fronting. That is, in order to produce the correct AUX-question, Is the man who is eating hungry, 
we only need to combine the following two subtrees in Figure 19 from the acquired structures in 
Figure 18 (note that the first subtree is discontiguous)9. 
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Figure 19. Producing the correct auxiliary fronting by combining two subtrees from Figure 18 
 
Instead, to produce the incorrect AUX-question *Is the man who eating is hungry? we would need 
to combine at least four subtrees from Figure 18 (which would in fact never be produced by the 
shortest derivation), which are given in Figure 20: 
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Figure 20. Producing the incorrect aux-fronting by combining four subtrees from Figure 18 

                                                           
10  We are implicitly assuming a DOP model which computes the most probable shortest derivation given a certain 
meaning to be conveyed, such as in Bonnema et al. (1997) and Bod (1998). 
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Clearly the derivation in Figure 19 is the shortest one and produces the correct sentence, thereby 
overruling the incorrect form. Although our argument is based on one example only (which we 
will extend in Section 6.2), it suggests the following explanation for auxiliary fronting: the shortest 
derivation provides the maximal similarity or analogy between the new sentence (with complex 
fronting) and old sentences, that is, there is maximal structure sharing between new and old forms 
(cf. Gentner and Markman 1997). As an effect, the shortest derivation substitutes the simple NP 
the boy for the complex NP the man who is eating, leading to the correct fronting (see Bod 2007b). 

The example above thus shows that *Is the man who eating is hungry? is blocked by the 
MPSD, provided that we have sentences like (10)-(15) (which we will generalize to the entire Eve 
corpus in Section 6.2). But we have not yet shown that a sentence like *Is the man who is eating is 

hungry? is also blocked. This incorrect sentence can in fact also be generated by only two subtrees 
from Figure 18 (i.e. by combining the subtree [isX X]X from 18b and the entire tree from 18a) and 
would thus compete with the correct Is the man who is eating hungry? Interestingly, Crain and 
Nakayama (1987) report that children make the same type of error with auxiliary doubling (also 
discussed in Ambridge et al. 2008). Yet if we additionally take into account the frequencies of the 
subtrees, it turns out that the MPSD is unique and predicts the correct fronting. This can be 
informally seen as follows. Since we also heard a sentence like (12) above (The man who is eating 

mumbled), the total frequency of the subtree for The man who is eating is twice as high as the 
subtree for The man who is eating is hungry, which means that the sentence with the correct 
auxiliary placement will win in this specific case. And in the more general case, a subtree for a 
sentence like The man who is eating X, where X stands for another constituent will be more 
frequent than a (sub)tree for the specified sentence The man who is eating is hungry (because the 
former sentence can occur with different fillers for X). Our argument does therefore not hinge on 
the specific example in this section. Thus if we leave out frequency, the shortest derivation 
generates one other incorrect auxiliary fronting, which is however also produced by children in the 
Crain and Nakayama (1987) experiment. But when we take into account frequency, the correct 
fronting will get a higher probability than the incorrect fronting. 

 

6.2 Learning auxiliary fronting from the Eve corpus 
The example in the previous section is limited to just a couple of artificial sentences. There is an 
important question as to whether we can generalize our artificial result to actual data. So far we 
have only shown that U-DOP/DOP can infer a complex AUX-question from a simple AUX-
question and a complex declarative. But a language learner does not need to hear each time a new 
pair of sentences to produce a new AUX-question -- such as Is the girl alone? and The girl who is 

crying is alone in order to produce Is the girl who is crying alone?. In the following we will 
investigate whether U-DOP can learn auxiluary fronting from the Eve utterances rather than from 
constructed examples, and whether the model can derive the abstract generalization for the 
phenomenon. 

First note that the patterns of respectively a complex declarative and a simple question in 
(10) and (11) can also be represented by (16) and (17) (with the only difference that P in (10) 
refers to the man while in (11) it refers to the boy, but this does not change our argument). 
 
(16)  P who is Q is R 
(17)  is P R? 
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We will assume that the variables P, Q and R can be of any (lexical or syntactic) category, except 
the auxiliary is. This assumption can lead to the production of implausible and unacceptable 
sentences, but our first goal will be to test whether U-DOP can generate the correct pattern Is P 

who is Q R? from (16) and (17) -- and we will see below that the AUX-questions generated by 
DOP are mostly acceptable, due to its preference of using largest possible chunks. Our question is 
thus whether U-DOP can assign structures to (16) and (17) on the basis of the Eve corpus such that 
the complex pattern (18) is generated by the (most probable) shortest derivation while the patterns 
(19) and (20) are not. For convenience we will refer to pattern (19) as “incorrect auxiliary 
fronting” and to pattern (20) as “auxiliary doubling”. 
 
(18)  Is P who is Q R? 
(19)  *Is P who Q is R? 
(20)  *Is P who is Q is R? 
 
We should first mention that there is no occurrence of the complex AUX-question (18) in the Eve 
corpus. Thus U-DOP cannot learn the complex pattern by simply using a large subtree from a 
single sentence. Moreover, there is no occurrence of the complex declarative (16) (P who is Q is 

R) in the Eve corpus either (although there are many instances of simple polar interrogatives like 
(17) as well as many relative clauses with who). This means that we cannot show by our 
experiment that the complex AUX-question can be derived from an observed complex declarative 
and a simple AUX-question. But it is interesting to investigate whether we can derive the complex 
AUX-question from raw data by learning first the structure of a complex declarative. Such an 
experiment could connect our ‘logical’ argument in Section 6.1 with a more empirical argument. 
Thus we first tested whether the structures of (16) and (17) could be derived from the Eve corpus. 
We used U-DOP’s inferred structures in the Adult to Child setting from Section 5 to compute the 
MPSD for the two patterns P who is Q is R.and is P R? where P, Q and R were taken as wildcards. 
By employing the Adult to Child setting, we only use the structures learned for Eve’s utterances 
which means that our result does not depend on the structures of Adult utterances.  
          The induced structures by U-DOP’s MPSD for (16) and (17) are given in (21) and (22). For 
readability we will leave out the labels X at the internal nodes (in the sequel we only show the 
label X if it appears at an external node, for example in a subtree-yield). 
 
(21)  [[[P] [who [is Q]]] [is R]] 
(22)  [is [P R]]? 
 
Note that (21) and (22) are virtually equivalent to the structures 14(a) and 14(b) modulo the 
internal structure of P which in (21) and (22) is taken as a whole constituent. On the basis of these 
two structures, DOP will generate the correct AUX-question by the shortest derivation in the same 
way as shown in Section 6.1 (Figure 19), namely by combining the two subtrees [is [X R]] and 
[[P] [who [is Q]]], while the sentence with incorrect auxiliary fronting can be generated only by 
(at least) four subtrees (and the same argument in Section 6.1 can also be used for the auxiliary 
doubling). While this empirical result thus generalizes over the artificial result above, our 
experiment is based on the assumption that the structures (21) and (22) are the only trees that 
contribute to generating the AUX-question Is P who is Q R?. This is an unrealistic assumption: 
there are many other utterances in the Eve corpus whose subtrees may contribute to generating 
AUX-questions.  
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         In our next experiment we will therefore use U-DOP’s induced structures for Eve’s 
utterances to compute the most probable shortest derivations directly for the patterns (18)-(20), 
rather than via the complex declarative. Table 10 gives for each AUX-pattern the minimal number 
of subtrees from Eve’s utterance-structures that generated it, and the probability of the most 
probable tree among the shortest derivations. 
 

Pattern 

 

Length of 

shortest 

derivation 

MPSD 

(probability of 
best tree) 

Is P who is Q R? 3 4.4 ⋅ 10-17 

*Is P who Q is R? 3 2.1 ⋅ 10-18 

*Is P who is Q is R? 3 1.8 ⋅ 10-18 

 
Table 10. Patterns of auxiliary fronting together with the length of the shortest derivation and the 

probability of the MPSD, as generated by subtrees from the induced structures of Eve’s data. 
 

Different from the artificial example above, all patterns are now generated by three subtrees – both 
the correct, incorrect and auxiliary-doubling patterns (remember that the correct AUX-question 
cannot be generated anymore from the complex declarative, as the latter does not appear in the 
Eve corpus). Tabel 10 shows that the probability of the correct fronting pattern is one order of 
magnitude higher than the probabilities of the other two patterns. The incorrect fronting pattern is 
slightly more likely than the auxiliary doubling pattern, while the study by Ambridge et al (2008) 
shows that auxiliary doubling is actually generated three times more often by children than the 
incorrect fronting in eliciting complex AUX-questions (roughly 14% against 4.5%). Yet, our 
experiment is not directly comparable to Ambridge et al. (2008) because the children in Ambridge 
et al. are on average 3.5 years older than Eve. It would be interesting to know the kind of auxiliary 
fronting sentences elicited from children of Eve’s age – if possible at all. In any case, our 
experiment correctly predicts that the correct fronting has the highest probability.  
         While this experiment demonstrates that on the basis of unsupervised learning the correct 
abstract ‘rule’-pattern for auxiliary fronting obtains a higher probability than the incorrect ‘rule’-
patterns, we should keep in mind that it is a parsing experiment rather than a generation 
experiment: we have parsed pre-given patterns instead of generating them. Children do of course 
not produce sequences of words with open slots but sequences of consecutive words. In our third 
experiment we therefore want to randomly generate a large number of complex AUX-questions so 
as to determine the percentage of the different auxilary patterns produced by U-DOP’s derived 
PTSG. Note that we cannot exhaustively generate all possible questions, since there are infinitely 
many of them. Even the generation of all possible AUX-questions of maximally 8 words from the 
Eve corpus already leads to an unmanageably large number of sentences. Thus we must somehow 
sample from the distribution of possible AUX-questions if we want to investigate the percentages 
of various AUX-questions produced by U-DOP/DOP. Since we know that the correct AUX-
question can be generated by three subtrees, we will produce our random generations by selecting 
(randomly) three subtrees of the following types:  

(1) a subtree with the word is at the leftmost terminal of the subtree-yield (without any other 
restrictions),  

(2) a subtree with the word who at any position in the subtree-yield, 
(3) a subtree with the word is at any position in the subtree-yield .  
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Next we combine these 3 subtrees in the order of being sampled (if they can be combined at all). If 
the resulting sentence has all slots filled with words, we accept it, otherwise we discard it. In this 
way, we effectively sample from the distribution of shortest derivations for sentences of a large 
variety of patterns, many of which may be ‘unacceptable’, but which include patterns (18)-(20). If 
more than one derivation for the same sentence was generated then their probabilities were added, 
so as to take into account the MPSD. A total of 10 million sentences were randomly generated in 
this way, of which 3,484 had all slots filled. These were automatically compared with the three 
patterns (18)-(20). Table 11 gives the percentage of these patterns, as well as the other patterns that 
resulted from the generation experiment. 
 

Pattern 

 

Percentage 

 

Is P who is Q R? 40.5 

*Is P who Q is R? 6.9 

*Is P who is Q is R? 7.0 

 
Other: 

*Is P Q who is R? 
*Is P Q R who is? 
*Is who is P Q R? 
*Is who P is Q R? 
*Is who P Q R is? 
*Is P is who Q R? 

Etc… 
Total Other: 

 
 

10.7 
6.7 
4.0 
3.8 
2.5 
2.0 

 
45.6 

 
Table 11. Percentage of generated AUX-patterns by random generation of derivations of three 

subtrees with the words is, who, and is. 
 
Table 11 shows a distribution where the correct fronting pattern is most likely, while the incorrect 
fronting and the auxiliary doubling are again almost equally likely. Although the correct fronting 
occurs only 40.5% of the time, it corresponds to the MPSD. Almost half of the generated 
sentences (45.6%) did not correspond to one of the three original patterns. In particular, the pattern 
*Is P Q who is R? was generated quite frequently (10.7%). This pattern was not investigated in 
detail in the study by Ambridge et al. (2008), although under “other excluded responses” in 
Appendix E of their paper they list several sentences that are very similar to this pattern (e.g. Is the 

boy washing the elephant who’s tired). The other incorrect patterns in Table 11 are not reported in 
Ambridge et al. (2008). It has of course to be seen which of these incorrect patterns will still be 
generated if we extend U-DOP with category induction (as we discuss in Section 7). But it is 
promising that our results are more in line with the recent experiments by Ambridge et al., in 
which various incorrect auxiliary fronting errors are reported, than with the older study by Crain 
and Nakayama (1987), in which incorrect fronting was never generated by children. 
        If we have a look at the sentences corresponding to the correct AUX-fronting pattern Is P 

who is Q R?, then it is remarkable that many of them are syntactically well-formed, and some of 
them are semantically plausible, even though there were no restrictions on the lexical/syntactic 
categories. This may be due to U-DOP/DOP’s use of large chunks that tend to maintain 
collocational relations. Table 12 gives the ten most frequently generated AUX-questions of the 
pattern Is P who is Q R?, together with their unlabeled bracketings and their frequencies of being 
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generated (as well as the percentage corresponding to this frequency in the class of correct AUX-
questions). It turns out that these sentences have roughly the same structure as in Figure 18(a). 
Note that the most frequently generated sentences also seem to correspond to the syntactically 
most acceptable and semantically most plausible sentences. 
 
 

AUX-questions of the pattern Is P who is Q R? with 

induced unlabeled bracketings 

 

Frequency of 

being generated 

[Is [[Fraser [who [is crying]]] going]] 37    (2.6%) 

[Is [[Fraser [who [is that]]] [having coffee]]] 30    (2.1%) 

[Is [[Fraser [who [is crying]]] [having coffee]]] 28   (2.0%) 

[Is [[that [who [is crying]]] [some noodles]]] 27   (1.9%) 

[Is [[that [who [is [some [more tapioca]]]] [some noodles]]] 23   (1.6%) 

[Is [[Fraser [who [is [some [more tapioca]]]] [having coffee]]] 22   (1.5%) 

[Is [[Fraser [who [is that]]] going]] 20   (1.4%) 

[Is [[Fraser [who [is [some [more tapioca]]]] going]] 18   (1.3%) 

[Is [[that [who [is that]]] [some noodles]]] 7   (0.50%) 

[Is [[that [who [is that]]] going]] 3   (0.21%) 

 
Table 12. Ten most frequently generated AUX-questions of the correct pattern with their 

bracketings together with their frequencies and their percentage from the total number of sentences 
of the correct pattern. 

 
Finally, we also investigated the effects of the depth and the absence of discontiguous subtrees on 
predicting the correct auxiliary fronting by our random generation method. For each maximum 
subtree depth, we generated 10 million sentences as before by derivations of 3 subtrees, except for 
maximum subtree depths 1 and 2, for which the shortest derivations that could generate the correct 
AUX-pattern consisted respectively of 11 and 5 subtrees. For maximum subtree depths 1 and 2, 
we therefore generated (10 million) sentences by randomly selecting resp. 11 and 5 subtrees, for 
which at least two subtrees had to contain the word is and at least one subtree had to contain the 
word who. For maximum subtree depth 3 and larger, there was always a shortest derivation of 3 
subtrees that could generate the correct auxiliary fronting. Next, we checked which was the most 
frequently generated AUX-pattern for each maximum depth. Table 13 lists for each maximum 
subtree depth: (1) the length of the shortest derivation, (2) whether or not the correct AUX-pattern 
was predicted by the MPSD using all subtrees (followed by the predicted pattern), (3) as under (2) 
but now with only contiguous subtrees. 
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Maximum 

Subtree Depth 

Length of 

shortest 

derivation 

Correct AUX-fronting? 

(all subtrees) 

 

Correct AUX-fronting? 

(contiguous subtrees only) 

1 (PCFG) 11 NO: *Is P Q R who is? NO: *Is P Q R who is? 

2 5 NO: *Is P Q who is R? NO: *Is P Q who is R? 

3 3 NO: *Is P Q who is R? NO: *Is P Q R who is? 
4 3 YES: Is P who is Q R? NO: *Is P Q R who is? 

5 3 YES: Is P who is Q R? NO: *Is P Q who is R? 
6 3 YES: Is P who is Q R? YES: Is P who is Q R? 

All (DOP) 3 YES: Is P who is Q R? NO: *Is P Q who is R? 

 
Table 13. Effect of subtree depth and discontiguous subtrees on predicting the correct AUX-

fronting. For each maximum subtree depth the table gives: (1) the length of the shortest derivation 
that can generate the correct AUX-pattern, (2) whether or not the correct AUX-pattern was 

predicted by the MSPD using all subtrees (together with the predicted pattern),  (3) as under (2) 
using only contiguous subtrees. 

