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Abstract. Throughout its history, deontic logic had to face the question
whether it is a logic of descriptions or a logic of prescriptions, namely of
imperatives. The paper describes how the idea that there is a ‘logic of
imperatives’ first came about, what proposals there have been to explain
it and what problems it has had difficulties to solve. The paper argues
that the idea of a logic of imperatives rests on a mistaken parallelism
between imperative and indicative language and that there is, as a matter
of fact, no such logic. However, we can argue about what ought to be
done or need not be done according to given imperatives, and appeal
to existing imperatives to motivate new ones. Descriptively interpreted
deontic logic suffices to explain the reasoning involved.
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1 Introduction

For almost the whole of its over 50 years of existence, authors studying deontic
logic and its concepts of obligation, permission and prohibition have been unsure
as to what their subject really is. Is it the study of prescriptively used language
(imperatives, norms)? Or is it the study of descriptive sentences about norms
and the logical relations that hold between them? And if the second description
is true, is not deontic logic then a kind of ‘ersatz theory’ that only mirrors what
goes on in the realm of norms, a theory that may, if properly devised, result
only in dull isomorphisms of the ‘real’ relations that hold between the norms
themselves? Troubled by this prospect, many authors have tried to answer the
question in the first way and upheld the point of view that deontic logic is
the study of prescriptions, namely of imperatives, and their logical relations.
In this paper I describe how the idea that there is such a thing as a ‘logic of
imperatives’ came first into being, how authors have tried to explain this idea
and devise formal theories for this logic, as well as the main problems that such
proposals have run into. I finally argue that the idea of a logic of imperatives
rests on a mistaken conception of a total parallelism between imperative and
indicative language and that there are in fact, in ordinary language, no argument
forms that resemble ‘imperative inferences’. So there is also no place for a formal
theory for such a logic. When we appeal to imperatives in arguments, we use
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deontic logic to describe what is obligatory or needs not obtain according to
the imperatives that we have used or accepted before, and we motivate new
imperatives by what is obligatory according to other imperatives that have been
or should be accepted. Deontic logic, in its descriptive interpretation, is thus the
(only) logic of normative concepts like obligation.

2 Beginnings: Poincaré’s Proposal

Can imperatives, i.e. sentences in the imperative mood, be part of logical infer-
ences? Henri Poincaré considered this question in his 1913 essay “La Morale et
la Science” [87]. He begins by observing that if the premisses are all indicatives,
then so will be the conclusion, hence for an imperative conclusion at least one
premiss in the imperative mood is required, and so science alone cannot estab-
lish standards of morality. However, just as steam can be put to use in different
machinery, science may also be used for moral reasoning:

“It [the moral sentiment] will give us the major premiss of our inference
which, as it happens, is in the imperative mood. At its side, science will
put the minor premiss which will be in the indicative mood. From these
a conclusion can be drawn that is in the imperative mood.”

Poincaré seems to have in mind Aristotelian syllogisms of the following kind:

Hang all dwellers of the Nottingham Forest!
All members of Robin’s band dwell in the Nottingham Forest.
Therefore: Hang all members of Robin’s band!

Poincaré then proceeds to give a second example of an inference with an imper-
ative conclusion:

“One can imagine inferences which are of the following type: do this, but
now if one does not do that, one cannot do this, so do that. And such
reasoning is not outside the field of science.”

The following is an example of the suggested inference:

Open the door!
The door cannot be opened unless it is first unlocked.
Therefore: Unlock the door!

So an order to do one thing includes orders to do all that is necessary to satisfy
the primary command. Poincaré’s proposals raise questions: by exchanging in
his first example the syllogism barbara for camestres we obtain:

Hang all dwellers of the Nottingham Forest!
No member of Robin’s band is hanged.
Therefore: No dweller of the Nottingham Forest shall be a member of
Robin’s band!
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But it did not seem as if the speaker, e.g. the Sheriff of Nottinghamshire, was
creating rules for band membership. The second type of inference is problematic
when there are no legal means to fulfill an imperative (cf. Foot [21] p. 384):

Sustain your aged parents!
I can only sustain my aged parents if I rob somebody.
Therefore: Rob somebody!

So if commanding means also commanding all necessary acts, then even forbid-
den acts may be included. To improve matters, the second clause in Poincarés
scheme might be changed to ‘this can only legally be brought about by doing
that’. But this introduces a normative element into a premiss that Poincaré
assumed to be established by science alone.

While all this suggests that imperative inferences might require some addi-
tions and modifications, the most difficult question has turned out to be what
makes them inferences. The problems attached to this question go under the
name of ‘Jørgensen’s Dilemma’.

3 Jørgensen’s Dilemma

Logic’s concern is with the soundness of arguments, or inferences. These consist
of sentences that represent the ‘premisses’ and usually one sentence that forms
the ‘conclusion’. The argument is then called ‘sound’, ‘valid’ or ‘logical’, if it
is not possible that all of its premisses are true but the conclusion false. The
premisses are then said to ‘entail’ the conclusion which thus ‘follows’ from them.1

Expressions in the imperative mood are not, in any usual sense, true or false.
Therefore they are incapable of functioning as premisses or conclusions in logical
inferences. However, people maintain that the opposite is true and that there are
inferences that have conclusions in the imperative mood and premisses of which
at least one is likewise in the imperative mood (cf. Poincaré’s examples above).
This is a puzzling situation, which was first pointed out by Jørgen Jørgensen in
[48]:

“So we have the following puzzle: According to a generally accepted
definition of logical inference only sentences which are capable of being
true or false can function as premisses or conclusions in an inference;
nevertheless it seems evident that a conclusion in the imperative mood
may be drawn from two premises one of which or both of which are in
the imperative mood. How is this puzzle to be dealt with?”

To find this puzzle, called ‘Jørgensen’s Dilemma’, perplexing, one must ac-
cept that imperatives cannot be meaningfully termed true or false. This seems
to be the philosophical consensus, it can point to Aristotle’s definition of an as-
sertion as a grammatical entity that can be true or false, in distinction to other

1 For such textbook definition cf. Mates [71] p.5, Lemmon [64] p.1, Hodges [44] p.55.
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grammatical entities like requests that are neither true or false (De interpre-
tatione 17 a 4). Nevertheless, a way out of the dilemma may consist in giving
up just this claim. Most prominently, Kalinowski [49], [52] has argued that in
the case of expressions of moral or legal norms, the attitude of the ‘ordinary’,
non-philosophical person is to treat these as true or false. E.g. people say that it
is true that another person’s right to live must be respected, or that slander is
prohibited, and people would uphold these truths even if particular legislators
did not enact such norms, or proclaimed otherwise. So Kalinowski concludes
that legal or moral norms can be part of logical inferences. I think that these
considerations confuse truth with the notion of a legal or moral norm’s validity:
the ‘external’ recognition of a norm as valid in a certain society. For the present
discussion it suffices that Kalinowski himself restricts his view to legal and moral
norms and does not claim that ‘imperatives in the strict sense’ can be said to be
true or false, and in fact writes that they are not true or false.2 But it is these
that we are concerned with.

On another view, any imperative can be equivalently replaced by a first
person expressions like ‘I command you to ...’, ‘I order you to ...’, ‘I request
of you that you ...’ or ‘I want you to ...’.3 But expressions like “I command
you to ...” cannot only be used to command, but also to assert that I do in
fact command so-and-so. Therefore Sigwart [94] claims that each imperative
includes the statement that the speaker wills the act which he commands. While
he adds that nevertheless the import of what is said by the imperative is not the
communication of a truth but a “summons to do this, to leave that undone”,
Ledig [61] argues that because imperatives include such assertions, one must
consequently apply the terms of truth and falsity to an imperative, and that
it will be true unless it is e.g. stated for fun. Likewise, Kamp [54] points out
that from the viewpoint of the addressee, it really makes no difference if an
expressions like “I command you to ...” is understood as a command or as
an assertion, since if the utterance is appropriate (i.e. made in earnest in the
appropriate conditions) then it must be true and so the practical consequences
are the same. Similarly, Opa lek & Woleñski [79] call a normative statement
qua performative true if it is effective. However, it is hard to see how these
considerations can solve Jørgensen’s dilemma. If any imperative that is meant
seriously is true, then (i) any imperative either follows from any other ‘true’
imperative or is not meant seriously, and (ii) all imperatives follow from one
made for fun. If imperatives are ambiguous and include an assertion, then the
fact that this assertion may be used in an indicative inference does not mean
that the indicative conclusion is likewise ambiguous. A sign post bearing the
words ‘Frankfurt/Main’ conveys the information that if I follow the indicated
direction I will eventually arrive at Frankfurt. I may also infer that there exists
a place called Frankfurt and that a geographical entity called Main, namely

2 Cf. Kalinowski [50] p. 36 and [52] p. 107.
3 In the case of English grammar, it has been claimed that the exclamation mark, or

rather the characteristic intonation that it replaces in written language, is only the
remainder of such explicit performative lead-ins, cf. Harris [39] pp. 391–392.
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a river, exists in its proximity. Knowing that sign posts tend not to include
redundant information, I can also conclude that there must be another place that
is also called Frankfurt (namely Frankfurt/Oder), and that this place does not
lie near the Main, because otherwise the extra information would not have been
discriminating. But the sign post does not point into the direction of this other
city. Similarly the information that is obtained by interpreting an imperative
utterance may be used to infer some other information. But this is not inferring
imperatives.

The fact that imperatives are traditionally not considered to be true or false
finds its explanation in the different intentions in which imperatives and indica-
tives are used. The main use of indicatives is to convey what the speaker believes
the world to be like. If it is so, then the sentence is called ‘true’, if not, then it
is called ‘false’ and the recipient might point out that I should perhaps change
my beliefs. By use of an imperative I tell the addressee what I want to be done.
If the addressee does what is demanded, the action may be qualified as ‘right’,
or satisfactory with respect to the command, and if not, then the behavior of
the addressee is in some sense ‘wrong’ and I will perhaps remind the agent of
his or her obligation. So truth and falsity are the qualities of descriptions when
things are or are not as they have been described, while ‘right’ or ‘wrong’ are the
qualities of acts that are or are not in accordance with what has been prescribed.
Descriptions and prescriptions have a different ‘direction of fit’, and true/false
are the terms used to express the match/mismatch on the language side in case
of a descriptive use of language, and right/wrong are the terms employed for the
match/mismatch on the world side in case of a prescriptive use.4 Therefore it
is a confusion of language, and indicates a misunderstanding of the intention in
which the sentence has been uttered, if imperatives are termed true or false.

Accordingly, the most effort regarding Jørgensen’s dilemma has been spent on
developing alternative definitions for ‘imperative inferences’, rather than arguing
for the application of the terms of truth and falsity to imperatives – unless one is
already convinced by the dilemma that such things as inferences with imperatives
are at all impossible (e.g. Keene [56]).

4 Dubislav’s Trick and Related Theories

To deal with his own ‘dilemma’, Jørgensen [48] endorsed a proposal by Walter
Dubislav [18] to transfer the ‘usual definitions’ of inferences between indicatives
to imperatives ‘by analogy’. Dubislav gives the following example:

Though shalt not kill.
Therefore: Cain shalt not kill Abel.

4 This explanation of why the terms of truth and falsity are not applicable to nor-
mative uses of language originates with Anscombe [7] §32. Independent accounts
can be found in Kenny [58] p. 68 and Peczenik [81], [82] who speaks of the norm
as a ‘qualifying utterance’. The dual terms right/wrong are used as corresponding
qualifications e.g. by Englĭs [19] and Kelsen [57] p. 132.
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Here, he argues, the analogue of the following ‘ordinary’ inference is applied:

No human being kills any other human being.
Cain and Abel are human beings.
Therefore: Cain does not kill Abel.

Dubislav observes that to each imperative belongs a descriptive sentence that
describes the state of affairs that obtains if the subjects of the imperative realize
what the commanding authority demands. The formalisms of descriptive infer-
ences are then transferred to imperatives by what he calls a ‘trick’ (Kunstgriff ):
imagine the state that the commanding authority desires realized, describe it,
from this description infer some other descriptive sentence, which is then again
interpreted as describing a state the authority wants to see realized. He then
proposes the following convention (DC) on the meaning of imperative inference
(also see the next figure):

(DC) “An imperative F is called derivable from an imperative E if the
descriptive sentence belonging to F is derivable with the usual methods
from the descriptive sentence belonging to E, whereby identity of the
commanding authority is assumed.”

The convention is illustrated by the next figure (where I write !A for an imper-
ative to which ‘belongs’ the descriptive sentence A):5

Fig. 1. Dubislav’s convention (DC).

5 Mally [70] p. 12 seems to have introduced the symbolism !A, which was then em-
ployed by Hofstadter & McKinsey [45] for the imperative that demands that A be
the case. However, Mally intended !A to be interpreted theoretically, as an assertion
or assumption that ‘A ought to be’, which we now call a deontic proposition and
formalize by OA.
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Dubislav’s convention does not cover inferences with more than one impera-
tive premiss, though he mentions this possibility.6 For such inferences, (DC) can
be modified as follows:

(DCM) An imperative F is called derivable from the imperatives E1, ..., En

if the descriptive sentences belonging to F is derivable with the usual
methods from the descriptive sentences belonging to E1, ..., En, identity
of the commanding authority presupposed.

Dubislav then proceeds to inferences in which the imperative premiss is accom-
panied by another one in the indicative mood, and where the conclusion is again
an imperative, for which he extends his convention:

(DEC) “An imperative F is called derivable in the extended sense from
an imperative E if the descriptive sentence belonging to F is at least
jointly derivable from the descriptive sentence belonging to E and true
descriptive sentences that are consistent with the first.”

This extended convention (DEC) may again be modified to facilitate infer-
ences with more than one imperative premiss to produce the following modified
extended convention

(DECM) An imperative F is called derivable in the extended sense
from imperatives E1, ..., En if the descriptive sentence belonging to F
is at least jointly derivable from the descriptive sentence belonging to
E1, ..., En and true descriptive sentences that are consistent with these.

Jørgensen [48] endorsed Dubislav’s proposal as one way to deal with his
dilemma and states that it seems clear to him that any imperative sentence has
an indicative parallel-sentence which describes the contents of the command or
wish. Jørgensen suggests that an imperative consists of an imperative factor and
an indicative factor, where the first indicates that something is commanded, and
the second what is commanded. The indicative factor can then be separated
from the imperative and formulated in indicative sentences describing the ac-
tion, change or state of affairs which is commanded. Applying the rules to these
latter sentences we can thus indirectly apply the rules of logic to the imperative
sentences to make their entailments explicit. Jørgensen’s concept was in turn
further refined by R. M. Hare [36], according to whom an imperative sentence
and an indicative sentence ‘correspond’ if they have the same ‘descriptor’, but
different ‘dictors’, where what is described by the descriptor is what would be the
case if the sentence is true or the command obeyed, and the dictor is what does
the saying or commanding.7 This is still not much different from Jørgensen’s

6 Cf. Dubislav’s use of the plural when stating that “an inference from demand-
sentences will now be formally facilitated by the following convention”, and Du-
bislav’s summary, in which he stresses that no demand-sentence can be derived from
premisses that do not contain at least one demand-sentence.

7 This distinction was anticipated by Ledig [62], who wrote that norms and descrip-
tions have an isolable imaginary content (isolierbarer Vorstellungsinhalt). Hare’s [37]
later terminology of a ‘neustic’ and ‘phrastic’ mirrors his earlier distinction.
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analysis, but Hare finds it is misleading to speak of an ‘indirect’, ‘parallel’ or
‘analogous’ application of logic. Instead, in Hare’s view imperatives are logical in
the same way as indicatives; he argues that “most inferences are inferences from
descriptor to descriptor and we could add whichever set of dictors we pleased”.
Since most logical reasoning is done with descriptors only - this Hare calls the
‘principle of the dictive indifference of logic’, there is no special need for a logic
of imperatives. Rather, all logic is recast as a logic of descriptors, where if the
descriptors of the premisses describe a state of affairs, then the descriptor of the
conclusion describes, at least partially, the same state of affairs.

It is immediate that neither Jorgensen’s nor Hare’s account make a material
difference for what imperative inferences should be accepted. Hare’s concept of a
‘dictor’ that operates on a ‘descriptor’ poses problems: grammatically, it is hard
to see how dictors can be removed from sentences, or exchanged in them, so that
the remainder or the new composite is a meaningful expression.8 So there may be
reasons not to follow Hare’s analysis, but – closer to Dubislav’s original concept
– speak of a thematically parallel sentence in the indicative mood. However, this
way or another, the idea of a descriptive sentence that parallels an imperative
or of an imperative’s indicative factor has become the most successful part of
the Dubislav-Jørgensen-Hare analysis. Ross [92] calls this element the ‘theme of
demand’, a state the realization of which is requested by the demand, and pro-
posed that to any imperative corresponds an ordinary indicative sentence which
contains a description of the imperative’s theme of demand. Frey [22] p. 440
uses the term Erfüllungsaussage for the parallel sentence that indicates if the
imperative is satisfied or violated, which Rescher [88] p. 52 calls a ‘command ter-
mination statement’ and Keene [56] the ‘actualization’ of the imperative. Geach
[24] states that for every imperative there is a future-tense statement whose
‘coming true’ is identical with the fulfilment of the imperative, Sosa [96], [98]
speaks of the ‘propositional core’ of an imperative and Hanson [35] of a state s
the commanding agent ‘envisages’, of which then a description S is used. Von
Wright (e.g. [131] p. 269) calls the state the norm ‘pronounces’ as obligatory or
allowed the ‘content of a norm’. The seemingly universal consensus is explained
by the pragmatic function of imperatives, that is, the regulation of human be-
havior: if there were no imperative-correlated indicative sentences, it could not
be understood what ought to be, and neither would it be possible to determine
whether the norm is satisfied or violated.9 This is why even ‘anti-reductionist’

8 Opa lek [77] points out that even if the imperative is rephrased as ‘I command that
...’ or ‘it is obligatory that ...’, the ‘...’-part is a Latin ut-expression that only due to
a peculiarity of English grammar may be confused with an indicative sentence, also
cf. Opa lek [78] ch. 2, Kalinowski [51] and Rödig [90] for similar criticism. On the
other extreme, Leonard [65] has argued that it is the descriptor that is called ‘true’
and ‘false’, and so imperatives share these properties with descriptive sentences.

9 This explanation and the formulation of the principle below is most clearly ex-
pressed in Weinberger [122] p. 172. Weinberger uses the term ‘coordination’ instead
of ‘correspondence’, but this suggests an onto or even one-to-one mapping, and the
uncertainty whether tautologies and contradictions can be thus ‘coordinated’ to im-
peratives first made Weinberger [109] p. 121 doubtful about (W). Later, he proposes
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authors that oppose the idea that imperatives or imperative reasoning can be
reduced to indicatives or indicative logic, agree on the following principle:10

Principle (W) (Weinberger’s Principle).
To each imperative there corresponds a descriptive sentence that is true if the
imperative is satisfied and false if it is not-satisfied (violated).

It is clear that an acceptance of (W) does not force us to also accept the
Dubislav-Jørgensen-Hare account of imperative inference, which nevertheless has
been accepted by a number of authors.11 (W) can then be used to show that
seemingly differing explanations of imperative inferences are in fact equivalent
to this account. Thus Rescher [88] defines command inferences in terms of sat-
isfaction in the following way:

A command inference is valid if there is no possible world in which the
premisses are all satisfied and the conclusion fails to be satisfied.

which, using (W), is equivalent to

A command inference is valid if there is no possible world in which the
descriptive sentences corresponding to the premisses are all true and the
descriptive sentence corresponding to the conclusion is false.

Using the textbook definition of an argument, this is equivalent to

A command inference is valid if the descriptive sentences corresponding
to the premisses entail the descriptive sentence corresponding to the
conclusion.

which in turn is the modified Dubislav convention (DCM).12

(W) on the condition that the coordinated indicative is not contradictory ([112] p.
17 and p. 19) and not tautological ([118] p. 229-231), also cf. [116] p. 69.

10 Besides Weinberger cf. Hamblin [29] pp. 151-152: “Take the exact words of the
imperative, and transform them into indicative mood (...) Now the worlds which
extensionally satisfy the imperative are just those of which the description is true.”,
and Moutafakis’ theorem T3 ([75] p. 155), which expresses the equivalence of the
statements that an imperative is satisfied and that a description of the prescribed
action as performed is true.

11 These include Simon [95], who converts commands to declarative mode “by removing
the imperative operators from them”, obtaining a theory in which all recipients
obey the commands, and then applies the ‘ordinary laws of logic’ to derive new
relations that may be converted back into commands. According to Niiniluoto [76],
an “imperative !p entails imperative !q if p entails q”. Very close to (DCM) is von
Wright’s account in [129] pp. 71, 164, where he defines the content of a prescription as
‘the prescribed thing’, and defines that a command is entailed by a second command
or by a set of commands if the content of a command is a consequence of the
conjunction of the content of a command with the contents of none or one or several
other commands.

12 Sosa’s [96], [98] definition of a ‘directive argument’ is very similar to Rescher’s, but
additionally demands that the imperatives that function as premisses are jointly
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Using the idea that norms qualify the states of affairs that satisfies or violates
them as ‘right’ and ‘wrong’, one can define:13

An imperative !A entails an imperative !B if and only if (iff) every state
of affairs that is qualified as wrong by !B is qualified as wrong by !A.

which can then be translated into

An imperative !A entails an imperative !B iff every state of affairs that
violates !B also violates !A.

which using (W) is equivalent to

An imperative !A entails an imperative !B iff every state of affairs in
which B is false also makes A false.

which using classical logic is equivalent to

An imperative !A entails an imperative !B iff every state of affairs in
which ¬B is true also makes ¬A true.

which using tertium non datur and modus tollens is equivalent to

An imperative !A entails an imperative !B iff every state of affairs in
which A is true also makes B true.

which by definition of entailment equals

An imperative !A entails an imperative !B iff A entails B.

and this is again Dubislav’s convention (DC).
Lemmon [63] defines an entailment relation for imperatives via a definition

of inconsistency of a set of imperatives and indicatives, where such a set is
called inconsistent if it cannot be the case that all indicatives are true and all
imperatives obeyed.14 Lemmon’s entailment relation is then defined as follows:

satisfiable in order to cope with normative conflicts. Sosa adds a second condition,
demanding that if the imperative conclusion is violated, at least one imperative
premiss must be violated, in order to also cope with conditional imperatives. This
equals Keuth’s [59] condition B1 that it must be logically impossible to violate the
conclusion without violating a premiss. Obviously, the second condition makes no
difference for categorical imperatives.

13 The definition is similar to the one used by Peczenik [81], [82] for forbidding norms
and the quality ‘forbidden’. Kamp [53] uses an analogous definition for permissions,
where one permission entails another if the second makes only such courses of actions
permissible that were already so before.

14 Lemmon expresses reservations regarding his definition, but only because he thinks
that it does not sufficiently restrict imperative conclusions to statements about future
actions. A definition similar to Lemmon’s seems to be intended by Philipps [86] p.
364 who defines: ‘to do p is forbidden!’ is true iff the indicative ‘someone does p’ is
incompatible with the class of valid prescriptions, where ‘compatible’ means that if
the indicative is true, then at least one prescription is violated.
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An imperative !A is entailed by a set indicatives and imperatives if this
set together with !¬A is inconsistent.

where !¬A is the imperative that is satisfied if and only if A is false. Using (W)
we obtain:

An imperative !A is entailed by a set indicatives and imperatives if the set
of indicatives together with the set of descriptive sentences corresponding
to the imperatives together with ¬A is inconsistent.

which, using classical logic, is equivalent to

An imperative !A is entailed by a set indicatives and imperatives if the set
of indicatives together with the set of descriptive sentences corresponding
to the imperatives entails A.

and this is Dubislav’s modified extended convention (DECM). This shows that,
with (W), Dubislav’s proposal is equivalent, or at least very similar, to a num-
ber of other proposals how imperative inferences are possible in the face of
Jørgensen’s dilemma.

5 Explanations of Imperative Inferences

Dubislav’s ‘trick’ provides a formal method that explains how inferences between
imperatives can be defined without having to assign them truth values. What has
not been made clear is what is achieved by the method, i.e. why we should think
that this is what it means to ‘infer’ an imperative from some other imperative
or a set of imperatives and indicatives, or formally, what is means that some
imperative inference scheme

(ImpInf) !A
∴ !B

is valid. Dubislav’s trick can easily be applied to e.g. sentences of the form ‘I
doubt that ...’. Then from ‘I doubt that he is staying at his sister’s place in San
Francisco’ follows ‘I doubt that he is staying in San Francisco’, which, though
we can derive ‘he is staying in San Francisco’ from ‘he is staying at this sister’s
place in San Francisco’, seems wrong: I might not doubt that he is staying in San
Francisco, but doubt very much that he is staying with his sister. So why should
Dubislav’s trick work for imperatives if it would not for other expressions?