 
The table shows that in order to generate the correct auxiliary fronting we need to include 
discontiguous subtrees of depth 4, which supports our ‘logical’ argument in Section 6.1 where also 
(discontiguous) subtrees of up to depth 4 were needed (Figure 19). Note that if only contiguous 
subtrees are used in the generation process, the correct AUX-fronting is almost never produced, 
and the only correct prediction at subtree-depth 6 seems to be anomalous. These results support 
our previous results on constraining subtree depth and discontiguity in Sections 4 and 5. Although 
for auxiliary fronting subtrees of maximum depth 4 suffice, we have shown in Section 5.3 that 
even larger subtrees are needed to predict the correct structures for Eve’s longer utterances. 
        As a matter of precaution, we should keep in mind that Eve does not generate any complex 
auxiliary fronting construction in the corpus -- but she could have done so by combining chunks 
from her own language experiences using simple substitution. This loosely corresponds to the 
observation that auxiliary fronting (almost) never occurs in spontaneous child language, but that it 
can be easily elicited from children (as e.g. in Ambridge et al. 2008). 
       Auxiliary fronting has been previously dealt with in other probabilistic models of structure 
learning. Perfors et al. (2006) show that Bayesian model selection can choose the right grammar 
for auxiliary fronting. Yet, their problem is different in that Perfors et al. start from a set of given 
grammars from which their selection model has to choose the correct one. Our logical analysis in 
Section 6.1 is more similar to Clark and Eyraud (2006) who show that by distributional analysis in 
the vein of Harris (1954) auxiliary fronting can be correctly predicted from the same sentences as 
used in Section 6.1 (which are in turn taken from MacWhinney 2005). However, Clark and Eyraud 
do not test their model on a corpus of child language or child-directed speech. More importantly, 
perhaps, is that Clark and Eyraud show that their model is equivalent to a PCFG, whereas our 
experiments indicate that subtrees of up to depth 4 are needed to learn the correct auxiliary 
fronting from the Eve corpus. Of course it may be that auxiliary fronting can be learned by a non-
binary PCFG with rich lexical-syntactic categories (which we have not tested in this paper). But it 
is well-known that PCFGs are inadequate for capturing large productive units and their 
grammatical structure at the same time. For example, for a PCFG to capture a multi-word unit like 
Everything you always wanted to know about X but were afraid to ask, we need to take this entire 
expression as right-handside of the PCFG-rule. While such a PCFG can thus recognize this long 
multi-word unit, it would completely neglect the internal structure of the expression. A PTSG is 
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more flexible in this respect, in that it allows for productive units that include both the full 
expressions as well as their syntactic structure. We could enhance PCFGs by cleverly indexing its 
rules such that the relation between the various rules can be remembered as in a PTSG-subtree. 
But then we actually obtain a “PCFG”-encoding of a PTSG as explained in the Appendix. (For a 
mathematical proof that the class of PTSGs is actually stochastically stronger than the class of 
PCFGs, see Bod 1998: 27ff.)  
        Auxiliary fronting has also been dealt with in non-hierarchical models of language. For 
example, Lewis and Elman (2001) and Reali and Christiansen (2005) have shown that auxiliary 
fronting can be learned by linear processing models. Lewis and Elman trained a simple recurrent 
network (SRN), while Reali and Christiansen used a trigram model that could predict the correct 
auxiliary fronting. However, it is not clear what these models learn about the structure-dependent 
properties of auxiliary fronting since trigram models do not learn structural relations between 
words. Kam et al. (2005) argue that some of the success of Reali and Christiansen’s models 
depend on ‘accidental’ English facts. The U-DOP/DOP approach, instead, can learn both the 
correct auxiliary fronting and its corresponding (unlabeled) syntactic structure. More than that, our 
method learned the abstract auxiliary fronting rule for complex interrogatives (sentence 18) from 
the original complex declarative (sentence 16) and a simple interrogative (sentence 17). Simple 
recurrent networks and trigram models miss dependencies between words when they are separated 
by arbitrarily long sequences of other words, while such dependencies are straightforwardly 
captured by PTSGs. 
        It would be interesting to investigate whether U-DOP/DOP can also simulate auxiliary 
fronting in other languages, such as Dutch and German that have verb final word order in relative 
clauses. And there is a further question whether our approach can model children’s questions in 
general, given an appropriate corpus of child utterances (see e.g. Rowland 2007). Research into 
this direction will be reported in due time. 
      

7  Conclusion 
 

The experiments in this paper should be seen as a first investigation of U-DOP/DOP’s simulation 
of (child) language behavior. As a general model of language learning, our approach is of course 
too limited and needs to be extended in various ways. The learning of lexical and syntactic 
categories may be one of the most urgent extensions. Previous work has noted that category 
induction is a relatively easier task than structure induction (Klein and Manning 2005; Redington 
et al. 1998). Yet it is not trivial to integrate category learning in the U-DOP model in an 
incremental way. In principle, the U-DOP approach can be generalized to category learning as 
follows: assign initially all possible categories to every node in all possible trees (from a finite set 
of n abstract categories C1…Cn) and let the MPSD decide which are best trees corresponding to the 
best category assignments. But apart from the computational complexity of such an approach, it 
neglects the fact that categories can change quite substantially in the course of child language 
acquisition. Experiments with incremental category learning will have to await future research.  
 A major difference between our model and other computational learning models is that we 
start out with the notion of tree structure, but since we do not know which tree structures are 
correct, we allow for all of them and let the notion of structural analogy decide. Thus we implicitly 
assume that the language faculty has prior knowledge about constituent structure, but no more than 
that. We have seen that our use of tree structures allows for capturing linguistic phenomena that 
are reliant on non-adjacent, discontiguous dependencies. Other approaches are often limited to 
contiguous dependencies only, either in learning (Klein and Manning 2005) or in generation (e.g. 
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Freudenthal et al. 2007). We have not yet evaluated our approach against some other learning 
models such as Solan et al. (2005) and Dennis (2005) mainly because these models use test 
corpora different from ours. We hope that our work motivates others to test against the (annotated) 
Eve corpus as well.  

Finally, it may be noteworthy that while U-DOP presents a usage-based approach to 
language learning, U-DOP’s use of recursive trees has a surprising precursor: Hauser, Chomksy 
and Fitch (2002) claim that the core language faculty comprises just recursion and nothing else. If 
we take this idea seriously, then U-DOP may be the first computational model that instantiates it. 
U-DOP’s trees encode the ultimate notion of recursion where every label can be recursively 
substituted for any other label. All else is analogy. 
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Appendix: Computing the MPSD 
 

There is an extensive literature on the computational properties of DOP and U-DOP (see e.g. 
Sima’an 1996; Scha et al. 1999; Goodman 2003; Bod 2006b, 2007a; Zuidema 2007). This 
appendix summarizes the main results of U-DOP/DOP’s computational background, and focuses 
on an efficient and compact PCFG reduction of DOP.  

The way (U-)DOP combines subtrees into new trees is formally equivalent to a Tree-
Substitution Grammar or TSG, and its probabilistic extension is equivalent to a Probabilistic TSG 
or PTSG (Bod 1998). There are standard algorithms that compute the tree structures (a packed 

parse forest) of an input string given a PTSG. These algorithms run in Gn3 time, where G is the 
size of the grammar (the number of subtrees) and n is the length of the input string (the number of 
words). Existing parsing algorithms for context-free grammars or CFGs, such as the CKY 
algorithm (Younger 1967), can be straightforwardly extended to TSGs by converting each subtree 

t into a context-free rewrite rule where the root of t is rewritten by its yield: root(t) → yield(t). 
Indices are used to link each rule to its original subtree. Next, the MPSD can be computed by a 
best-first beam search technique known as Viterbi optimization (Manning and Schütze 1999). 
However, the direct application of these techniques to DOP and U-DOP is intractable because the 
number of subtrees grows exponentially with the number of nodes in the corpus (Sima’an 1996). 
Goodman (1996, 2003) showed that the unwieldy DOP grammar can be reduced to a compact set 
of indexed PCFG-rules which is linear rather than exponential in the number of nodes in the 
corpus. Goodman's PCFG reduction was initially developed for the probabilistic version of DOP 
but it can also be applied to computing the shortest derivation, as we will see below.  
 Goodman’s method starts by assigning every node in every tree a unique number which is 
called its address. The notation A@k denotes the node at address k where A is the nonterminal 
labeling that node. A new nonterminal is created for each node in the training data. This 
nonterminal is called Ak. Let aj represent the number of subtrees headed by the node A@j, and let 

a represent the number of subtrees headed by nodes with nonterminal A, that is a = Σj aj. Then 

there is a ‘PCFG’ with the following property: for every subtree in the training corpus headed by 
A, the grammar will generate an isomorphic subderivation with probability 1/a. For example, for a 



 36

node (A@j (B@k, C@l)), the following eight rules are generated, where the number in parentheses 
following a rule is its probability: 
 

Aj → BC       (1/aj)  A → BC        (1/a) 

Aj → BkC      (bk/aj)  A → BkC      (bk/a) 

Aj → BCl      (cl/aj)  A → BCl         (cl/a) 

Aj → BkCl     (bkcl/aj)  A → BkCl       (bkcl/a) 

 

It can be shown by simple induction that this construction produces derivations isomorphic to 
DOP derivations with equal probability (Goodman 2003: 130-133). It should be kept in mind that 
the above reduction is not equivalent to a standard PCFG (cf. Manning and Schütze 1999). 
Different from standard PCFGs, the ‘PCFG’ above can have several derivations that produce the 
same tree (up to node relabeling). But as long as no confusion arises, we will refer to this 
reduction as a ‘PCFG-reduction of DOP’ and refer to the rules above as ‘indexed PCFG rules’. 
Goodman (2003) also shows that similar reduction methods exist for DOP models in which the 
number of lexical items or the size of the subtrees are contrained. 

Note that the reduction method can also be used for computing the shortest derivation, 
since the most probable derivation is equal to the shortest derivation if each subtree is given equal 
probability. This can be seen as follows. Suppose we give each subtree a probability p, e.g. 0.5, 

then the probability of a derivation involving n subtrees is equal to pn, and since 0<p<1 the 
derivation with the fewest subtrees has the greatest probability. 

While Goodman’s reduction method was developed for supervised DOP where each 
training sentence is annotated with exactly one tree, the method can be easily generalized to U-
DOP where each sentence is annotated with all possible trees stored in a shared parse forest or 
packed chart (Billot and Lang 1989). A shared parse forest is usually represented by an AND-OR 
graph where AND-nodes correspond to the usual parse tree nodes, while OR-nodes correspond to 
distinct subtrees occurring in the same context. In Bod (2006b, 2007a), Goodman’s reduction 
method is straightforwardly applied to shared parse forests by assigning a unique addresses to each 
node in the parse forest, just as with the supervised version of DOP. 

The shortest derivation(s) and the most probable tree, and hence the MPSD, can be 
efficiently computed by means of standard best-first parsing algorithms. As explained above, by 
assigning each subtree equal weigth, the most probable derivation becomes equal to the shortest 
derivation, which is computed by a Viterbi-based chart parsing algorithm (see Manning and 
Schütze 1999: 332ff). Next, the most probable tree is equal to the sum of the probabilities of all 
derivations, which can be estimated by k-best parsing (Huang and Chiang 2005). In this paper, we 
set the value k to 1,000, which means that we estimate the most probable tree from the 1,000 most 
probable derivations (in case the shortest derivation is not unique). However, in computing the 
1,000 most probable derivations by means of Viterbi it is often prohibitive to keep track of all 
subderivations at each edge in the chart. We therefore use a simple pruning technique (as in 

Collins 1999) which deletes any item with a probability less than 10−5 times of that of the best 
item from the chart. 
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Abstract

The relation between Language Acquisition, Language Change and Language Typology is a fasci-
nating topic, but also one that is difficult to model. I focus in this paper on the question how theories
of language acquisition constrain theories of language change and typology. In the generative tradition
and “Learnability Theory” this problem is approached by assuming that all linguistic variation can be
described in terms of a relatively small number of parameters of a universal, innate core, the Universal
Grammar. In this view, language acquisition is parameter setting, and language change is parameter
change. I review some simple acquisition models and their consequences for language change, and dis-
cuss some problems with this approach. I will then discuss an alternative approach that is based on
“Explicit Induction” algorithms for grammatical formalisms. I discuss which approach is most useful
for which problems.

1 Language acquisition, change and typology

Every healthy human infant is capable of acquiring any one of a dazzling variety of human languages. This
simple fact poses two fundamental challenges for linguistics: (1) understanding how children are so ex-
tremely successful at this apparently complex task, and (2) understanding how, although all humans have
such similar linguistic abilities, such a wide variety of languages has emerged. These challenges are intri-
cately linked: the languages that we observe today, are the result of thousands of years of cultural trans-
mission, where every generation has acquired its language from the observed use by previous generations.
That makes the acquisition of language a rather unique learning problem for learning theory, because what
is being learned is itself the result of a learning process. Conversely, the structure of a language (say modern
English) at any one time (say, 2003) is the result of perhaps millions of individuals learning from examples
from a language with a very similar structure (say, the English of the 1960s).

This so-calledcircular causality(Steels, 1999) makes the relation between Language Acquisition, Lan-
guage Change and Language Typology a fascinating topic, but also one that is difficult to model. I will
focus here on the question how theories of language acquisition constrain theories of language change and
typology. In the generative tradition and “Learnability Theory” this problem is approached by assuming
that all linguistic variation can be described in terms of a relatively small number of parameters of a uni-
versal, innate core, the Universal Grammar. In this view, language acquisition is parameter setting, and



language change is parameter change. In the following I will review some simple acquisition models and
their consequences for language change, and discuss some problems with this approach. I will then discuss
an alternative approach from the emerging field of computational modeling of the evolution of language
(Kirby, 2002b), that is based on “Explicit Induction” algorithms for grammatical formalisms. I will argue
that the differences between the two approaches have been exaggerated, and will discuss for which sort of
problems which sort of approach is most useful.

2 Parameter models

The “Parameter change” approach to this problem is based onparameterizinglinguistic structure, such that
we can characterize all differences between possible human languages by a vector of a small number of
parameters. E.g., in the Principles and Parameters approach (Chomsky, 1981; Bertolo, 2001), language
acquisition is described in terms of parameter settings for a universal core, the Universal Grammar. With
such a description of language in hand, we can reformulate the challenges as follows: (1) how can learning,
given primary linguistic data that conforms to any particular set of parameters, find that set of parameters?
(2) given a set of learning procedures that are capable of finding the correct parameters, which ones predict
the type of language change and statistical distributions (universals tendencies, Kirby 1999) that we can
actually observe?

2.1 Parameter setting

In the “parameter setting” models of language acquisition, one assumes a finite numberN of possible
grammars. If all variation can be described byn different, Boolean and independent parameters, such that
the total number of possible grammars isN = 2n. Such parameters determine, for instance, whether or
not an object precedes the main verb in a sentence, or whether or not the subject can be left out. Typically,
although the number of parameters is estimated at around30, concrete examples are only worked out for
the 2 or 3 least controversial proposed parameters. A lot of work in parameter setting works with rather
simplified models that can be studied analytically, and that depend only on the finiteness ofN . Examples
of such models are “memory-less learning”, “batch learning” (e.g. Nowaket al., 2001) and “learning by
enumeration” (Gold, 1967). It is useful to look in a bit more detail at these models.

Memory-less learning(Niyogi, 1998) is arguably the simplest language acquisition model. The algo-
rithm works by choosing a random grammar from the set of possible grammars each time the input data
shows that the present hypothesis is wrong. The algorithm obviously is not very efficient, because it can
arrive at hypotheses it has already rejected before; i.e. each time it randomly chooses a new grammar, it
forgets what it has learned from all data it has received before. This algorithm is only of interest because it
is simple and provides a lower bound on the performance of any reasonable algorithm (Nowaket al., 2001).

Thebatch learner, in contrast, memorizes all received sentences and finds all grammars from the set of
possible ones that are consistent with these sentences. Equivalently, it keeps track of all possible grammars
that are still consistent with the received data. In any case, for any reasonably large set of possible grammars,
the batch learner has monstrous memory and processing requirements. Its value lies in the fact that it is
simple, and provides an upper bound on the performance of any reasonable learning algorithm, as long as
there is no a-priori reason to prefer one grammar that is consistent with the data over another.

As exemplified by appendix A, we can, with a bit of effort, derive explicit formulas that describe the
probability of successq as a function of the number of input sentences for both the memory-less and the
batch learner. Under the assumption that every wrong grammar is equally similar to the right grammar
(described with a similarity parametera), we can in fact give a complete transition matrixT , where all



diagonal values areqmemoryless and all off-diagonal values are(1 − qmemoryless)/(N − 1). This transition
matrix plays an important role in models of language change described in the next section.

It is important to realize that these algorithms only work because a finite (and in fact, relatively small)
number of possible grammars is assumed. Moreover, calculations such as in appendix A are relatively easy
due to some important assumptions: (1) that the algorithms are not biased at all to favor certain possible
grammars over others; (2) that (in the case of the memory-less learner) the probability of jumping to a
wrong or right grammar remains constant throughout the learning process; and (3) that all grammars are
equally similar to each other. Without these assumptions, similar calculations quickly get rather complex.

For instance,learning by enumeration(Gold, 1967), as the name suggests, proceeds by enumerating one
at a time, and in prespecified order all possible grammars. Only if a grammar is inconsistent with incoming
data (“text”), does the algorithm move on to the next grammar. The procedure is of interest, because it can
be used as a criterion for learnability (Gold, 1967)1. Calculatingq is more difficult than before, because the
probably of changing to a wrong grammardecreasesover time.

The trigger learning algorithm(Wexler & Culicover, 1980) is a popular model that is of (slightly)
more practical interest. Rather than picking a random new grammar, as the memory-less learner does, or
enumerating grammars in a random order, as in learning by enumeration, it changes a random parameter
when it finds an input sentence that is inconsistent with the present hypothesis. If with the new parameter
setting the sentence can be parsed, the change is kept, otherwise it is reverted. The trigger learning algorithm
thus implements a kind of hill-climbing (gradient ascent), by keeping parameters that do well and only
making a small change when it improves performance. The probability of the trigger algorithm to give the
right grammar afterb sentences is even more tricky to calculate, because the probability to reject a wrong
hypothesesdecreasesas more and more parameters get correctly set.

Many other parameter setting models exists. E.g. Briscoe (2002a) develops a variant of the trigger
learning algorithm, where parameters are no longer independent, but fall into linguistically motivated in-
heritance hierarchies. Further, rather than choosing a single parameter at random and changing it, as in the
TLA, Briscoe’s algorithm selects several random parameters and keeps track of their most likely setting in
a Bayesian, statistical fashion. Yang (2000) argues that language acquisition is best viewed as a selectionist
process, where many different parameter sets are considered in parallel. Niyogi & Berwick (1995) and Yang
(2000) consider the further complication that children learn from input sentences that are drawn from dif-
ferent languages, and explore the expectations on what grammar settings they will end up with. In all these
models, calculating the probabilities of the outcome of learning gets very complex and results are typically
obtained by using computer simulations.

2.2 Parameter change

Niyogi & Berwick (1995), as well as neural network modelers Hare & Elman (1995), argue that a theory
of language acquisition – and the mistakes children make when confronted with insufficient or ambiguous
input – implies a theory of language change. Similarly, Kirby (1999) explores the idea that a theory on
language use and processing – which alter the primary linguistic data – leads to specific expectations on
language change and the resulting linguistic variation. Hence, by working out the consequences for language
change and comparing them to empirical data, theories on language use, processing and acquisition can be

1Learning by enumeration can, within finite time, find the target grammar from a class of grammars if the following conditions
hold: (1) the class of grammars is finite (enumerable), (2) for every two grammars in the class, there exists a sentence that distin-
guishes between two grammars (i.e. that is grammatical according to one, and ungrammatical according to the other), and (3) the
distinguishing sentence will occur within a finite amount of time in the the text, generated by the target grammar. It follows that
the class of grammars is then learnable from text. It can be shown that superfinite classes of grammars, such as the context-free or
context-sensitive grammars, are not learnable in this sense (Gold, 1967). Principles & Parameters-models, in contrast, are learnable
(Wexler & Culicover, 1980) and so are many other classes (Angluin, 1980).



tested. Formally, a class of grammarsG, a learning algorithmA and a model of the primary linguistic data (a
probability distributionPi over the possible sentences of languagei) together constitute the main ingredients
of a dynamical system that describes the change in numbers of speakers of each language2.