5.1 Logic of Satisfaction

On one interpretation, which has been called the ‘logic of satisfaction’, the
scheme (ImpInf) is understood as stating that if the imperative sentence !A is
satisfied, then it must be that the imperative sentence !B is also satisfied. This
interpretation is usually attributed to Hofstadter & McKinsey [45], whose for-
malization of the scheme (ImpInf) would be !A >!B, which is derivable in their
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axiom system whenever A → B is classically derivable. It is immediate that
(ImpInf) must be valid on this interpretation whenever the ‘ordinary’ argument

A
∴ B

is valid for the descriptive sentences A and B: If A classically implies B, then
it must be that if !A is satisfied, then A is true and also B is true and hence
!B is satisfied. Thus Dubislav’s ‘trick’ receives its semantic justification. But if
(ImpInf) is interpreted in this way, then it seems one should also accept the
following scheme:

!A

∴ A

According to our (informal) convention, !A represents an imperative sentence
that is satisfied iff A is true. So it must be that if !A is satisfied, then A is true
and so the above scheme is valid. But on the look of it, this scheme seems to
state that from an imperative that demands A it can be inferred that A is the
case, which is nonsense. And this misunderstanding reveals that when we spoke
of the possibility of an inference in which the premisses and the conclusion are
imperatives, it seems that we talk about inferring an imperative from some other
imperatives, and not about reasoning whether or not the imperatives in question
are satisfied. So though the inferences of a ‘logic of satisfaction’ are valid in the
interpretation in which they were intended, thus interpreted inferences seem not
to be what we want from a logic of imperatives. For these reasons, Ross [92] p.
61 and also Hare [38] doubted that a logic of satisfaction is what one has in mind
in the case of practical inferences.15

5.2 Logic of Existence

When we speak of inferring one imperative from some other imperative, this
could mean that the existence of an imperative is logically deduced from the
existence of some other imperative.

What is meant by saying that an imperative ‘exists’? First, it could be the
existence of an utterance of some sentence in the imperative mood by some
commanding agent towards some commanded subject.16 Second, one might de-
mand that the utterance, as a performative use of the imperative sentence, was
effective and established an imperativum, i. e. a ‘command’, ‘demand’, ‘request’

15 Kanger [55] p. 49 and Føllesdal & Hilpinen [20] p. 7 criticize Hofstadter & McKin-
sey for making !A and A ‘equivalent’, which is somewhat unfair since the intended
interpretation of their formulas (in terms of satisfaction) is not presented.

16 This existence is what Frey [22], along with an additional property of ‘justification’,
infers in imperative inferences: “If the imperatives that appear in the premisses exist
and are justified, then also the imperatives derived from these exist and are justified”
(p. 465). Frey’s ‘justification’ means that what is demanded is ‘good’ regarding some
aim of the commanding agent, called ‘axiological validity’ in Ziembiński [136].
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or the like. For this it may be required that the commanding agent had the
will to command (and did not use the words for fun) as well as some authority
(power to punish or reward) over the addressee.17 Third, for an order by legal
authorities in this capacity to come into ‘legal existence’ it may be required that
the authority was competent to utter it according to the legal rules of some
normative system that confers such competence, and similar for bodies that are
constituted not by law but by other rules like a firm or Robin’s band.18

Yet however much the concept of existence is thus refined, it seems to re-
quire the presence of actual facts: a (still alive?) speaker, a linguistic entity like
an utterance and circumstances of speaking, a certain attitude of the speaker
towards the act of speaking, a backing of the speaker by force or an authority
conferred by existing and/or valid rules, etc. But it is difficult to see how logic
can stipulate such an existence. This is illustrated in the following example by
Aleksander Peczenik:19

“The premiss ‘love your neighbour’ may be regarded as describing the
fact that the authority – Jesus – has in fact said ‘love your neighbour.’
The imperative existed because it was uttered by Jesus. But the conclu-
sion, for example, ‘love Mr. X’ does not describe anything which in fact
has been said by Jesus.”

Here, the intended argument from ‘love your neighbour’ to ‘love Mr. X’ is not
accepted because the commanding agent ‘did not actually say’ what appears in
the conclusion, and so unlike the premiss the conclusion did never ‘exist’ as a
fact. An imperative sentence that has not been expressed was not received and
cannot be understood by its addressee as a command or legal order. Thus the
required ‘existence’ of the imperative, or ‘validity’ of the command seem to be
the analogues not of truth of a descriptive sentence, but of ‘stated’ and ‘asserted’.
Yet indicative logic does not force anyone to state or assert anything, even if some
other descriptive sentence was used in a way that expresses ones commitment
to it. It only explains what people mean when they use an indicative sentence
in order to assert some fact, by saying what other sentences must be true if
the stated sentence is true.20 Because the imperative sentence in the conclusion
may not exist as an utterance, Hamblin [29] p.89 warns against speaking of

17 Cf. von Wright [129] p. 120-126. This is Ziembiński’s [136] ‘thetic validity’. Lemmon
[63] seems to have this notion of ‘validity’ or ‘existence’ in mind when he demands
that the entailment of imperatives must be defined in terms of what imperatives are
in force at a given time.

18 Bulygin [13] uses the term ‘systemic validity’. According to Weinberger [115], [118]
p. 259, this validity takes the place of truth as the ‘hereditary trait’ (Erbeigenschaft)
that is transferred from the premisses to the normative conclusion in inferences with
normative sentences (Normsätze).

19 Quotation from a letter by A. Peczenik to R. Walter, printed in [108] p. 395
20 Kenny [58] first pointed out that ‘valid’ and ‘invalid’, interpreted as meaning ‘com-

manded’ and ‘not commanded’, are not the analogues of ‘true’ and ‘false’, but of
‘stated’ and ‘not stated’.
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inferences between imperatives. Because the ‘telling part’ (or attitude) of the
speaker cannot be inferred, the possibility of command inferences was denied
by Sellars [93] p. 239-240, and for the same reason, Lemmon’s [63] attempt to
define imperative inferences via the notion of an imperative’s being ‘in force’ was
rejected by Sosa [98] p. 61 who argues that such notions involve attitudes by the
authority or its subject that cannot be inferred. Von Kutschera [60] argues that
a (used) imperative is an action, actions do not follow from actions, so there
is no logic of imperatives. In Alchourrón & Bulygin’s [3] ‘expressive conception
of norms’, the existence of a norm is seen as dependent on empirical facts and
the possibility of a logic of norms is consequently denied as there are nor logical
relations between facts. For similar reasons, Philipp [83], [84] denied both the
possibility of a logic of imperatives and of norms.

5.3 Logic of Metaphysical Existence

To get around this difficulty one may consider to interpret ‘existence’ not with
respect to natural facts, but with respect to some ideal ‘world of ought’ or an
assumed ‘normative system’ that is closed under consequences, where the clo-
sure operation may be understood e.g. in the sense of derivability by use of
Dubislav’s convention. So if the agent’s use of the imperative mood has resulted
in the existence of a command in the ‘world of ought’, or, due to the agent’s
legal competence as e.g. a police officer, created an order that now belongs to
the normative system, then all the ‘consequences’ of the command that can be
derived by an appropriate method exist in this world or system as well.21 What
thus has ideal existence is not the imperative sentence as a spatial and temporal
phenomenon or as a grammatically correct or meaningful combination of words.
Rather, it is what the use of an imperative sentence expresses or accomplishes
– a command, request etc. Then it must be that not only commands, requests
etc. ‘exist’ in this sense that in fact have been expressed by a performative use

21 The ‘world of ought’ terminology originates with Walter [107], who is however fol-
lowing Kelsen [57] p.195 in that an individual norm does not exist before the general
norm was applied by a judge, so orders that can ‘only be deduced’ do not exist in
Walter’s ‘world of ought’. The idea to explain logical relations between ‘norm sen-
tences’ (like imperative sentences) in terms of their existence in a ‘system of norms’
that is closed under consequences is that of Stenius [99]. In Opalek & Wolenski
[80], norms are non-linguistic entities expressed by (descriptively interpreted) de-
ontic statements, and normative systems consist not only of norms that have been
expressed by a normative authority, but also of the consequences of these ‘basic
obligations’. In Alchourrón & Bulygin’s ‘hyletic’ variant of a conception of norms
[5], ‘implicitly promulgated’ norms have ‘existence’ in a logically closed normative
system, and descriptively interpreted (deontic) norm propositions are then “propo-
sitions about the existence of norms (in that system)”. Holländer [46] promotes the
idea of a ‘deontically perfect world’ where norms exist that obey logical principles,
like that conflicts are excluded. Kelsen [57] pp. 187–188 rejects the idea of an ‘ideal
existence’ of norms because there is no ‘ideal’ act of will that creates them, and
rejects the whole idea of a logic of norms.
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of a sentence in the imperative mood, but also some that only can be expressed.
For if all that ‘exists’ in the ‘normative system’ already exists as a result of a
pragmatic use of language, then there would be no need to let the ‘normative
system’ e.g. be closed under a consequence operation. That what we can express
by using language (commands, requests, assertions etc.) has some existence, pos-
sibly independent from any pragmatic origin22, in some ideal ‘world of ought’, is
a difficult concept that possibly creates more problems than it solves.23 But it is
even difficult to see that it solves the problem of entailment between imperatives.
For to say that some ideal object created by use of an imperative implies the ex-
istence of some other ideal object in some ‘world of ought’ or normative system,
is not to say that an imperative implies another imperative. The existence of a
forest might imply the existence of a tree, but to say that ‘the forest implies the
tree’ is making a categorical mistake. The first is an indicative argument, which
can be formalized in the usual way:

(1) ∃x : Forest(x)
∴ ∃y : Tree(y)

The argument is analytical when the words ‘forest’ and ‘tree’ have their usual
meaning and for all that understand this meaning and thus know that there
cannot be forests without trees. By starting to talk about the (ideal) existence
of commands it seems that we silently changed (ImpInf) into

(2) the command given by α to x by the use of the imperative sentence !A
Therefore: the command given by α to x by the use of the imperative
sentence !B

which appears confused. This is because the argument form is not used as it is
usually used, and now we do not know what to make of it. We are used to filling
in the blanks of the argument form

(3)
∴

with sentences. Whether also imperative sentences can be meaningfully used to
fill in the blanks is the open question. However, there is no pre-established usage
of filling in the blanks with names of objects, as in

(4) a
∴ b

where a means a forest and b means a tree. At most, this is a mistaken way to
try to express (1). Similarly, the scheme (2) must be corrected into (5):

22 Cf. Stenius [99] according to whom all normative systems include a norm that de-
mands a tautology.

23 Note that the topic of this discussion has not suddenly become the ontological status
of notoriously difficult concepts of practical philosophy and jurisprudence, like moral
obligations, natural law, human rights, laws of custom etc. Our concern are still
ordinary sentences in the imperative mood, addressed e.g. to a husband, secretary,
student, child or dog (cf. Ziemba [135] p. 386).
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(5) There exists a command given by α to x by the use of the imperative
sentence !A.
Therefore: There exists a command given by α to x by the use of the
imperative sentence !B.

Now we have arrived at something that resembles an argument – though we
have not yet shown when such a scheme constitutes valid arguments. But this
argument is one that uses only descriptive sentences that can be true or false.
It is not a case of (ImpInf), i.e. not an argument where imperative sentences
function as premisses or conclusion.24 So by appealing to the notion of existence
we obtain at most an inference relation between sentences that describe the
existence of certain commands, but not a logic of commands.

5.4 Formalistic Approaches

Maybe we should have gone looking for the explanation of an entailment relation
between imperatives not in some relation between entities in a ‘world of ought’,
but in the meaning of the sentence that the speaker uses. Someone who says that
‘either Barack Obama or Hillary Clinton will be the 44th president of the U.S.,
but it won’t be Obama’, thereby expresses the belief that Hillary Clinton will be
the 44th U.S. president. The speaker did not say explicitly that it will be Clinton
(these were not the words used), but the speaker can be said to have implicitly, or
tacitly, expressed this opinion. Therefore if a person asserts something, she may
be taken to ‘implicitly’ assert something else. Likewise, when a person commands
something, she may also be ‘commanding something by implication’. Consider
the following example employed by Hare [38]:

Go via Coldstream or Berwick!
Don’t go via Coldstream!
Therefore: Go via Berwick!.

Here, an officer who must go from London to Edinburgh is ordered ‘go via
Coldstream or Berwick,’ and – a bit later – is given the order ’don’t go via
Coldstream’. Both commands have been taken to imply that the officer is (now)
ordered to go via Berwick, and that the inference is therefore valid. For the ques-
tion what commands should be considered to have been ‘implicitly commanded’
by explicitly given commands, one may then point to Dubislav’s conventions or
similar rules – e.g. (DCM) clearly accounts for the above inference.25 To search

24 That the ‘world of ought’ approach thus only provides arguments with descriptive
sentences is accepted by Walter [107], for he turns to identify imperatives with
descriptions of the ‘world-of-ought’-existence of a command that is created by the
use of an imperative – consequently such sentences can be true or false and therefore
part of logical inferences. Thus imperative logic is reduced to indicative logic, where
the difficult part is now the verification of some descriptive sentences.

25 The term of ‘commanding something by implication’ was introduced by Geach [25].
Alchourrón [2] speaks of the consequences of what is prescribed as ‘indirectly pre-
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for an explanation of imperative inferences by interpreting explicitly given com-
mands seems a much better idea than to find it in otherworldly relations between
metaphysical objects. Unfortunately, it seems also a circular idea: according to it
one can infer a command from another command if by giving the latter command
one implicitly commands the former. Or: we may use Dubislav’s convention to
infer imperatives from other imperatives because it provides the imperative sen-
tences that are implicitly commanded when the first imperative sentences are
used for commanding.

An interesting response to this reproach of circularity is to say that by giv-
ing rules for inferring one imperative from another, one did all that is required
to explain the meaning of imperative inferences. It is this view that seems to
lie at the root of Dubislav’s proposal to “formally facilitate inferences” from
demand-sentences through a ‘convention’ (Übereinkunft) or ‘trick’ (Kunstgriff ).
In fact, in his main work Die Definition [17], Dubislav gives a similarly ‘formal-
istic’ characterization of propositional logic (and later predicate logic). There,
Dubislav starts with a ‘pure, game-like calculus’ that is played with ‘pieces’ and
signs (‘¬’, ‘∨’, brackets) by first arranging some into initial positions and then
replacing pieces and re-arranging pieces into new game positions according to
the rules of the game. This game then becomes the calculus of propositional logic
by interpreting its elements as indicated: the ‘pieces’ as propositions, the signs
as ‘not’, ‘or’, and brackets, the ‘initial positions’ as axiomatic basis, the game
rules as the usual rules of substitution and modus ponens, and the achievable
game positions as derivable formulas. This characterization of propositional logic
is meant by Dubislav as an exposition of Boole’s [12] idea that the “validity of
the processes of analysis does not depend upon the interpretation of the symbols
which are employed, but solely upon the laws of their combination”. In Dubislav’s
view, which he calls ‘the formalistic theory’, this description of logic functions
as a mould for all scientific theory: a theory is constituted by a pure calculus
(of formulas and rules), combined with a fixed interpretation. Observational sen-
tences are captured in formulas that can be used alongside axioms or derivable
formulas of the system to derive other formulas within the calculus. Then the
assignment of these derived, or better: ‘calculated’ formulas is reversed, i.e. they
are translated back into observational sentences. If these are regularly true, then
the observational sentences are ‘explained’ by the theory. If a calculated obser-

scribed’, Alchourrón & Bulygin [3] write that e.g. if teacher commands that all
pupils should leave the class-room, he also implicitly commands that John (who is
one of the pupils) should leave the class-room, even if the teacher is not aware of
the fact that John is there, and in [5] they view the ‘deductive consequences’ of
norms as ‘implicitly promulgated’, where the deduction process is equivalent to the
modified Dubislav convention (DCM). Hare [38] and Rescher [88] both propose to
define command inferences in terms of ‘implicitly given commands’ – analogously,
Rescher’s ‘assertion logic’ [89] is concerned with assertions that a speaker is ‘im-
plicitly committed to’ in virtue of overtly made assertions. It was shown above that
Rescher’s explanation of imperative inferences is equivalent to the modified extended
convention (DECM).
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vational sentence turns out to be false, then the theory is erroneous. Thus it also
becomes possible to decide between competing, non-isomorphic theories.

The usefulness of the Dubislav’s formalistic approach for the problem of
imperative logic is immediate. In fact, Dubislav’s own proposal in [18] satis-
fies all requirements in [17] for being a theory of imperative inference: there
are entities that may function as premisses and conclusions, namely imperative
sentences. There is an interpretation that assigns each imperative sentence a
formula, namely that of the indicative ‘parallel sentence’ in the calculus of ‘or-
dinary logic’. There is a calculus, namely ‘ordinary logic’, that tells us what
formulas can be derived from the formulas assigned to the imperative sentences
that function as premisses. And finally, this assignment is reversible to provide
derived imperative sentences. Other authors – taking their cues from Tarski’s
[103] syntactical definition of consequence relations and deductive systems,26

Tarski’s [104] definition of truth,27 Gentzen’s [26] idea that to define a symbol is
to give rules for its introduction and elimination,28 and Wittgenstein’s dictum
that the meaning of a word is its use ([127] §43) – have similarly argued that
instead of searching in vain for analogues of truth values, it suffices for an ex-
planation of imperative inferences to give formal rules for obtaining imperatives
from other imperatives.

If this ‘formalistic’ approach to the logic of imperatives is accepted, we
are still not finished yet. If the assignment of formulas, calculations and back-
translations of derived formulas are to be more than a game, there must be some
way to judge the adequateness of the theory, and be it only to decide between
competing proposals.29 In analogy to Dubislav’s general approach, where a the-

26 Cf. Alchourrón & Bulygin [5] who employ a formal consequence relation to explain
what norms are ‘implicitly promulgated’ by a set of norms.

27 Both Rödig [91] and Yoshino [133] appeal to Tarski and argue that meaningful oper-
ations with prescriptions are made possible by supposing that normative attributes
like ‘obligatory’ or ‘punishable’ may be applied to actions. Rödig draws attention
to the problem of objective verifiability and therefore truth of such statements. But
he circumvents the problem by assuming that meta-language truth conditions can
be given, which is sufficient to handle normative attributes as normal predicates
in the object language. Rödig and Yoshino then use these predicates to formalize
e.g. a norm that says that helping in an emergency situation is obligatory as ∀acts:
In emergency(act)∧Helping(act) → Obligatory(act). The puzzling thing is that if this
really is a prescription (norm), i.e. it makes so far unregulated acts of helping in cases
of emergency obligatory, then for no such act the ‘truth’ of the part Obligatory(act)
can be established before the ‘truth’ of the whole is established. This at least differs
from Tarski’s compositional truth definition.

28 Cf. Alchourrón & Martino [6] who provide a calculus with an ‘introduction rule’ for
a prescriptively interpreted O-operator, where their rule corresponds to the modified
Dubislav convention (DCM) plus a requirement of joint satisfiability.

29 It seems consensus that there must be some ‘test’ of adequacy. Weinberger [111]
writes that one must test a rule for the logical manipulation of norm sentences for
its adequacy for the area of normative thought, and Sosa [97] speaks of a ‘control of
commonsense’ that is necessary because otherwise there would simply be no end to
the possible “logics”.
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ory is only an explanation of phenomena if its calculated observational sentences
are regularly true, one should require of any proposed ‘logic of imperatives’ that
the imperative it ‘derives’ from other sentences are normally – not ‘true’ of
course, but accepted as ‘implicit’ in other sentences that are used as premisses.
This resembles what is called the ‘soundness’ of a calculus: if the calculus allows
‘false’ (unacceptable) conclusions to be drawn from ‘true’ (accepted) premisses,
then it must be discarded as ‘unsound’.30 I now turn to the question of adequacy
in this sense.

6 Ross’s Paradox and Weinberger’s Variant

Shortly after Jørgensen’s dilemma and Dubislav’s workaround for a logic of im-
peratives had been described, Alf Ross re-considered inference schemes in ‘the
most simple form’, where a ‘new’ imperative is inferred from one imperative
premiss, i.e. where the scheme used is that of Dubislav’s convention (DC). The
following is an instance of such a scheme:

!A
∴ !(A ∨ B)

Here, !A means (as now usual) an imperative sentence that is satisfied if and
only if the descriptive sentence A is true, and !(A ∨ B) is an imperative that is
satisfied if and only if either A or B are true. It is immediate that the second
imperative can be inferred from the first sentence !A by Dubislav’s convention.
Fine, said Ross, let !A be interpreted as the imperative ‘post the letter’, so we
can infer from the imperative ‘post the letter’ the imperative ‘post the letter or
burn it’ !(A ∨ B). So

(1) Post the letter!
Therefore: Post the letter or burn it!

is a valid imperative inference. Ross himself points out that his paradox is not
paradoxical if this ‘validity’ of an imperative inference is understood in the sense
of a logic of satisfaction. If the letter is posted and the imperative !A satisfied,
then the imperative !(A∨B) will likewise be satisfied – this is no more paradoxical
than that A ∨ B can be inferred from A. But if the meaning of ‘imperative
inference’ refers to anything like the ‘validity’ or ‘existence’ of an imperative,
then Ross claims that his inference is not only not immediately felt to be evident,
but rather evidently false.

Why does Ross’s example of an imperative inference seem paradoxical? In
particular, regarding the ‘formalistic theory’ of imperative inference given in the

30 The other possibility, that the calculus does not provide all the inferences from
premisses that are acceptable (usually called ‘completeness’), is less harmful and
can be dealt with by e.g. refining it. For a similar definition of adequacy cf. Chellas
[16] p. 4, where however the terminology is vice versa.
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last section, why should it be paradoxical to say that if one uses the imperative !A
for commanding, then one ‘implicitly’ also commands !(A∨B)? One explanation
has been that that by using a disjunctive imperative, i.e. an imperative sentence
that like !(A∨B) is satisfied if some state of affairs or some other state of affairs
holds, the authority has left it to the subject how to satisfy her command.
Suppose Romeo hands a letter to Mercutio with the words ‘Post this letter or
burn it, but relieve me from deciding its fate and mine’, would his friend not be
free to do as he pleases? Analyzing this ‘freedom’, it has been argued that giving
a command entails an ‘imperative permission’ or implicitly authorizes to carry
out the actions required to satisfy the command.31 So the imperative ‘post this
letter or burn it’ would contain the permission ‘I hereby permit you to post the
letter or burn it’. Now explicit disjunctive permissions are often understood in
a ‘strong’ sense that grants both disjuncts: when someone says ‘help yourself to
a cup of coffee or a cup of tea’, then the guest is permitted to help herself to
coffee and also permitted to help herself to tea (though possibly not both). So
one obtains the following chain:

(2) Post the letter!
Therefore: Post the letter or burn it!
Therefore: You may post the letter or burn the letter!
Therefore: You may burn the letter!

But it seems counterintuitive to say that by ordering a letter posted one permit-
ted it to be burned.32 To avoid this result, one may argue that it is not the first
step in (2) that is problematic, but the second, i.e. we should not be allowed to
infer a strong permission from an imperative. Yet nothing seems wrong with the
following piece of Mercutio’s reasoning:

(3) Romeo asked me to post the letter or burn it.
Therefore: I may post the letter or burn the letter, as I wish.
Therefore: I may burn the letter.

The reason why the inference from the first line of (3) to the second line seems not
objectionable, while the similar inference from the second line in (2) to its third
line appears somehow wrong, may lie in the fact that the imperative to ‘post
the letter or burn it’ that is used in the reasoning is only implicit, i.e. derived,
while Mercutio’s reasoning was about an imperative that was explicitly used by
Romeo. So one could modify one’s view on the second step in (2) by saying that
one is only allowed to infer a strong permission to do what is commanded if this
command is not itself derived. I return to such a distinction between ‘explicitly

31 Cf. Chellas [16] p. 19 for the term ‘imperative permission’ and Keene [56] for the
‘implicit authorization’.

32 The idea to explain the counterintuitive nature of Ross’s paradox using the also, or
even more, counterintuitive inference to ‘you may post the letter or burn it’ was von
Wright’s in [130] pp. 21–22, also cf. von Wright [132] pp. 121–122 and Hintikka [43].
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given’ premisses and ‘implicitly given’ imperatives in a moment. But consider
the example from the last section, where an officer was commanded to go via
Coldstream or Berwick, and (a little later) told not to go via Coldstream, where
both commands were viewed as implying the command to go via Berwick. The
proposed modification would still allow us to make the following inference:

(4) I was commanded to go via Coldstream or Berwick.
Therefore: I may go via Coldstream or Berwick, as I wish.
Therefore: I may go via Coldstream.