Several general results have been obtained. For instance, Niyogi & Berwick (1995) and Yang (2000) find
that with different choices for{G,A,P}, the change in the number of speakers of a particular language tends
to follow an S-shaped curve, consistent with observed patterns in historical data. More interestingly, Nowak
et al. (2001) derive acoherence threshold. In their model, natural selection selecting for more frequent
grammars, helps a population to converge on a specific grammar. Mistakes in learning, on the other hand,
lead to divergence, because it essentially randomizes the choice of grammars. Nowak et al. find that if the
accuracy in learning is below a precise threshold, all coherence in the population is lost and all languages
are spoken with equal probability3.

Niyogi and Berwick apply their methodology to a number of case studies. For instance, they look at a
simple 3-parameter system where the parameters determine whether or not specifiers (1) and complements
(2) come before the head of a phrase, and whether or not the verb is obligatorily in second position (3). In
this system, there are 8 different possible grammars (languages). By making assumptions on the frequency
with which triggers for each of the parameters are available to the child, they can estimate the probability
a specific learning algorithm can learn each language. They numerically determine the probabilities of
transitions between each of the 8 language over 30 generations with 128 triggers per generation. They find
that languages with the third parameter set to “0” (V 2−) are extremely unstable and that theV 2+ parameter
therefore quickly gets fixed in all simulations. This observation is contrary to observed trends in historical
data, whereV 2+ is typically lost. Niyogi and Berwick argue that this falsifies their preliminary model, and
thus illustrates the feasibility of testing the diachronic accuracy of the assumptions on{G,A,P}.

2.3 Some features of parameter change models

Several other parameter change models have been studied. They have in common the emphasis on the uni-
formity of languages, i.e. all possible languages (grammars) are of equal quality. Hence, children acquiring
a language do not go from a simple grammar to a more complex one, but rather jump from one grammar
to an equally complex alternative. Not the quality of the language, but the uncertainty about which is the
correct one changes over time.

Moreover, in all these models the acquisition of syntax is studied independently from the acquisition
of phonology, semantics, pragmatics and the lexicon, and, usually, independent from the particularities of
thechild’s parsing algorithm. The training data are “triggers”, i.e. strings of grammatical categories. The
problems of learning the syntactic categories of words and their meaning, and learning to recognize the
phonological form and the boundaries between words are all ignored.

Further, the models fit into a tradition that is much mathematically oriented. Although many results are
obtained through numerical simulations, the models are formulated at a rather abstract level. Generations
are typically discrete, the number of parameters small (2, 3, 5), number of training samples and the number
of individuals in a population very small or, alternatively, infinite.

The models are valuable, because they give ageneralinsight in how linguistic conventions can change
and spread in a population. However, the problem with this approach is that its potential for explain-
ing specificaspects of language acquisition and language typology depends completely on the successful
parametrization of linguistic descriptions. That dependence has advantages, because it makes the relation
with other linguistic theories very clear, but it has some major disadvantages as well.

2In addition to the triple{G,A,P} (Niyogi & Berwick, 1995), one needs assumptions on population and generation structure
and the number of training sentences the algorithm receives.

3Presumably, a similar mechanism explains the lack of coherence in the simulations of Niyogi & Berwick (1995).



First, there is, as for now, no such parametrization available. If efficient parametrization (i.e. with 20
or 30 parameters) turns out to be impossible, models that depend on them will be inadequate. Second, even
if it is possible in principle, without a complete theory available on what each parameter means, solutions
in terms of these parameters give little insight on why children learn certain things with more ease than
others, or why languages tend to show certain patterns more often than others. Finally, parameter-models
might give an adequate description of the variation in languages in a quasi-stable state, but that does not
necessarily mean that they also give an adequate description of language variety when languages are chang-
ing. In particular, observed trends in language change regarding the interaction between phonology, syntax,
semantics and pragmatics seem hard to capture in available parameter models.

3 Explicit Induction

3.1 Grammar Induction: impossible and irrelevant?

Grammar Induction algorithms are usually based on the intuition that the frequency of occurrence of sub-
string in the training sentences, and the contexts in which they appear, contain information on what the
underlying constituents and the rules of combination of the target grammar are. E.g. Zellig Harris, in de-
scribing the methods linguists use to infer the grammar of an unknown language, defines the crucial concept
of “substitutability” as follows: “If our informant accepts DA’F as a repetition of DEF, and if we are simi-
larly able to obtain E’BC as equivalent to ABC, then we say that A and E are mutually substitutable” (Zellig
Harris, 1951, quoted in van Zaanen 2001).

It is possible to design induction algorithms that, just like Harris’s linguist, use observed patterns in
training sentences to induce the underlying grammar. However, due to initial negative results on the theoret-
ical possibility of learning a grammar from positive data (Gold, 1967) and developments in linguistic theory
(e.g. Chomsky, 1965), theinductionof grammar has been widely viewed as both impossible and irrelevant.

The supposed impossibility of grammar induction is based on a widespread misinterpretation of negative
learnability results. Gold (1967) showed that e.g. the class of context-sensitive languages is notidentifiable
in the limit. Even we if accept identification in the limit as the appropriate criterion for learnability, Gold’s
results mean nothing more than, in his own words:

“The class of possible natural languages is much smaller than one would expect from our

present models of syntax. That is, even if English is context-sensitive, it is not true that any

context-sensitive language can occur naturally. Equivalently, we may say that the child starts

out with more information than that the language it will be presented is context-sensitive. In

particular, the results on learnability from text imply the following: The class of possible natural

languages if it contains languages of infinite cardinality, cannot contain all languages of finite

cardinality.” (Gold, 1967)

In other words, a class of context-sensitive grammars needs to be constrained to make it learnable.
Angluin (1980) has shown that very non-trivial classes of formal languages are learnable. Nothing in the
formal results, however, proves that the necessary restrictions are due to an extensive, innate, language-
specific Universal Grammar; they could be simply generic properties of the human brain4.

The supposed irrelevance of grammar induction algorithms is based on the fact that the dominant linguis-
tic theories of the last decades assume extensive innate knowledge. If children don’t do grammar induction,
why design computer programs that do? Evidence for this view comes – in addition to the learnability

4Although it is of course true that learnability is a valid test for judging the validity of a (grammatical) theory, and that few
proposed theories other than those from the nativist tradition pass it. However, one can argue that nativist theories, rather than
solving the learnability problem, simply shift it to the domains of evolutionary theory and cognitive neuroscience.



results – from empirical observations in child language acquisition. Typically, such arguments have the
form: the child correctly uses construction X very early in life, even though the primary linguistic data it
has received up to that point does not provide enough evidence to choose between X and several alternative
logical possibilities. Thus, it is concluded, the child must have prior (innate) knowledge of X.

More and more it is now recognized that this “knowledge of X” might be an emergent result of the
interaction between not necessarily language-specific cognitive and learning abilities, and the structure,
meaning and pragmatics of the linguistic data the child received (MacWhinney, 1999). Consequently, the
need to postulate language-specific adaptations might be limited (Jackendoff, 2002; Hauseret al., 2002).

3.2 Induction Algorithms

Wolff (1982), and similarly Stolcke (1994), Langley & Stromsten (2000) and Zuidema (2003), presents
a model based on the idea that a grammar is a compressed representation of a possibly infinite language
(string set). These algorithms all use context-free grammars as the grammar formalism, learn from text and
run through three phases that can be termed “incorporation”, “compression” and “generalization”. I will
refer to these algorithms as “compression-based induction”.

In the incorporation phase, input sentencess are stored as idiosyncratic rewrite rulesS 7→ s. In the
compression phase (or “syntagmatic merging”), the most frequent substringsz in the right-hand sides of
the stored rules are replaced by a unique non-terminal symbolN . Rules of the formN 7→ z are added
to the grammar. In the generalization phase (or “paradigmatic merging”), two nonterminalsN and N ′

are consideredsubstitutableif they occur in the same context; all occurrences ofN ′ are then replaced by
N . Different variants of the basic algorithm differ in howgreedythey are, and in whether or not they are
incremental. Kirby (2000), and later papers, uses a algorithm were the context-free grammars are enriched
with a predicate-logic based semantics.

A related framework based on substitutability is developed by van Zaanen (2001) and termed “Alignment
Based Learning” (ABL). Van Zaanen develops a number of algorithms for the two phases of the ABL
framework: Alignment learning and selection learning. In the alignment learning phase input sentences are
compared, aligned and common substrings are identified. Theunequalpartsz andz′ of the two sentences
are labeled with a non-terminal. The non-terminal is unique if neitherz nor z′ was labeled already, but
the algorithm reuses the existing label if available, and equates the two non-terminals if bothz andz′ were
labeled already. In the latter two conditions a form of generalization occurs. Each labeling is a hypothesis
on a possible constituent of the target language, and very many such hypotheses are generated.

In the selection learning phase, a subset of the generated hypotheses is selected. That subset is chosen
such that it is concise (each hypothesis can be used to analyze many sentences), and that it is internally
consistent (hypotheses do not overlap). The ABL algorithm yields a tree-bank: an annotated version of the
input corpus (it thus implements automated tagging). From the tree-bank, context-free grammars can be
trivially induced.

3.3 Language Evolution

In the “Explicit Induction” approach to modeling language change and evolution, language change is studied
based on similar induction algorithms, i.e. learning algorithms that produce an explicit grammar based on
training sentences (see Hurford, 2002, for a review). Such an approach avoids the problems of parameter
models, because they can incorporate any available linguistic formalism. However, they have two major
disadvantages as well: (1) language induction is very challenging problem that is far from solved, even
for simplified and well understood grammar formalisms; (2) models that incorporate a full-blown linguistic
formalism, including procedures for language production and interpretation, quickly get very complex.



Two recent models by Kirby (2002a) and Batali (2002) show that there is reason for optimism for
progress on bl problems. Kirby presents a model that is very clear in its set-up. It uses first-order predi-
cate logic with a small set of entities and predicates to represent semantics, and a extension of context-free
grammars to represent syntax and the syntax-semantics mapping. The model thus uses well-understood and
conventional linguistic formalisms and a simple learning procedure. However, by using the output of one
learning cycle as input for the next Kirby was able to get some unconventional results: the spontaneous
emergence of a recursive, infinite but learnable language. However, the learning algorithm used is very brit-
tle, andit’s difficult to extend the model to domains with more diverse semantics and a more heterogeneous
syntax.

In contrast, Batali’s model is very difficult to understand. It also uses a form of predicate logic to
represent semantics, but it uses “exemplars” as the basic representation of the grammar, and “argument
maps” to guide the combination of exemplars into meaningful sentences. The results show the emergence
of a complex language, with properties similar to case marking and subordinate clause marking in natural
languages. The emergent languages are essentially infinite but nevertheless learnable (from meaning–form
pairs). The learning algorithm is successful and robust in this complex domain presumably because of the
redundancy it allows.

3.4 Some features of explicit induction models

Several other explicit induction models have been studied. They have in common that no uniformity of
languages are assumed. Typically, individuals in these models start with an empty grammar and empty
lexicon, and gradually add new rules and lexical items based on the received sentences and observed patterns.
Individuals are, however, equipped with an invention procedure, such that they can generate new sentences
when required.

Further, in these models learning is typically from form–meaning pairs and a lexicon is built-up in
parallel with the grammar. The recognition of phonemes and the pragmatics of dialogs are built-in as
assumptions of the models.

The models are all implemented as computer programs. Typically, the models are rather concrete:
they consist of a population of individuals, with procedures for production, invention, interpretation and
induction, and a set of possible message to communicate. The languages studied in these models are still
relatively simple, and exhibit just some basic word orders or morphological markers for the semantic roles
of agents, patients and action. Empirical data from historical linguistics has so far played no role in these
studies.

4 Discussion

I have reviewed some models of language acquisition and language change from two different traditions.
The crucial question – which approach is best? – is still largely open to discussion. The following issues are
important in comparing both approaches:

Learnability - Theoretical arguments. From the field of learnability theory it has sometimes been argued
that grammar induction is impossible. In section 3.1 I have argued that this position is based on a mis-
understanding of the negative learnability results. Learnability, however, is an important test for the
validity of a grammar formalisms and induction algorithms. The challenge is to find a combination of
a formalism that is as expressive as human languages are (i.e. mildly context-sensitive), and a learning
algorithm that can induce it from the available primary linguistic data. In my view, parameter setting



models meet this challenge, but only by making unsatisfactory assumptions on the prior knowledge
the algorithms start with. Explicit induction models, on the other hand, present considerable progress
(i.e. most work with context-free grammars), but more work still needs to be done.

Learnability - Empirical arguments. From the field of psycholinguistics it has been argued that children
have prior knowledge of syntactic constructions, because they choose, from apparently many logical
possibilities that are consistent with the received evidence, the correct, seemingly arbitrary option.
Grammar induction models, in this view, are – if not impossible – irrelevant, because children do not
do induction. I believe that explicit induction algorithms have already shown that the logic of this
argument is false. There is no need for assuming explicit prior knowledge, because the outcome of
the interaction between learning biases and training data is subtle and often unexpected. Moreover,
because languages are transmitted culturally from generation to generation, seeming arbitrary choices
are likely to be the correct ones, because previous generations have used the same arbitrary learning
algorithm to learn their language (Deacon, 1997; Kirby, 2000; Briscoe, 2002a; Zuidema, 2003).

Equivalence More subtly, it has been suggested that explicit induction models might in some sense be
equivalent to parameter setting models. If the space of grammars that induction algorithms explore
is finite, then that space could in principle be parametrized and hence described by a finite num-
ber of parameters. The induction algorithm can then be described, albeit possibly in a clumsy and
complicated way, as a parameter setting procedure. If this is true – and it presumably is for the
context-free grammar and finite-state machine inducers – the crucial issue is parsimony and clarity.
Presumably, for some purposes the representation in terms of parameters is more useful, but for com-
parison with psycholinguistic, neurological and historical data the explicit grammar representation
seems more appropriate. Further, the parameterized representation leads naturally to the uniformity
assumptions, whereas the explicit grammar representation leads naturally to the view that grammars
grows over time. Finally, stochastic grammar formalisms can not be parametrized in the concise way
that parameter setting models usually assume. Worse, lexicalized, exemplar-based models can not be
parametrized because there are infinitely many probability distributions that can be assigned to the
string set (Bod, 1998).

In conclusion, the two approaches to modeling of language change are rooted in different theoretical
positions on the nature of language and language acquisition. If one adopts the Principles and Parame-
ters framework, the parameter change approach is the appropriate way to conceptualize language change.
However, this approach requires more work to make explicit how each parameter is to be interpreted, which
triggers for each parameter are available, how the child learns her lexicon and recognizes syntactic categories
in the sentences it receives, how parameters depend on each other, etc. Moreover, it requires a satisfactory
explanation for the evolution and development of the Universal Grammar in thechild’s brain. However,
some Explicit Induction models might, even if one adopts this approach, still be useful as an equivalent
representations that can be more easily compared to empirical data.

If one rejects the Uniformity Hypothesis and conceptualizes grammar acquisition as the gradual built-up
of a grammar in the mind of the child, explicit induction models are the appropriate approach. Parameter
change models are still useful as simple, but mathematically sophisticated models of how conventions spread
in a population.

References

ANGLUIN , D. (1980). Inductive inference of formal languages from positive data.Information and Control
21, 46–62.



BATALI , J. (2002). The negotiation and acquisition of recursive grammars as a result of competition among
exemplars. In: Briscoe (2002b).

BERTOLO, S., ed. (2001).Language Acquisition and Learnability. Cambridge University Press.
BOD, R. (1998).Beyond Grammar: An experience-based theory of language. Stanford, CA: CSLI.
BRISCOE, T. (2002a). Grammatical acquisition and linguistic selection. In: Briscoe (2002b).
BRISCOE, T., ed. (2002b).Linguistic evolution through language acquisition: formal and computational

models. Cambridge University Press.
CHOMSKY, N. (1965).Aspects of the theory of syntax. Cambridge, MA: MIT Press.
CHOMSKY, N. (1981).Lectures on Government and Binding. Dordrecht: Foris.
DEACON, T. (1997). Symbolic species, the co-evolution of language and the human brain. The Penguin

Press.
GOLD, E. M. (1967). Language identification in the limit.Information and Control (now Information and

Computation)10, 447–474.
HARE, M. & ELMAN , J. (1995). Learning and morphological change.Cognition56, 61–98.
HAUSER, M., CHOMSKY, N. & FITCH, W. (2002). The faculty of language: what is it, who has it, and

how did it evolve?Science298, 1569–1579.
HURFORD, J. R. (2002). Expression / induction models of language. In: Briscoe (2002b).
JACKENDOFF, R. (2002).Foundations of Language. Oxford, UK: Oxford University Press.
K IRBY, S. (1999). Function, selection and innateness: The emergence of language universals. Oxford

University Press.
K IRBY, S. (2000). Syntax without natural selection: How compositionality emerges from vocabulary in a

population of learners. In:The Evolutionary Emergence of Language: Social function and the origins
of linguistic form(Knight, C., Hurford, J. & Studdert-Kennedy, M., eds.). Cambridge, UK: Cambridge
University Press.

K IRBY, S. (2002a). Learning, bottlenecks and the evolution of recursive syntax. In: Briscoe (2002b).
K IRBY, S. (2002b). Natural language from artificial life.Artificial Life 8, 185–215.
KOMAROVA , N., NIYOGI , P. & NOWAK , M. (2001). The evolutionary dynamics of grammar acquisition.

J. Theor. Biology209, 43–59.
LANGLEY, P. & STROMSTEN, S. (2000). Learning context-free grammars with a simplicity bias. In:Pro-

ceedings of the Eleventh European Conference on Machine Learning, pp. 220–228. Barcelona: Springer-
Verlag.

MACWHINNEY, B., ed. (1999).The emergence of language. Mahwah, NJ: Lawrence Erlbaum Associates.
NIYOGI , P. (1998).The informational complexity of learning. Boston, MA: Kluwer.
NIYOGI , P. & BERWICK, R. C. (1995). The logical problem of language change. Tech. rep., M.I.T.
NOWAK , M. A., KOMAROVA , N. & N IYOGI , P. (2001). Evolution of universal grammar.Science291,

114–118.
STEELS, L. (1999). The puzzle of language evolution.Kognitionswissenschaft8.
STOLCKE, A. (1994).Bayesian Learning of Probabilistic Language Models. Ph.D. thesis, Dept. of Electri-

cal Engineering and Computer Science, University of California at Berkeley.
WEXLER, K. & CULICOVER, P. (1980).Formal principles of language acquisition. Cambridge MA: MIT

Press.
WOLFF, J. G. (1982). Language acquisition, data compression and generalization.Language & Communi-

cation2, 57–89.
YANG, C. D. (2000). Internal and external forces in language change.Language Variation and Change12,

231–250.
VAN ZAANEN , M. (2001). Bootstrapping Structure into Language: Alignment-Based Learning. Ph.D.

thesis, School of Computing, University of Leeds.



ZUIDEMA , W. (2003). How the poverty of the stimulus solves the poverty of the stimulus. In:Advances in
Neural Information Processing Systems 15 (Proceedings ofNIPS’02)(Becker, S., Thrun, S. & Obermayer,
K., eds.). Cambridge, MA: MIT Press. (forthcoming).

A Memory-less learner and batch learner

To estimate the probability that memory-less learning finds the correct grammar after a certain number (b)
of sample sentences, we need to consider the inverse: the probability that the algorithm still has a wrong
hypothesis afterb sample sentence.

P (right grammar after b samples) = 1 − P (wrong grammar after b samples) (1)

The probability that the learner still has the wrong hypothesis, depends on the probability that it initially
chose the wrong hypothesis (simply(N − 1)/N ) times the probability that it remained for allb sentences
at a wrong hypothesis. If it makes no essential difference which wrong grammar is the present hypothesis
and how long it has held it as the hypothesis5, the probability that the algorithm remain forb sentences at a
wrong hypothesis is simplyP (remain)b. Hence,

P (wrong grammar after b samples) =
(N − 1)

N
(P (remain))b (2)

The probability to remain at a wrong grammar for each random input sentence is given by the probability
that that input sentence happens to be consistent with the present (wrong) grammar, plus the probability that
the algorithm jumps to another wrong grammar:

P (remain) = P (consistent) + P (another wrong grammar) (3)

The probability that a sentence is consistent with a wrong grammar is simply the similarity parameter
a in Nowaket al. (2001). The probability that the algorithm jumps to another wrong grammar is given by
the probability that the input sentence is inconsistent (1 − a) times the fraction of other wrong grammars
((N − 2)/N ).

Putting all this together, the probability (q) that the memory-less learner has found the correct grammar
afterb input sentences is given by (Komarovaet al., 2001)6:

qmemoryless = 1 −
(N − 1)

N

(

a +
(N − 2) (1 − a)

N − 1

)b

= 1 −
(N − 1)

N

(

1 −
(1 − a)

N − 1

)b

(4)

The probability that the batch learner has found the correct grammar afterb input sentences is found by
Nowaket al. (2001) to be

qbatch =

(

1 −
(

1 − ab

)N
)

(Nab)
(5)

5That is the case, for the memory-less learner, under the assumption of Nowaket al. (2001) that all grammars are equally
similar to each other. In contrast, in a Principles & Parameters model, we can calculate the expected similarity based on estimates
of how many parameters are revealed in a single sentence. Under the assumption that every sentence revealsm parameters, that all
parameters are Boolean and that all parameters are revealed with equal probability:a ≈

(

1

2

)

m

. a ≈
(

1

2

)

m

. a is then an expected
value rather than a constant, and equation (2) needs to be adapted. For simplicity, we will here follow the assumption of Nowak et
al.

6Note that there is an error in this equation in Nowaket al. (2001) that is corrected in Komarovaet al. (2001)
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Abstract

What are the requirements for scenarios of the biologi-

cal evolution of language? In this paper I survey a num-

ber of simple but fundamental models from population

genetics, evolutionary game-theory and social evolution

theory. This review yields a list of required elements of

evolutionary explanations in general, and of explana-

tions for language and communication in particular.

1 Introduction

There are two distinct ways in which the study of evo-

lution and the study of natural language overlap. First,

they overlap in the search for an evolutionary explana-

tion for why humans, and humans alone, are capable of

acquiring and using natural languages. Second, the pro-

cess of evolution in biology and the historical process of

language change bear many similarities, and these par-

allels have played a role in the development of theories

in both fields since the time of Darwin. I will through-

out this paper refer to these issues as the biological evo-
lution of language(or “the language faculty”) and the
cultural evolution of language(s)respectively.
Both issues have received a great deal of attention

in recent years, leading to a plethora of theories and

models (Hurford et al., 1998; Christiansen & Kirby,
2003). Many proposals involve a single mechanism or

factor responsible for the emergence of modern natu-

ral languages. In some cases, extensive scenarios for

the evolution of language are proposed. Although this

enormous body of work contains a great number of in-

teresting ideas and findings, there are also a number

methodological problems. First, it is extremely difficult

to relate separate proposals to each other, because of

a lack of consensus on terminology and basic assump-

tions. Second, it is extremely difficult to evaluate the

internal consistency and empirical validity of proposed

theories, because of a lack of formal rigor.

In some ways this situation is reminiscent of the

state of the whole field of evolutionary biology be-

fore the establishment of theoretical population genet-

ics by Fisher, Wright, Haldane and others in the 1920s

and 30s. Their mathematical models, and the subse-

quent informal “modern synthesis”, convinced biolo-

gists of the central role of natural selection in evolu-

tion. Confusion remained about the units of selection,

but with the settling of the group selection debate by

Maynard Smith (1964) and Williams (1966) a relative

consensus emerged about the minimum requirements

for evolutionary explanations, as well as a common vo-

cabulary in which disagreements can be phrased. In the

interdisciplinary field of language evolution, this clar-

ity is yet lacking. In this paper, I will review some

simple mathematical models from evolutionary biology,

and evaluate how they can be applied to both the biolog-

ical and the cultural evolution of language.

I will start with some classical results from popula-

tion genetics, about the way gene frequencies in a pop-

ulation change as a result of mutation and selection, and

then discuss the case for viewing natural selection as op-

timisation, as well as the problems with this view. This

optimisation view then provides a natural bridge to evo-

lutionary game theory, where the targets of optimisation

shift because the opponents in the game evolve as well.

Finally, extensions to social evolution models that deal

with kin selection, will lead us to the issue of levels of

selection, and clarify the relation of cultural evolution

models – with the dynamics happening at the level of

cultural replicators – to evolutionary biology generally.

2 Adaptation for Language

When chimpanzees, our closest living relatives, are

taught human language, they acquire several hun-

dreds of signals (Gardner & Gardner, 1969; Savage-

Rumbaugh et al., 1986). They fail, however, to produce
speech sounds themselves, to acquire the many tens of

thousands of words in natural languages, and to grasp

the use of even the most basic rules of grammar (Ter-

race, 1979). Human infants, in contrast, acquire their

native language rapidly. They produce speech sounds

1



and comprehend simple words before the age of 1, pro-

duce their first words soon after their first birthday and

the first grammatical constructions before their second

birthday (Tomasello & Bates, 2001).

Why? Clearly there is something special about hu-

mans that makes them extra-ordinarily apt to acquire

and use natural languages. Among other things, the

anatomy of the vocal tract, the control mechanism in

the brain for complex articulation and the cognitive abil-

ity to analyse and produce hierarchically structured sen-

tences appear to be qualitatively different in humans

than in other apes. But not only humans are special;

there is also something special about natural languages

that makes them extra-ordinarily apt to be acquired and

used by humans.

How did this tight fit come about? One possibility

is that the human capacity for language has emerged

purely as a side-effect of the many changes in anatomy

and cognition that occurred in the hominid lineage. The

tight fit itself, in such a scenario, doesn’t need to be

accidental, because a cultural evolution scenario pre-

dicts that languagewill adapt to the peculiar biophysical

and cognitive features of humans that themselves have

evolved for other reasons.

Although this possibility cannot be dismissed, from a

biological point of view it does not appear very likely.

Humans spend around 3 hours a day or over 20% of

their awake time talking (Dunbar, 1998, and references

therein), verbal abilities play a significant role in social

status and, it seems, in both the reproductive success of

individuals and the success of our species as a whole.

Such a salient characteristic of any organism would re-

quire a Darwinian, evolutionary explanation. Hence, al-

though the side-effect option is a possibility, it can only

be the conclusion of an elaborate investigation, and not

serve as null hypothesis. Nevertheless, although lan-

guage as a whole might be considered a biological adap-

tation, many specifics about language (language univer-

sals) are perhaps better understood as the outcome of

cultural evolution. In this view, the complex results of

cultural evolution and social learning have had indirect

consequences for biological evolution.

If we want to investigate specific hypotheses on adap-

tations for language, what form should such hypotheses

take? The early formal models in population genetics

are a useful starting point. But first, it should be clear

that any statement about biological evolution is a state-

ment about how genes mutate and spread in a popula-

tion through random drift and selection. That statement

in no way reflects the form of genetic determinism or

naivety about “language genes” that have made some

evolutionary linguists wary to talk about genes at all.

But if properties of language are to be explained by

some biological endowment, which in turn is to be ex-

plained as an adaptation for language, then we need to

be explicit and postulate a series of altered genes that

influence the ability for language. Such genes can have

many additional non-linguistic effects (an illustrative

example is the recently discovered FOXP2 gene, that,

when mutated, causes a range of problems in language

processing as well as in sequencing orofacial move-

ments, Lai et al.2001). We can phrase this requirement1

as follows:

Requirement 1 (Heritability) Evolutionary explana-
tions for the origins of a trait need to postulate genetic
changes required for that trait.

3 Evolution as Gene Frequency
Change

A formal model of evolution as gene frequency change

can be built-up in the following way. Consider first that

in humans, as in almost all multicellular organisms, ev-

ery individual inherits two sets of genes, one from the

father and one from the mother. If there is to be any

change, we need to consider at least two different vari-

ants, alleles, for each gene locus, and monitor the in-

crease in frequency of one allele at the expense of the

other. In figure 1 the Mendelian model of inheritance

of two alleles – A and a at a single locus – is depicted.

Adults (top row) have a genome that is of any of the

three possible types AA, Aa or aa (Aa and aA are

equivalent). These adults produce sperm and egg-cells

(second row) with just a single copy of the gene under

consideration. In sexual reproduction, a sperm-cell and

an egg-cell fuse, and grow out to a new individual (third

row). Evolution, in this simple scheme, concerns the

change in frequencies of the genotypes AA, Aa or aa,

or the change in frequencies of the alleles A and a.

The Hardy-Weinberg model (developed indepen-

dently by British mathematicianGodfreyHarold Hardy,

1908 and German physician Wilhelm Weinberg, 1908;

see Crow, 1999) describes the gene frequencies if there

is no mutation or selection. Consider the frequencies

of the three genotypes (top row) at any particular point

in time, and call these frequencies D, H and R. The

frequencies of the allelesA and a in the sperm and egg-

cells are simply:

frequency of A : p = D +
1

2
H

frequency of a : q = R +
1

2
H, (1)

because individuals with genotype AA or aa will al-

ways pass on an A or a respectively to their sperm and

1Of course, one can sensibly study the evolution of traits for which

the genetic component has not been identified. The point here is to

emphasise that biological evolution implies genetic changes. The “re-

quirements” in this paper concern the ultimate evolutionary explana-

tion for a trait; of course, not every evolutionary model study will be

able to meet all requirements.
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Aa aaAA

aA

Aa aaAA

aA

D H R

p = D + 1
2H q = R + 1

2H

p2 2pq q2

p′ = p2 + pq = p q′ = q2 + pq = q

Figure 1: Mendel’s model of inheritance, and the Hardy-Weinberg

model of allele and genome frequencies under Mendelian inheritance

with no selection nor drift.

egg-cells, but individuals with genotypeAa only half of

the time.

Under a number simplifying assumptions (including

random mating and meiosis, an infinite population and

no sex differences at the relevant locus), the frequen-

cies of the three genotypes in the offspring are simply

D′ = p2,H ′ = 2pq andR′ = q2, because you need two

A’s or a’s to make an AA or aa respectively, and you

need an A from either the father or the mother and an

a from the other parent to make an Aa. When this off-

spring then starts producing sperm- and egg-cells, the

frequencies of the alleles A and a are:

new frequency p′ = D′ +
1

2
H ′ = p2 + pq

new frequency q′ = R′ +
1

2
H ′ = q2 + pq. (2)

Hardy andWeinberg’s simple but fundamental obser-

vation is that because p + q = 1 (the total frequency of
all alleles must be 1, and thus q = 1− p), it follows that

p and q are constant under this model of inheritance:

p′ = p2 + pq = p2 + p(1− p) = p2 + p− p2 = p. (3)

This result shows that under Mendelian inheritance ex-

isting variation in gene frequencies is maintained. This

is in contrast with “blending inheritance” (the assumed

model of inheritance before the rediscovery of Mendel’s

laws around 1900), where a child’s trait values are the

average of the parents’ and variation quickly dissipates

over time. The result played a crucial role in reconciling

Mendelian genetics with Darwinian evolutionary the-

ory, because it showed that under reasonably low mu-

tation rates enough variation can be built up for natural

selection to operate (Fisher, 1930, chapter 1).

The Hardy-Weinberg model can be extended in a

straightforward manner to include the effects of selec-

tion. Natural selection, in Darwin’s theory, is the conse-

quence of differences in survival rates to the age of re-

production and the differences in reproductive success.

These effects can be summarised with a fitness coeffi-

cient for each of the possible genotypes, which gives the

expected number of offspring. A high coefficient wAA

means that individuals of genotypeAA live long and re-

produce successfully, such that their genes are well rep-

resented in the next generation. In terms of the equa-

tions, this just requires weighting the contributions of

parents of each genotype with the relevant fitness coef-

ficient:

p′ =
p2wAA + pqwAa

w
, (4)

where w is the average fitness and given by:

w = p2wAA + 2pqwAa + q2waa (5)

(this term is needed to account for changes in popula-

tion size due to reproduction and selection).

Equation (4) gives us a first handle on the require-

ments for evolutionary innovation, and, hence, evolu-

tionary explanations. First of all, natural selection op-

erates on genotypic and phenotypic variation. Second,

natural selection favours fitter genes and individuals

over less fit ones. Both the variation and the fitness dif-

ferences need to be made explicit:

Requirement 2 (Strategy set)Evolutionary explana-
tions need to postulate a set of possible genotypes and
phenotypes, as well as the mutations that can move an
organism from one genotype–phenotype to another.

Requirement 3 (Payoff function) Evolutionary ex-
planations need to postulate a function that relates the
possible genotypes–phenotypes in a given environment
(that may include other evolving individuals) to fitness.

If we are interested in a specific biological innovation

– that is, a mutation – that was relevant for learning or

using language, we need to consider the situations be-

fore and after that mutation. In the simplest case, a is

the preexisting gene that is initially shared by the whole

population, and A is the mutated version of a that has

arisen in a single individual. Hence, initially q ≈ 1 and
p ≈ 0. If A is to play a role in an evolutionary scenario,
we need to establish that allele A did start to spread in

the population (as sketched in figure 2); in other words,

that p increases. We can formulate this requirement as

follows:

Requirement 4 (Invasibility) Innovations in an evolu-
tionary scenario need to be able toinvade a popula-
tion; that is, an innovation should spread in a popula-
tion where it is extremely rare.
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If we know all fitness coefficients, it is straightfor-

ward to work out what happens to the frequency of the

new mutation. As it turns out A will spread if wAa >

waa, and it will get fixed (p = 1) if wAA > wAa. In

other words, the fitness of the new gene must be greater

than that of the old one, and the new gene must, to

some extent, be dominantover the old one such that
its effects are noticed in individuals that inherit copies

of both genes from each of the parents. In fact, the

difference in fitness between the two variants must be

significant, at least large enough for the new gene not

to get lost by chance fluctuations (Fisher, 1922) and

to get established after a reasonable number of gener-

ations (Haldane, 1932). Note that these results depend

on some strong assumptions, including an infinite pop-

ulation with randomly interacting individuals. In small

populations with non-random interactions different dy-

namics can occur.

4 Evolution as Optimisation

Since Darwin (1859), the notion of “adaptation” has

played a major role in evolutionary thinking. His work

offered a coherent framework to study the traits of or-

ganisms in terms of their function for survival and re-
production. Even before the mechanisms of genetic in-

heritance were unravelled, Darwin thus transformed bi-

ology from a descriptive to an explanatory science. In

the early 1920s the “founding fathers” of population ge-

netics – Fisher, Wright and Haldane – worked out what

happens to a single new gene when it appears in a pop-

ulation. But do the dynamics described by equation (4)

constitute “adaptation”? In other words, does the pre-

dicted change in gene frequencies also mean the pop-

ulation will get better adapted to its environment, i.e.

improve its average fitness?

Both Fisher and Wright set out to work out a more

general result. I will discuss Fisher’s “fundamental the-

orem of natural selection” (Fisher, 1930) in section 8.

Here I will follow Wright’s analysis of the average fit-

ness in a population, in particular Roughgarden’s (1979)

version of these equations. Most mathematical details

are in appendix A, but it is useful to look at a couple

of Wright’s equations. First, it is convenient to look at

the changein the frequency p at every timestep. This is,

using equation (4), given by:

∆p = p′ − p

=
p2wAA + pqwAa

w
− p (6)

This equation can, with a bit of algebra (see equa-

tions (25) and (26) in appendix A), be rewritten as fol-

lows:

∆p =
pq

w
(p (wAA − wAa) − q (waa − wAa))(7)

This equation tells us nothing new; it is essentially

equation (4) in a different form. However, the new form

will prove useful when we have worked out the next

equation. We are interested in what happens to the av-

erage fitness when the frequency (p) of the innovation

changes. Mathematically, that question directly trans-

lates into the derivative of w with respect to p. The ex-

pression for average fitness is given in equation (5). Its

derivative, if we assume the fitness coefficients are inde-

pendent of p and q (that is, no frequency-dependence)

turns out to be (as is worked out in equation (23) and

(24) of appendix A):

dw

dp
= 2 (p (wAA − wAa) − q (waa − wAa)) (8)

When we note that equations (7) and (8) are very sim-

ilar, it is clear that we can replace a large part of (7) with

half of (8), and get:

∆p =
pq

w

(
1

2

)
dw

dp
. (9)

This is a fundamental result for evolutionary biology.