So it seems the authority contradicted herself when ordering (a little later) not
to go via Coldstream, i.e. first a choice between the two routes was granted,
and later this choice was retracted, or rather: the second command modified
the original command.33 Whenever a command contradicts, cancels or modifies
another command, the conflict may be absorbed e.g. by application of the rule
of lex posteriori, which says that as a rule authorities should be considered
competent to modify their own orders. But the puzzling thing is that the example
was originally presented as a smooth application of imperative logic as facilitated
by Dubislav’s convention (DCM). Nothing made it appear as if there is some
contradiction or modification involved and that more is used or required than
just a flat application of the rules.34

An answer to these problems could be to give up the idea of strong imperative
permission altogether: without it, the agent cannot reason that burning the
letter is permitted. But while strong permission might be seen as problematic,35

it is not clear why it should be altogether discarded. In particular, nothing
seemed wrong with assuming strong permission in the case of Romeo’s request
(3). But whatever view is taken on strong permission, there is another point that
makes Ross’s paradox seem counterintuitive without appealing to some ‘implied’
permission: Imagine that, having been given the command ‘Go via Coldstream
or Berwick’, the agent finds the road Coldstream blocked. Then the following
reasoning seems logical:

(5) I was commanded to go via Coldstream or Berwick.
I cannot go via Coldstream.
Therefore: I should go via Berwick.

33 According to Hare [38] it is just a conversational implicature that gets canceled. But
it seems that by saying “go via Berwick or Coldstream” the authority really leaves
it to the agent which route she wants to take – and later retracts this choice –, while
someone who says e.g. “the tickets are upstairs or in the car”, and later adds “they
are not in the car” only made it seem as if the tickets could be in either location.
If the order was only given “further orders pending’, as Hare also argues, then the
first order was not complete, because it left the agent unable to determine how to
fulfill it. It is as if the authority had said in the middle of a sentence: “hang on, I’m
not finished yet, I’ll be right back.”

34 This was the point in Williams’s [126] criticism of Hare’s [38] scheme.
35 Cf. Stenius [100]: “Free choice permission is too strong a concept to be useful.”



22 J. Hansen

It seems the kind of deliberation that one would expect of reasonable agents.
Likewise, Mercutio, having been asked by Romeo to ‘post the letter or burn it’,
might be found reasoning in the following way:

(6) Romeo asked me to post the letter or burn it.
For fear of Tybalt’s revenge, I cannot bring myself to post the letter.
Therefore: I should burn the letter.

One might dispute whether Mercutio’s fear is really on a par with a road blocked
e.g. by a landslide. But if we suppose it is, then Mercutio’s reasoning seems as
impeccable as that of the officer. Now return to Ross’s paradox: here the agent
was ordered to ‘post the letter’. Implicit in this imperative, so we are told by
Dubislav’s convention (DC), is the imperative ‘post the letter or burn it’. Imagine
that the agent is not able to post the letter for some cause (the postal workers
are on strike and the mail bins have been locked up). So the agent could reason
in the following way:

(7) I was (implicitly) ordered to post the letter or burn it.
I cannot post the letter.
Therefore: I should burn the letter.

But this reasoning is absurd. Just because the agent cannot fulfill her obligation
to post the letter, this does not mean that she is obliged to do something that
was never mentioned, and in fact could be anything: the words ‘burn the letter’
could be replaced e.g. by ‘go to the zoo’, ‘kill a passer-by’ or ‘love your neighbor’
and the inference would be just as valid – if it is valid.36

Now the agent, in reasoning in the above settings, used indicative statements
about natural facts – like that something cannot be done – to reason about
the imperatives ‘go via Berwick or via Coldstream’, ‘post the letter’ or ‘post
the letter or burn it’. But inferences that mix imperatives and indicatives are
notoriously troublesome and should perhaps be avoided. As MacKay [66] points
out, both of the following ‘inferences’

Go fly a kite!
You are going to drop dead.
Therefore: Drop dead!

You are going to fly a kite.
Drop dead!
Therefore: Go fly a kite!

are validated by Dubislav’s extended convention (DEC), where both inferences
seem plainly invalid, and so perhaps (DEC) should not be accepted. Yet consider
again the case of the officer. Imagine that it was not the original authority that

36 This is Weinberger’s [112], [113] explanation of why Ross’s paradox poses a problem.
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issued the command not to go via Coldstream, but someone else, like the officer’s
husband (who in the past had some bad experience on this road). Since there
is some discretion in the authority’s order, there is no reason why the officer
should not give in to her husband’s request, and so the following reasoning of
the officer seems correct:

(8) I was commanded to go via Coldstream or Berwick.
My husband asked me not to go via Coldstream.
Therefore: I should go via Berwick.

Similarly, we can imagine Mercutio to reason in the following fashion:

(9) Romeo asked me to post the letter or burn it.
Tybalt threatened me not to post any of Romeo’s letters.
Therefore: I should burn the letter.

But then the following reasoning of the agent to whom Ross’s imperative ‘post
the letter’ was addressed must be likewise correct:

(10) I was (implicitly) ordered to post the letter or burn it.
I have been asked not to post the letter.
Therefore: I should burn the letter.

There is some discretion in the (implicit) order to ‘post the letter or burn it’,
so why should the agent not take an additional request into account? The only
difference between the (9) and (10) is that in (9) the reasoning appeals to an
explicitly used imperative, whereas in (10) it starts by considering an order that
was only ‘implicit’ in the use of some imperative. So maybe what was wrong
was that derived imperatives were used, without paying enough attention to the
fact that the derived imperatives are only ‘part of a system’, that the ‘explicitly’
used imperatives have not ceased to exist, that imperatives that are only derived
do not ‘exist’ on quite the same level as explicit imperatives, or that the agent
is somehow expected to make use of the logically strongest information that
is available.37 So we are back at the proposal that a difference must be made
between ‘explicitly used’ imperatives, and imperatives that ‘only derive’ from
explicit imperatives. But to require that reasoning with imperatives starts with

37 Rödig ([91] p. 184–185) points out that by deriving the norm to ‘post the letter or
burn it’, the original order to ‘post the letter’ does not ‘cease to exist’, and that it
is the conjunction of both norms that must be satisfied. That the entailed norms do
not ‘exist’ in quite the same way as explicit norms is the idea of von Wright e.g. in
[131] and [132] p. 114 and p. 122. According to Stenius [100], the use of ‘post the
letter or burn it’ carries the tacit information that a stronger regulation like ‘post
the letter’ does not ‘belong to the codex’. For the idea that using a weaker sentence
‘post the letter or burn it’ violates a conversational presupposition cf. Hintikka [43].
Also cf. Hamblin [29] p. 88: “ ‘implicit imperatives’ may be different from the real
thing, and we should be wary of loading them up with the full range of imperative
properties.”
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‘explicit’ imperatives, and must not start with imperatives that are only inferred,
reveals an unusual, non-classical meaning of ‘imperative inference’. For classi-
cally, logical inferences may very well be conducted by proving first that some
assumptions have some desired conclusion, and then show that the assumptions
follow from an accepted set of premisses. This is facilitated by the transitivity
of classical consequence: if A ∈ Cn(B) and B ∈ Cn(C) then A ∈ Cn(C) (‘con-
sequences of the consequences are also consequences’), or the monotonicity rule:
if A ∈ Cn(X) then A ∈ Cn(X ∪Y ) (what follows from some axioms also follows
from a larger set of axioms).

Ross’s paradox seems to demonstrate that given the imperative inferences
provided e.g. by Dubislav’s convention, it becomes necessary to distinguish be-
tween the imperatives that are explicitly given and the imperatives that are
inferred: agents can use the former for their reasoning, but not always the lat-
ter, or not the latter by themselves, which makes reasoning with imperatives
somehow non-classical. And so there may yet be another way to get around the
difficulties: perhaps Ross’s example is not really a case of an imperative infer-
ence. Perhaps (1) is simply invalid. It is obvious that the scheme is an application
of Dubislav’s convention, so (DC) must be modified. One way to do that is to let
the logic that is used for the right hand side inference in figure 2.1 not classical
logic (propositional or predicate logic), but some other logic that does not allow
one to infer A ∨ B from A. Let e.g. Dubislav’s convention be reinterpreted in
terms of relevant implication, i.e. the scheme used is now the one in the next
figure. There are several ways to define relevant implication, and I will not go

Fig. 2. Dubislav’s convention with relevance.

into them. But standardly we cannot derive A∨B from A, and so Ross’s paradox
is solved.38

38 Weingartner & Schurz [125] and Weingartner [124] tailored their ‘R-consequence’
explicitly to eliminate Ross’s paradox (for deontic logic, not imperative logic). It is
stronger than other relevance logics in that not only the inference of A ∨ B from
A is blocked, but also of A ∨ B from (A ∨ B) ∧ A or (A ∨ B) ∧ ¬B. The price is
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However, there is a variant of Ross’s Paradox, also presented by Ross [92],
that remains valid even on such a ‘relevant’ reinterpretation of (DC): the infer-
ence from !(A∧B) to !A, where A∧B means the sentence that is the conjunction
of A and B. Consider the following arguments, they constitute ‘Weinberger’s
Paradox’ or the ‘Paradox of the Window’:39

(11) Close the window and play the piano!
Therefore: Close the window!

(12) Close the window and play the piano!
Therefore: Play the piano!

Suppose that α wants x to practice the piano, but neighbors have already com-
plained about the disturbance and even called the police on a previous occasion.
So α does not want x to play the piano while the window is open. Closing the
window will reduce the noise so much that the neighbors are left with nothing to
complain about. Suppose then that α sends x to play the piano, using the words
‘close the window and play the piano’. A little bit later, the following discussion
ensues between α and β:

α: I told him to play the piano, but I didn’t hear him doing it all afternoon.
β: Well, at least he closed the window.
α: Why should he do that?

Here, the positive view on x’s behavior by β is not accepted by α. Closing the
window by itself is meaningless. It might even be unwanted in general – it blocks
out fresh air – if it weren’t for the sake of piano practice. But backed with the
inference (11), β can continue in the following way:

β: You ordered him to close the window, that’s what he did, so he did
something right, didn’t he?

Now consider the following, alternative dialogue:

α: He practised the Khachaturian with the window wide open. What shall
we tell the police this time?

β: It was you that told him to play the piano.
α: But I didn’t. He was also to close the window.

β’s reproach for x’s playing the piano is not accepted by α, because while playing
the piano, x did not as he had been requested. However, backed with the inference
(12), β could reply in this way:

a strange consequence relation: not only monotonicity fails, but also reflexivity, i.e.
X ⊆ Cn(X) is not valid.

39 The origin of the example is unclear. The name ‘Paradox of the Window’ is used
e.g. by Stranzinger [101] and Weinberger [119].
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β: You ordered him to play the piano, that’s what he did, so don’t try to
wiggle out of your responsibilities.

In these dialogues, α’s position seems natural, while β’s reaction is strange and
uncomprehensible. But given the inference schemes (11) and (12), β is right:
from α’s command, the imperatives ‘close the window’ and ‘play the piano’ can
be inferred – so we are told by Dubislav’s convention (DC), and Dubislav’s con-
vention restricted by relevant implication. Moreover, these derived imperatives
are used by β as imperatives are meant to be used, namely compared with re-
ality, and reality accordingly qualified as ‘right’ or ‘wrong’. So x did something
right by closing the window, as x satisfied an (implicit) imperative, and similarly
when playing the piano without closing the window. But intuitively, closing the
window by itself produces nothing good, and playing the piano with the window
open seems a clear violation of obligations and not satisfactory in any way.40

The ‘window paradox’ seems to arise whenever the states of affairs mentioned
in the imperative are only conjunctively desired by an authority. That for this
reason we cannot detach conjuncts in wishes, i.e. we cannot conclude from ‘she
wishes for a and b’ that ‘she wishes for a’ was pointed out by Menger [72] for the
case of complementary goods, e.g. when a is ‘a cigarette’ and b is ‘a match’, for
one may not wish either one of the goods by itself. Ross [92] points out that the
same difficulty arises for imperatives, e.g. when the imperative is to ‘write a letter
and post it’. Other examples have included the imperatives ‘take the parachute
and jump’, ‘pay the bill and file it’ or ‘fill up the boiler with water and heat it’.41

Goble [27] showed that even a seemingly innocuous obligation to ‘sing and dance
at Gene’s party’ may be planted in a setting that makes it impossible to speak
of fulfilling the obligation when only one act, singing or dancing, is performed.
To determine whether an imperative is ‘separable’ or ‘inseparable’, i.e. whether
doing A alone produces something ‘right’ with respect to an imperative !(A∧B)
or not, it is necessary to examine the intentions and wishes of the authority that
used the imperative, it is not a matter of logic.42

To solve these difficulties, Kenny [58] proposes a logic of ‘satisfactoriness’.
This logic uses a set of propositions to represent the wishes of the authority under
considerations. A fiat (an impersonal imperative like ‘let there be light’) is called
satisfactory if and only if whenever the fiat is satisfied then every proposition

40 It gives the paradox a further twist if we imagine that playing the piano with the
window open is explicitly forbidden. For by Dubislav’s convention (DC), the imper-
ative !¬(A ∧ ¬B) (‘don’t play the piano while the window is open’), is derivable
from the imperative !(A ∧ B) (‘close the window and play the piano’). But it seems
that the additional prohibition is best formalized as a conditional imperative (in
Hofstadter & McKinsey’s [45] formalism: ¬B ⇒!¬A). Conditional imperatives pose
other problems outside the current topic. In any case, one would still have to say
that playing the piano with the window not closed was satisfactory with regard to
some (derived) imperative.

41 Cf. Hare [38], Weinberger [110] and [123]. These difficulties led Weinberger to reject
the validity of an inference from !(A ∧ B) to !A in his publications since [110].

42 The terminology here is that of Hamblin [29] p. 184.
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in the set of wishes true. Finally an inference of one fiat from another fiat is
defined as follows:

!B may be inferred from !A in the logic of satisfactoriness
if and only if

if !A is satisfactory then !B is satisfactory.

It is clear that the troublesome inferences (1), (11) and (12) are invalidated by
this logic of satisfactoriness: when posting the letter is satisfactory for the wishes
of the authority, then burning the letter need not be so. Likewise, if closing the
window and playing the piano is satisfactory with respect to all wishes, then
playing the piano alone does not guarantee that the wishes of the authority are
also satisfied. But Kenny’s approach gives rise to other paradoxes: in the logic
of satisfactoriness we can e.g. derive:43

(13) Open the door!
Therefore: Open the door and wear a tie today!

The inference is clearly absurd and so Kenny’s logic does not help us to solve
the paradoxes.

In Ross’s paradox, the imperative to ‘post the letter or burn it’ was ‘inferred’
from the imperative to ‘post the letter’, thus forcing one to acknowledge that
some (though only inferred) imperative is satisfied by burning the letter. In
the ‘window paradox’ we could ‘infer’ the imperative ‘play the piano’ from the
imperative ‘close the window and play the piano’, thus forcing us to acknowledge
that an (inferred) imperative is satisfied when the piano is played with the
window wide open. In both cases, we would much rather say that no imperative
was satisfied by burning the letter that was meant to be posted, and by playing
the piano with the window open when it should have been closed. This, I think,
is the main cause why Ross’s paradox and the window paradox give rise to
counterintuitive feelings, or are ‘paradoxical’. So we should not be allowed to
infer such imperatives. So Dubislav’s convention is not an apt theory to explain
how an imperative may be derived from another one. And so we are back at
square one: all theories, including the formalistic approach, have so far failed
to explain what it means to infer an imperative from some other imperative in
spite of Jørgensen’s Dilemma.

7 Ordinary Language Arguments

Maybe it is not really the case that all options have run out to redefine Dubislav’s
scheme in a way so that it avoids Ross’s paradox and Weinberger’s variant of
it. Maybe we have to replace the classical logic that appears in his scheme by
yet another logic, or develop such a logic.44 But it is hard to see what kind

43 A similar counterexample was given by Gombay [28], also cf. Sosa [97].
44 Cf. Keene [56]: “What we wanted here is a logic of actions, in which a well-defined

concept of inclusion plays a leading role.”
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of logic this could be, since most logics, including other non-monotonic logics,
will permit us to either infer !(A ∨ B) from !A or !A from !(A ∧ B), and so at
least one of the two paradoxes will arise. So I think, after all these troublesome
attempts to define a ‘logic of imperatives’, it is worthwhile to take another look
at Poincaré’s proposal that originally started the controversy.

Poincaré’s only explicit example of an inference with an imperative conclusion
has the following form:

(1) Do this!
This cannot be done without that.
Therefore: Do that!

The following is an instance of this scheme:

(2) Drive me to the airport!
To get to the airport, one must drive in a northerly direction.
Therefore: Drive me in a northerly direction!

In which setting could these sentences be used? Suppose I have entered a taxi
and used the above sentences. But some confusion could arise. The driver could
reply: “So what do you want me to do, drive you to the airport or just drive
north?” The driver needs a direction. Ordering her to go to the airport alone is
sufficient for this, and the behavior expected of a passenger entering a taxi. Using
two imperatives where each contains an instruction of where to go is unexpected
and confusing.

So suppose I have just used the sentence ‘drive me to the airport’. A little
later I realize that we seem not to be going north, and I say to my partner:

“Is she hijacking us? I ordered her to go to the airport, and the airport
lies to the north. So she ought to be driving us in a northerly direction.
But she is not.”

This reasoning seems flawless. Yet it does not involve sentences in the imperative
mood and so cannot be an example of an imperative inference. But maybe this
would be a good time to say to the driver:

(3) I ordered you to go to the airport.
To get to the airport, one must drive in a northerly direction.
Therefore: Drive me in a northerly direction!

But here the two sentences that function as premisses are both descriptive.
Since Poincaré explained that an imperative cannot be derived from indicative
premisses alone (and there is no reason not to follow him), this cannot be an im-
perative inference, and there must be something more involved than the drawing
of a logical conclusion. One such other function of the ‘therefore’ appearing at
the front of the last sentence of (3) is not to reason, but to motivate, as in:
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(4) The car is broken.
Therefore: Take the bus into town!

Here the speaker is motivating the imperative to take the bus by explaining that
driving into town is impossible, since the car is broken. So similarly, what seems
to have happened in (3) is that I motivate my (new) imperative ‘drive me in a
northerly direction’ by an already given command and an assumed fact.

Consider again the proposed inference (2). Just like indicative inferences are
explained by the fact that someone who accepts (or: assents to) the premisses
must also accept the conclusion, Hare [37] has argued that an imperative infer-
ence is one where someone who assents to all imperative premisses must also
assent to the imperative conclusion:

“A sentence p entails a sentence q if and only if the fact that a person
assents to p but dissents from q is a sufficient criterion for saying that
he has misunderstood one or other of the sentences. (...) A person who
assented to this command [‘Take all the boxes to the station’], and also
to the statement ‘This is one of the boxes’ and yet refused to assent
to the command ‘Take this to the station’ could only do so if he had
misunderstood one of these three sentences.”

But what does it mean that a person ‘assents’ to a command? Suppose John’s
mother tells him ‘John, clear the table and do the washing up’, and John’s
little brother echoes: ‘John, do the washing up’. If John ‘assents’ to his mother’s
order, does he also have to ‘assent’ to an order by his brother, whom he might
not accept as an authority? Perhaps the analysis assumes identity in the person
who uses the commands. Suppose then it was not John’s mother but some officer
who used the imperative, and John is not obliged as son, but as this officer’s
orderly. The second command is also used by the officer, maybe a little later.
But suppose that John is only obliged to the officer if the commanding is done
in a certain fashion, e.g. when the officer is standing up, or when the officer is
not drunk, and that when the second imperative was used the officer was, as a
matter of fact, not standing up or already had more than her fill. Or suppose
that John is not an orderly, but some djinni, and the officer is the person who
rubbed the lamp, but that, when she used the first imperative, this already was
the last of the three wishes that she had been granted. Does John, in these cases,
have to ‘assent’ to the second command? It seems that such an interpretation
of ‘assent’ would have to get involved into reasoning about whether the act of
using an imperative ‘really creates’ a command. But it did not seem as if such
reasoning is involved in Hare’s proposal.

So let then the word ‘assent’ be understood in its weakest possible interpre-
tation. A person could hardly be said to assent to a command given to her if she
did not satisfy or to try to satisfy it. Returning to the situation where I have
asked the taxi driver to take me to the airport, when the taxi driver assents to
this request, she will start driving me to where she thinks the airport lies, i.e.
start to satisfy, or try to satisfy, my request. If the taxi driver agrees that the
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airport lies in a northerly direction, she will, in obeying my request, eventually
drive in what she thinks is a northerly direction. So she might be said to addi-
tionally satisfy, or try to satisfy, a request to drive me in a northerly direction,
had such a request been made. But did I request the taxi driver to drive me
north? I might be absolutely sure that the airport is to the north, but I would
still blame the taxi driver for not going where I requested if, opposite to what
I believed, the airport is in fact to the south-west of my starting point and the
driver still went north. So I did not utter such a request, and would not even
imply such a request, lest I be charged by the driver for going there instead of
the airport. All we can say is that the taxi driver would also be satisfying, and so
seemingly assenting to, a purely hypothetical request to drive me in a northerly
direction, if she satisfies the request to drive me to the airport and the airport
does in fact lie in a northerly direction. But this is again not a logic that infers
one imperative from some set of other imperatives and/or indicatives, but the
logic of satisfaction as explained in sec. 4.1.45

It would be nice to have some ‘real life’ examples, cases of ‘ordinary’ reasoning
with imperative premisses and an imperative conclusion, i.e. instances of

(ImpInf) !A
∴ !B

where !A and !B are sentences in the imperative mood, and where the use of the
inference – not the imperatives – is either accepted in some ordinary discourse,
or opposed (and the person who uses it blamed for being ‘unreasonable’ or
‘illogical’).

Use of indicative arguments in everyday discourse often occurs in singular
sentences, like

(5) Unemployment is rising, so there are not enough jobs created.
(6) She has got an ‘A’ in English, so she achieved top-marks in at least one

subject area.
(7) I have read all of Vladimir Nabokov’s novels, so I have read Pnin.

Here two descriptive sentences are linked with the adverb ‘so’ (similar adverbs
would be ‘therefore’ or ‘hence’). (5) seems analytical if one understands ‘enough’
to be elliptical for ‘enough to make up job-losses elsewhere’. (6) is analytical if
one knows that ‘A’ is a top-grade and that English is one of several high-school
subjects. (7) is made into a logical argument by the assumed background knowl-
edge that Pnin is a novel by Nabokov. It is often not easy to distinguish such
indicative arguments from sentences that present reasons, motives or are other-
wise explanatory, for these also use the form of descriptive sentences that are
concatenated by an adverb like ‘so’ or ‘therefore’, as in the following examples:

(8) I couldn’t get the car started, therefore I took the bus.
(9) I wanted to make friends with her, therefore I asked her if she would go

shopping with me.
45 This resembles the criticism by Keene [56] of Hare’s proposal.
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(10) There were holes in the roof, so birds had come in and were roosting in
the rafters.

(8) explains why today the speaker used the bus. Since the bus need not have
been the only means to get into town, or the speaker may have stayed at home,
the hearer cannot just conclude the second part from the first. (9) presents the
psychological motive why the speaker asked the third person to go shopping
with her. Other people might have been motivated differently by the desire to
make friends with the third person. In (10), a natural event is explained by a
certain state of affairs. Again, this is not a logical argument: the birds could also
have not flown in, or flown in but not nested in the ceiling. Now the adverbs ‘so’
and‘therefore’ can also be used to meaningfully link imperatives. Consider the
following examples:

(11) Stop the rise of unemployment, so see to it that more jobs are created!
(12) Make your guests comfortable, so introduce your guests to each other!
(13) Don’t let vermin into you house, therefore patch up the roof!
(14) Read all of Nabokov’s novels, so read Pnin!