The equation says that the change in the frequency of

a new gene, will be in the directionof the derivative
of fitness with respect to that gene’s frequency. That

means that only if the average fitness increases with in-

creasing p, will the new gene spread. Moreover, the

spread will be fastest at intermediate frequencies (high

variance) and low average fitness. In other words, evo-

lution – under the assumption mentioned – will act to

optimise the average fitness in the population: it will

lead to adaptation.

However, the mathematical derivation of this intu-

itive result also tells us about its limitations. First of

all, evolution is shortsighted. We saw a simple exam-

ple at the end of the previous section: if wAa < waa

(there is “heterozygous disadvantage”), then the new al-

lele A will not spread in the population, even though at

fixation it might improve the mean fitness in the popu-

lation. Second, evolution needs (heritable) variation. If

pq = 0, nothing will change. Thirdly, the equation is
only valid if the fitness coefficients are independentof
p and q. That is, whatever the traits are that allele A

influences, the usefulness of the innovation should not

depend on how many others in the population share it.

This condition is obviously violated in the evolution of

communication, because the usefulness of a signal will

always depend on the presence of others that can per-

ceive and understand it. Fourthly, the original Hardy-

Weinberg model brought quite a lot of assumptions, in-

cluding the independence of the single locus we looked

at from other loci, random mating, discrete generations

and infinite populations. Some of the consequences of

relaxing these and the frequency independence assump-

tions will be evaluated in the next section.
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Figure 2: The spread of new genes in a population

Finally, as Fisher (1930) emphasised, these calcula-

tions deal only with the direct effects of natural selec-

tion. They predict the direction of change, but it is un-

warranted to conclude that the average fitness in a pop-

ulation will increase. Environmental conditions might

have changed in the mean time and, even if the envi-

ronment is constant, all individuals in the population

are better adapted to it such that competition is fiercer.

These effects – not modelled by Wright and Fisher’s

equations – were collectively labelled “deterioration of

the environment” by Fisher.

In addition to these quantitative results, Wright made

a much more qualitative contribution relating evolution

and optimisation. In a paper without any mathematics

(Wright, 1932) he introduced an extremely influential

metaphor: the adaptive landscape. The adaptive land-
scape is a landscape of 3 or more dimensions, with the

plane (or hyperplane) representing the space of possible

genotypes, and the height of every point representing

fitness (see figure 3). On such a landscape, a popula-

tion is a collection of points. Mutations correspond to

steps in the landscape; selection corresponds to the se-

lective removal of individuals that are lower down. The

process of evolution involves the population to climb

up-hill, following a local gradient to a local peak.

I will discuss some problems with the concept below.

However, the adaptive landscape representation in this

form does illustrate Darwin’s (1859) insight that for a

process of continuing evolution, we need a path of ever

increasing fitness from the hypothesised initial point in

genotype space to the end result. (In finite populations,

stochastic drift can bridge fitness barriers in the adaptive

landscape, but only if they are relatively shallow.) For

complex traits, such as language, it seems reasonable

to postulate a series of many genetic changes. Wright’s

metaphor highlights the fact that each of these changes

needs to confer an adaptive advantage:

Requirement 5 (Fit intermediates) Explanations for
complex traits, that involve a series of genetic changes,
need to show a path of fit intermediates, from the hy-
pothesised initial state to the desired end state.

(a) Wright’s graph of the adaptive landscape

fi
tn

es
s

gene combinations

(b) A computer-generated 3d adaptive landscape

Figure 3: The adaptive landscape of fitness as a function of genotype.

The graphs illustrate hypothetical examples in which two genes have

a continuous range of effects. Real organisms have, in contrast, a dis-

crete set of possible genotypes involving many more than two genes.

Thus, mutations can take them in very many directions. This high

dimensionality makes it more likely that there is some path uphill to

the “adaptive peak” (see Provine (1986), chapter 9). (a) is a graph

from Wright (1932). The original caption is: “Diagrammatic repre-

sentation of the field of gene combinations in two dimensions instead

of many thousands. Dotted lines represent contours with respect to

adaptiveness.” (b) is taken from Barton & Zuidema (2003).
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This requirement is important, but it might not be as

problematic as it looks at first sight. First, although evo-

lution will generally lead uphill, there is some room for

random processes as well. Wright used the adaptive

landscape metaphor to explain the effects of increases

or decreases of the rate of mutation and the strength

of selection. He also discussed at some length the ef-

fects of small population sizes, where inbreeding will

lead to the non-selective process of genetic drift: ran-

dom deviations from the locally optimal genotype due

to accumulation of mutations and a lack of variation for

selection to operate on. Wright’s shifting balance theory

(or at least one version of it) argues that the additional

variation inherent in subdivided and inbreeding popula-

tions could help the population as a whole bridge fitness

barriers. Although the shifting balance theory has lit-

tle empirical support (Coyne, Barton & Turelli, 2000),

the basic idea that, under some conditions, genetic drift

could help bridge a fitness barrier remains.

Second, one of the basic tenets of evolutionary bi-

ology is that all life originates from the same source.

If that is true, all complex traits of all organisms are

connected through paths of fit intermediates. Thus, if

we wonder if there is a path on the adaptive landscape

through which humans could evolve wings, the answer

must be yes. Humans, bats and birds have a common

ancestor, so there must be at least one series of environ-

ments (including other species) that would yield a path

that leads from humans back to the common ancestor

with bats, and again forward to modern bats (ignoring

some difficulties such as frequency-dependent fitness).

Third, intuitions about getting stuck in local peaks

based on the three-dimensional representation as in fig-

ure 3 must be treated with care. There are, in fact, a

great number of problems with the concept (Provine,

1986, in his biography of Wright, gives a thoughtful

critique). First of all, as Wright indicated, an actual

genome consists of many (tens of) thousands of genes.

Hence, the adaptive landscape has tens of thousands of

dimensions, rather than just 3. That makes a big dif-

ference, because whereas local peaks seem extremely

likely in 3 dimensions, they are in fact increasingly less

likely with more and more dimensions. But, perhaps

more importantly, the genotype space in Wright’s graph

is continuous, whereas the genotypes of actual organ-

isms are discrete. Wright’s landscapes, as drawn here,

can in fact never be constructed for a real example.

Wright and others have looked at other versions of the

adaptive landscape that are, in contrast, rigorously de-

fined. One approach is to choose the gene frequencies

and population average fitness as axes. A population,

in this representation, is then a single point in the land-

scape. The advantage of this representation is that it ties

in nicely with the mathematical model of equation (9).

However, the disadvantage is that in such a landscape

one cannot visualise the effects of selection, mutation,

genetic drift and subdivision of the population, which

was the whole point of introducing the metaphor.

Alternatively, one can choose to use phenotypic, con-

tinuous traits against individual fitness as the axes of

the landscape. The disadvantage of this approach is

that mutations, which define what a genotype’s “neigh-

bours” are, are of course defined genotypically. There-

fore, the random variation that builds up by mutation,

will not generally be centred around a single population

mean in phenotypic space. In cases where very little

is known about the genetics anyway, such as language,

that might not really matter, but, as we will see, there

the landscape cannot be constructed anyway because of

frequency dependence.

Nevertheless, the view of evolution as optimisa-

tion yields a powerful approach for deriving predic-

tions about an evolving system, or for understanding

an evolved system as adapted for a specific purpose.

Parker & Maynard Smith (1990) present a methodology

for evolutionary reasoning based on this view which

they call “optimality theory”2. They first emphasise that

every evolutionary study must start with identifying a

clear biological question. Step 2 is to identify a set

of strategies that are available for evolution to choose

from. Step 3 is to identify a pay-off function, which

evolution is supposed to optimise, and to show that the

observed biological phenomenon tends towards the op-

timum. Step 4 is to relate pay-off, which is an indirect

measure for fitness, to actual fitness. Finally, step 5 is

to derive predictions and test them empirically.

This scheme provides a coherent framework for

thinking about the evolution of language, and it is essen-

tially the approach I have taken in this paper, although

I have and will put some extra emphasis on specific im-

plications of the approach relevant for language evolu-

tion. Note however, that the mathematical models dis-

cussed so-far concerned changes in gene frequencies,

whereas Optimality Theory and language evolution re-

search are concerned with phenotypic traits that typi-

cally involve many, often unknown genes. I will first

discuss some limitations of the optimality view that ap-

ply even when we look at traits controlled by a single

gene, and then discuss the more difficult issue of going

from single-gene models to the evolution of complex

phenotypic, traits such as language.

5 Limits to Optimality

“Natural selection tends only to make each

organic being as perfect as, or slightly more

perfect than, the other inhabitants of the same

country with which it comes into competition.

2Parker & Maynard Smith’s (1990) Optimality Theory is com-

pletely unrelated to Optimality Theory (Prince & Smolensky, 2004)

in linguistics.
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And we see that this is the standard of perfec-

tion attained under nature” (Darwin, 1872, p

163; quoted in Provine 1986, p209).

As Darwin was well aware, the fact that evolution can

be understood as optimisation does not imply that the

features of organisms are optimal or perfectly adapted

to their environment. The most obvious evidence for

the existence of limits to optimality, are the many ex-

amples of indigenous species that are rapidly driven to

extinction after humans introduced a foreign competing

species. There is a whole tradition of listing the limita-

tions of natural selection (e.g. Dawkins, 1982; Barton &

Partridge, 2000). These can be roughly classified in four

classes: (i) biophysical and genetic constraints, (ii) the

speed of evolution, (iii) mutational load and (iv) fluctu-

ating fitness.

With regard to biophysical constraints, it is clear
that all of the complexities of biological organisms need

to grow out of a single cell. Throughout its develop-

ment, an organism needs to maintain its metabolism,

to selectively take up chemicals from its environment

and to autonomously build-up all of its complex fea-

tures. That process of biological pattern formation is

constrained by what is possible at all with the materials

available in a biotic environment, by what can be coded

for by genes, and by which possibilities are reachable

for evolution. It is obvious that these constraints are at

work, given for instance the limitations in speed of both

a prey and a predator trying to outrun each other. It is

also obvious, however, that these limitations have not

prevented evolution from building exquisitely complex

and well-adapted organs such as, for instance, the hu-

man ear.

Population and molecular genetics make some spe-

cific predictions on genetic constraints. Natural selec-
tion can often not optimise all different phenotypic traits

independently from each other, because of the following

features of genes:

• A single gene typically has an effect on many dif-

ferent phenotypic traits (pleiotropy);

• The effect of a gene on a trait depends on the pres-

ence or absence of other genes (epistasis);

• Genes are physically linked to each other in a chro-

mosome (linkage).

The little that is known about human genetics rele-

vant for language (e.g. Lai et al., 2001) suggests, un-
surprisingly, that all these general observations hold for

language as well. The general observation have played a

role in a debate about whether or not the Baldwin effect

– where initial learnt traits are “assimilated” by genetic

evolution – is likely to have played a role in the evo-

lution of complex language (Hinton & Nowlan, 1987;

Briscoe, 2000; Yamauchi, 2001; Briscoe, 2003) Never-

theless, it seems too little is known about human genet-

ics to inform specific models of the evolution of lan-

guage, so they will not play a role in this paper.

Most of these biophysical and genetic constraints are

reflected in the choice of the strategy set, which con-

tains all strategies/trait values that are available to evo-

lution, and excludes those that cannot be instantiated.

The physical linkage between genes, however, is – in

the long term – not one of these hard constraints on

what can evolve, because recombination will eventually

break the linkage such that one gene can occur without

the other. Linkage does constrain how fast things can

evolve, which is also crucial for the course of evolution.

More generally, the speed of evolutionis constrained
by the available genetic variation at every step (includ-

ing effects from linkage) and the strength of selection.

Considerations about evolutionary time should be in-

cluded in evolutionary explanations:

Requirement 6 (Sufficient time) Evolutionary expla-
nations need to establish that there has been enough
time for favourable alleles to get established in the pop-
ulation.

Evolution needs variation to operate on, and mutation

is the source of this variation. However, because muta-

tion is indiscriminate and random, it will also constantly

create individuals that are worse than average, or even

unviable. This is called mutational load. In the adap-
tive landscape metaphor, whereas selection will push a

population to the top of an adaptive peak, mutation will

pull the population down-hill. The dynamic equilib-

rium is called mutation–selection balance. For specific
cases, such as the evolution of RNAmolecules, the con-

straints on optimisation posed bymutational load can be

worked out. For the case of language, again too little is

known of its genetic basis to derive any specific limita-

tions. However, since a series of formal models of the

cultural transmission of language have been proposed

(Nowak et al., 2001; Komarova et al., 2001; Mitchener
& Nowak, 2002) that are based on the concept of mu-

tational load, it is worth looking in a bit more detail at

how this concept has been formalised.

Eigen (1971) and colleagues generalised the Fisher-

Wright equations for evolution with mutation and se-

lection at a single locus, to dynamics with an arbi-

trary number of loci. Using notation loosely based on

Maynard Smith & Szathmáry (1995) and Nowak et al.
(2001), we can write Eigen’s equation as follows:

∆xi =
M∑

j=1

(xjwjQji) − wxi, (10)

where i and j are indices for all theM distinct possible

genotypes. ∆xi stands for the changes of the frequen-
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cies of all genotypes i (hence, the expression (10) de-

fines a system of equations, all the same form and one

for each possible i). xi is the frequency of genotype i

and wi its fitness. Qji is the probability that a given

child will have genotype i if her parent has genotype j.

Hence, Q is an extremely large matrix of sizeM × M

that describes the effects of mutation. Finally, w is the

average fitness in the population; the last term ensures

that the effects of selection are relative to the population

average fitness.

Eigen looked at a very specific choice of parameters.

Suppose that there is a single genotype with a high fit-

ness, and all other genotypes have the same, low fitness.

That is, the adaptive landscape is flat, except for a single

high peak. Now suppose there is a constant probability

µ of mutation per gene, and no cross-over. The prob-

ability q that an individual (here: an RNA-molecule)

when it reproduces produces identical offspring is now:

q = (1 − µ)l
, (11)

where l is the genome length. q is called the “copying

fidelity”. With a bit of algebra one can work out where

the mutation–selection balance is for different muta-

tion probabilities, and thus different copying fidelities.

Eigen’s exciting result is that there is a precise value of q

where the mutation–selection balance suddenly drops to

vanishingly small quantities of each possible genotype.

That is, if the mutation probability is above a threshold

value – the error threshold– selection ceases to play
any role, and individuals have essentially random geno-

types:

Requirement 7 (Mutational load) Evolutionary
explanations need to postulate a mutation rate high
enough to generate the variation needed, but low
enough to not suffer from an extreme mutational load
(to cross the error threshold).

A final category of limits on optimality comes from

fluctuating fitness, that is, from the fact that the fitness
regime of organisms is constantly changing. First of

all, there are temporal fluctuations in the environmental

conditions on many different timescales, both regular

and irregular: from the day and night cycle to climate

changes. Similarly, there are geographic differences,

such that migrating organisms might find themselves in

very different habitats. Organisms adapted to one set of

conditions, are not necessarily adapted to other condi-

tions. A language that evolved for communication be-

tween hunter-gatherers on the savannah, is not necessar-

ily adaptive in a modern city environment.

But perhaps more interesting is the situation where

the fitness regime of a particular species changes due to

evolutionary changes of the species itself (frequency
dependent selection) or of any of the other species

it interacts with (co-evolution). The evolution of lan-
guage and communication is frequency-dependent, be-

cause linguistic innovations are unlikely to pay off if

there is no one to talk to. The fitness coefficients in lan-

guage evolution are therefore not constants, as in equa-

tion (8), but will depend on the frequencies of the dif-

ferent alleles in the population. Evolutionary game the-

ory is the general framework for addressing frequency-

dependent selection, and will be discussed in the next

section. Because natural languages are transmitted cul-

turally, there can also be a process of cultural evolu-

tion, such that we can perhaps sensibly speak about the

coevolution of language and the brain(Deacon, 1997;
similar ideas were explored earlier in e.g. Christiansen,

1994; Kirby, 1994). This is explored a bit further in

section 10 in general terms.

A related phenomenon is sexual selection, where se-
lection is not on the ability to survive to reproductive

age or the ability to reproduce per se, but on the abil-

ity to beat rivals of the same sex in the competition for

a mate, or on the ability to persuade potential sexual

partners to choose one as a mate (Darwin, 1859, p.94).

Here, the fitness of a given genotype (defining e.g. a

male trait) is not fixed, but also dependent on the fre-

quency of all the possible genotypes (regulating e.g. fe-

male preferences) in the population. Exotic, maladap-

tive traits that are due to sexual selection, such as the

ornate peacock-tale or the violent and sometimes lethal

love dartsin hermaphrodite snails, are nice examples
of the suboptimal traits that can result from frequency

dependent selection. In the evolution of speech, sexual

selection seems to have played a role in shaping the sec-

ondary sexual traits, such as the lower pitch in human

male voices, which results from larger larynx and vocal

folds, and a change in formant frequencies at puberty,

whichmakes males appear larger and results from a sec-

ond descent of the larynx. More controversial are ideas

about the role of sexual selection in the evolution of the

first descent of the larynx (that happens in both males

and females in the first few months after birth, Lieber-

man, 1984; Hauser & Fitch, 2003), and in the evolution

of complex syntax (Pinker & Bloom, 1990).

6 Phenotypic Evolution

We have seen that evolution can be understood as a pro-

cess of optimisation, but under a range of constraints

and with continuously shifting targets. The constraints

and trade-offs are all crucial elements of adaptive expla-

nations. In fact, without such constraints, the notion of

“adaptation”would bemeaningless: without constraints

and trade-offs, only almighty beings would exist. The

more precise we can be about constraints and trade-offs,

including about genetic details, the more convincing

demonstrations of optimality within these constraints
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are as evolutionary explanations. However, even with-

out a complete understanding of the genetic constraints,

we can make progress in understanding evolution at the

phenotypic level, by incorporating likely constraints in

formal models and deriving testable predictions.

As an example of the structure of such optimality

arguments, consider the evolution of hearing and sup-

pose that it can be described with a single variable: the

threshold value θ for signal detection. Presumably, the

benefit is maximal when this θ approaches 0 (assum-
ing the brain can select and process the information it

needs), and the benefit approaches 0when θ is infinitely

large. The cost of an infinitely small θ is infinitely big,

however, because biophysical constraints dictate that in-

finitely small θ requires infinitely large ears. With very

large θ we could do away with ears all together and have

a cost approaching 0. When we subtract the cost from
the benefit, we get the payoff function. If the cost and

benefit function adequately describe the selection pres-

sures and constraints, we expect the evolutionary dy-

namics to lead to the optimum of the payoff function,

shown qualitatively in figure 4. Now, if we could find a

combination of benefit and cost functions, and empiri-

cal observations of θ in nature that match the predicted

optimum, that would constitute strong evidence for ei-

ther the hypothesis that θ evolved for the function de-

scribed by the payoff function, or – if we are already

confident of the adaptive function – that the hypothe-

sised constraints, described by the cost function, were

the right ones.

Can we make a similar analysis of the evolution of

key features of natural language? That is, can we iden-

tify the payoff function and its optimum under relevant

constraints and show that natural language corresponds

to that optimum? Unfortunately, we know relatively

little about the biophysical and genetic constraints, the

relevant mutations in the evolution of language and the

neural implementation of our linguistic abilities. It is

therefore difficult to make precise what strategy set was

available for evolution. The best examples of trade-offs

in language are probably in the physical properties of

speech. Liljencrants and Lindblom’s (1972) demonstra-

tion that the vowel systems in human language appear

to be optimised for reliable recognition under noisy con-

ditions and under constraints on perception and articu-

lation, is suggestive. Lieberman (1984) has argued that

the human larynx has descended deeper down the throat

in order to allow more flexibility of the articulatory or-

gans. This allows us to make many different speech

sounds, at the expense of an increased propensity to

choke. Although controversial (Hauser & Fitch, 2003),

this theory on the evolution of language does illustrate

the role of evolutionary trade-offs that result from the

physiological constraints in speech production.

For other components of human language, such as

its semantics or syntax, it is extremely difficult to de-

rive biophysical constraints. What sort of grammars

can or cannot be encoded by genes and implemented

in neuronal tissue? The only solid results relevant to

this question, suggest that quite a variety of networks of

interacting cells are Turing equivalent. That is, they can
– if sufficiently large, given sufficient time and properly

initialised and interpreted – compute any computable

function (Siegelmann & Sontag, 1991; Wolfram, 2002).

This is not to say that any grammar can be easily en-

coded by genes or acquired by a neural net; but with-

out better models of the neural implementation of lan-

guage, we cannot start to make sensible assumptions

about the actual architectural constraints on natural lan-

guage syntax that were at work during human evolution.

This is how I interpret Chomsky’s well-known reserva-

tions about the feasibility of scientific explanations of

the evolution of language, such as expressed in this fa-

mous quote:

“We know very little about what happens

when 1010 neurons are crammed into some-

thing the size of a basketball, with further

conditions imposed by the specific manner in

which this system developed over time. It

would be a serious error to suppose that all

properties, or the interesting properties of the

structures that evolved, can be ’explained’ in

terms of natural selection.” (Chomsky, 1975,

p.59).

However, it would be overly pessimistic to conclude

– as Chomsky seems to do – that we can therefore

not say anything sensible about how language evolved.

There are two categories of constraints in language evo-

lution that can be made precise. First of all, we have

good “mentalist” models of syntax that describe its fun-

damental computational properties, and the computa-
tional constraints that any implementation will face.
For instance, we know there exist constructions in natu-

ral languages that cannot be modelled by weaker for-

malisms (in terms of the extended Chomsky Hierar-

chy) than (mildly) context-sensitive rewriting grammars

(Joshi et al., 1991); we know that the whole class of
context-sensitive rewriting grammars is not identifiable
in the limit from positive samples alone (Gold, 1967);
and we know that grammars of that type have a worst-

case time-complexity of O(n5) in parsing (Barton &
Berwick, 1987). Such computational constraints on

representation, learning and processing, and the for-

malisms they are expressed in, allow us to at least make

a start with testing the internal consistency of an evolu-

tionary scenario, and with formulating a sensible strat-

egy set for evolution.

Second, there are constraints that follow from the so-
cial, communicative function of language. Humans
use natural language to communicate with others, on

the average for many hours a day per person. This re-
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Figure 4: Evolutionary optimisation under biophysical constraints. The graph sketches the benefits (top curve) and costs (bottom curve) for a

continuous range of detection thresholds θ (x-axis) in the evolution of hearing. An extremely low threshold (left end) is very useful, but also

very costly; an extremely high threshold (right end) is very cheap, but not of much use. The optimum of the payoff function (middle curve) is

therefore at an intermediate value of θ.

quires a shared code, such that both speakers and hear-

ers understand the meanings of utterances. Moreover, it

requires the willingness of the speaker to give away in-

formation and, at least in general, to be truthful, as well

as a willingness from the hearer to listen and interpret

the message received. These issues can be addressed in

the framework of evolutionary game theory, which will

be discussed next.

7 Evolutionary Game Theory

The evolutionary history of human language can be

viewed as a process of phenotypic optimisation, under

(largely unknown) biophysical and cognitive constraints

that determined which communication systems were

possible at all, and in a social–communicative context

that determined which systems were better than others,

but that continuously shifted the evolutionary targets be-

cause the frequency of a linguistic trait in the population

influences its usefulness.

The formal framework to describe the consequences

of multiple agents optimising their own payoff in a

social context is the Theory of Games. Game the-
ory conceptualises the interaction between agents, the

“players”, as a game where all players choose from a

set of available strategies. Crucially, the outcome of a

game for each player, its payoff, depends on the strate-

gies of other players. Unlike the example in figure 4,

where payoff is a function of the player’s own strategy

alone (the trait value, θ), in game theory the payoff is a

function of both the player’s strategy and the strategies

played by other players.

The following example is derived from May-

nard Smith & Price (1973). Imagine a conflict between

two birds competing for a single food source, each with

the choice between three strategies: “dove” (retreat im-

mediately if the other player is aggressive), “hawk” (al-

ways be aggressive) and “prober” (start off aggressive,

but share the food source peacefully if the other player

does not give up, but does not escalate either, and con-

tinue aggressively if the other player does give up). If

the value of the food source is b = 10, and the expected
cost of an escalated fight c = 100, the possible pay-
offs for player 1, given her and player 2’s decisions, are

given in figure 5(a). For 2 players and a small number of

discrete strategies, this can be conveniently summarised

with a payoff matrix, as in figure 5(b).
We can postulate a decision mechanism for each

player, and study how the outcome of the game changes

with players adapting their strategies based on what the

other players do. The dynamics of such games, with all

players making their own decisions, are often extremely

difficult to describe. Often, however, it is possible to de-

rive the conditions underwhich a game is stable. In non-

cooperative game-theory – where “selfish” players each

try to optimise their own payoff – the crucial concept is

that of aNash equilibrium (Nash, 1950)3. This equilib-
rium is defined as the situation where no player can in-

crease her payoff by unilaterally changing her strategy.

Thus, for any n-tuple of pure strategies (one for each

player) the Nash equilibrium requires that each player’s

strategymaximises her expected payoff against all other

n − 1 strategies.

3Grafen (2003) attributes the discovery of the Nash equilibrium

to William Waldegrave, 1713, and refers to A. Hald (1990), “A His-

tory of Probability and Statistics and Their Applications before 1750”,

New York: Wiley Interscience.
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Dove1

Dove2

1
2b = 5

Hawk2

0

Prober2

1
2b = 5

Hawk1

Dove2

b = 10

Hawk2

−c = −100

Prober2

−c = −100

Prober1

Dove2

b = 10

Hawk2

−c = −100

Prober2

1
2b = 5

(a) extensive representation

player 2’s strategy

player 1’s strategy ↓ Dove Hawk Prober

Dove 5 0 5

Hawk 10 -100 -100

Prober 10 -100 5

(b) payoff matrix player 1

Figure 5: Extensive and matrix representations of games

The Nash Equilibrium plays a major role in mod-

ern economic theory, as rational players are assumed
to maximise their payoff, and games will therefore typi-

cally evolve toward a Nash equilibrium. Other branches

of economic game theory make different assumptions

on what is optimised, and sometimes use different sta-

bility concepts. For instance, cooperative game-theory

– where players are assumed to try to optimise the av-

erage payoff of all players in the game – uses the con-

cept of “Pareto optimum”, where no player can increase

her payoff without decreasing the payoff of another

player. In the theory of bounded rationality (Simon,

1955, 1969), the consequences of limitations in knowl-

edge are investigated, where players are not necessarily

maximising, but rather satisficingtheir payoffs.

In evolutionary biology (after some pioneering work

by R.C. Lewontin and W.D. Hamilton, as is discussed

in Maynard Smith, 1982) the use of game theory took

off with the work of Maynard Smith & Price (1973) and

Maynard Smith (1982). Maynard Smith & Price intro-

duced the concept of Evolutionarily Stable Strategy
(ESS) in an analysis of the evolutionary advantages of

“limited war” strategies in animal conflicts, such as the

prober strategy introduced above. An ESS is a strategy

that cannot be invadedby any other strategy, because all
other strategies get either a lower payoff when playing

against the ESS, or if their payoff is equal, they get a

lower payoff when playing against themselves. That is,

if F (i, j) gives the payoff for a player playing strategy
i against an opponent playing strategy j, then i is an

ESS if for every strategy j either F (i, i) > F (i, j) or
F (i, i) = F (i, j) > F (j, j). Every ESS also defines a
Nash Equilibrium, but the stability criterion is stricter,

because it implies that every alternative strategy will be

selected against if it occurs at small but non-zero fre-

quency in the population.

In the example of figure 5, we can see that the dove-

strategy is not an ESS, because the hawk-strategy has

a higher payoff when playing against it. In a popula-

tions of doves, the hawk strategy thus enjoys an initial

selective advantage and will increase in frequency. The

hawk-strategy is not an ESS either. A population con-

sisting of just hawks can in turn be invaded by the dove-

strategy, which has a higher payoff in a population of

hawks, or by the prober-strategy, which has equal pay-

off against hawk but a higher payoff against itself. Only

the prober strategy, in the present simple model, is an

ESS: both doves and hawks fare worse than the prober

in a population of probers4.

If we exclude the prober-strategy from the strategy

set, the resulting hawk-dove game has no ESS, i.e. a

population of individuals all playing one pure strategy,

can be invaded by the other strategy. In such games

there might still be a stable distribution of phenotype

frequencies in a population – called an Evolutionar-
ily Stable State. In such a situation, there are distinct,

4In the original paper (Maynard Smith & Price, 1973), this game

was introduced with “dove” labeled “mouse” and “prober” labeled

“prober-retaliator”. Incidentally, an unfortunate choice of parameters

resulted in there being in fact no ESS at all, even though a fourth

strategy “retaliator” was erroneously identified as such.
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genetically different players in the population (“poly-

morphism”), and this polymorphism is maintained by

selection. Interestingly, such a stable distribution with

p doves and 1 − p hawks is equivalent to a popula-

tion where each individual plays the dove-strategy with

probability p and the hawk-strategy with probability

1− p. If suchmixed strategiesare included in the strat-
egy set (that is, allowed according to the hypothesised

constraints), it is an ESS5 and there is no polymorphism

maintained.

The techniques and formalisms from evolutionary

game theory immediately lead to some fundamental ob-

servations on the evolution of communication. Con-

sider the evolution of an alarm call system similar to

the calls that, for instance, ground squirrels (Sherman,

1977) or vervet-monkeys (Seyfarth et al., 1980) use to
inform conspecifics of the presence of predators. If we

focus on just two signals, 1 and 2, and just two types of
predators, aerial (E, e.g. eagles) and terrestrial preda-

tors (L, e.g. leopards), we can postulate the following

strategy set:

Sender
strategies

A: send 1 when observing E; send 2
when observing L.

B: send 2 when observing E; send 1
when observing L.

C: never send anything.

Receiver
strategies

A′: act as if observing E when hearing

1; act as if observing L when hear-

ing 2.
B′: act as if observing E when hearing

2; act as if observing L when hear-

ing 1.
C′: ignore all received calls.

In the case of alarm calls, the payoffs for sender and

receiver are very different. The sender will suffer a cost,

because by calling she alerts the predator of her pres-

ence and location. Evidence of the existence of a real

cost in nature comes from the fact that alarm calls typ-

ically have very high pitch, which makes it more diffi-

cult for predators to locate the caller (Maynard Smith,

1982). The payoff matrix for the sender will therefore

have all negative entries (parameter c) for strategies A

and B, and (by definition) 0 for strategy C.

The receiver, on the other hand, will profit from a

call if and only if she correctly interprets it. That bene-
fit is quantified with parameter b. If the actual predator

is a leopard, acting as if an eagle is observed can be a

costly mistake: monkeys flee into the bushes to escape

from an eagle attack, but that is in fact exactly where

leopards hide (Seyfarth & Cheney, 1997). The cost of

mis-interpretation is quantified as parameter m. If the

5Grafen (1979) points out that mixed strategy ESS’s and pure strat-

egy evolutionary stable states are not equivalent in kin selection mod-

els.

receiver ignores all calls, her payoff is 0 (again, by defi-
nition). The payoff matrices in this simple example will

thus look as in figure 6.

receiver strategy

sender strategy ↓ A′ B′ C′

A −c −c −c

B −c −c −c

C 0 0 0

(a) sender’s payoff

receiver strategy

sender strategy ↓ A′ B′ C′

A +b −m 0
B −m +b 0
C 0 0 0

(b) receiver’s payoff

Figure 6: Payoff matrices in a simple alarm call system

It is clear that neitherA norB can be the stable strat-

egy for the speaker; if the cost of calling, c, is non-

negligible, the strategy of not communicating at all, C,

is always optimal. In explaining the evolution of com-

munication, we thus face a problem of cooperation:
if the benefits of communication are for the hearer, the

sender has no incentive to give away her information,

or even put herself at risk. Dawkins & Krebs (1978)

pointed out this problemwith what they call the “classi-

cal ethological” view on animal communication, which

takes communication as existing for the benefit of the

group. Dawkins and Krebs have therefore suggested

that communication should be understood as a form of

manipulation, with the benefits of successful manipula-

tion with the sender.

Others (e.g. Maynard Smith, 1965; Sherman, 1977;

Cavalli-Sforza & Feldman, 1983) have argued that “al-

truistic” communication can evolve through kin selec-

tion. However, the appropriateness of kin selection for

human language – where communication is typically

with non-kin – has been called into question (Dessalles,

1998). Dessalles has instead argued for a form of “re-

ciprocal altruism”, where there is a real benefit for the

sender, because it is rewarded with status in the popu-

lation. Fitch (2004) reviews his and other arguments,

but concludes that they are not convincing. He posits

the “mother tongue” hypothesis – that human language

developed primarily in a context of kin communication

– as one of a number of factors that shaped human lan-

guage in its evolution, and calls for further exploration

of the role of kin selection in language evolution.

In many circumstances, for instance sexual signaling,

the problem is not so much in the willingness to send
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signals, because the senders benefit, but in the honesty
of the signals. A large amount of work on the evolu-

tion of animal and human communication has been con-

cerned with this problem, leading to what is now called

“honest signaling theory” (the handicap principle, Za-

havi, 1975, 1977; Grafen, 1990). Hence, the problem

of cooperation is pervasive in work on the evolution of

communication, although its instantiations differ with

different assumptions on the costs and benefits of com-

munication, for both sender and receiver. Although the

problem of cooperation is a consequence of careful con-

siderations of payoff, strategy sets and invasibility, I

will, because of its importance, add it as a separate point

to the list of requirements of evolutionary explanations:

Requirement 8 (Problem of cooperation)
Evolutionary explanations of the evolution of lan-
guage need to address the problem of cooperation, and
demonstrate that senders will be willing to send honest
signals, and that hearers will be willing to receive and
believe the signal.

Even if we find a scenario where successful commu-

nication is in the interest of both the speaker and the

hearer, there is another problem that arises from the

frequency-dependence of language evolution. We could

call this the problem of coordination. If we ignore the
non-cooperative strategies C and C ′, how does a pop-

ulation of players coordinate their behaviours such that

they play either A and A′, or B and B′? That is, how

do they agree on a shared code? This problem seems

particularly difficult when we consider a series of inno-

vations, as in Jackendoff’s (2002) scenario of the evo-

lution of human language. Each of these innovations

needs to confer a fitness advantage if it is to spread the

population, but it is difficult to see how a genuine in-

novation can be advantageous to the individual if it is

not shared by the rest of the population (Zuidema &

Hogeweg, 2000; Zuidema & de Boer, 2003).

Lewis (1969) showed that only “perfect” commu-

nication systems are “separating equilibria”, which, if

the role of “rationality” of the players is replaced by

natural selection, corresponds to evolutionary stable

states (Skyrms, 1996; Trapa & Nowak, 2000; van Rooij,

2004). Models in this tradition make the following as-

sumptions:

• There is no cost to communication;

• The interests of sender and receiver are perfectly

aligned;

• There is a discrete set of signals and a discrete set

of meanings, and the number of signals equals the

number of meanings;

• All meanings are equally frequent and valuable;

• Every “perfect” mapping frommeanings to signals

is equally good (which implies that meanings have

no relation to each other, signals have no relation to

each other, and meanings have no natural relation

to signals);

• The meaning–signal associations are innate and in-

herited from parent to child.

It is easy to see why perfect communication systems

are the only ESS’s under these assumptions: if a com-

munication system is sub-optimal, there must be syn-

onymy: multiple signals are used for the same mean-

ing. For the sender, however, it is always best to ex-

press a meaningm with the single signal s that has the

highest chance of being understood, i.e. to avoid syn-

onymy. The alternative signal(s) will thus not be used

to expressm anymore, and becomes available (through

drift) for meanings that cannot be expressed yet. Hence,

only “perfect” systems are stable against selection and

drift.