(11) might be encountered in some political debate. At first it appears to be a
good argument, but then doubts arise: is the speaker really appealing to logic,
or is she just complementing her first imperative by a second, more specific
one, as when we say: “Go there! Go there now!”? And one could also stop the
rise of unemployment by e.g. prohibiting companies to dismiss their workers,
or making it more difficult for them (maybe (5) was not so analytical after
all). Then (11) would seem to be rather a case of a motivating use of ‘so’: the
imperative to see to it that more jobs are created is motivated by a primary
order to stop unemployment. Likewise, in (12), the advice to introduce guests to
each other is rationalized by the more general aim to make guests comfortable.
It is hard to see what could be analytical here: to ease tensions, the host may
equally encourage the guests to guess each others names, or serve them plenty of
alcohol, or maybe the guests are easygoing and do not really require any effort on
the host’s part to make themselves at home. Similarly, in (13) the more readily
accepted advice to keep vermin out of the house is used as a rationale to make
the addressee accept the drudgery of having to patch up the roof. The most
promising candidate for an appeal to analyticity seems to be (14), i.e. that the
imperative to read all of Nabokov’s novels includes the imperative to read Pnin,
given the background knowledge that Pnin is a novel by Nabokov. Note that
when making the background knowledge explicit, it becomes a case of Dubislav’s
extended convention (DEC). Such a sentence may be used e.g. by a teacher of
a literature course when addressing her students. But again we cannot rule out
that this is just a case of complementing an imperative by a second, more specific
one, as we sometimes do to get things done.

Adherents of Dubislav’s convention (DC) must also accept the following ar-
gument:
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(15) Aim for an ‘A’ in English, so aim for top-marks in at least one subject
area!

But it seems dubious what reason the speaker could have for adding the ‘so’
part. Just aiming for top-marks in some subject area is clearly not what the
speaker wants the addressee to do. More meaningful would be the converse,

(15a) Aim for top marks in at least one subject area, so aim for an ‘A’ in
English!

where the advice to aim for ‘A’ in English is rationalized by the wish to have the
student achieve top-marks somewhere. But since the student could not know
from the first imperative that it was the subject of English that the speaker
wanted her to achieve top marks in, this would – like (12) and (13) – rather be
a ‘motivating so’, and not a use of ‘so’ that appeals to a logical capability.

Matters are further complicated by the fact that expressions of the following
kind can also be meaningfully employed:

(16) The car isn’t working properly, so take the bus!
(17) I forgot my keys, therefore leave your key under the mat!
(18) Gill is your best friend, so invite her to your party!

In all three sentences, the first part is descriptive and the second is in the im-
perative mood. We have already noted in the case of (3) that such arguments
exist, but for anyone who agrees to Poincaré’s thesis that imperative conclusions
do not follow from an indicative premisses it is clear that (16) – (18) cannot
represent valid arguments. (16) seems again a case where the ‘so’ is used to
motivate the advice that is expressed by the imperative. The ‘so’ does not ex-
press a logical relation, for sometimes it is better to use a car that stutters than
a coach that won’t take one back. In (17) the indicative gives a reason why
the speaker wants her request to be followed. According to Hamblin [29], such
reason-providing indicatives are often attached to advice-expressing imperatives,
yet here the imperative might also be an order (e.g. of a parent). For the same
reason the speaker might have ordered the agent to hand over her key, and not
to leave it under the mat, and so what is expressed is again not a logical relation.
(18) seems also like presenting a motive for inviting Gill to the party (she is the
addressee’s best friend), but here things might be a bit more complicated – the
expression could be elliptical for:

(18.a) Invite your best friends to the party, Gill is your best friend, so invite
her to your party!

This is very similar to what Dubislav considered a valid argument, namely his
inference from ‘thou shalt not kill’ to ‘Cain shall not kill Abel’. But then, (18)
might also be elliptical for
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(18.b) Gill is your best friend, one invites one’s best friends to one’s parties, so
invite her to your party!

where the second part (which is not in imperative mood) appeals to the existence
of a rule that the speaker might consider binding, or binding for the addressee.
So this is rather a case of reason-giving, and not of a logical inference: the speaker
motivates her imperative by asking the speaker to conform to some preexisting
rule. And so it appears possible that also in (18.a) the first imperative served
only as a rationale for the second imperative.

To tell the uses of ‘therefore’s’ and ‘so’s’ that are motivating, reason-giving or
explanatory in a non-logical sense, apart from those that separate the premisses
from the conclusion in an argument that is intended to be a logical one, we
can use the following trick: instead of ‘therefore’ or ‘so’, use a clause like “... It
follows logically from this that ...” to separate the sentences. The new phrase
makes the appeal to a logical capability explicit. Where the original adverbs
‘so’ and ‘therefore’ were used to indicate a (claimed) logical inference, the new
formulations

(5.a) Unemployment rates are rising. It follows logically from this that not
enough jobs are created.

(6.a) She has got an ‘A’ in English. It follows logically from this that she
achieved top-marks in at least one subject area.

(7.a) I have read all of Vladimir Nabokov’s novels. It follows logically from
this that yes, I have read Pnin.

appear only to be changes in expression. The speaker, just as before, appeals to
a shared understanding of words, concepts and background knowledge, to make
the second sentence seem to be expressing nothing new, but only a logical con-
sequence from what has been said before. Note that it does not matter whether
the arguments are, in fact, analytical. People sometimes think they use valid ar-
guments when they are not. But the rephrased sentences make it clear that the
speaker intends the sentences to be just that. And the new formulations seem
not to change the meaning of the original sentences whenever a ‘logical’ use of
the adverbs ‘so’ and ‘therefore’ was really intended. By contrast, when the first
part was used to give some background information, a reason, explanation or
motive, the rephrased expressions appear odd:

(8.a) I couldn’t get the car started. It follows logically from this that I took
the bus.

(9.a) I wanted to make friends with her. It follows logically from this that I
asked her if she would go shopping with me.

(10.a) There were holes in the roof. It follows logically from this that birds had
come in and were roosting in the rafters.

The phrase ‘it follows logically from this’ makes again an appeal to some shared
understanding of used words, concepts and background. But here, this back-
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ground knowledged obviously does not allow one to ‘conclude’ the second sen-
tence from the first. The listener could not have known from the first sentences
in these examples that the speaker took the bus, asked someone to go out shop-
ping or has birds nesting in the roof of her house. So claiming, as the rephrased
sentences do, that the second part can be concluded from the first, makes the
sentences seem irritating, weird and false, while the earlier sentences appeared
quite harmless.

Now consider what happens if such a method is used on imperative. So far,
(14) seemed the best candidate for a sentence that ‘appeals to logic’, so I will
concentrate on this example. First note that

(14.a) Read all of Nabokov’s novels. It follows logically from this that read
Pnin!

is not grammatical, so instead of the ‘that’ e.g. a colon (corresponding to a pause
in oral language) must be used, as in the following expression:

(14.b) Read all of Nabokov’s novels. It follows logically from this: read Pnin!

But here, the part that follows the colon seems strangely detached. Is this a
command, i.e. is the speaker, using the expression following the colon, still giving
a command? Or is the emphasis on the part before the colon, and so the purpose
of the second sentence is merely to tell (truly or falsely) that some consequence
relation holds? The impression that this is a strange use of words increases if we
add the subject of the request:

(14.c) John, read all of Nabokov’s novels. It follows logically from this: John,
read Pnin!

Here, the phrase ‘it follows logically from this’ makes it appear as if the speaker
was not giving commands to John at all. It seems what the speaker really does
is talking about logical relations between sentences – maybe it is a logician
presenting an example of an imperative inference. So perhaps we should try out
another phrase:

(14.d) John, read all of Nabokov’s novels. We can conclude from this: John,
read Pnin!

Yet this expression also has a false ring: who is doing the commanding of the
‘conclusion’ – the speaker? Or the ‘we’ that is to do the concluding? Do the
speaker and the listeners all join into giving John the command? Apparently it
was wrong to use the first person plural, and so we might want to change the
sentence into:

(14.e) John, read all of Nabokov’s novels. I conclude from this: John, read Pnin!
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But this seems to be the worst alternative so far. Is the speaker concluding the
last sentence? Or is the speaker commanding it? And if so, then why is the
speaker saying that she is concluding it? The performative acts of concluding
and commanding seem to collide, whereas the acts of stating and concluding
seemed to go hand in hand. But we have yet another phrase to try out:

(14.f) Read all of Nabokov’s novels. So you can conclude for yourself: read Pnin!

Though this is perhaps a less common phrase to signal logical arguments, the
new sentence seems to be the most successful so far. But it appears necessary
that the ‘you’ is the person to whom both commands are addressed. So let us
make the addressees explicit. Of the following sentences

(14.g) John, read all of Nabokov’s novels. So John, you can conclude for yourself:
read Pnin!

(14.g) John, read all of Nabokov’s novels. So Mary, you can conclude for your-
self: read Pnin!

(14.i) John, read all of Nabokov’s novels. So Mary, you can conclude for your-
self: John, read Pnin!

only the first seems somehow acceptable. In (14.g) it appears as if Mary is
asked to read the book, but this can hardly be ‘concluded’ from a command not
directed at Mary. (14.i) makes it seem as if Mary is asked to give a command to
John (and not just to draw a conclusion). Moreover, if the addressee is expressly
included in the inferred command, then also 14.f), which seemed so promising
at first, looks strange:

(14.j) John, read all of Nabokov’s novels. So you can conclude for yourself:
John, read Pnin!

It seems that in (14.f) and (14.g) the speaker has not just asked the addressee of
the first command to ‘draw a conclusion’, but in this process to ‘give himself’ the
command expressed by the second sentence, i.e. to ‘tell himself to read Pnin’.
When the addressee is made explicit in the ‘inferred’ command, it looks as if the
addressee is additionally asked to use his own first name when telling himself to
read Pnin – which is a weird thing to ask of anybody. And this points at another
problem of (14.f) and (14.g): if the person who commands ‘read all of Nabokov’s
novels’ (the teacher) and the person who commands ‘read Pnin’ (John himself)
are not identical, how can the second imperative be inferred from the first?

By contrast, all of the above phrases can be employed for ‘deontic sentences’
(non-imperative sentences that do not prescribe, but describe what ought to be
done) without difficulty:

(19) You ought to read all of Nabokov’s novels, therefore you ought to read
Pnin.
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(19.a) John ought to read all of Nabokov’s novels, therefore John ought to read
Pnin.

(19.b) John ought to read all of Nabokov’s novels. It follows logically from this
that John ought to read Pnin.

(19.c) John ought to read all of Nabokov’s novels. We can conclude from this
that John ought to read Pnin.

(19.d) John ought to read all of Nabokov’s novels. I conclude from this that
John ought to read Pnin.

(19.e) John ought to read all of Nabokov’s novels. You can conclude for yourself
that John ought to read Pnin.

(19.f) John ought to read all of Nabokov’s novels. Mary, you can conclude for
yourself that John ought to read Pnin.

All these sentences seem grammatical, meaningful and not confusing. We might
even view the inferences they express as sound, but this is not the question
here. Yet as we have seen, all attempts to use the phrases that link these sen-
tences, normally used to indicate logical arguments in indicative discourses, to
link imperatives to indicate ‘imperative inferences’, result in expressions that
seem somehow confused and wrong. When used to link imperatives, they mix
up the roles of commanding, command-receiving, and drawing conclusions. And
since the method to use such clauses to distinguish appeals to logic from e.g.
motivating uses of ‘therefore’s and ‘so’s, fails to produce sentences that do not
appear strange or confused in the case of imperatives, perhaps it did so because
these adverbs really are not used to indicate a claimed analyticity when link-
ing imperatives. A motivating use of the adverb ‘so’ suffices to explain why the
sentence (14) seemed meaningful: the teacher, perhaps asked by John whether
he also has to read Pnin, motivates the more specific imperative to read this
book by prefixing to it the general requirement to read all of Nabokov’s novels,
thus making it clear that Pnin is in fact one of the books that John has to read.
(14.f) appears comparatively less strange than the other reformulations because
to ask John to ‘give himself’ the imperative to read Pnin may be a (roundabout)
way to make sure he actually reads it. To understand (18) we do not need to
determine whether the speaker refers to an explicit command to ‘invite one’s
friends’, or a social custom to do so, because what is in any case implicit in (18)
is an appeal to a preexisting obligation to motivate the agent to do what the
speaker wants her to do. It also explains why (15) seemed so strangely pointless:
the reason for using the less specific imperative to achieve some top marks is
not sufficiently explained by prefixing to it a more specific imperative to achieve
top marks in English.46 And so it seems that all of the imperative arguments
(11)–(18) are really cases of reason-giving and motivation, and the ‘so’s and
‘therefore’s’ used in these expressions that like Poincaré’s ‘donc’, or the ‘also’s,

46 Note that the same strangeness does not necessarily arise for deontic logic. The
dean of one faculty may say to another: “Our students are obliged to have an ‘A’ in
English, so yes, ours are – like yours – obliged to achieve top marks in at least one
subject are.”



Introduction 37

‘daher ’s and ‘deshalb’s of German language, may be used to connect both in-
dicative and imperative sentences, provide only reasons, explanations or motives
in the case of imperatives, and do not indicate claims of analyticity.

So I want to dare the hypothesis that there are no examples of imperative
inferences, i.e. logical conclusions in the imperative mood, drawn from at least
one premiss in the imperative mood, to be found in ordinary language arguments.
They only appear in the writings of some philosophers.

8 The Way to Go Forward

If there are, as a matter of fact, in ordinary language, no argument forms that
resemble ‘imperative inferences’, then there also is no place for a formal theory
for such a logic. Presenting formalizations of such a logic would be writing about
what Dubislav [17] called an Unding or chimaera: a non-thing that exists only
as a concept, but no real object falls under the concept.

So did Poincaré commit a mistake? Did he confuse an important insight by
Hume [47] on the use of ‘is’ and ‘ought’ – that facts cannot be used to argue
that they must be so or that other facts should be made similar to them –
with a statement about grammar? Curiously, in his essay, Poincaré [87] never
claimed to have discovered the logic of imperatives of which he was heralded as
the pioneer. His main argument is that findings of science can influence moral
reasoning. He just seems to presume that, like scientific arguments consist of
sentences in the indicative mood, moral reasoning is conducted using sentences
in the imperative mood. It is true that facts can influence the reasoning of
agents about their obligations: Hare’s officer, who upon being commanded to go
to Edinburgh via Coldstream or Berwick finds the road via Coldstream blocked,
acts quite reasonably by concluding that she now ought to go via Berwick. But
this is a reasoning about what obligations she has, it is a deontic argument, and
not a case of ‘inferring’ imperatives. So Poincaré’s main argument is correct, but
the assumed parallelism between sentences in the indicatives and the imperative
mood, that they can both feature in logical arguments, does not exist. Our
language does not work that way.

There are several ways to go forward from a position of ‘imperativological
skepticism’.47 First, one might continue the ‘logic of imperatives’ as a logic of
satisfaction. The logic of satisfaction states which imperatives must also be sat-
isfied if some other imperatives are satisfied, and it may also be used to state

47 A number of authors have already denied the possibility of a logic of imperatives
or norms, like von Wright [132] p. 109: “And now I too, after a long and winding
itinerary have come to the same view: logical relations, e.g. of contradiction and
entailment, cannot exist between (genuine) norms.”. Above we have already noted
that Hamblin [29] p.89, Sellars [93] p. 239-240, von Kutschera [60] and Philipp [83],
[84] have expressed scepticism or denied the possibility of a logic of imperatives
altogether. For imperatives also cf. Moritz [74], Williams [126], Keene [56], Opa lek
& Woleński [79]. The term is coined from Weinberger’s [117] term ‘normological
skepticism’ which denies logical relations not only between imperatives, but any
prescriptive language. The main proponent of normological scepticism is Kelsen [57].
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which imperatives will be violated by satisfying other imperatives. We can use
the notion of satisfaction to distinguish imperatives that might be seen as redun-
dant in a set of imperatives in the sense that these will also be satisfied if some
other, different imperatives are satisfied, or identify subsets of imperatives that
cannot be all satisfied and so conflict. By providing these concepts, the logic of
satisfaction, though it may appear trivial, remains a meaningful and correct way
to talk about imperatives.48

Second, imperatives normally express the wish or desire on the part of the
person or authority using the imperative that what is commanded is satisfied.
But it seems unreasonable to wish for A to be realized, but also for ¬A to be
realized, and in this sense two wishes may exclude another. If imperatives express
wishes of one particular person, we can then point out to her what wishes may be
unreasonable. Likewise it might be desirable to view the norms of a particular
society as if they all were the wishes of one person, the ‘law giver’, and logic
may then give advice as to which norms must be revised so that the system
is ‘reasonable’. This is the position of G. H. von Wright in his late work on
normative, and deontic logic, cf. e.g. [131], [132].49

Finally, there is deontic logic. In the course of the paper I have portrayed de-
ontic logic as a logic about what is obligatory given a set of imperatives or norms,
as opposed to a logic of norms or imperatives. This is indeed the way deontic
logic has been explained by von Wright in [128] and represents the main view.50

But other authors have refused to make a commitment to such a descriptive
interpretation of deontic logic. Some have explicitly viewed it as a logic of pre-
scriptions. Castañeda [15] viewed deontic logic as a “modal logic of imperatives
and resolutives”. Åqvist [8] argued that it should be possible to interpret deontic
logic “atheoretically” as a logic of commands, in the sense that OA expresses a
command, and not a proposition about a command; occasional oddities like the
difficulty of interpreting formulas like ¬OA should be accepted as a small price
for a logical theory of commands. Alchourrón [1] identified deontic logic with
a “logic of norms”, and set out to develop a logic of normative propositions in
parallel. Chellas [16] replaced the O-operators of deontic logic by the symbol ‘!’,
where !A is to be understood as representing a natural language imperative ‘let
it be the case that A’, and presents a logic for such formulas that is equivalent
to standard deontic logic SDL. For Bailhache [9], deontic logic is the logic of ‘de-
ontic norms’ (norms that are created by the use of deontic expressions), where
the deontic formulas are then evaluated with respect to accessible ideal worlds
as usual. Sometimes it is not even quite clear in which way standard accounts

48 Cf. C. G. Hempel’s [40] remark with regard to Ross’s Paradox that a logic of satis-
faction should not be so easily rejected.

49 The idea that commands can be identified with wishes, which in the above sense
relate to each other, goes back to Bentham [11] pp. 95–97.

50 Cf. von Wright [128]: “The system of Deontic Logic, which we are outlining in this
paper, studies propositions (and truth-functions of propositions), about the obliga-
tory, permitted, forbidden.” Also cf. Føllesdal & Hilpinen [20]: “Deontic sentences
(represented by the formulae of deontic logic) describe what is regarded as permitted,
obligatory, forbidden etc., in some unspecified normative system.”
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of deontic logic desire its formulas to be read: Carmo & Jones [14] write that
deontic logic is a formal tool needed to ‘design normative systems’ and, just like
Bailhache in [10], throughout call the sentences of deontic logic ‘norms’ or ‘deon-
tic norms’ – but the authors then employ possible worlds semantics to evaluate
deontic propositions (norms?) as true or false as usual. Føllesdal & Hilpinen [20]
speak of deontic propositions as constituting or being ‘implied’ by a normative
system (e.g. pp. 13, 29), or of deontic logic formalizing imperatives (p. 26), and
treat the descriptive interpretation of deontic logic only as one that they “shall
often resort to” (p. 8).

However, it is quite clear that deontic logic cannot be such a logic, that OA
cannot be interpreted as representing imperatives or norms. I have explained
in sec. 3 why imperatives, and for that reason, also ‘deontic norms’, cannot be
meaningfully termed ‘true’ and ‘false’. But if norms are neither true nor false,
then the Boolean operators occurring in the formulas of deontic logic such as
‘OA∧OB’, ‘PA∨¬OA’, ‘OA → PB’, cannot have their usual, truth functional
meanings as ‘and’, ‘or’, ‘not’, ‘if ..., then’. So a logic of norms, even if it is – con-
trary to my view – possible, cannot resemble deontic logic,51 and the meaning of
(sub-)formulas such as ‘OA’ must be interpreted descriptively. So the descriptive
interpretation of the formulas of deontic logic is the only tenable one.

What the confusion about the meaning of deontic logic illustrates is the
need to better explain how deontic logic relates to (explicitly given) imperatives
and norms. Already Ziemba [134] stated that “the lack of distinction between
commands (norms) and deontic propositions, or propositions on commands, is a
source of various evil in deontic logic,” and David Makinson [67], a quarter of a
century later, echoed this statement when he noted at the workshop ∆EON ’98
on Deontic Logic in Computer Science in Bologna 1998, that work on deontic
logic has been going on as if a distinction between norms (that cannot be called
true or false) and normative propositions (that can) has never been heard of.
Makinson called for a new start, a reconstruction of deontic logic as a logic
concerned with norms, but in accord with the philosophical position that norms
are devoid of truth values. Following Makinson’s call and an existent ‘imperatival
tradition’ of deontic logic I have, in subsequent papers [30], [31], [32], [33], [34],
shown how deontic logic can be reinterpreted as a logic about imperatives. The
imperatives according to which statements like ‘it ought to be that A’ are true
are explicitly represented in the semantics of deontic logic. We can then define
deontic operators which make some the following statements true:

(1) {!A} |= OA
(2) {!A, !B} |= O(A ∧ B)
(3) {!A} |= O(A ∨ B)
(4) {!(A ∧ B)} |= OA
(5) {!(A ∧ B), !(¬A ∧ C)} 2 OB
(6) {!(A ∧ B), !(¬A ∧ C)} |= O(A ∧ B) ∧ O(¬A ∧ C)

51 Cf. Makinson [67] p. 30. Keuth [59] and Swirydowicz [102] therefore restrict their
‘logic of norms’ to statements of ‘normative entailment’ of the form !A ⊢!B.



40 J. Hansen

(7) {!(A ∧ B), !(¬A ∧ C)} |= O((A ∧ B) ∨ (¬A ∧ C))
(8) {!(A ∧ B)}, 2 O(A¬B)

(1) says that if there is an imperative in the set of imperatives (that are taken
as mandatory) according to which A ought to be done, then the statement
OA (‘it ought to be that A’) is true. (2) allows us to agglomerate what several
imperatives demand: if according to two imperatives, A and B ought to be done,
then O(A ∧ B) is true. (3) and (4) are true for a sense of obligation that lets it
suffice for the statement OA to be true that according to an imperative in the
sense that A must (also) be (done), in the sense that A is necessary to satisfy the
imperative. Such operators give rise to deontic versions of Ross’s or Weinberger’s
paradox, but interpreted in the above way these versions appear harmless: there
is no imperative in the set of mandatory imperatives at the front of (3) that doing
A∨B would satisfy, and similarly for (4) and doing A alone. If we want to model
a ‘strong’ sense of obligation that does not make O(A ∨ B) or OA true in these
cases, then we may do so by using an O-operator for which (3) and (4) are not
true. (5) is true of a deontic operator that maintains that in a conflict between
imperatives the subject can continue to reason about her obligations. A conflict
does not make everything obligatory. According to some proposals, each of what
the colliding imperatives demand should be described as obligatory (case 6), and
according to others, only what they demand disjunctively is obligatory (case 8).
(8) holds for a dyadic deontic operator that recognizes that some norms may no
longer be satisfiable in the case the situation described by the antecedent C of
the formula O(A/C) is true, and does not make what they demand obligatory
any longer.

As illustrated by such statements, the fact that there is no logic of imperatives
does not mean that imperatives are not ‘handled’ in certain ways by agents
when reasoning about their obligations: the logic of satisfaction and Weinberger’s
principle (W) make it possible to define from a set of imperatives e.g. what
is necessary to satisfy some imperatives, all imperatives, or maximal subsets
of non-conflicting imperatives. We can discount imperatives that are already
satisfied or violated in a certain situation, compare different sets of imperatives
and say e.g. that two sets make no difference regarding what obligations result,
etc. Thus, though imperatives or norms have no truth values and no ‘logic’,
they still can be meaningfully used to determine what obligations arise in a
certain situation. This view lies at the bottom of my approach, and also that
of Makinson’s and van der Torre’s ‘input/output logic’ (cf. [68], [69]).52 In the
mentioned papers I have outlined operators for which the above statements are
true. Also, I have shown that there are quite natural ways to define notions of
ought that make the standard systems of monadic and dyadic deontic logic still

52 Makinson & van der Torre explain that such a handling can also be used to devise
a machine that ‘hands out new norms’ in a particular situation. But, as they also
explain, this should not viewed as a kind of logical procedure. If it works (e.g. in the
case of a computer automating the issuing of tax bills or parking tickets) it does so
because the machine designers (authorities) want the machine to work in that way.
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sound and complete with respect to such semantics. But there are also other
definitions, like operators that handle conflicts in the ways described by (5) and
(6) or (7). This multitude of possible definitions does not, in my view, mean that
deontic logic has become a ‘logic à la carte’. It rather responds to the different
circumstances in which deliberation is required of an agent, and to different ways
we talk about obligations, e.g. when we treat them as being prima facie or ‘all
things considered’, or when we can or cannot stipulate that the norm-giver has
been rational. Thinking about what sets of imperatives or other norms make
which deontic propositions about the imperatives or norms true seems to me a
promising way to go forward for deontic logic.