It is clear, however, that all of these assumptions are

violated in reality. Signals do have a cost, interests

are not perfectly aligned, meanings and signals are not

discrete, symbolic entities, but have similarity relations

with themselves and each other, and, at least in human

language, meaning–signal mappings are learnt and not

innate. The problem of coordination thus remains a ma-

jor open issue in the evolution of language, which we

can add to the list of requirements:

Requirement 9 (Problem of coordination)
Explanations for the evolution of language need
to deal with the problem of coordination, that is, show
how, after each innovation, a shared code can be
established and maintained.

Much of the work on the evolution of language can be

seen as dealing with this problem. A number of models,

for instance, relax the innateness assumption above, and

study, in computer simulations, the evolutionary suc-

cess of a number of different strategies in word learning

(Hurford, 1989; Oliphant, 1999; Smith, 2004). The pay-

off function in Hurford’s model is the expected success

in communication between a sender and a receiver (i.e.

the game is cooperative; both sender and receiver bene-

fit from success). Sender behaviour is characterised by

a probabilistic mapping from a set ofM meanings to a

set of F signals; receiver behaviour by a probabilistic

mapping from the signals to the meanings.

Hurford was interested in how these functions were

learnt, and in the evolution of different learning strate-

gies. The strategy set Hurford considered consisted of

three strategies, termed imitator (that imitates the ob-

served average sending and receiving behaviour in the

population), calculator (that estimates the best send and
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receive functions based on observations of the popu-

lation’s receive and send behaviour respectively) and

Saussurean learner (that chooses the same receive func-

tion as the calculator, but derives the send function

from that receive function rather than from the receiv-

ing behaviour in the population). Hurford showed that

Saussurean learners outcompete the other two learning

strategies. These results were extended by Oliphant

& Batali (1996), Oliphant (1999) and Smith (2004),

among others. From these studies it emerged that learn-

ing strategies can evolve that give rise to “perfect” com-

munication systems in a population.

Other models (e.g. Nowak & Krakauer, 1999), do not

model such explicit learning rules, but do relax some of

the other assumptions mentioned. More work is needed

to study whether the results from these studies hold

when learning is modelled explicitly. An encouraging

result in this respect is due to Calvin Harley (1981). He

studies the evolution of learning rules and showed that

evolution will favour rules that learn the evolutionary
stable strategy. Hence, results on Evolutionary Stable

Strategies in innate communication systems, in princi-

ple carry over to situations where the same strategies are

acquired in a learning process (Maynard Smith, 1982,

chapter 4).

8 Levels of Selection

I have discussed some basic concepts from population

genetics, which describes the change in frequencies

of genes, and from evolutionary game theory, which
describes the invasion and replacement of phenotypic

strategiesof individuals. The two approaches are ob-
viously related, because the fitnesses of genes are de-

pendent on the phenotypes they code for, and a strategy

will only replace another strategy if all the genes neces-

sary for that strategy are selected for and get established

in a population. But the description of the evolutionary

process in population genetics and evolutionary game

theory are set at entirely different levels.

In Dawkins’ (Dawkins, 1976) terminology, genes are

replicators: they are the bits of information that get
copied and transmitted – more or less intact – to the next

generation. Individuals are vehicles(Dawkins, 1976)
or reproducers(Szathmáry, 1999). In sexual species,
such as humans, a child is radically different from any

one parent, because she inherits only 50% of the genes.

Individuals, therefore, are not replicators, even though

they are the obvious level of description when we talk

about fitnesses and strategies.

If replicatorsand reproducerswere the same objects,
evolutionary dynamics would be relatively easy to de-

scribe. But in general, especially in sexual species, they

are not. Genes are “packaged” – contained within the

structured genome of an individual that lives within a

structured population. That packaging makes the fate

of a specific gene depend on the other genes it is associ-

ated with (genes that occur together more often or less

often than would be expected on the basis of their fre-

quencies alone, are said to be in linkage disequilibrium).
If a gene a happens to be associated with a gene b that

is under strong positive selection, gene a will increase

in frequency even though it does not itself contribute to

the fitness of its carrier (“genetic hitch-hiking”, Hill &

Robertson, 1966; Maynard Smith & Haigh, 1974). To

predict the fate of a specific gene, we therefore need to

know the statistical associations with other genes.

To make things even more complicated, not just the

gene frequencies change; also the associations them-

selves change in evolution. The physical linkagebe-
tween genes on a chromosome tends to keep these genes

together, but recombinationbreaks up these associa-
tions; sexual selectiongenerates associations between
for instance, the preferences of the females and the se-

lected traits of the males; finally, epistasisalso gen-
erates linkage equilibrium, because if genes are much

better in combination than they are apart, natural se-

lection itself will make the combination more frequent

than expected by chance. Barton & Turelli (1991) and

Kirkpatrick, Johnson & Barton (2002) have developed

a mathematical framework to describe the dynamics of

suchmulti-locus evolution; however, they take fitnesses
as given and do not yet provide a bridge to the fitness

concept in phenotypic models.

Hence, the relation between gene frequency change

and adaptation at the level of the individual (such as

language) is not at all trivial. The problem with the

gene as the level of description is that we don’t know

the relevant fitness coefficients, because our knowledge

of life, death and reproduction is almost entirely speci-

fied at the level of the individual. But the problem with

the individual as level of description, is that we are not

necessarily justified in assuming that natural selection

corresponds to optimisation. Do the results from game-

theoretic analyses translate to fitness coefficients of the

genes that underlie the strategies? How do we relate the

fitness coefficients, and the fundamental results about

evolution as optimisation by Fisher andWright, to adap-

tation on the level of individuals? Grafen (2003), in a

discussion of Fisher’s “fundamental theorem of natu-

ral selection” (Fisher, 1930) observes that (too) few re-

searchers in evolution worry about these issues:

“the theorem was fundamental in 1930 be-

cause it isolated the adaptive engine in evolu-

tion and made an extraordinary link between

gene frequencies and adaptive change. It re-

ally did show how Darwinian natural selec-

tion worked simply and consistently and per-

sistently amid the maelstrom of complexities

of population genetics. The theorem is just as
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important today for that reason. This is not

popularly realised by biologists because most

take for granted an informal sense that natural

selection leads to organismsmaximizing their

fitness, but they do not ask how that sense can

be justified.” (Grafen, 2003, p.327)

Grafen lists three assumptions that are made in the

original version of Fisher’s theorem, and apply equally

to Wright’s equations discussed in section 4:

• It assumes the fitnesses of genes are frequency in-

dependent. That is, the fitness of a given geno-

type is not dependent on which other genotypes are

present and at which frequencies in the population.

Consequences of frequency dependence are stud-

ied in evolutionary game-theory (Maynard Smith

& Price, 1973; Maynard Smith, 1982).

• It assumes that all individuals interact with all

other individuals with equal probability. That is,

it assumes the fitness of a given genotype is not

dependent on the genotypes which are potentially

correlated with it. Consequences of such correla-

tions are studied in social evolution theory (Hamil-

ton, 1964a,b; Frank, 1998).

• It assumes fitnesses are fixed; Grafen himself has

worked on the consequences of natural selection

under uncertainty.

For the purposes of this paper, it would take too far

to investigate the contributions of Grafen and others to

relate population genetics and evolutionary game the-

ory. However, a few important implications for lan-

guage evolution research from the discussion so-far are

worth making explicit. First, a “strategy” in a game-

theoretic analysis will typically be coded for by many

genes (pleiotropy). So if alleles a1, a2 . . . an at loci 1
to n are needed for an evolutionarily stable strategy A,

we need each of these alleles to represent a step in the

right direction. In technical terms, we need additive ge-
netic variance; Maynard Smith (1982) argues that addi-
tive genetic variance is common in nature, and that this

is therefore a reasonable assumption to make in game-

theoretic analyses. We need to be aware, however, that

we ignore all the phenomena of multi-locus evolution in

game-theoretic analyses of language.

Requirement 10 (Levels of selection)Explanations
for the evolution of language need to relate selection at
the level of individuals or groups to changes in gene
frequencies. That is, they need to specify and relate
the assumed levels of description for selection and
heritability.

Second, an important (methodological) observation

is that there is no single best level of description; re-

searchers make a heuristic choice about the level at

which they will describe the evolutionary dynamics.

Every model will only be an approximation, and it de-

pends on the phenomenon of interest at which level the

evolutionary process is most adequately described. Be-

low, I will briefly discuss kin selection, and show, us-

ing the Price equation, why for the phenomena of social

evolution the population structure is a crucial level of

description that is left out in standard game-theoretic

models.

9 Social Evolution & Kin Selection

The techniques from social evolution theory could fill a

whole separate paper; I will therefore keep the discus-

sion brief. One fundamental equation, the Price equa-
tion (Price, 1970), is useful, however, to highlight a
silent assumption in game-theoretic models, and to il-

lustrate the issue of multiple levels of selection. The

Price equation is easily derived; I will follow here Frank

(1998) and Andy Gardner (p.c.). Like Wright’s equa-

tion (9), it can be interpreted as describing the change in

the frequency of a gene, but more generally it describes

the change in the value of any trait z.

Price introduces his equation as follows:

“Gene frequency change is the basic event in

biological evolution. The following equation

[...], which gives frequency change under se-

lection from one generation to the next for

a single gene or for any linear function of

any number of genes at any number of loci,

holds for any sort of dominance or epista-

sis, for sexual or asexual reproduction, for

random or nonrandom mating, for diploid,

haploid or polyploid species, and even for

imaginary species with more than two sexes”

(Price, 1970, p.520)

We are interested in the change in frequency of a spe-

cific trait z in the population between the present (z) and

the next generation (z′). If we divide up the population

in M units q1 . . . qM (these units are, for instance, in-

dividuals or groups, depending on the level of selection

the equation is meant to describe), and we know their

fitnesses w1 . . . wM and trait values z1 . . . zM , then the

change of the trait’s frequency in the whole population

is given by:

∆z = z′ − z

=
∑

i

q′iz
′

i − z

=
∑

i

qi

wi

w
(zi + ∆zi) − z (12)

Multiplying both sides of this equation with w, and
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rearranging gives:

w∆z =
∑

i

qiwizi +
∑

i

qiwi∆zi − w z

=
∑

i

qiwizi − w z

︸ ︷︷ ︸

Cov[w,z]

+
∑

i

qiwi∆zi

︸ ︷︷ ︸

E[w∆z]

(13)

As indicated, the terms in equation (13) correspond,

by definition, to the covariancebetween fitness and trait
value, and expected value6. Hence, the process of evolu-
tion can be elegantly summarised in the Price equation,

as follows:

w∆z = Cov[w, z]
︸ ︷︷ ︸

selection

+ E[w∆z]
︸ ︷︷ ︸

transmission

(14)

The Price equation partitions the process of evolution

into a term that describes the effects of selection (traits

that are associated strongly with fitness will be selected

for most effectively), and a term that describes the ef-

fects of (biased) transmission (the index i is the index

of the parent; hence ∆zi describes the change in the

trait value – from a particular parent to all its offspring

– regardless of selection).

Observe that the transmission term in the Price equa-

tion looks very similar to the left-hand side of that equa-

tion. This fact allows us to relate different levels of

selection. As an illustration, I will here derive Hamil-

ton’s (Hamilton, 1964a,b) famous result on kin selec-

tion, which says that an altruistic trait can evolve if the

benefit b times the relatedness r is larger than the cost c:

br > c. (15)

The derivation using the Price equation highlights the

correct interpretation of relatednessand suggests appli-
cations for language evolution. The derivation concerns

the evolution of an altruistic trait, such as the alarm

calls discussed in the previous section. For simplicity,

assume an individual either does or does not have this

trait. We indicate this with the variable z, that is, z = 1
or z = 0. We can ask: under which circumstances will
this trait evolve?

Consider a population, subdivided (at random) in N

groups G1 . . .GN , each of sizeM individuals. In each

group Gi, individuals benefit from the amount of altru-

ism in that group, labelled as zi; the total benefit is bzi.

The jth individual in that group, however, also suffers

6The covariance between two variables x and y is defined as

Cov(xi, yi) = 1

N

∑
N

i=1
((xi − x)(yi − y)) = xy − x y, i.e. the

product of the means minus the mean of the products. Expected value

of a variable x is defined as E(x) =
∑

N

i=1
P (x = xi)xi, i.e. the

sum of all possible values weighted by the probability of each value.

Covariance is the most obvious way of measuring a departure from

statistical independence. If x and y vary independently from each

other, then E(xy) = E(x)E(y), and the covariance is 0.

a cost from being altruistic, indicated with c; the cost

is thus czij . The fitness of the jth individual in the ith

group is now given by:

wij = α + bzi − czij , (16)

where α is a baseline fitness (not dependent on the pres-

ence or absence of the altruistic trait). The fitness of the

ith group is given by:

wi = α + (b − c)zi. (17)

Hence, an individual’s fitness (her relative contribu-

tion to the total offspring of the group) depends on the

amount of altruism received and the amount of altru-

ism given. Obviously, if the cost c of being altruistic

is larger than 0, it is always best for an individual to
be selfish. The group’s fitness7 (the relative contribu-

tion of this group’s offspring in the total offspring of the

whole population) depends on the total amount of al-

truism given. If the cost c of altruism is lower than the

benefit b, it is always best for the groupif all individuals
are altruistic.

The evolutionary process within each group i can be

described with a Price equation, as in equation (14). If

we assume there is no transmission bias, the equation

simplifies to:

wij∆zij = wi∆zi = Covj [wij , zij ]. (18)

The evolutionary process at the level of the whole

population is also described with a Price equation,

where the transmission term concerns the within-group

dynamics of equation (18):

wi∆zi = Covi[wi, zi] + Ei[wi∆zi]

= Covi[wi, zi] + Ei[Covj [wij , zij ]].(19)

The covariance in above equation can be replaced by

a regression and variance term, because (by definition)

Cov(x, y) = β(x, y)Var(y). This gives the following
equation:

wi∆zi = β(wi, zi)Vari[zi] + Ei[β(wij , zij)Varj [zij ]].
(20)

These regression terms β can be read off directly

from equations (16) and (17), because they correspond

to the slope of the fitness functions, i.e. β(wi, zi) = b−c

and β(wij , zij) = −c. Substituting these values into

equation (20) and rearranging gives:

wi∆zi = (b − c)Vari[zi] + Ei[−cVarj [zij ]]

= (b − c)Vari[zi] − cEi[Varj [zij ]]

= bVari[zi] − c(Vari[zi] + Ei[Varj [zij ]])

= bVari[zi] − cVartotal

=

(

b
Vari[zi]

Vartotal
− c

)

Vartotal, (21)

7Note that, although parent groups are of fixed size M , some

groups produce more offspring than others.
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where Vartotal is the total variance. This establishes a

derivation of Hamilton’s rule from the Price equation,

because the average relatedness between two individ-

uals in a population, equals the between group vari-

ance as a proportion of the total variance. That is,

r = Vari[zi]

Vartotal
. If the benefits of trait z, weighted with

the relatedness within a group, are larger than the costs,

i.e. rb > c, then ∆z will be positive, i.e. evolution will

favour the trait even if it harms the individual.

It is important to note that Hamilton’s rule is widely

misinterpreted. As this derivation shows, the related-

ness term r is not the fraction of genes two individu-
als share (identity by descent), as is commonly assumed
(e.g. Okasha, 2003). Rather, it is a statistical association

between the trait of interest in one individual and the

trait in the individual she interacts with. Therefore, the

relatedness between two individuals can even be neg-

ative. This simply means that the individuals are less

related to each other than to a random third individual

in the population (Hamilton, 1970). If the association

is high enough, altruistic traits can be favoured by nat-

ural selection8. That is, if (for whatever reason) altru-

ists are surrounded by other altruists, they benefit more

from the altruism received than from the altruism of-

fered (and conversely, if it is low enough, natural selec-

tion can favour spite– behaviours that harm both the ac-
tor and the recipient; Hamilton, 1970; Gardner & West,

2004).

Interactions within kin-groups (and kin recognition)

are an important mechanism for this association to arise

(hence the Maynard Smith’s term “kin selection”), but

not the only one. Subdivision of a population in groups

is another mechanism (such “group selection” is thus a

form of kin selection). Hamilton himself suggested a

third mechanism, that of “green beards”. If the same

gene complex that codes for an altruistic trait, also

codes for an external marker (i.e. a green beard), al-

truists can choose to interact preferentially with each

other. This is of interest for language evolution, because

language itself could be such a green beard, if individu-

als with a linguistic innovation can recognise each other

based on features in their language. Finally, reciprocal

altruism (Trivers, 1971), where players remember the

8Darwin already understood the essence of kin selection when he

wrote: “”[...] selection may be applied to the family, as well as to the

individual, and may thus gain the desired end. Thus, a well-flavoured

vegetable is cooked, and the individual is destroyed; but the horticul-

turist sows seeds of the same stock, and confidently expects to get

nearly the same variety; breeders of cattle wish the flesh and fat to

be well marbled together; the animal has been slaughtered, but the

breeder goes with confidence to the same family. [...] Thus I believe

it has been with social insects: a slight modification of structure, or in-

stinct, correlated with the sterile condition of certain members of the

community, has been advantageous to the community: consequently

the fertile males and females of the community flourished, and trans-

mitted to their fertile offspring a tendency to produce sterile members

having the same modification.” (Darwin, 1859, p.258-259)

interaction history with other players and play altruisti-

cally only against players that have been altruistic in the

past, can be understood in the same framework.

Kin selection seems the most promising solution for

the problem of cooperation that I introduced in sec-

tion 7. It would certainly be worthwhile to study formal

models of kin selection, that take into account the de-

tails of human communication. In this paper, however,

I will no further address kin selection or the problem of

cooperation. Instead, I will assume the willingness to

cooperate exists in modeled populations, and focus on

the problem of coordination.

10 Cultural Evolution

Dawkins (1976) emphasised that the principle of nat-

ural selection is not restricted to genes or individuals

(as Fisher, Wright, Haldane, Price, Hamilton and oth-

ers were well aware). In every situation where one can

identify replicators, heritable variation and natural se-

lection, a process of adaptation can take place. For

instance, cultural inventions (or “memes”, Dawkins,

1976) – religion, technology, fashion or indeed words

and grammatical rules – undergo evolution if there are

mechanisms for cultural transmission and cultural se-

lection.

Since Dawkin’s book, many wildly speculative the-

ories have been launched under the heading “memet-

ics”, which have given this new field a bad reputation.

Nevertheless, the basic idea is sound and open to se-

rious investigation (Mesoudi et al., 2004). For a start,
all mathematical models and requirements discussed in

this paper apply, mutatis mutandis, to cultural evolution

as well. The idea of viewing historical language change

as a form of evolution is particularly attractive because,

on the one hand, it makes the extensive mathematical

toolkit of evolutionary biology available to linguistics,

and on the other hand, is presents evolutionists with an

enormous body of new data.

We need formal models of the cultural evolution of

language, in which we can deal with all the constraints

on evolutionary models that I listed in this paper. Al-

though many authors have noted the parallels between

biological evolution and language change, including

Darwin (1871, p.91), only recently have people started

to study the cultural evolution of language in such a for-

mal framework. Some relevant mathematical models

are those of Cavalli-Sforza & Feldman (1981), Niyogi

(2002) and Yang (2000). These authors look at the

competition between two or more languages, with no

qualitative differences between languages. Simulation

models such as those of Kirby (1998) and Batali (2002)

look at more open-ended systems, with more explicit

formalisms for grammar and learning.

One problem is that is not so easy to decide on the ap-
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propriate units of selection. For instance, Kirby (2000)

described the dynamics in his simulation model with

context-free grammar rules as replicators under selec-

tion for more reliable replication. In later papers, how-

ever, he argued that the analogy between biological

and cultural evolution in this case breaks down (Kirby,

2002). This is because the grammatical rules are in-
ducedfrom observable language, whereas in biological
evolution genes are inherited, with no feedback from
phenotype to genotype (other than through the effects

of selection). This is known as the “central dogma

of molecular biology”. This observation is correct, of

course, but it does not mean we cannot describe the dy-

namics in models such as Kirby’s using the tools from

evolutionary biology. The effects of induction in lan-

guage change are a form of “directed mutation”, and

can be included, for instance, in the Price Equation in

the transmission term. More work is needed to work

this out with concrete examples.

11 Conclusions

In this paper I have discussed a variety of models from

population genetics, evolutionary game-theory and so-

cial evolution theory. I have used these models to make

a list of requirements for evolutionary scenarios of the

biological and cultural evolution of language. These

requirements correspond to the following questions we

should ask when confronted with a scenario for the bio-

logical or cultural evolution of language:

• What are the units of inheritance the scenario as-

sumes? Genes? Memes?

• What is the scope of variation in these genes or

memes? That is, what is the assumed set of possi-

ble traits/strategies available for evolution?

• What are the selection pressures? That is, what is

the assumed payoff for each of these possible traits

in each possible context?

• For every innovation in the scenario, will it indeed

be favoured by selection when extremely rare? If

not, is there a non-negligible chance it could get

established by stochastic effects, or get frequent

enough to be favoured by selection?

• Does the assumed series of changes in the scenario

indeed constitute a path of ever-increasing fitness?

That is, is there a path of fit intermediates from

start to finish?

• How much time will each of the innovations take

to get established?

• Is there for every transition sufficient variation, but

not too much?

• How does the scenario explain that speakers main-

tain the willingness to speak honestly, and that

hearers continue to listen and believe the informa-

tion received? That is, how does it solve the prob-

lem of cooperation?

• How does the scenario explain that speakers and

hearers, after every innovation, agree on which sig-

nals refer to which meanings? That is, how does it

solve the problem of coordination?

• How does the scenario relate dynamics at different

levels of description – genes, strategies, individu-

als, groups, languages?

A Wright’s Adaptive Topography

Consider the single locus, two alleles model of figure 1.

Recall the expression for average fitness of the 3 possi-

ble genotypes (equation 5):

w = p2wAA + 2pqwAa + q2waa (22)

Because p + q = 1 this expression can be rewritten as:

w = p2wAA + 2p(1 − p)wAa + (1 − p)2waa

= p2wAA + 2pwAa − 2p2wAa + waa

−2pwaa + p2waa. (23)

The derivative of w with respect to p is now (provided

the fitness coefficients are independent of p):

dw

dp
= 2pwAA + 2wAa − 4pwAa − 2waa + 2pwaa

= 2 (pwAA + wAa − 2pwAa − waa + pwaa)

= 2 (pwAA + qwAa − pwAa − qwaa)

= 2 (p (wAA − wAa) − q (waa − wAa)) . (24)

Now, recall the expression for the change in p (equa-

tion (6)), which can in a few steps be rewritten as:

∆p = p′ − p

=
p(pwAA + qwAa)

w
− p

=
p(pwAA + qwAa)

w
−

pw

w

=
p

w
(pwAA + qwAa − w). (25)

Inserting equation (22) into equation (25), and rearrang-

ing using the fact that q = 1 − p, gives:

∆p =
p

w
(pwAA + qwAa − p2wAA − 2pqwAa − q2waa)

=
pq

w
(p(wAA − wAa) − q(waa − wAa)). (26)

Equation (26) and (24) can be combined into equa-

tion (9), as is explored in the main text.
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1 Review Papers

Steven Pinker, 1979Pinker gives a good overview of the heuristic approaches forinducing context-free
gramar existing at the time. He ridicules “automatated fieldlinguists”, discusses the Gold paradigm
and argues it shows the impossibility of learning from plaintext. He then discsses Andersons work,
and argues for semantically informed bootstrapping.

Dana Angluin and Carl H. Smith, 1983 , Inductive Inference: Theory and Methods, Computing Surveys
15,3:237-269.Excellent review, surveying both abstract learnability results and concrete heuristic
methods for learning grammars.

Robin Collier, 1994 An Historical Overview of Natural Language Processing Systems that Learn. Artif.
Intell. Rev. 8(1): 17-54 (1994)Contains only a small section on syntax; most attention to algorithms
for learning semantics and pragmatics.

Yasubumi Sakakibara, 1997 Recent advances of grammatical inference, Theoretical Computer Science
185:15-45Good paper, but very much focused on Sakakibara’s own work.

R Parekh and V Honavar, 1998 Grammar Inference, Automata Induction, and Language Acquisition. In:
Handbook of Natural Language Processing (Dale, Moisl & Somers). New York: Marcel Dekker.
Nice survey, starting with inference of finite-state automata and discussing stochastic and context-
free extensions. Little new information on (P)CFGs.

Colin de la Higuera, 2002 A Bibliographical Study of Grammatical Inference, unpublished. Extended ver-
sion of: Colin de la Higuera (2000), Current trends in grammatical inference, In: Advances In Pattern
Recognition, Lecture Notes In Computer Science 1876: 28-31.

Pieter Adriaans and Menno van Zaanen, 2004Computational Grammar Induction for Linguists, Gram-
mars, volume 7:57-68

2 Constituency-based Models

Ray Solomonoff, 1964:A Formal Theory of Inductive Inference, Part II, Information and Control, Part
II: Vol. 7, No. 2, pp. 224-254. http://world.std.com/ rjs/1964pt2.pdfThis paper already presents a
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Bayesian approach to the identification of context-free grammars, such as later rediscovered by Cook
et al and Stolcke. Solomonoff spells out how to define the prior probability distribution over grammars
(a description length prior) and the likelihood of the data given the grammar.

Horning, 1969: Unpublished PhD-thesis; Horning defined a Bayesian objective function similar to Stol-
cke’s (viewing grammars as being generated by a meta-grammar).The search procedure, however, is
simply enumeration (like Gold (1967)). Horning proves that, if the input is generated stochastically,
this algorithm identifies in the limit a correct grammar withprobability 1 (i.e. stochastic CFGs are
learnable).

Cook et al, 1976: Grammatical inference by hill climbing CM Cook, A Rosenfeld, AR Aronson - Informa-
tional Sciences (now: Information Sciences), 1976, 10:59-80. presents a model very similar to that of
Stolcke, 1994. It includes search operations equivalent tochunk and merge. The main difference is the
objective function, where for both the grammar encoding (prior) and the data encoding (likelihood)
terms, an additional costs is calculated for specifying theform of the rule/word. I.e. a grammar with
rules {X → abbab,X → babba} counts as less probable/more costly to encode than a grammar
{X → aaaaa,X → bbbbb}. It is evaluated on a number of toy problems; Stolcke used these same
problems and finds comparable performance.

Wolff 1982, 1987: Wolff present a theory of child language development based on induction. He develops a
number of computer programs to illustrate his point. They contain a lot of heuristics, but the essential
operations in the model are incorporate, chunk and merge. The first, incorporates each sentence
w1w2..wn into the grammar, by creating n unique nonterminalN1, N2, ..., Nn and adding rules S→N1
N2 .. Nn and N1→w1, N2→w2, ..., Nn→wn. Chunk then makes two consecutive nonterminals
into a constituent. Merge equates two nonterminals (i.e. makes two words or constituents of the
same category). The criterion for applying chunk and merge is based on the length of the grammar,
measured in number of symbols at the right-hand side of rules. The algorithm iteratively searches
for the pair of nonterminals that when chunked or merged leads to the greatest reduction in grammar
length, and then applies it. Some of the additional heuristics have to do with fixing the greediness of
the learning.

Langley, 1992; Langley & Stromsten, 2000:Reimplements a clean version of Wolff, now called “Grids”,
and uses it to argue for the usefulness of a “simplicity bias”in learning.

Adriaans 1992: an algorithm for inducing categorial grammars from plain text, called “Emile”, later adapted
to yield context free grammars.

Stolcke 1994: Stolcke develops a Bayesian approach to learning HMMs and PCFGs from plain text. The
operations are the same as in Wolff and Langley, but the criterion to apply chunk and merge is differ-
ent. It is based on an estimate of the posterior probability,which is itself the product of the likelihood
of the data and the prior probability of the grammar. The prior is in turn the product of a structure
prior (in the basic version exponentially decreasing with description length) and a parameter prior
(peaking at uniform weights for all production rules). The likelihood is exponentially decreasing with
the description length of the derivations of each of the observed sentences. Hence, in its basic ver-
sion, the model corresponds to MDL learning, but Stolcke at some point changes the prior to bias
towards slightly larger grammars. Stolcke makes a number of(rather crude) approximations to make
the calculation of likelihood efficient: he assumes that most of the probability mass of a sentence is
concentrated in its Viterbi parse (hence, for ambiguous sentences, only the probability of the most
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probably parse is counted) and that the Viterbi property of aparse is preserved under the merge op-
eration. There is no evaluation of how good these assumptions are. Finally, Stolcke uses a number
of search strategies to find the grammars that maximize the posterior. The one that works best is a
beam search for the best merges with a look-ahead to further improvements through merge, alter-
nated with a beam search for the best chunks also with a look-ahead to further improvements through
merge (chunks don’t improve the posterior on their own). Stolcke only evaluates his algorithm on toy
grammars, and shows he can easily find all of the examle grammars proposed by Langley and others.

Nevill-Manning and Witten, 1997: Nice paper, describing a compression algorithm called “Sequitur” for
sequences (streams) of strings. It differs from the other algorithms discussed here, in that it doesnot
use sentence boundaries but assumes a continuous stream of input. It finds common patterns in the
input, replacing recursively frequent and long sequences with nonterminals, in the process creating hi-
erarchical structure. By some clever encodings the algorithm operates in approximately linear time. It
has been applied to large amounts of data, but cannot be evaluated in the same way as other algrithms.

Van Zaanen 2002: Van Zaanen develops a related but different model called Alignment-Based Learning.
The algorithm has two phases: (1) alignment, (2) selection.In phase 1, it identifies all pairs of sen-
tences that can be partially aligned (i.e. share subtrings). All of the dissimilarparts are then viewed as
hypothesised constituents of the same category. If the samesubstring receives multiple labels by this
process, these labels made equal. Thus, hypotheses on constituents are generated with a procedure
that combines chunks and merges. The selection of a consistent set of constituent assignments is post-
poned until the phase 2. Here, the most probable set is selected, defined as the product of the relative
frequencies (?) which, I’m guessing, comes down to selecting an implicit PCFG that maximizes the
likelihood of the data (but of course constrained by the possible rules that phase 1 is generating). Van
Zaanen evaluates his algorithm on ATIS and OVIS and, although performance is poor, it outperforms
Adriaans’ EMILE. The joint effect of the two phases makes it difficult to evaluate what the algorithm
is optimizing.

Klein & Manning, 2002 EM based induction of binary branching constituent structure. This is the first
paper to score better than the right-branching heuristic (unlabeled recall and precision on sentences
from the WSJ corpus no longer than 10 words). The algorithm uses a chart representation, with just
two possible values in each cell: constituent or distituent(i.e. a bracketingB). The likelihood of a
sentence given such a chart,P (S|B), is defined as the product of probabilities of each cell generating
its yield and the corresponding context, conditioned on theconstituency-value of the cell. (It seems
to me that each word is generated multiple times in this model, by all cells that include it in their
span, or consider it context to their span. The authors acknowledge the probability model is deficient
in some way, but claim a fix is simple but cumbersome and irrelevant). The likelihood of a sentence
is simplyP (S) =

∑
B

P (B)P (S|B), with the priorP (B) uniform over all binary branching trees.
Using EM to maximize the likelihood of the whole corpus, the model find quite accurate bracketings
of the sentences. On POS-tag sequences from WSJ10, the modelscoresF1 = 71.1%, substantially
higher than the60% of the right-branching heuristic.

Petasis et al 2003:Petasis presents a reimplementation of Langley’s algorithm, but now formulated through-
out as a MDL algorithm – removing, as he argues, some of Langley’s inconsistencies on the way. The
earlier version is called e-grids, a more recent one eg-grids. The most important innovation, as I view
it, is not in the optimization criterion (MDL = Stolcke’s posterior), but in the search strategy. In ad-
dition to a beam search for the right sequence for merges and chunks, Petasis proposes a number of
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specific heuristics that perform a sequence of merges and chunks, and generate a range of candidate
changes to the grammar to be selected in a second step. This allow him to find relevant linguistic
patterns much more efficiently, thus hopefully avoiding local maxima that Stolcke’s algorithm might
get stuck in. Unfortunately, the algorithm has not been evaluated on any large corpora. In Borensztajn
& Zuidema (2007), we evaluate a reimplementation of e-gridson the WSJ10 corpus.

Solan et al., 2005:In a series of papers, Solan et al study another related induction algorithm called ADIOS.
The presentation is somewhat confusing, with non-standardterminology, alternative usage of estab-
lished technical terms (such as “context-sensitive”) and technical details spread over many different
papers. The model also uses cooccurrence statistics to decide on likely constituents (here called “sig-
nificant pattern”) and syntactic category membership of those constituents (here called “equivalence
classes”). The model starts with creating a huge graph with nodes for every word (type, not token),
and sentences as labeled paths through that graph. The algorithm then finds those sequences of words
that have a high “fan-in, fan-out” score. This is a local measure, measuring how often sentences fol-
low the whole sequence relative to how often they branch off before, within or after the sequence.
The algorithm continues iteratively, treating the found sequences as single words (constituents). This
operation is, I think, identical to the chunking operation in Wolff and Stolcke (but with a different cri-
terion for which words/nonterminals to apply it to). A second operation creates equivalence classes,
essentially making sets of words or constituents substitutable (and hence of the same category). The
application of this operation is also guided by a local measure.The model is said to outperform Adri-
aans and Van Zaanen on a small target grammar, and is further evaluated in various non-standard
ways. An implementation with a strict limitation on the number of words can be downloaded from
the website.

Bod, 2006ab: Radical approach, called U-DOP (for “Unsupervised Data-Oriented Parsing”), where all pos-
sible binary branching trees are assigned to the input sentences. All subtrees of all these trees than
form a stochastic tree substitution grammar (STSG), with a weight proportional to the frequency in
the subtree-multiset (in Bod 2006b subsequently reestimated using EM). The corpus is reparsed with
(an approximation of) this STSG, and (an approximation of) the most probable parse for each sen-
tence is determined. Excellent empirical results are reported, with the currently best bracketing score
on POS-sequences from WSJ10: unlabeledF1 = 82.9.

Peter Grünwald, 1996 A minimum description length approach to grammar inference, In: Symbolic, Con-
nectionist and Statistical, Approaches to Learning for Natural Language Processing (eds. S. Wermter,
E. Riloff, G. Scheler), Lecture Notes in Artificial Intelligence (Lecture Notes In Computer Science),
1040:203-216 http://www.cwi.nl/ pdg/ftp/mdlagi.ps.Similar to Petasis et al, but somewhat prelimi-
nary.

Alexander Clark, 2004 Grammatical Inference and the Argument from the Poverty of the Stimulus, AAAI
Spring Symposium on Interdisciplinary Approaches to Language Learning, Stanford CA
http://www.issco.unige.ch/staff/clark/SS704ClarkA.pdf

Jonas Kuhn, 2004 Experiments in Parallel-Text Based Grammar Induction, ACL’04.
http://uts.cc.utexas.edu/ jonask/kuhn-acl04-final.pdf

Simon Dennis, 2005An exemplar-based approach to unsupervised parsing. In: Bruno G. Bara, Lawrence
Barsalou, and Monica Bucciarelli, editors,Proceedings of the 27th Conference of the Cognitive Sci-
ence Society. Lawrence Erlbaum.
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3 Dependency-based

Buszkowski & Penn, 1990Algorithm for finding a classical categorical grammar from input data anno-
tated with functor-argument structure. Lots of complicated math, but the algorithm doesn’t actually
seem to be able to learn interesting grammars.

Klein & Manning, 2004 Dan Klein and Christopher D. Manning, 2004. Corpus-based induction of syn-
tactic structure: Models of dependency and constituency. In Proceedings of the 42th Annual Meeting
of the ACL.

Virginia Savova and Leon Peshkin, 2005:Bayesian Networks for the Recursive recovery of Syntactic
Dependencies. In Proceedings of CogSci, 2005

Yoav Seginer, 2007:Fast Unsupervised Incremental Parsing.Algorithm based on enriched dependency
structures. Links between words are created based on co-occurrence statistics of words. These statis-
tics are gathered on-line, which involves keeping track of the frequency of co-occurring words to the
left and right, but also of the information that frequently co-occuring words carry about words they
frequently co-occur with. This way, a word “knows” which other words have similar co-occurrence
statistics. Currently best bracketing scores on WSJ10 (word sequences): unlabeledF1 = 75.1.
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