Deontic logic has been disparagingly called a “kind of ersatz truth”, that
merely mirrors logical relations that already exist between imperatives or norms,
and so we should rather look for this logic than studying a deontic logic that
only reflects it and so must result in a “dull isomorphism”.53 But it has been the
‘logic of imperatives’ that has kept escaping us, while sentences that use deontic
expressions can easily be used to form valid arguments. So maybe it is not a
logic of imperatives that is the ‘proper’ subject of study and makes deontic logic
just an ersatz theory, but it is the other way round,54 and the idea of a logic
of imperatives has been a fata morgana, leading us to ever more futile attempts
to explain inference relations between imperatives, to find analogues of truth
values, or new logics to explain Dubislav’s scheme, whereas any plausibility of
this idea was just a reflection of the real, but quite distinct possibility of a logic
about imperatives, namely of deontic logic. If my hypothesis holds, then it is
the only logic regarding normative concepts such as obligation that we should
be concerned with.

53 This is Hare’s view in [38] p. 325; also cf. Alchourrón [1] pp. 264–266; Kalinowski
[50] p. 134; Weinberger [117] p. 58, [120]; Wagner & Haag [106] p. 102. The idea that
deontic logic reflects the logical properties of norms is that of von Wright in [129] p.
134.

54 Cf. Alchourrón & Bulygin [4] p. 463: “This logic of norms is, so to say, a reflection of
the logic of normative propositions. It is because we regard as inconsistent a system
in which it is true that Oxp and Ox¬p, that we say that the norms !p and !¬p are
incompatible. So it is the logic of norm propositions which yields the foundations for
the logic of norms.” .
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87. Poincaré, H., Dernières Pensées, Paris: Ernest Flammarion, 1913.
88. Rescher, N., The Logic of Commands, London: Routledge & Kegan Paul, 1966.
89. Rescher, N., “Assertion Logic”, in: Rescher, N. (ed.), Topics in Philosophical

Logic, chap. XIV, Dordrecht: Reidel, 1968.
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103. Tarski, A., “Über einige fundamentale Begriffe der Metamathematik”, Comptes
Rendus des Séances de la Sociéte des Sciences et des Lettres de Varsovie, 23, 1930,
22–29, published in English under the title “On Some Fundamental Concepts of
Metamathematics” in [105] pp. 30–37.

104. Tarski, A., “Der Wahrheitsbegriff in den formalisierten Sprachen”, Studia Philo-
sophica, I, 1935, 261–405.

105. Tarski, A., Logic, Semantics, Metamathematics, Oxford: Oxford University Press,
1956.

106. Wagner, H. and Haag, K., Die moderne Logik in der Rechtswissenschaft, Bad
Homburg: Gehlen, 1970.



46 J. Hansen

107. Walter, R., “Jörgensen’s Dilemma and How to Face It”, Ratio Juris, 9, 1996,
168–171.

108. Walter, R., “Some Thoughts on Peczenik’s Replies to ‘Jörgensen’s Dilemma and
How to Face It’ (with Two Letters by A. Peczenik)”, Ratio Juris, 10, 1997, 392–
396.
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122. Weinberger, O., Alternative Handlungstheorie, Wien: Böhlau, 1996.
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Abstract. We explain the raison d’être and basic ideas of input/output
logic, sketching the central elements with pointers to other publications
for detailed developments. The motivation comes from the logic of norms.
Unconstrained input/output operations are straightforward to define,
with relatively simple behaviour, but ignore the subtleties of contrary-
to-duty norms. To deal with these more sensitively, we constrain in-
put/output operations by means of consistency conditions, expressed via
the concept of an outfamily. They also provide a convenient platform for
distinguishing and analysing several different kinds of permission.

Keywords. Deontic logic, input/output logic, constraints, permissions

1 Motivation

Input/output logic takes its origin in the study of conditional norms. These may
express desired features of a situation, obligations under some legal, moral or
practical code, goals, contingency plans, advice, etc. Typically they may be ex-
pressed in terms like: In such-and-such a situation, so-and-so should be the case,
or . . . should be brought about, or . . . should be worked towards, or . . . should be

followed – these locutions corresponding roughly to the kinds of norm mentioned.
To be more accurate, input/output logic has its source in a tension between

the philosophy of norms and formal work of deontic logicians.
Philosophically, it is widely accepted that a distinction may be drawn between

norms on the one hand, and declarative statements on the other. Declarative
statements may bear truth-values, in other words are capable of being true or
false; but norms are items of another kind. They may be respected (or not), and
may also be assessed from the standpoint of other norms, for example when a
legal norm is judged from a moral point of view (or vice versa). But it makes no
sense to describe norms as true or as false.

However the formal work of deontic logicians often goes on as if such a distinc-
tion had never been heard of. The usual presentations of deontic logic, whether

⋆ This paper extends [11] with Section 6 on permissions.
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axiomatic or semantic, treat norms as if they could bear truth-values. In par-
ticular, the truth-functional connectives and, or and most spectacularly not are
routinely applied to norms, forming compound norms out of elementary ones.
Semantic constructions using possible worlds go further by offering rules to de-
termine, in a model, the truth-value of a norm.

This anomaly was noticed more than half a century ago, by Dubislav [4]
and Jørgensen [5], but little was done about it. Indeed, from the 1960s onwards,
the semantic approach in terms of possible worlds deepened the gap. The first
serious attempt by a logician to face the problem appears to be due to Stenius
[15], followed by Alchourrón and Bulygin [2] for unconditional norms, then Al-
chourrón [1] and Makinson [7] for conditional ones. Input/output logic may be
seen as an attempt to extract the essential mathematical structure behind these
reconstructions of deontic logic.

Like every other approach to deontic logic, input/output logic must face the
problem of accounting adequately for the behaviour of what are called ‘contrary-
to-duty’ norms. The problem may be stated thus: given a set of norms to be
applied, how should we determine which obligations are operative in a situa-
tion that already violates some among them? It appears that input/output logic
provides a convenient platform for dealing with this problem by imposing con-
sistency constraints on the generation of output.

We begin by outlining the central ideas and constructions of unconstrained
input/output logic. These are quite straightforward, and provide the basic frame-
work of the theory. We then sketch a strategy for constraining those operations so
as to deal more sensitively with contrary-to-duty situations. Finally, we explain
how the same operations may be deployed in the analysis of permission.

For further details, the reader is invited to refer to Makinson and van der
Torre [8,9].

2 Unconstrained Input/Output Operations

We avoid assuming that conditional norms bear truth-values. They are not em-
bedded in compound formulae using truth-functional connectives. To avoid all
confusion, they are not even treated as formulae, but simply as ordered pairs
(a, x) of purely boolean (or eventually first-order) formulae.

Technically, a normative code is seen as a set G of conditional norms, i.e.,
a set of such ordered pairs (a, x). For each such pair, the body a is thought of
as an input, representing some condition or situation, and the head x is thought
of as an output, representing what the norm tells us to be desirable, obligatory
or whatever in that situation. The task of logic is seen as a modest one. It is
not to create or determine a distinguished set of norms, but rather to prepare
information before it goes in as input to such a set G, to unpack output as it
emerges and, if needed, coordinate the two in certain ways. A set G of conditional
norms is thus seen as a transformation device, and the task of logic is to act as
its ‘secretarial assistant’.
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The simplest kind of unconstrained input/output operation is depicted in
Figure 1. A set A of propositions serves as explicit input, which is prepared by
being expanded to its classical closure Cn(A). This is then passed into the ‘black
box’ or ‘transformer’ G, which delivers the corresponding immediate output

G(Cn(A)) = {x | for some a ∈ Cn(A), (a, x) ∈ G}.

Finally, this is expanded by classical closure again into the full output out1(G, A) =
Cn(G(Cn(A))). We call this simple-minded output.

Cn(G(Cn(A)))

G(Cn(A))

G

Cn(A)

A

out1(G, A) = Cn(G(Cn(A)))

Fig. 1. Simple-minded Output

This is already an interesting operation. As desired, it does not satisfy the
principle of identity, which in this context we call throughput, i.e., in general we
do not have a ∈ out1(G, {a}) – which we write briefly, dropping the parentheses,
as out1(G, a). It is characterized by three rules. Writing x ∈ out1(G, a) as (a, x) ∈
out1(G) and dropping the right hand side as G is held constant, these rules are:

Strengthening Input (SI): From (a, x) to (b, x) whenever a ∈ Cn(b)
Conjoining Output (AND): From (a, x), (a, y) to (a, x ∧ y)
Weakening Output (WO): From (a, x) to (a, y) whenever y ∈ Cn(x)

But simple-minded output lacks certain features that may be desirable in
some contexts. In the first place, the preparation of inputs is not very sophisti-
cated. Consider two inputs a and b. By classical logic, if x ∈ Cn(a) and x ∈ Cn(b)
then x ∈ Cn(a ∨ b). But there is nothing to tell us that if x ∈ out1(G, a) =
Cn(G(Cn(a))) and x ∈ out1(G, b) = Cn(G(Cn(b))) then x ∈ out1(G, a ∨ b) =
Cn(G(Cn(a ∨ b))).

In the second place, even when we do not want inputs to be automatically
carried through as outputs, we may still want outputs to be reusable as inputs
– which is quite a different matter.
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Operations satisfying each of these two features can be provided with explicit
definitions, pictured by diagrams in the same spirit as that for simple-minded
output, and characterized by straightforward rules. We thus have four very nat-
ural systems of input/output, which are labelled as follows: simple-minded alias
out1 (as above), basic (simple-minded plus input disjunction: out2), reusable

(simple-minded plus reusability: out3), and reusable basic (all together: out4).

For example, reusable basic output may be given a diagram and definition
as in Figure 2. In the definition, a complete set is one that is either maximally
consistent or equal to the set of all formulae.

Cn(G(V2))

G(V2)

out4(G, A)

Cn(G(V1))
G(V1)

G

⊆

⊆

A

V1

V2

out4(G, A) = ∩{Cn(G(V )) | A ⊆ V ⊇ G(V ), V complete}

Fig. 2. Basic Reusable Output

The three stronger systems may also be characterized by adding one or both
of the following rules to those for simple-minded output:

Disjoining input (OR): From (a, x), (b, x) to (a ∨ b, x)
Cumulative transitivity (CT): From (a, x), (a ∧ x, y) to (a, y)

These four operations have four counterparts that also allow throughput. In-
tuitively, this amounts to requiring A ⊆ G(A). In terms of the definitions, it
is to require that G is expanded to contain the diagonal, i.e., all pairs (a, a).
Diagrammatically it is to add arrows from G’s ear to mouth. Derivationally, it
is to allow arbitrary pairs of the form (a, a) to appear as leaves of a derivation;
this is called the zero-premise identity rule ID.

All eight systems are distinct, with one exception: basic throughput, which
we write as out+2 , authorizes reusability, so that out+2 = out+4 . This may be shown
directly in terms of the definitions, or using the following simple derivation of
CT from the other rules.
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(a, x)

(a ∧ ¬x, x)
si

−
(a ∧ ¬x, a ∧ ¬x)

id

(a ∧ ¬x, x ∧ (a ∧ ¬x))
and

(a ∧ ¬x, y)
wo

(a ∧ x, y)

(a, y)
OR

The application of WO here is justified by the fact that we have
y ∈ Cn(x ∧ (a ∧ ¬x)) since the right hand formula is a contradiction. Note that
all rules available in basic throughput (including, in particular, identity) are
needed in the derivation, reflecting the fact that CT is not derivable in the
weaker systems.

This strong system indeed collapses into classical consequence, in the sense
that out+4 (G, A) = Cn(m(G) ∪ A) where m(G) is the materialization of G, i.e.,
the set of all formulae a → x where (a, x) ∈ G.

The authors’ papers [8] and [9, section 1] investigate these systems in detail
– semantically, in terms of their explicit definitions, derivationally, in terms of
the rules determining them, both separately and in relation to each other. We do
not attempt to summarize the results here, but hope that the reader is tempted
to follow further.

3 Why constrain?

As mentioned in section 1, all approaches to deontic logic must face the problem
of dealing with contrary-to-duty norms. In general terms, we recall, the problem
is: given a set of norms, how should we determine which obligations are operative
in a situation that already violates some among them.

The following simple example is adapted from Prakken and Sergot [13].1

Suppose we have the following two norms: The cottage should not have a fence

or a dog; if it has a dog it must have both a fence and a warning sign.

In the usual deontic notation: O(¬(f ∨ d)/t), O(f ∧ w/d), where t stands
for a tautology; in the notation of input/output logic: (t,¬(f ∨ d)), (d, f ∧ w).
Suppose further that we are in the situation that the cottage has a dog, thus
violating the first norm. What are our current obligations?

Unrestricted input/output logic gives f : the cottage has a fence and w: the

cottage has a warning sign. Less convincingly, because unhelpful if the presence
of a dog is regarded as unalterable, it also gives ¬d: the cottage does not have a

1 There are many examples in the literature. Most of them involve ingredients that,
while perfectly natural in ordinary discourse, are extraneous to the essential problem
and thus invite false analyses. These ingredients include defeasibility, causality, the
passage of time, and the use of questionable rules such as CT and OR in deriving
output. We have chosen a very simple example that avoids all those elements. There
is one respect in which it could perhaps be further purified: under input d, the output
is not only inconsistent with the input, but also itself inconsistent. This matter is
discussed at the end of section 5.
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dog. Even less convincingly, it gives ¬f : the cottage does not have a fence, which
is the opposite of what we want.

These results hold even for simple-minded output, without reusability or
disjunction of inputs. The only rules needed are SI and WO, as shown by the
following derivation of ¬f .

(t,¬(f ∨ d))

(t,¬f)
wo

(d,¬f)
si

A common reaction to examples such as these is to ask: why not just drop
the rule SI of strengthening the input? In semantic terms, why not cut back the
definition of simple-minded output from Cn(G(Cn(A))) to Cn(G(A)), and in
similar (but more complex) fashion with the others? Indeed, this is a possible
option, and the strategy that we will describe below does have the effect of
disallowing certain applications of SI. But simply to drop SI is, in the view of the
authors, too heavy-handed. We need to know why SI is not always appropriate
and, especially, when it remains justified.

4 A Strategy for Constraint: Maxfamilies and their
Outfamilies

Our strategy is to adapt a technique that is well known in the logic of belief
change – cut back the set of norms to just below the threshold of making the
current situation contrary-to-duty. In effect, we carry out a contraction on the
set G of given norms.

Specifically, we look at the maximal subsets G′ ⊆ G such thatout(G′, A) is
consistent with input A. In [8], the family of such G′ is called the maxfamily of
(G,A), and the family of outputs out(G′, A) for G′ in the maxfamily, is called
the outfamily of (G,A).2

To illustrate this, consider G = {(t,¬(f∨d)), (d, f∧w)}, with the contrary-to-
duty input d. Using simple-minded output, maxfamily(G, d) has just one element
{(d, f ∧ w)}, and so outfamily(G, d) has one element, namely Cn(f ∧ w).

2 So defined, the outfamily is not in general the same as the family of all maximal values
of out(G′, A) consistent with A, for G′ ranging over subsets of G. Every maximal
value of out(G′, A) is in the outfamily, but not always conversely. For certain of our
output operations, the two families do coincide, but not for others.

This can be shown by simple examples, such as the Möbius strip of Makin-
son [6,7]. Put G = {(a, x), (x, y), (y,¬a)}. Then, for out = out3 or out = out4,
maxfamily(G, a) has three elements, namely the three two-element subsets of G. As
a result, outfamily(G, a) also has three elements – Cn(∅), Cn(x), and Cn({x, y}). Of
these, only the last is a maximal value of out(G′, A) consistent with A for G′ ranging
over subsets of G.

We add that in this example, not even Cn({x, y}) is a maximal subset of out(G, a)
that is consistent with a, for clearly Cn({x, y}) ⊂ Cn({x, y,¬a ∨ z}) ⊂ out(G, a).
Care is thus needed to avoid confusing maxfamilies with related maximal sets.



What is Input/Output Logic? 7

Although the outfamily strategy is designed to deal with contrary-to-duty
norms, its application turns out to be closely related to belief revision and non-
monotonic reasoning when the underlying input/output operation authorizes
throughput.

When all elements of G are of the form (t, x), then for the degenerate in-
put/output operation out+2 (G, a) = out+4 (G, a) = Cn(m(G) ∪ {a}), the elements
of outfamily(G, a) are just the maxichoice revisions of m(G) by a, in the sense
of Alchourrón, Gärdenfors and Makinson [3]. These coincide, in turn, with the
extensions of the default system (m(G), a, ∅) of Poole [12].

More surprisingly, there are close connections with the default logic of Re-
iter, falling a little short of identity. Read elements (a, x) of G as normal de-
fault rules a;x/x in the sense of Reiter [14], and write extfamily(G,A) for
the set of extensions of (G,A). Then, for reusable simple-minded throughput
out+3 , it can be shown that extfamily(G,A) ⊆ outfamily(G,A) and indeed that
extfamily(G,A) consists of precisely the maximal elements (under set inclusion)
of outfamily(G, A).

These results and related ones are proven in Makinson and van der Torre [9].
But in accord with the motivation from the logic of norms, the main focus in
that paper is on input/output logics without throughput. Two kinds of question
are investigated in detail there.

4.1 The search for truth-functional reductions of the consistency

constraint

From the point of view of computation, it is convenient to make consistency
checks as simple as possible, and executable using no more than already existing
programs. For this reason, it is of interest to ask: under what conditions is
the consistency of A with out(G,A) reducible to the consistency of A with the
materialization m(G) of G, i.e., with the set of all formulae a → x where (a, x) ∈
G?

It is easy to check that the latter consistency implies the former for all seven
of our input/output operations. It turns out that we have equivalence for just
two of them (reusable basic with and without identity).

On the level of derivations, the question can take a rather different form,
with different answers. Given a derivation of (a, x) with leaves L, under what
conditions is the consistency of a with out(L, a) equivalent to its consistency with
m(L)? Curiously, this holds for a wider selection of our input/output operations
– in fact, for all of them except basic output. Even more surprisingly, for some of
the operations (those without OR), the same reduction also holds with respect
to the set h(L) of heads x, and the set f(L) of fulfilments a ∧ x, of elements
(a, x) of L.

From this result on derivations, we can go back and sharpen the semantic
one. When G is a minimal set with x ∈ out(G, a) then, for each of our in-
put/output operations other than basic output, a is consistent with out(G, a)
iff it is consistent with m(G) – and for the operations without OR, with h(G),
f(G).
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4.2 More severe applications of the consistency check

From a practical point of view, whenever we constrain an operation to avoid
excess production, the question arises: how cautious (timid) or brave (foolhardy)
do we want to be? For input/output operations, this issue arises in different
ways on the semantic and derivational levels. On the semantic level, once we
have formed an outfamily we may ask: should we intersect, join, or choose from
its elements to obtain a unique restrained output? On the level of derivations,
it is natural to ask: do we want to apply the consistency check only at the root
of a derivation, or at every step within it?

The policy of checking only at the root corresponds to the option, on the
semantic level, of forming the join of the outfamily; while the stricter policy of
checking at every step is an essentially derivational requirement. But whichever
of the two we choose, it is of interest to know under what conditions they co-
incide. In other words, given a derivation of (a, x) with leaves L such that a is
consistent with out(L, a), under what conditions does it follow that for every
node (b, y) in the derivation, b is consistent with out(L, b)? It turns out that for
certain of the seven input/output operations (again, those without the OR rule)
this result holds. For operations with OR but without the rule CT, a rather
subtler result may be obtained.

One lesson of these rather intricate investigations is that the behaviour of
the consistency constraint depends very much on the choice of input/output
operation; in particular, the presence of the rule OR destroys some properties.
Another lesson is that questions can take different forms, with different answers,
on the semantic and derivational levels. Thirdly, a detour through derivations
can sometimes sharpen semantic results.

5 Doubts and Queries

The investigation of constrained output is a much more complex matter than
that of unconstrained output. It is also more open to doubts and queries. We
put the main ones on the table.

5.1 Dependence on the formulation of G

The outfamily construction, at least in its present form, depends heavily on
the formulation of the generating set G. To illustrate this, we go back to the
cottage example of Prakken and Sergot [13] considered in sections 3 and 4. Here
G = {(t,¬(f ∨ d)), (d, f ∧w)}, and we consider the contrary-to-duty input d. As
we have seen, using simple-minded output, maxfamily(G, d) has unique element
{(d, f ∧ w)} and outfamily(G, d) has unique element Cn(f ∧ w). But if we split
the first element of G into (t,¬f), (t,¬d) then we get a different result. The
maxfamily has two elements {(t,¬f)}, {(d, f ∧ w)} and the outfamily has two
elements Cn(¬f) and Cn(f∧w). Is this dependence on formulation of G a virtue,
or a vice?
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5.2 Are we cutting too deeply?

This problem is related to the first one. In some cases, the outfamily construction
cuts deeply, perhaps too much. Consider again the cottage example, but this time
with just one rule (t,¬(f ∨ d)) in G. Consider the same contrary-to-duty input
d. Then the maxfamily has the empty set as its unique element, and so the
outfamily has Cn(∅) as its unique element. Is this cutting too deeply? Shouldn’t
Cn(¬f) be retained?

5.3 Should we pre-process G?

If we wish to cut less deeply, then a possible procedure might be to ‘pre-process’
G. In the last example, when we decompose the sole element (t,¬(f ∨ d)) of G
into (t,¬f), (t,¬d) then Cn(¬f) becomes the unique element of outfamily in the
contrary-to-duty situation d. In general, for each element (a, x) of G, we could
rewrite the head x in conjunctive normal form x1∧ . . .∧xn, and then split (a, x)
into (a, x1), . . . , (a, xn). This manoeuvre certainly meets the particular example.
But is it appropriate for other examples of the same form with different content?
And does it suffice for more complex examples? It looks suspiciously like hacking.

5.4 Avoid inconsistency with what?

On our definition, maxfamily(G,A) is the family of maximal subsets G′ ⊆ G
such that out(G′, A) is consistent with input A. It may be suggested that this
is too radical – so long as out(G,A) is consistent we should apply it without
constraint.

To illustrate this, take another variation on the cottage example. Put G =
{(t,¬(f ∨ d)), (d, w)}. The second norm no longer requires a fence when there is
a dog, only a warning sign. Consider again the contrary-to-duty input d. Now
out(G, d) = Cn({(¬f,¬d,w}) which is inconsistent with the input d, but itself
perfectly consistent. Should we cut it at all? Perhaps ‘yes’ if the input d is
considered as unalterably true, but ‘no’ if it is presented as true but changeable.

6 Conditional Permission from an Input/output
Perspective

In philosophical discussion of norms it is common to distinguish between two
kinds of permission, negative and positive. Negative permission is easy to de-
scribe: something is permitted by a code iff it is not prohibited by that code, i.e.
iff nihil obstat. In other words, taking prohibition in the usual way, something is
negatively permitted by a code iff there is no obligation to the contrary.

Positive permission is more elusive. As a first approximation, one may say
that something is positively permitted by a code iff the code explicitly presents
it as such. But this leaves the central logical question unanswered. As well as the
items that a code explicitly pronounces to be permitted, there are presumably
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others that in some sense follow from the explicit ones. The problem is to make
it clear what kind of ‘following’ this is.

From the point of view of input/output logic, negative permission is straight-
forward to define: we simply put (a, x) ∈ negperm(G) iff (a,¬x) 6∈ out(G), where
out is any one of the four input/output operations that we have already dis-
cussed.

Because of its negative character, negperm fails the rule SI (strengthening
the input). In other words, we don’t have: (a, x) ∈ negperm(G)&a ∈ Cn(b) ⇒
(b, x) ∈ negperm(G). Indeed, it satisfies the opposite rule WI (weakening the
input): (a, x) ∈ negperm(G)&b ∈ Cn(a) ⇒ (b, x) ∈ negperm(G). For if (a,¬x) 6∈
out(G) and b ∈ Cn(a) then by SI for the underlying output operation, (b,¬x) 6∈
out(G) so (b, x) ∈ negperm(G). This is a particular instance of a quite general
pattern: whenever out satisfies a Horn rule (HR) then the corresponding negperm

operation satisfies an ‘inverse’ Horn rule (HR)−1.

How should we define positive permission for conditional norms? Let G, P be
sets of ordered pairs of propositions, where G represents the explicitly given con-
ditional obligations of a code and P its explicitly given conditional permissions.
The operation of forward positive permission is defined by putting:

(a, x) ∈ forperm(P, G) iff (a, x) ∈ out(G ∪ Q) for some singleton or empty
Q ⊆ P

i.e. in the principal case that P is not itself empty,

(a, x) ∈ forperm(P, G) iff (a, x) ∈ out(G(c, z))

for some pair (c, z) ∈ P . This tells us that (a, x) is permitted whenever there is
some explicitly given permission (c, z) such that when we treat it as if it were
an obligation, joining it with G and applying the output operation to the union,
then we get (a, x). Permissions are thus treated like weak obligations, the only
difference being that while the latter may be used jointly, the former may only
be applied one by one.

On the other hand, the operation of backward positive permission is defined
by setting:

(a, x) ∈ backperm(P, G) iff (c,¬z) 6∈ out(G∪{(a, x)}) for some pair (c, z) ∈ P
with c consistent.

This tells us that (a, x) is permitted whenever, given the obligations already
present in G, we can’t forbid x under the condition a without thereby committing
ourselves to forbid something that has been explicitly permitted. With this in
mind, one could also speak of the operation as one of prohibition immunity.

What do these two notions mean in ordinary life? Forward permission answers
to the needs of the citizen, who needs to know whether an action that he is
entertaining is permitted in the current situation. It also corresponds to the
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needs of authorities assessing the action once it is performed. If there is some
explicit permission that ’covers’ the action in question, then it is itself implicitly
permitted.

On the other hand, backward permission fits the needs of the legislator, who
needs to anticipate the effect of adding a prohibition to an existing corpus of
norms. If prohibiting x in condition a would commit us to forbid something
that has been explicitly permitted, then adding the prohibition is inadmissible
under pain of incoherence, and the pair (a, x) is to that extent protected from
prohibition.

Forperm and backperm are very different operations. Whereas forperm sat-
isfies SI, backperm satisfies WI. Like negative permission, backperm satisfies the
’inverse’ rule (HR)−1 of any Horn rule (HR) satisfied by out; but forperm satisfies
instead a ’subverse’ rule (HR)↓.

Backperm may be characterized in a rather different way, using an idea of
Makinson, [7]. Let us say that G is cross-coherent with P iff there is no (c, z) ∈ P
with c consistent, such that (c,¬z) ∈ out(G). Then it is easy to check that
(a, x) ∈ backperm(P, G) iff (a, x) ∈ negperm(H) for every H ⊃ G that is cross-
coherent with P . From this it follows, in particular, that when G is cross-coherent
with P then backperm(P, G) ⊆ negperm(G). In this sense, we can say that under
‘normal conditions’ backward permission is a strengthened negative permission.

Further details of the behaviour of these operations may be found in Makin-
son and van der Torre [10].

7 Conclusions

Drawing together the threads of this paper, we emphasize the main points.

– Input/output logic seeks to extract the essential mathematical structure be-
hind recent attempts to reconstruct deontic logic that avoid treating norms
as if they had truth-values.

– Unconstrained input/output provides us with a simple and elegant construc-
tion with straightforward behaviour, but whose application to norms totally
ignores the subtleties of contrary-to-duty obligations.

– On the other hand, output constrained using the outfamily strategy provides
a way of dealing with contrary-to-duty obligations. Its behaviour is quite
subtle, and depends considerably on the choice of background input/output
operation, in particular on whether or not it authorizes the rule of disjunction
of inputs.

– However, our definition of an outfamily has features that might be regarded
as shortcomings. Its effect depends on the formulation of the generating set
of norms; in some examples it gives what may be regarded as a wrong result
unless some pre-processing as carried out on the generating set; and in some
contexts the requirement of consistency of output with input may be too
strong. These are delicate issues, and it remains possible that they have no
unique solution definable in purely formal terms.
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– Input/output operations also enable us to give a clear formal articulation of
the well-known distinction between negative and positive permission. They
also enable us, for the first time, to distinguish two very different kinds of
positive permission, with quite different uses in practical life.

A topic of further research is the analysis of structured assemblies of in-
put/output operations. Such structures, called logical input/output nets, or li-
ons for short, are graphs, with the nodes labelled by pairs (G, out) where G is a
normative code and out is an input/output operations (or recursively, by other
lions). The relation of the graph indicates which nodes have access to others, pro-
viding passage for the transmission of local outputs as local inputs. The graph
is further equipped with an entry point and an exit point, for global input and
output.
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Abstract. The paper discusses ten philosophical problems in deontic
logic: how to formally represent norms, when a set of norms may be
termed ‘coherent’, how to deal with normative conflicts, how contrary-
to-duty obligations can be appropriately modeled, how dyadic deontic
operators may be redefined to relate to sets of norms instead of pref-
erence relations between possible worlds, how various concepts of per-
mission can be accommodated, how meaning postulates and counts-as
conditionals can be taken into account, and how sets of norms may be
revised and merged. The problems are discussed from the viewpoint of
input/output logic as developed by van der Torre & Makinson. We ar-
gue that norms, not ideality, should take the central position in deontic
semantics, and that a semantics that represents norms, as input/output
logic does, provides helpful tools for analyzing, clarifying and solving the
problems of deontic logic.

Keywords. Deontic logic, normative systems, input/output logic

Introduction

Deontic logic is the field of logic that is concerned with normative concepts
such as obligation, permission, and prohibition. Alternatively, a deontic logic is
a formal system that attempts to capture the essential logical features of these
concepts. Typically, a deontic logic uses Ox to mean that it is obligatory that
x, (or it ought to be the case that x), and Px to mean that it is permitted, or
permissible, that x. The term ‘deontic’ is derived from the ancient Greek déon,
meaning that which is binding or proper.

So-called Standard Deontic Logic (SDL) is a normal propositional modal
logic of type KD, which means that it extends the propositional tautologies with
the axioms K : O(x → y) → (Ox → Oy) and D : ¬(Ox ∧ O¬x), and it is closed
under the inference rules modus ponens x, x → y/y and Necessitation x/Ox.
Prohibition and permission are defined by Fx = O¬x and Px = ¬O¬x. SDL
is an unusually simple and elegant theory. An advantage of its modal-logical
setting is that it can easily be extended with other modalities like epistemic or
temporal operators and modal accounts of actions.

Dagstuhl Seminar Proceedings 07122
Normative Multi-agent Systems
http://drops.dagstuhl.de/opus/volltexte/2007/941



2 Hansen, Pigozzi, van der Torre

Not surprisingly for such a highly simplified theory, there are many features
of actual normative reasoning that SDL does not capture. Notorious are the so-
called ‘paradoxes of deontic logic’, which are usually dismissed as consequences of
the simplifications of SDL. E.g. Ross’s paradox [48], the counterintuitive deriva-
tion of “you ought to mail or burn the letter” from “you ought to mail the
letter”, is typically viewed as a side effect of the interpretation of ‘or’ in natural
language. Many researchers seem to believe that the subject of deontic logic may
be more or less finished, and we can focus on the use of deontic logic in computer
science and agent theory, since there is nothing important left to add to it. In
our view, this is far from the truth. On the contrary, there is a large number of
important open problems in this field of research.

In this paper we discuss ten philosophical problems in deontic logic. All of
these problems have been discussed in previous literature, and solutions have
been offered, but we believe that all of them should be considered open and
thus meriting further research. These problems are how deontic logic relates
or applies to given sets of norms (imperatives, rules, aims) (sec. 1), what it
means that a set of norms should be coherent (sec. 2), how conflicts of norms
can be taken into account (sec. 3), how deontic logic should react to contrary-
to-duty situations in which some norms are invariably violated (sec. 4), how
to interpret dyadic deontic operators that formalize ‘it ought to be that x on
conditions α’ as O(x/α) (sec. 5), how explicit permissions relate to, and change,
an agent’s obligations (sec. 6), how meaning postulates – norms that define legal
terms – and constitutive norms, that create normative states of affairs, can be
modeled (sec. 7 and 8), and how normative systems may be revised (sec. 9) and
merged (sec. 10). Our choice is motivated by our aim at providing ourselves with
models of normative reasoning of actual agents which may be human beings or
computers, but the list of open problems is by no means final. Other problems
may be considered equally important, such as how a hierarchy of norms (or of
the norm-giving authorities) is to be respected, or how general norms relate to
individual obligations, but we hope that our discussion provides the tools, and
encourages the reader, to take a fresh look at these other problems, too.

To illustrate the problems, we use Makinson & van der Torre’s input/output
logic as developed in [42], [43], [44], and we therefore assume familiarity with
this approach (cf. [45] for a good introduction). Input/output logic takes a very
general view at the process used to obtain conclusions (more generally: outputs)
from given sets of premises (more generally: inputs). While the transformation
may work in the usual way, as an ‘inference motor’ to provide logical conclusions
from a given set of premises, it might also be put to other, perhaps non-logical
uses. Logic then acts as a kind of secretarial assistant, helping to prepare the
inputs before they go into the machine, unpacking outputs as they emerge, and,
less obviously, coordinating the two. The process as a whole is one of logically
assisted transformation, and is an inference only when the central transformation
is so. This is the general perspective underlying input/output logic. It is one of
logic at work rather than logic in isolation; not some kind of non-classical logic,
but a way of using the classical one.
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1 Jørgensen’s dilemma

While normative concepts are the subject of deontic logic, it is quite difficult
how there can be a logic of such concepts at all. Norms like individual imper-
atives, promises, legal statutes, moral standards etc. are usually not viewed as
being true or false. E.g. consider imperative or permissive expressions such as
“John, leave the room!” and “Mary, you may enter now”: they do not describe,
but demand or allow a behavior on the part of John and Mary. Being non-
descriptive, they cannot meaningfully be termed true or false. Lacking truth
values, these expressions cannot – in the usual sense – be premise or conclusion
in an inference, be termed consistent or contradictory, or be compounded by
truth-functional operators. Hence, though there certainly exists a logical study
of normative expressions and concepts, it seems there cannot be a logic of norms:
this is Jørgensen’s dilemma ([30], cf. [41]).

Though norms are neither true nor false, one may state that according to the
norms, something ought to be (be done) or is permitted: the statements “John
ought to leave the room”, “Mary is permitted to enter”, are then true or false
descriptions of the normative situation. Such statements are sometimes called
normative statements, as distinguished from norms. To express principles such
as the principle of conjunction: O(x ∧ y) ↔ (Ox ∧ Oy), with Boolean operators
having truth-functional meaning at all places, deontic logic has resorted to inter-
preting its formulas Ox, Fx, Px not as representing norms, but as representing
such normative statements. A possible logic of normative statements may then
reflect logical properties of underlying norms – thus logic may have a “wider
reach than truth”, as von Wright [54] famously stated.

Since the truth of normative statements depends on a normative situation,
like the truth of the statement “John ought to leave the room” depends on
whether some authority ordered John to leave the room or not, it seems that
norms must be represented in a logical semantics that models such truth or fal-
sity. But semantics used to model the truth or falsity of normative statements
mostly fail to include norms. Standard deontic semantics evaluates deontic for-
mulas with respect to sets of worlds, in which some are ideal or better than
others – Ox is then defined true if x is true in all ideal or the best reachable
worlds. In our view, norms, not ideality, should take the central position from
which normative statements are evaluated. Then the following question arises,
pointedly asked by D. Makinson in [41]:

Problem 1. How can deontic logic be reconstructed in accord with the philo-
sophical position that norms are neither true nor false?

In the older literature on deontic logic there has been a veritable ‘imperativist
tradition’ of authors that have, deviating from the standard approach, in one way
or other, tried to give truth definitions for deontic operators with respect to given
sets of norms.3 The reconstruction of deontic logic as logic about imperatives

3 Cf. among others S. Kanger [32], E. Stenius [53], T. J. Smiley [51], Z. Ziemba [62],
B. van Fraassen [15], Alchourrón & Bulygin [1] and I. Niiniluoto [47].
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has been the project of one of the authors beginning with [19]. Makinson & van
der Torre’s input/output logic [42] is another reconstruction of a logic of norms
in accord with the philosophical position that norms direct rather than describe,
and are neither true nor false. Suppose that we have a set G (meant to be a set
of conditional norms), and a set A of formulas (meant to be a set of given facts).
The problem is then: how may we reasonably define the set of propositions x
making up the output of G given A, which we write out(G, A)? In particular, if
we view the output as descriptions of states of affairs that ought to obtain given
the norms G and the facts A, what is a reasonable output operation that enables
us to define a deontic O-operator that describes the normative statements that
are true given the norms and the facts, we say: the normative consequences given
the situation? One such definition is the following:

G, A |= Ox iff x ∈ out(G, A)

So Ox is true iff the output of G under A includes x. Note that this is rather
a description of how we think such an output should or might be interpreted,
whereas ‘pure’ input/output logic does not discuss such definitions. For a simple
case, let G include a conditional norm that states that if a is the case, x should
obtain (we write (a, x) ∈ G).4 If a can be inferred from A, i.e. if a ∈ Cn(A), and
z is logically implied by x, then z should be among the normative consequences
of G given A. An operation that does this is simple-minded output out1:

out1(G, A) = Cn(G(Cn(A)))

where G(B) = {y | (b, y) ∈ G and b ∈ B}. So in the given example, Oz is true
given (a, x) ∈ G, a ∈ Cn(A) and z ∈ Cn(x).

Simple-minded output may, however, not be strong enough. Sometimes, legal
argumentation supports reasoning by cases: if there is a conditional norm (a, x)
that states that an agent must bring about x if a is the case, and a norm (b, x)
that states that the same agent must also bring about x if b is the case, and a∨b
is implied by the facts, then we should be able to conclude that the agent must
bring about x. An operation that supports such reasoning is basic output out2:

out2(G, A) = ∩{Cn(G(V )) | v(A) = 1}

where v ranges over Boolean valuations plus the function that puts v(b) = 1 for
all formulae b, and V = {b | v(b) = 1}. It can easily be seen that now Ox is true
given {(a, x), (b, x)} ⊆ G and a ∨ b ∈ Cn(A).

It is quite controversial whether reasoning with conditional norms should
support ‘normative’ or ‘deontic detachment’, i.e. whether it should be accepted
that if one norm (a, x) commands an agent to make x true in conditions a,
and another norm (x, y) directs the agent to make y true given x is true, then
the agent has an obligation to make y true if a is factually true. Some would
argue that as long as the agent has not in fact realized x, the norm to bring
about y is not ‘triggered’; others would maintain that obviously the agent has
an obligation to make x∧y true given that a is true. If such detachment is viewed

4 As has become usual, an unconditional norm that commits the agent to realizing x

is represented by a conditional norm (⊤, x), where ⊤ means an arbitrary tautology.
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as permissible for normative reasoning, then one might use reusable output out3
that supports such reasoning:

out3(G, A) = ∩{Cn(G(B)) | A ⊆ B = Cn(B) ⊇ G(B)}

An operation that combines reasoning by cases with deontic detachment is then
reusable basic output out4:

out4(G, A) = ∩{Cn(G(V )) : v(A) = 1 and G(V ) ⊆ V }

Finally, it is often required to reconsider the facts when drawing conclusions
about what an agent must do: suppose there is an unconditional norm (⊤, x∨y)
to bring about x∨y, but that the agent cannot realize x as the facts include ¬x.
We would like to say that then the agent must bring about y, as this is the only
possible way left to satisfy the norm. To do this, one may use the throughput
versions out+n of any of the output operations out1, out2, out3, out4,

out+n (G, A) = outn(G+, A),

where G+ = G∪I and I is the set of all pairs (a, a) for formulae a. The choice of
the throughput versions might appear questionable, since each makes Ox true
in case x ∈ Cn(A), i.e. it makes the unalterable facts obligatory.

It may turn out that further modifications of the output operation are re-
quired in order to produce reasonable results for normative reasoning. Also, the
proposal to employ input/output logic to reconstruct deontic logic may lead to
competing solutions, depending on what philosophical views as to what trans-
formations should be acceptable one subscribes to. All this is what input/output
logic is about. However, it should be noted that input/output logic succeeds in
representing norms as entities that are neither true nor false, while still permit-
ting normative reasoning about such entities.

2 Coherence

Consider norms which on one hand require you to leave the room, while on the
other requiring you not to leave the room at the same time. In such cases, we
are inclined to say that there is something wrong with the normative system.
This intuition is captured by the SDL axiom D : ¬(Ox ∧ O¬x) that states that
there cannot be co-existing obligations to bring about x and to bring about ¬x,
or, using the standard cross-definitions of the deontic modalities: x cannot be
both, obligatory and forbidden, or: if x is obligatory then it is also permitted.
But what does this tell us about the normative system?

Since norms do not bear truth values, we cannot, in any usual sense, say that
such a set of norms is inconsistent. All we can consider is the consistency of the
output of a set of norms. We like to use the term coherence with respect to a
set of norms with consistent output, and define:

(1) A set of norms G is coherent iff ⊥ /∈ out(G, A).

However, this definition seems not quite sufficient: one might argue that one
should be able to determine whether a set of norms G is coherent or not regardless
of what arbitrary facts A might be assumed. A better definition would be (1a):
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(1a) A set of norms G is coherent iff there exists a set of formulas A such that
⊥ /∈ out(G, A).

For (1a) it suffices that there exists a situation in which the norms can be, or
could have been, fulfilled. However, consider the set of norms G = {(a, x), (a,¬x)}
that requires both x to be realized and ¬x to be realized in conditions a: it is

immediate that e.g. for all output operations out
(+)
n , we have ⊥ /∈ out

(+)
n (G,¬a):

no conflicting demands arise when ¬a is factually assumed. Yet something seems
wrong with a normative system that explicitly considers a fact a only to tie to
it conflicting normative consequences. The dual of (1a) would be

(1b) A set of norms G is coherent iff for all sets of formulas A, ⊥ /∈ out(G, A).

Now a set G with G = {(a, x), (a,¬x)} would no longer be termed coherent.
(1b) makes the claim that for no situation A, two norms (a, x), (b, y) would ever
come into conflict, which might seem too strong. We may wish to restrict A to
sets of facts that are consistent, or that are not in violation of the norms. The
question is, basically, how to distinguish situations that the norm-givers should
have taken care of, from those that describe misfortune of otherwise unhappy
circumstances. A weaker claim than (1b) would be (1c):

(1c) A set of norms G is coherent iff for all a with (a, x) ∈ G, ⊥ /∈ out(G, a).

By this change, consistency of output is required just for those factual situations
that the norm-givers have foreseen, in the sense that they have explicitly tied
normative consequences to such facts. Still, (1c) might require further modifica-
tion, since if a is a foreseen situation, and so is b, then also a ∨ b or a ∧ b might
be counted as foreseen situations for which the norms should be coherent.

However, there is a further difficulty: let G contain a norm (a,¬a) that,
for conditions in which a is unalterably true, demands that ¬a be realized. We
then have ¬a ∈ outn(G, a) for the principal output operations outn, but not
⊥ ∈ outn(G, a). Certainly the term ‘incoherent’ should apply to a normative
system that requires the agent to accomplish what is – given the facts in which
the duty arises – impossible. But since not every output operation supports
‘throughput’, i.e. the input is not necessarily included in the output, neither (1)
nor its variants implies that the agent can actually realize all propositions in the
output, though they might be logically consistent. We might therefore demand
that the output is not consistent simpliciter, but consistent with the input:

(2) A set of norms G is coherent iff ⊥ /∈ out(G, A) ∪ A.

But with definition (2) we obtain the questionable result that for any case of
norm-violation, i.e. for any case in which (a, x) ∈ G and (a ∧ ¬x) ∈ Cn(A), G
must be termed incoherent – Adam’s fall would only indicate that there was
something wrong with God’s commands. One remedy would be to leave aside
all those norms that are invariably violated, i.e. instead of out(G, A) consider
out({(a, x) ∈ G | (a∧¬x) /∈ Cn(A)}, A) – but then a set G such that (a,¬a) ∈ G
would not be incoherent. It seems it is time to formally state our problem:

Problem 2. When is a set of norms to be termed ‘coherent’?

As can be seen from the discussion above, input/output logic provides the tools
to formally discuss this question, by rephrasing the question of coherence of the
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norms as one of consistency of output, and of output with input. Both notions
have been explored in the input/output framework as ‘output under constraints’:

Definition (Output under constraints) Let G be a set of conditional norms
and A and C two sets of propositional formulas. Then G is coherent in A under
constraints C when out(G, A) ∪ C is consistent.

Future study must define an output operation, determine the relevant states A,
and find the constraints C, such that any set of norms G would be appropriately
termed coherent or incoherent by this definition.

3 Normative conflicts and dilemmas

There are essentially two views on the question of normative conflicts: in the one
view, they do not exist. In the other view, conflicts and dilemmas are ubiquitous.

According to the view that normative conflicts are ubiquitous, it is obvious
that we may become the addressees of conflicting normative demands at any
time. My mother may want me to stay inside while my brother wants me to go
outside with him and play games. I may have promised to finish a paper until the
end of a certain day, while for the same day I have promised a friend to come to
dinner – now it is late afternoon and I realize I will not be able to finish the paper
if I visit my friend. Social convention may require me to offer you a cigarette
when I am lighting one for myself, while concerns for your health should make
me not offer you one. Legal obligations might collide - think of the recent case
where the SWIFT international money transfer program was required by US
anti-terror laws to disclose certain information about its customers, while under
European law that also applied to that company, it was required not to disclose
this information. Formally, let there be two conditional norms (a, x) and (b, y):
unless we have that either (x → y) ∈ Cn(a∧ b) or (y → x) ∈ Cn(a∧ b) there is a
possible situation a∧ b∧¬(x∧ y) in which the agent can still satisfy each norm
individually, but not both norms collectively. But to assume the former for any
two norms (a, x) and (b, y) is clearly absurd.5 So any logic about norms must
take into account possible conflicts. But standard deontic logic SDL includes D:
¬(Ox ∧ O¬x) as one of its axioms, and it is not quite immediate how deontic
reasoning could accommodate conflicting norms. The problem is thus:

Problem 3.Problem 3a. How can deontic logic accommodate possible conflicts of norms?

In an input/output setting one could say that there exists a conflict whenever
⊥ ∈ Cn(out(G, A) ∪A), i.e. whenever the output is inconsistent with the input:
then the norms cannot all be satisfied in the given situation. There appear to
be two ways to proceed when such inconsistencies cannot be ruled out.6. For
both, it is necessary to recur to the the notion of a maxfamily(G, A,A), i.e. the

5 Nevertheless, Lewis’ [36], [37] and Hansson’s [24] deontic semantics imply that there
exists a ‘system of spheres’, in our setting: a sequence of boxed contrary-to-duty
norms (⊤, x1), (¬x1, x2), (¬x1 ∧ ¬x2, x3), ... that satisfies this condition.

6 For the concepts underlying the ‘some-things-considered’ and ‘all-things-considered’
O-operators defined below cf. Horty [28] and Hansen [20], [21]
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family of all maximal H ⊆ G such that out(H,A)∪A is consistent. On this basis,
input/output logic defines the following two output operations out∪ and out∩:

out∪(G, A) =
⋃
{out(H,A) | H ∈ maxfamily(G, A,A)}

out∩(G, A) =
⋂
{out(H,A) | H ∈ maxfamily(G, A,A)}

Note that out∪ is a non-standard output operation that is not closed under con-
sequences, i.e. we do not generally have Cn(out∪(G, A)) = out∪(G, A). Finally
we may use the intended definition of an O-operator

G, A |= Ox iff x ∈ out(G, A)

to refer to the operations out∪ and out∩, rather than the underlying operation
out(G, A) itself, and write O∪x and O∩x to mean that x ∈ out∪(G, A) and
x ∈ out∩(G, A), respectively. Then the ‘some-things-considered’, or ‘bold’ O-
operator O∪ describes x as obligatory given the set of norms G and the facts
A if x is in the output of some H ∈ maxfamily(G, A,A), i.e. if some subset
of non-conflicting norms, or: some coherent normative standard embedded in
the norms, requires x to be true. It is immediate that neither the SDL axiom
D : ¬(Ox∧O¬x) nor the agglomeration principle C : Ox∧Oy → O(x∧y) holds
for O∪, as there may be two competing standards demanding x and ¬x to be
realized, while there may be none that demands the impossible x ∧ ¬x. On the
other hand, the ‘all-things-considered’, or ‘sceptic’, O-operator O∩ describes x
as obligatory given the norms G and the facts A if x is in the outputs of all
H ∈ maxfamily(G, A,A), i.e. it requires that x must be realized according to all
coherent normative standards. Note that by this definition, both SDL theorems
D and C are validated.

The opposite view, that normative conflicts do not exist, appeals to the very
notion of obligation: it is essential for the function of norms to direct human
behavior that the subject of the norms is capable of following them. To state
a norm that cannot be fulfilled is a meaningless use of language. To state two
norms which cannot both be fulfilled is confusing the subject, not giving him or
her directions. To say that a subject has two conflicting obligations is therefore
a misuse of the term ‘obligation’. So there cannot be conflicting obligations, and
if things appear differently, a careful inspection of the normative situation is
required that resolves the dilemma in favor of the one or other of what only
appeared both to be obligations. In particular, this inspection may reveal a
priority ordering of the apparent obligations that helps resolve the conflict (this
summarizes viewpoints prominent e.g. in Ross [49], von Wright [59], [60], and
Hare [25]). The problem that arises for such a view is then how to determine the
‘actual obligations’ in face of apparent conflicts, or, put differently, in the face
of conflicting ‘prima facie’ obligations.

Problem 3b. How can the resolution of apparent conflicts be semantically mod-
eled?

Again, both the O∪ and the O∩-operator may help to formulate and solve
the problem: O∪ names the conflicting prima facie obligations that arise from a
set of norms G in a given situation A, whereas O∩ resolves the conflict by telling
the agent to do only what is required by all maximal coherent subsets of the
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norms: so there might be conflicting ‘prima facie’ O∪-obligations, but no con-
flicting ‘all things considered’ O∩-obligations. The view that a priority ordering
helps to resolve conflicts seems more difficult to model. A good approach appears
to be to let the priorities help us to select a set P(G, A,A) of preferred maximal
subsets H ∈ maxfamily(G, A,A). We may then define the O∩-operator not with
respect to the whole of maxfamily(G, A,A), but only with respect to its selected
preferred subsets P(G, A,A). Ideally, in order to resolve all conflicts, the pri-
ority ordering should narrow down the selected sets to card(P(G, A,A)) = 1,
but this generally requires a strict ordering of the norms in G. The demand that
all norms can be strictly ordered is itself subject of philosophical dispute: some
moral requirements may be incomparable (this is Sartre’s paradox, where the
requirement that Sartre’s student stays with his ailing mother conflicts with the
requirement that the student joins the resistance against the German occupa-
tion), while others may be of equal weight (e.g. two simultaneously obtained
obligations towards identical twins, of which only one can be fulfilled). The dif-
ficult part is then to define a mechanism that determines the preferred maximal
subsets by use of the given priorities between the norms. There have been several
proposals to this effect, not all of them successful, and the reader is referred to
the discussions in Boella & van der Torre [8] and Hansen [22], [23].

4 Contrary-to-duty reasoning

Suppose we are given a code G of conditional norms, that we are presented
with a condition (input) that is unalterably true, and asked what obligations
(output) it gives rise to. It may happen that the condition is something that
should not have been true in the first place. But that is now water under the
bridge: we have to “make the best out of the sad circumstances” as B. Hansson
[24] put it. We therefore abstract from the deontic status of the condition, and
focus on the obligations that are consistent with its presence. How to determine
this in general terms, and if possible in formal ones, is the well-known problem
of contrary-to-duty conditions as exemplified by the notorious contrary-to-duty
paradoxes. Chisholm’s paradox [13] consists of the following four sentences:

(1) It ought to be that a certain man go to the assistance of his neighbors.
(2) It ought to be that if he does go, he tell them he is coming.
(3) If he does not go then he ought not to tell them he is coming.
(4) He does not go.

Furthermore, intuitively, the sentences derive (5):

(5) He ought not to tell them he is coming.

Chisholm’s paradox is a contrary-to-duty paradox, since it contains both a
primary obligation to go, and a secondary obligation not to call if the agent does
not go. Traditionally, the paradox was approached by trying to formalize each
of the sentences in an appropriate language of deontic logic, and then consider
the sets {Ox,O(x → z), O(¬x → ¬z),¬x}, or {Ox, x → Oz,¬x → O¬z,¬x},
or {Ox,O(x → z),¬x → O¬z,¬x} or {Ox, x → Oz,O(¬x → ¬z),¬x}. But
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whatever approach is taken, it turned out that either the set of formulas is
traditionally inconsistent or inconsistent in SDL, or one formula is a logical
consequence – by traditional logic or in SDL – of another formula. Yet intuitively
the natural-language expressions that make up the paradox are consistent and
independent from each other: this is why it is called a paradox. Though the
development of dyadic deontic operators as well as the introduction of temporally
relative deontic logic operators can be seen as a direct result of Chisholm’s
paradox, the paradox seems so far unsolved. The problem is thus:

Problem 4. How do we reason with contrary-to-duty obligations which are in
force only in case of norm violations?

In the input/output logic framework, the strategy for eliminating excess out-
put is to cut back the set of generators to just below the threshold of yielding
excess. To do that, input/output logic looks at the maximal non-excessive sub-
sets, as described by the following definition:

Definition (Maxfamilies) Let G be a set of conditional norms and A and
C two sets of propositional formulas. Then maxfamily(G, A,C) is the set of
maximal subsets H ⊆ G such that out(H,A) ∪ C is consistent.

For a possible solution to Chisholm’s paradox, consider the following output
operation out∩:

out∩(G, A) =
⋂
{out(H,A) | H ∈ maxfamily(G, A,A)}

So an output x is in out∩(G, A) if it is in output out(H,A) of all maximal norm
subsets H ⊆ G such that out(H,A) is consistent with the input A. Let a deontic
O-operator be defined in the usual way with regard to this output:

G, A |= O∩x iff x ∈ out∩(G, A)

Furthermore, tentatively, and only for the task of shedding light on Chisholm’s
paradox, let us define an entailment relation between norms as follows:

Definition (Entailment relation) Let G be a set of conditional norms, and
(a, x) be a norm whose addition to G is under consideration. Then (a, x) is en-
tailed by G iff for all sets of propositions A, out∩(G∪{(a, x)}, A) = out∩(G, A).

So a (considered) norm is entailed by a (given) set of norms if its addition to
this set would not make a difference for any set of facts A. Finally, let us use the
following cautious definition of ‘coherence from the start’ (also called ‘minimal
coherence’ or ‘coherence per se’):

A set of norms G is ‘coherent from the start’ iff ⊥ /∈ out(G,⊤).

Now consider a ‘Chisholm norm set’ G = {(⊤, x), (x, z), (¬x,¬z), }, where (⊤, x)
means the norm that the man must go to the assistance of his neighbors, (x, z)
means the norm that it ought to be that if he goes he ought to tell them he is
coming, and (¬x,¬z) means the norm that if he does not go he ought not to
tell them he is coming. It can be easily verified that the norm set G is ‘coherent

from the start’ for all standard output operations out
(+)
n , since for these either

out(G,⊤) = Cn({x}) or out(G,⊤) = Cn({x, z}), and both sets {x} and {x, z}
are consistent. Furthermore, it should be noted that all norms in the norm set G
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are independent from each other, in the sense that no norm (a, x) ∈ G is entailed

by G \ {(a, x)} for any standard output operation out
(+)
n : for (⊤, x) we have

x ∈ out∩(G,⊤) but x /∈ out∩(G \ {(⊤, x)},⊤), for (x, z) we have z ∈ out∩(G, x)
but z /∈ out∩(G \ {(x, z)}, x), and for (¬x,¬z) we have ¬z ∈ out∩(G,¬x) but
¬z /∈ out∩(G\{(¬x,¬z)},⊤). Finally consider the ‘Chisholm fact set’ A = {¬x},
that includes as an assumed unalterable fact the proposition ¬x, that the man
will not go to the assistance of his neighbors: we have maxfamily(G, A,A) =
{G\{(⊤, x)}} = {{(x, z), (¬x,¬z), }} and either out(G\{(⊤, x)}, A) = Cn({¬z})

or out(G\{(⊤, x)}, A) = Cn({¬x,¬z}) for all standard output operations out
(+)
n ,

and so O∩¬z is true given the norm and fact sets G and A, i.e. the man must
not tell his neighbors he is coming.

5 Descriptive dyadic obligations

Dyadic deontic operators, that formalize e.g. ‘x ought to be true under conditions
a’ as O(x/a), were introduced over 50 years ago by G. H. von Wright [56]. Their
introduction was due to Prior’s paradox of derived obligation: often a primary
obligation Ox is accompanied by a secondary, ‘contrary-to-duty’ obligation that
pronounces y (a sanction, a remedy) as obligatory if the primary obligation
is violated. At the time, the usual formalization of the secondary obligation
would have been O(¬x → y), but given Ox and the axioms of standard deontic
logic SDL, O(¬x → y) is derivable for any y. A bit later, Chisholm’s paradox
showed that formalizing the secondary obligation as ¬x → Oy produces similarly
counterintuitive results. So to deal with such contrary-to-duty conditions, the
dyadic deontic operator O(x/a) was invented.

The perhaps best-known semantic characterization of dyadic deontic logic is
Bengt Hansson’s [24] system DSLD3, axiomatized by Spohn [52]. Hansson’s idea
was that the circumstances (the conditions a) are something which has actually
happened (or will unalterably happen) and which cannot be changed afterwards.
Ideal worlds in which ¬a is true are therefore excluded. But some worlds may
still be better than others, and there should then be an obligation to make “‘the
best out of the sad circumstances”. Consequently, Hansson presents a possible
worlds semantics in which all worlds are ordered by a preference (betterness)
relation. O(x/a) is then defined true if x is true in the best a-worlds. Here, we
intend to employ semantics that do not make use of any prohairetic betterness
relation, but that models deontic operators with regard to given sets of norms
and facts, and the question is then

Problem 5. How to define dyadic deontic operators with regard to given sets of
norms and facts?

Input/output logic assumes a set of (conditional) norms G, and a set of
invariable facts A. The facts A may describe a situation that is inconsistent
with the output out(G, A): suppose there is a primary norm (⊤, a) ∈ G and a
secondary norm (¬a, x) ∈ G, i.e. G = {(⊤, a), (¬a, x)}, and A = {¬a}. Though
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a ∈ out(G, A), it makes no sense to describe a as obligatory since a cannot be
realized any more in the given situation – no crying over spilt milk. Rather, the
output should include only the consequent of the secondary obligation x – it is
the best we can make out of these circumstances. To do so, we return to the
definitions of maxfamily(G, A,A) as the set of all maximal subsets H ⊆ G such
that out(H,A) ∪ A is consistent, and the set out∩(G, A) as the intersection of
all outputs from H ∈ maxfamily(G, A,A), i.e. out∩(G, A) =

⋂
{out(H,A) | H ∈

maxfamily(G, A,A)}. We may then define:

G |= O(x/a) iff x ∈ out∩(G, {a})

Thus, relative to the set of norms G, O(x/a) is defined true if x is in the output
under a of all maximal sets H of norms such that their output under {a} is
consistent with a. In the example where G = {(⊤, a), (¬a, x)} we therefore obtain
O(x/¬a) but not O(a/¬a) as being true, i.e. only the consequent of the secondary
obligation is described as obligatory in conditions ¬a.

In the above definition, the antecedent a of the dyadic formula O(x/a) makes
the inputs explicit: the truth definition does not make use of any facts other
than a. This may be unwanted; one might consider an input set A of given facts,
and employ the antecedent a only to denote an additional, assumed fact. Still,
the output should contradict neither the given nor the assumed facts, and the
output should include also the normative consequences x of a norm (a, x) given
the assumed fact a. This may be realized by the following definition:

G, A |= O(x/a) iff x ∈ out∩(G, A ∪ {a})

So, relative to a set of norms G and a set of facts A, O(x, a) is defined true if x
is in the output under A ∪ {a} of all maximal sets H of norms such that their
output under A ∪ {a} is consistent with A ∪ {a}.

Hansson’s description of dyadic deontic operators as describing defeasible
obligations that are subject to change when more specific, namely contrary-to-
duty situations emerge, may be the most prominent view, but it is by no means
the only one. Earlier authors like von Wright [57] [58] and Anderson [4] have
proposed more normal conditionals, which in particular support ‘strengthening
of the antecedent’ SA O(x/a) → O(x/a∧ b). From an input/output perspective,
such operators can be accommodated by defining

G, A |= O(x/a) iff x ∈ out(G, A ∪ {a})

It is immediate that for all standard output operations out
(+)
n this definition

validates SA. The properties of dyadic deontic operators that are, like the above,
semantically defined within the framework of input/output logic, have not been
studied so far. The theorems they validate will inevitably depend on what output
operation is chosen (cf. [23] for some related conjectures).

6 Permissive norms

In formal deontic logic, permission is studied less frequently than obligation. For
a long time, it was naively assumed that it can simply be taken as a dual of
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obligation, just as possibility is the dual of necessity in modal logic. Permission
is then defined as the absence of an obligation to the contrary, and the modal
operator P defined by Px =def ¬O¬x. Today’s focus on obligations is not only
in stark contrast how deontic logic began, for when von Wright [55] started
modern deontic logic in 1951, it was the P -operator that he took as primitive,
and defined obligation as an absence of a permission to the contrary. Rather,
more and more authors have come to realize how subtle and multi-faceted the
concept of permission is. Much energy was devoted to solving the problem of
‘free choice permission’, where one may derive from the statement that one is
permitted to have a cup of tea or a cup of coffee that it is permitted to have a cup
of tea, and it is permitted to have a cup of coffee, or for short, that P (x∨y) implies
Px and Py (cf. [31]. Von Wright, in his late work starting with [61], dropped
the concept of inter-definability of obligations and permissions altogether by
introducing P -norms and O-norms, where one may call something permitted
only if it derives from the collective contents of some O-norms and at most one
P -norm. This concept of ‘strong permission’ introduced deontic ‘gaps’: whereas
in standard deontic logic SDL, O¬x∨Px is a tautology, meaning that any state
of affairs is either forbidden or permitted, von Wright’s new theory means that in
the absence of explicit P -norms only what is obligatory is permitted, and that
nothing is permitted if also O-norms are missing. Perhaps most importantly,
Bulygin [12] observed that an authoritative kind of permission must be used in
the context of multiple authorities and updating normative systems: if a higher
authority permits you to do something, a lower authority can no longer prohibit
it. Summing up, the understanding of permission is still in a less satisfactory
state than the understanding of obligation and prohibition. The problem can be
phrased thus:

Problem 6. How to distinguish various kinds of permissions and relate them to
obligations?

¿From the viewpoint of input/output logic, one may first try to define a
concept

of negative permission in the line of the classic approach. Such a definition
is the following:

G, A |= Pnegx iff ¬x /∈ out(G, A)

So something is permitted by a code iff its negation is not obligatory according
to the code and in the given situation. As innocuous and standard as such
a definition seems, questions arise as to what output operation out may be
used. Simple-minded output out1 and basic output out2 produce counterintuitive
results: consider a set of norms G of which one norm (work, tax) demands that
if I am employed then I have to pay tax. For the default situation A = {⊤} then
Pneg(a ∧ ¬x) is true, i.e. it is by default permitted that I am employed and do
not pay tax. Stronger output operations out3 and out4 that warrant reusable
output exclude this result, but their use in deontic reasoning is questionable for
other reasons.
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In contrast to a concept of negative permission, one may also define a concept
of ‘strong’ or ‘positive permission’. This requires a set P of explicit permissive
norms, just as G is a set of explicit obligations. As a first approximation, one
may say that something is positively permitted by a code iff the code explicitly
presents it as such. But this leaves a central logical question unanswered as to
how explicitly given permissive and obligating norms may generate permissions
that – in some sense – follow from the explicitly given norms. In the line of von
Wrights later approach, we may define:

G, P |= P stat(x/a) iff x ∈ out(G∪{(b, y)}, a) for some (b, y) ∈ P∪{(⊤,⊤)}

So there is a permission to realize x in conditions a if x is generated under
these conditions either by the norms in G alone, or the norms in G together
with some explicit permission (b, y) in P . We call this a ‘static’ version of strong
permission. For example, consider a set G consisting of the norm (work, tax), and
a set P consisting of the sole license (18y, vote) that permits all adults to take
part in political elections. Then all of the following are true: P stat(tax/work),
P stat(vote/18y), P stat(tax/work ∧ male) and also P stat(vote/¬work ∧ 18y) (so
even unemployed adults are permitted to vote).

Where negative permission is liberal, in the sense that anything is permitted
that does not conflict with ones obligations, the concept of static permission
is quite strict, as nothing is permitted that does not explicitly occur in the
norms. In between, one may define a concept of ‘dynamic permission’ that defines
something as permitted in some situation a if forbidding it for these conditions
would prevent an agent from making use of some explicit (static) permission.
The formal definition reads:

G, P |= P dyn(x/a) iff ¬y ∈ out(G∪{(a,¬x)}, b) for some y and conditions
b such that G, P |= P stat(y/b)

Consider the above static permission P stat(vote/¬work∧ 18y) that even the un-
employed adult populations is permitted to vote, generated by the sets P =
{(18y, vote)} and G = {(work, tax)}. We might also like to say, without reference
to age, that the unemployed are protected from being forbidden to vote, and in
this sense are permitted to vote, but P stat(vote/¬work) is not true. And we might
like to say that adults are protected from being forbidden to vote unless they
are employed, and in this sense are permitted to be both unemployed and take
part in elections, but also P stat(¬work∧ vote/18y) is not true. Dynamic permis-
sions allow us to express such protections, and make both P dyn(vote/¬work) and
P dyn(¬work∧vote/18y) true: if either (¬work,¬vote) or (18y, (¬work → ¬vote))
were added to G we would obtain ¬vote as output in conditions ¬work∧ 18y) in
spite of the fact that, as we have seen, G, P |= P stat(vote/¬work ∧ 18y).

There are, ultimately, a number of questions for all these concepts of permis-
sions that have been further explored in [44]. Other kinds of permissions have
been discussed from an input/output perspective in the literature, too, for ex-
ample permissions as exceptions of obligations [8]. But it seems input/output
logic is able to help clarify the underlying concepts of permission better than
traditional deontic semantics.
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7 Meaning postulates and intermediate concepts

To define a deontic operator of individual obligation seems straightforward if the
norm in question is an individual command or act of promising. For example, if
you are the addressee α of the following imperative sentence

(1) You, hand me that screwdriver, please.

and you consider the command valid, then what you ought to do is to hand
the screwdriver in question to the person β uttering the request. In terms of
input/output logic, let x be the proposition that α hands the screwdriver to β:
with the set of norms G = {(⊤, x)}, the set of facts A = {⊤}, and the truth
definition Ox iff x ∈ out(A,G): then we obtain that Ox is true, i.e. it is true
that it ought to be that α hands the screwdriver to β.

Norms that belong to a legal system are more complex, and thus more difficult
to reason about. Consider, for example

(2) An act of theft is punished by a prison sentence not exceeding 5 years or a
fine.

Things are again easy if you are a judge and you know that the accused in front
of you has committed an act of theft – then you ought to hand out a verdict that
commits the accused to pay a fine or to serve a prison sentence not exceeding 5
years. But how does the judge arrive at the conclusion that an act of theft has
been committed? ‘Theft’ is a legal term that is usually accompanied by a legal
definition such as the following one:

(3) Someone commits an act of theft if that person has taken a movable object
from the possession of another person into his own possession with the
intention to own it, and if the act occurred without the consent of the
other person or some other legal authorization.

It is noteworthy that (3) is not a norm in the strict sense – it does not prescribe or
allow a behavior – but rather a stipulative definition, or, in more general terms,
a meaning postulate that constitutes the legal meaning of theft. Such sentences
are often part of the legal code. They share with norms the property of being
neither true nor false. The significance of (3) is that it decomposes the complex
legal term ‘theft’ into more basic legal concepts. These concepts are again the
subject of further meaning postulates, among which may be the following:

(4) A person in the sense of the law is a human being that has been born.
(5) A movable object is any physical object that is not a person or a piece of

land.
(6) A movable object is in the possession of a person if that person is able to

control the uses and the location of the object.
(7) The owner of an object is – within the limits of the law – entitled to do

with it whatever he wants, namely keep it, use it, transfer possession or
ownership of the object to another person, and destroy or abandon it.

Not all of definitions (4)-(7) may be found in the legal statutes, though they
may be viewed as belonging to the normative system by virtue of having been
accepted in legal theory and judicial reasoning. They constitute ‘intermediate
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concepts’: they link legal terms (person, movable object, possession etc.) to words
describing natural facts (human being, born, piece of land, keep an object etc.).

Any proper representation of legal norms must include means of represent-
ing meaning postulates that define legal terms, decompose legal terms into more
basic legal terms, or serve as intermediate concepts that link legal terms to
terms that describe natural facts. But for deontic logic, with its standard pos-
sible worlds semantics, a comprehensive solution to the problem of representing
meaning postulates is so far lacking (cf. Lindahl [39]). The problem is thus:

Problem 7. How can meaning postulates and intermediate terms be modeled in
semantics for deontic logic reasoning?

The representation of intermediate concepts is of particular interest, since
such concepts arguably reduce the number of implications required for the tran-
sition from natural facts to legal consequences and thus serve an economy of
expression (cf. Lindahl & Odelstad [40]). Lindahl & Odelstad use the term ‘own-
ership’ as an example to argue as follows: let F1, ..., Fp be descriptions of some
situations in which a person α acquires ownership of an object γ, e.g. by acquir-
ing it from some other person β, finding it, building it from owned materials,
etc., and let C1, ..., Cn be among the legal consequences of α’s ownership of γ,
e.g. freedom to use the object, rights to compensation when the object is dam-
aged, obligations to maintain the object or pay taxes for it etc. To express that
each fact Fi has the consequence Cj , p×n implications are required. The intro-
duction of the term Ownership(x, y) reduces the number of required implications
to p + n: there are p implications that link the facts F1, ..., Fp to the legal term
Ownership(x, y), and n implications that link the legal term Ownership(x, y) to
each of the legal consequences C1, ..., Cn. The argument obviously does not apply
to all cases: one implication (F1∨...∨Fp) → (C1∧...∧Cn) may often be sufficient
to represent the case that a variety of facts F1, ..., Fp has the same multitude
of legal consequences C1, ..., Cn. However, things may be different when norms
that link a number of factual descriptions to the same legal consequences stem
from different normative sources, may come into conflict with other norms, can
be overridden by norms of higher priority, or be subject of individual exemption
by norms that grant freedoms or licenses: in these cases, the norms must be
represented individually. So it seems worthwhile to consider ways to incorporate
intermediate concepts into a formal semantics for deontic logic.

In an input/output framework, a first step could be to employ a separate set
T of theoretical terms, namely meaning postulates, alongside the set G of norms.
Let T consists of intermediates of the form (a, x), where a is a factual sentence
(e.g. that β is in possession of γ, and that α and β agreed that α should have γ,
and that β hands γ to α), and x states that some legal term obtains (e.g. that
α is now owner of γ). To derive outputs from the set of norms G, one may then
use A ∪ out(T,A) as input, i.e. the factual descriptions together with the legal
statements that obtain given the intermediates T and the facts A.

It may be of particular interest to see that such a set of intermediates may
help resolve possible conflicts in the law. Let (⊤,¬dog) be a statute that forbids
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dogs on the premises, but let there also be a higher order principle that no
blind person may be required to give up his or her guide dog. Of course the
conflict may be solved by modifying the statute (e.g. add a condition that the
dog in question is not a guide dog), but then modifying a statute is usually
not something a judge, faced with such a norm, is allowed to do: the judge’s
duty is solely to consider the statute, interpret it according to the known or
supposed will of the norm-giver, and apply it to the given facts. The judge
may then come to the conclusion that a fair and considerate norm-giver would
not have meant the statute to apply to guide dogs, i.e. the term “dog” in the
statute is a theoretical term whose extension is smaller than the natural term.
So the statute must be re-interpreted as reading (⊤,¬tdog) with the additional
intermediate (dog ∧ ¬guidedog, tdog) ∈ T , and thus no conflict arises for the
case of blind persons that want to keep their guide dog. While this seems to be
a rather natural view of how judicial conflict resolution works (the example is
taken from an actual court case), the exact process of creating and modifying
theoretical terms in order to resolve conflicts must be left to further study.

8 Constitutive norms

Constitutive norms like counts-as conditionals are rules that create the possibil-
ity of or define an activity. For example, according to Searle [50], the activity of
playing chess is constituted by action in accordance with these rules. Chess has
no existence apart from these rules. The institutions of marriage, money, and
promising are like the institutions of baseball and chess in that they are sys-
tems of such constitutive rules or conventions. They have been identified as the
key mechanism to normative reasoning in dynamic and uncertain environments,
for example to realize agent communication, electronic contracting, dynamics of
organizations, see, e.g., [9].

Problem 8. How to define counts-as conditionals and relate them to obligations
and permissions?

For Jones and Sergot [29], the counts-as relation expresses the fact that a
state of affairs or an action of an agent “is a sufficient condition to guarantee
that the institution creates some (usually normative) state of affairs”. They
formalize this introducing a conditional connective ⇒s to express the “counts-as”
connection holding in the context of an institution s. They characterize the logic
of ⇒s as a conditional logic, with axioms for agglomeration ((x ⇒s y) & (x ⇒s

z))⊃ (x ⇒s (y ∧ z)), left disjunction ((x ⇒s z) & (y ⇒s z))⊃ ((x ∨ y) ⇒s z) and
transitivity ((x ⇒s y) & (y ⇒s z))⊃ (x ⇒s z). The flat fragment can be phrased
as an input/output logic as follows [7].

Definition 1. Let L be a propositional action logic with ⊢ the related notion of
derivability and Cn the related consequence operation Cn(x) = {y | x ⊢ y}. Let
CA be a set of pairs of L, {(x1, y1), . . . , (xn, yn)}, read as ‘x1 counts as y1’, etc.
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Moreover, consider the following proof rules conjunction for the output (AND),
disjunction of the input (OR), and transitivity (T) defined as follows:

(x, y1), (x, y2)

(x, y1 ∧ y2)
AND

(x1, y), (x2, y)

(x1 ∨ x2, y)
OR

(x, y1), (y1, y2)

(x, y2)
T

For an institution s, the counts-as output operator outCA is defined as closure
operator on the set CA using the rules above, together with a silent rule that
allows replacement of logical equivalents in input and output. We write (x, y) ∈
outCA(CA, s). Moreover, for X ⊆ L, we write y ∈ outCA(CA, s, X) if there is a
finite X ′ ⊆ X such that (∧X ′, y) ∈ outCA(CA, s), indicating that the output y is
derived by the output operator for the input X, given the counts-as conditionals
CA of institution s. We also write outCA(CA, s, x) for outCA(CA, s, {x}).

Example 1. If for some institution s we have CA = {(a, x), (x, y)}, then we have
outCA(CA, s, a) = {x, y}.

There is presently no consensus on the logic of counts-as conditionals, probably
due to the fact that the concept is not studied in depth yet. For example, the
adoption of the transitivity rule T for their logic is criticized by Artosi et al. [5].
Jones and Sergot say that “we have been unable to produce any counter-instances
[of transitivity], and we are inclined to accept it”.7

The main issue in defining constitutive norms like counts-as conditionals is
defining their relation with regulative norms like obligations and permissions.
Boella and van der Torre [7] use the notion of a logical architecture combining
several logics into a more complex logical system, also called logical input/output
nets (or lions).

The notion of logical architecture naturally extends the input/output logic
framework, since each input/output logic can be seen as the description of a
‘black box’. In the above figure there are boxes for counts-as conditionals (CA),
institutional constraints (IC), obligating norms (O) and explicit permissions (P).
The norm base (NB) component contains sets of norms or rules, which are used
in the other components to generate the component’s output from its input. The

7 Neither of these authors considers replacing transitivity by cumulative transitivity
(CT): ((x⇒s y)&(x ∧ y ⇒s z))⊃ (x ⇒s z), that characterizes operations out3, out4
of input/output logic.
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figure shows that the counts-as conditionals are combined with the obligations
and permissions using iteration, that is, the counts-as conditionals produce insti-
tutional facts, which are input for the norms. Roughly, if we write out(CA, G,A)
for the output of counts-as conditionals together with obligations, out(G, A) for
obligations as before, then out(CA, G,A) = out(G, outCA(CA, A)).

There are many open issues concerning constitutive norms, since their logical
analysis has not attracted much attention yet. How to distinguish among various
kinds of constitutive norms? How are constitutive norms (x counts as y) distin-
guished from classifications (x is a y)? What is the relation with intermediate
concepts?

9 Revision of a set of norms

In general, a code G of regulations is not static, but changes over time. For
example, a legislative body may want to introduce new norms or to eliminate
some existing ones. A different (but related) type of change is the one induced
by the fusion of two (or more) codes as it is addressed in the next section.

Little work exists on the logic of the revision of a set of norms. To the best
of our knowledge, Alchourrón and Makinson were the first to study the changes
of a legal code [2,3]. The addition of a new norm n causes an enlargement of
the code, consisting of the new norm plus all the regulations that can be derived
from n. Alchourrón and Makinson distinguish two other types of change. When
the new norm is incoherent with the existing ones, we have an amendment of
the code: in order to coherently add the new regulation, we need to reject those
norms that conflict with n. Finally, derogation is the elimination of a norm n
together with whatever part of G implies n.

In [2] a “hierarchy of regulations” is assumed. Few years earlier, Alchourrón
and Bulygin [1] already considered the Normenordnung and the consequences of
gaps in this ordering. For example, in jurisprudence the existence of precedents
is an established method to determine the ordering among norms.

However, although Alchourrón and Makinson aim at defining change opera-
tors for a set of norms of some legal system, the only condition they impose on
G is that it is a non-empty and finite set of propositions. In other words, a norm
x is taken to be simply a formula in propositional logic. Thus, they suggest that
“the same concepts and techniques may be taken up in other areas, wherever
problems akin to inconsistency and derogation arise” ([2], p. 147).

This explains how their work (together with Gärdenfors’ analysis of counter-
factuals) could ground that research area that is now known as belief revision.
Belief revision is the formal studies of how a set of propositions changes in view
of a new information that may cause an inconsistency with the existing beliefs.
Expansion, revision and contraction are the three belief change operations that
Alchourrón, Gärdenfors and Makinson identified in their approach (called AGM)
and that have a clear correspondence with the changes on a system of norms we
mentioned above. Hence, the following question needs to be addressed:
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Problem 9. How to revise a set of regulations or obligations? Does belief revision
offer a satisfactory framework for norms revision?

Some of the AGM axioms seem to be rational requirements in a legal context,
whereas they have been criticized when imposed on belief change operators. An
example is the success postulate, requiring that a new input must always be
accepted in the belief set. It is reasonable to impose such a requirement when
we wish to enforce a new norm or obligation. However, it gives rise to irrational
behaviors when imposed to a belief set, as observed for instance in [16].

On the other hand, when we turn to a proper representation of norms, like in
the input/output logic framework, the AGM principles prove to be too general to
deal with the revision of a normative system. For example, one difference between
revising a set of propositions and revising a set of regulations is the following:
when a new norm is added, coherence may be restored modifying some of the
existing norms, not necessarily retracting some of them. The following example
will clarify this point:

Example. If we have {(⊤, a), (a, b)} and we have that c is an exception to the
obligation to do b, then we need to retract (c, b). Two possible solutions are
{(¬c, a), (a, b)} or {(⊤, a), (a ∧ ¬c, b)}.

Future research must investigate whether general patterns in the revision of
norms exist and how to formalize them.

10 Merging sets of norms

In the previous section we have seen that the change over time of a system
of norms raises questions that cannot be properly answered within the belief
revision framework. We now want to turn to another type of change, that is the
aggregation of regulations. This problem has been only recently addressed in the
literature and therefore the findings are still very partial.

The first noticeable thing is the lack of general agreement about where the
norms that are to be aggregated come from:

1. some works focus on the merging of conflicting norms that belong to the
same normative system [14];

2. other works assume that the regulations to be fused belong to different sys-
tems [11]; and finally

3. some authors provide patterns of possible rules to be combined, and consider
both cases (1) and (2) above [18].

The first situation seems to be more a matter of coherence of the whole system
rather than a genuine problem of fusion of norms. However, such approaches have
the merit to reveal the tight connections between fusion of norms, non-monotonic
logics and defeasible deontic reasoning. The initial motivation for the study of
belief revision was the ambition to model the revision of a set of regulations. On
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the contrary, the generalization of belief revision to belief merging is exclusively
dictated by the goal to tackle the problem — arising in computer science —
of combining information from different sources. The pieces of information are
represented in a formal language and the aim is to merge them in an (ideally)
unique knowledge base.8

Problem 10. Can the belief merging framework deal with the problem of merging
sets of norms?

If (following Alchourrón and Makinson) we assume that norms are uncondi-
tional, then we could expect to use standard merging operators to fuse sets of
norms. Yet, not only once we consider conditional norms, as in the input/output
logic framework, problems arise again. But also, most of the fusion procedures
proposed in the literature seem to be inadequate for the scope.

To see why this is the case, we need to explain the merging approach in few
words. Let us assume that we have a finite number of belief bases K1,K2, . . . ,Kn

to merge. IC is the belief base whose elements are the integrity constraints (i.e.,
any condition that we want the final outcome to satisfy). Given a multi-set
E = {K1,K2, . . . ,Kn} and IC, a merging operator F is a function that assigns
a belief base to E and IC. Let FIC(E) be the resulting collective base from the
IC fusion on E.

Fusion operators come in two types: model-based and syntax-based. The idea
of a model-based fusion operator is that models of FIC(E) are models of IC,
which are preferred according to some criterion depending on E. Usually the
preference information takes the form of a total pre-order on the interpretations
induced by a notion of distance d(w,E) between an interpretation w and E.

Syntax-based merging operators are usually based on the selection of some
consistent subsets of E [6,34]. The bases Ki in E can be inconsistent and the
result does not depend on the distribution of the wffs over the members of the
group.9

Finally, the model-based aggregation operators for bases of equally reliable
sources can be of two sorts. On the one hand, there are majoritarian operators
that are based on a principle of distance-minimization [38]. On the other hand,
there are egalitarian operators, which look at the distribution of the distances
in E [33]. These two types of merging try to capture two intuitions that often
guide the aggregation of individual preferences into a social one. One option is
to let the majority decide the collective outcome, and the other possibility is to
equally distribute the individual dissatisfaction.

Obviously, these intuitions may well serve in the aggregation of individual
knowledge bases or individual preferences, but have nothing to say when we try
to model the fusion of sets of norms. Hence, for this purpose, syntactic merging
operators may be more appealing. Nevertheless, the selection of a coherent subset

8 See [35] for a survey on logic-based approaches to information fusion.
9 [34] refers the term ‘combination’ to the syntax-based fusion operators to distinguish

them from the model-based approaches.
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depends on additional information like an order of priority over the norms to be
merged, or some other meta-principles.

As the application of belief merging to the aggregation of sets of norms
turned out to be unfeasible, an alternative approach is to generalize existing
belief change operators to merging rules. This is the approach followed in [11],
where merging operators defined using a consolidation operation and possibilistic
logic are applied to the aggregation of conditional norms in an input/output
logic framework. However, at this preliminary stage, it is not clear whether such
methodology is more fruitful for testing the flexibility of existing operators to
tackle other problems than the ones they were created for, or if this approach
can really shed some light to the new riddle at hand.

A different perspective is taken in [18]. Here, real examples from the Belgian-
French bilateral agreement preventing double taxation are considered. These are
fitted into a taxonomy of the most common legal rules with exceptions, and the
combination of each pair of norms is analyzed. Moreover, both the situations in
which the regulations come from the same system and those in which they come
from different ones are contemplated, and some general principles are derived.
Finally, a merging operator for rules with abnormality propositions is proposed.
A limit of Grégoire’s proposal is that only the aggregation of rules with the same
consequence is taken into account and, in our opinion, this neglects other sorts
of conflicts that may arise, as we see now.

The call for non-monotonic reasoning in the treatment of contradictions is
also in Cholvy and Cuppens’ [14]. A logic to reason when several contradictory
norms are merged is presented. The proposal assumes an order of priority among
the norms to be merged and this order is also the way to solve the incoherence.
Even though this is quite a strong assumption, Cholvy and Cuppens’ work take
into consideration a broader type of incoherence than in [18]. In their example,
an organization that works with secret documents has two rules. R1 is “It is
obligatory that any document containing some secret information is kept in a
safe, when nobody is using this document”. R2 is “If nobody has used a given
document for five years, then it is obligatory to destroy this document by burning
it”. As they observe, in order to deduce that the two rules are conflicting, we
need to introduce the constraint that keeping a document and destroying it
are contradictory actions. That is, the notion of coherence between norms can
involve information that are not norms.

11 Conclusion: Deontic logic in context

In this paper we discussed problems of deontic logic that should be considered
open and how input/output logic may be useful for analyzing these problems and
finding fresh solutions. Jørgensen’s dilemma might be overcome by distinguish-
ing operations with norms, like the output out(G, A) of a set of norms G under
conditions A, from truth definitions that define what ought to obtain or be done
given these norms and conditions. Coherence of a set of norms might be defined
with respect to output under constraints, meaning that the set of norms should
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not generate output for certain conditions that is inconsistent with these con-
straints. Normative conflicts may be overcome by considering coherent subsets
of norms and their output, or such subsets that are preferred given a prior-
ity ordering of the norms. Likewise, contrary-to-duty obligations, that obtain in
conditions that represent violations, may be modeled by considering only output
that is consistent with the input, i.e. the given conditions. Input/output logic
provides two possible definitions of dyadic deontic operators, which reconstruct
past discussions on whether such operators should be defeasible (in particular
in contrary-to-duty conditions), or support strengthening of the antecedent that
derives O(x/a ∧ b) from O(x/a). Input/output logic may take into account not
just sets of obligating norms, but also explicit permissions, and thus helps shed
light on the distinction between weak (negative) permission, where something is
permitted if it does not conflict with the norms, and strong (positive) permission
which requires an explicit license by the norm-givers. Meaning postulates and
intermediate terms, common in legal reasoning but largely ignored by traditional
deontic literature, can be taken into account by considering generators T that
link natural facts to theoretical terms occurring in the norms, and for counts-as
conditionals we may use a separate set of generators (normative institutions)
that models how norms are created given an input of natural facts. Finally the
questions of how to revise and merge given sets of norms may be approached by
preparing the generators (norms) with the aid of standard revision and merging
operators.

Lately, normative systems and deontic logic have received widespread at-
tention in multiagent systems and artificial intelligence. A normative multiagent
system is “a multiagent system together with normative systems in which agents
can decide whether to follow the explicitly represented norms, and the normative
systems specify how and in which extent the agents can modify the norms” [10].
Deontic logic, that attempts to formalize the normative consequences given a set
of norms and a given situation, can be a helpful tool for devising such systems. In
such a general setting, a setting of ‘deontic logic in context’, many new problems
arise: how do deontic truths feature in agent planning and decision making? how
do they interact with agent desires, goals, preferences and intentions? how do
they feature in communication? how do we model the change of obligations over
time, when agents violate or discharge their obligations, when the underlying
norms are modified or retracted or when new norms come into existence? The
clarification and solution of the problems outlined above, and others, may serve
as a first step to make deontic logic fit to become a working component in such
a larger setting.
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Abstract. Often a set of imperatives or norms seems satisfiable from
the outset, but conflicts arise when ways to fulfill all are ruled out by
unfortunate circumstances. Semantic methods to handle normative con-
flicts were devised by B. van Fraassen and J. F. Horty, but these are not
sensitive to circumstances. The present paper extends these resolution
mechanisms to circumstantial inputs, defines dyadic deontic operators
accordingly, and provides a sound and (weakly) complete axiomatic sys-
tem for such deontic semantics.

1 The Question of Normative Conflicts

Do moral conflicts exist? The orthodox belief in the 1950’s was that such conflicts
only exist at first glance – the seemingly conflicting obligations arising from the
application of merely incomplete principles. Instead, what is actually obligatory
must be determined by a careful moral deliberation that involves considering and
weighing all relevant facts and reasons, and cannot produce conflicting outcomes.
Among the first that came to reject this view were E. J. Lemmon [27] and B.
Williams [43]: Lemmon observed that in cases of true moral dilemma, one does
not know the very facts needed to determine which obligation might outweigh
the other. Williams argued in reductio that if, in case of conflicting oughts,
there is just one thing one ‘actually’ ought to do, then feelings of regret about
having not acted as one should have are out of place and one should not mind
getting into similar situations again. To avoid the derivation of the ought of a
contradiction from two oughts of equal weight but with contradictory contents,
Williams argued that deontic logic should give up the agglomeration principle

(C) OA ∧ OB → O(A ∧ B).

Lemmon had no such qualms: he advocated dropping the Kantian Principle
‘ought implies can’

(KP) OA → ⋄A,

thus allowing for obligations to bring about the impossible, and concluded:

⋆ I thank David Makinson for inspiring remarks, and Lou Goble and Leon van der
Torre for comments on an earlier version presented at ∆EON 2004. The paper is
part of a project begun in [16] to relate deontic logic to reasoning about imperatives.
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“I should like to see a proper discussion of the arguments that go to
resolve moral dilemmas, because I do not believe that this is an area
of total irrationality, though I do not believe that a traditional logical
approach (the logic of imperatives, deontic logic, and whatnot) will do
either.”

Regarding commands and legal norms, G.H. von Wright ([45] ch.7), like H.
Kelsen ([23] p.211) at the time, excluded the coexistence of conflicting norms
from the same source: The giving of two conflicting norms is the expression of
an irrational will; it is a performative self-contradiction and as such a pure fact
that fails to create a norm. E. Stenius [40] and later C.E. Alchourrón and E.
Bulygin [1] rejected this view: A system of norms that is impossible to obey
might be unreasonable and its norm-giver blameworthy, but its existence does
not constitute a logical contradiction – conflicts are ubiquitous in systems of
positive law and logic cannot deny this fact. In his later theory, von Wright [49]
concedes that existing normative systems may or may not be contradiction-free,
and reformulates deontic principles as meta-norms for consistent norm-giving.
Kelsen [24] later came to view logic as inapplicable to law.

2 Van Fraassen’s Proposal and Horty’s Variation

2.1 Van Fraassen’s Operator O
F

Not taking sides, pro or contra the existence of genuine normative conflicts, but
arguing that the view in favor seems at least tenable, B. van Fraassen [11] took
up the burden of finding plausible logical semantics that could accommodate
conflicting obligations. The intended semantics should accept the possible truth
of two deontic sentences OA, O¬A without committing the norm-subject to the
absurd by making O(A∧¬A) true, for van Fraassen wanted to keep the Kantian
Principle. Given the existence of certain imperatives in force, i.e. imperatives that
are left as valid, relevant, not overridden etc. by some unspecified deliberation
process, van Fraassen’s idea was to make these imperatives part of the logical
model, and to describe something as obligatory if it serves to satisfy some, not
necessarily all, imperatives. Formally, let I be the set of imperatives in force,
B be the set of possible states of affairs, and i+ ⊆ B be the possible states of
affairs where the imperative i ∈ I is considered fulfilled. Let ‖A‖ ⊆ B be the
set of possible states of affairs where the indicative sentence A is considered true.
Finally, let score(v) be the set of all imperatives that are fulfilled in the state of
affairs v: score(v) = {i ∈ I | v ∈ i+}. Van Fraassen then defines:

[Df-F] OF A is true iff ∃v ∈ ‖A‖ : ∀v′ ∈ ‖¬A‖ : score(v) * score(v′)

So A is obligatory if and only if (iff) there is some score that can be achieved
when A is true, which is not included in any score that could be achieved when
¬A is true. In other words, A is obligatory iff there are imperatives that can
only be (collectively) satisfied when A is true, but not when A is false.
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By slightly changing the viewpoint, van Fraassen’s proposal might also be
described in the following way: let I be a set not of imperatives, but of indicative
sentences in the language LBL of some basic logic BL. The motivation is that I
contains one sentence A for each imperative i in force that is true in exactly those
states of affairs in which the imperative is fulfilled, i.e. ‖A‖ = i+. BL is assumed
to be compact and the turnstile in Γ ⊢BL A means a classical consequence
relation that characterizes BL, Γ ⊆ LBL, A ∈ LBL. Let the remainder set
Γ⊥ A be the set of all maximal subsets that do not derive A, i.e. of all Γ ′ ⊆ Γ
such that (i) Γ ′ 0BL A, and (ii) there is no Γ ′′ such that Γ ′ ⊂ Γ ′′ ⊆ Γ and
Γ ′′ 0 A. Then Df-F is equivalent to Df-F∗(⊤ means an arbitrary tautology):1

[Df-F*] OF A is true iff ∃I ′ ∈ I⊥¬⊤ : I ′ ⊢BL A

So A is obligatory iff it is derivable from a maximally consistent subset of I. So
something is obligatory if it is required for doing ‘the most’: if it is necessitated
by a strategy to fulfill so many imperatives that no one who satisfies these as
well could satisfy more. While a parallel operation for belief change is known
as ‘credulous reasoning’, to call it ‘orthodox’ might seem more appropriate: the
agent is not released from any of her obligations as long as they are fulfillable,
even if this fulfilment is at the expense of violating other norms.

To see how van Fraassen’s semantics work, first let I = {A, B}, where A
and B are supposedly contingent and independent. There are no conflicts, I is
consistent and OF A, OF B and OF (A∧B) are all true since I derives A, B and
A ∧ B. Thus agglomeration of contents is permitted so long as the underlying
imperatives do not conflict. For the case of conflict, change I into {A∧C, B∧¬C};
OF A and OF B are true since A and B derive from the maximally consistent
sets {A∧C} and {B ∧¬C}, but OF (C ∧¬C) is false since no consistent subset
derives C ∧ ¬C. The same is true for OF (A ∧ B) though {A ∧ B} is consistent:
the truth of A ∧ B is not necessary for maximal norm satisfaction.

An axiomatic system DLF that is (weakly) complete with regard to van
Fraassen’s semantics is defined by the following axiom-schemes, in addition to
BL-instances and modus ponens (cf. [17] sec. 5, ⊥ means an arbitrary contra-
diction, and the index ‘F ’ here and below indicates that the deontic operators
occurring in the axiom scheme are thus indexed):

(MF ) OF (A ∧ B) → (OF A ∧ OF B)
(PF ) ¬OF⊥
(NF ) OF⊤
(ExtF ) If ⊢BL A ↔ B then ⊢DF OF A ↔ OF B

To van Fraassen’s own puzzlement, the cases where agglomeration remains per-
missible do not seem axiomatizable: object language does not reveal whether
particular A and B of some OF A and OF B are derived from the demands of
imperatives that do not conflict and so OF (A ∧ B) should be supported.2

1 Cf. Horty’s [20] Theorem 2.
2 So agglomeration requires some consistency check of the underlying imperatives’

contents. Van der Torre and Tan [41], [42] proposed a two-phase deontic logic, where
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2.2 The Skeptical Operator O
S

The invalidation of the agglomeration principle by van Fraassen’s semantics did
not make them popular (cf. Donagan [8] p. 298). Moreover, let a PF -operator
expressing permission be defined in the usual way as PF A =def ¬OF¬A, and
consider again I = {A ∧ C,B ∧ ¬C}: then OF (A ∧ C) is true, and so is OF¬C.
Applying (MF ) and (ExtF ), OF¬(A ∧ C) must be true, hence PF (A ∧ C) is
false. So not even the obligatory is always permitted, which seems strange (cf.
Jacquette [22]).

In reaction to the dismissal of the agglomeration principle, Donagan [8] and
Brink [7] have claimed that even if there could be a normative demand for A
and a conflicting demand for B, with ⊢BL A → ¬B, it need not follow that
the norm-subject has an obligation to realize A and an obligation to realize B.
Rather, there should just be a disjunctive obligation to realize A or B. Given
competing normative standards of equal weight, the strategy of this reasoning is
not to trust a single standard, but to consider obligatory only what all standards
demand. Let I be as before. Varying van Fraassen’s truth definition, Horty [20]
has formalized this ‘skeptical’ ought as follows:3

[Df-S] OSA is true iff ∀I ′ ∈ I⊥¬⊤ : I ′ ⊢BL A

So OSA is true iff A is derivable from all maximally consistent subsets of I.
‘skeptical’ is the term used in the epistemic-oriented literature, yet ‘legalist’ also
seems fitting, since a norm violation is never pronounced as obligatory even if it
is inevitable. This does not let the agent off the hook: by doing what is obligatory
in this sense, a maximum of norms will, by necessity, get satisfied.

Let again I = {A ∧ C,B ∧ ¬C}. OSA and OSB are false and OS(A ∨ B) is
true: just A ∨B, but neither A nor B are derived by both of the two consistent
subsets {A ∧ C} and {B ∧ ¬C}. PS(A ∧ C) is also true: A,C were assumed to
be contingent and independent, so the maximally consistent subset {A∧C} ⊆ I
does not derive ¬(A ∧ C). So what is OF -obligatory is at least PS-permitted.

A complete axiomatic system DLS is defined by the axiom-schemes (MS),
(CS), (PS), (NS), and (ExtS), together with BL-instances and modus ponens.
Since the truth definitions for OF A and OSA merely depend on a set I and BL,
mixed expressions such as OF A ∧ ¬OSA are meaningful and may be accepted
as well-formed. Then

(CSF ) OSA ∧ OF B → OF (A ∧ B)

is valid, and the mixed system DL{F,S} – containing the axiom schemes for DLF ,
DLS , the axiom scheme (CSF ), all instances of BL-theorems and modus ponens
– is sound and (weakly) complete (cf. [17] sec. 6).

‘consistent aggregation’ must take place before weakening. For the present imperative
semantics, I suggested a bimodal approach in [17] with an operator O2 that ‘more
directly talks about the imperatives’. For comparisons and a new proposal cf. [15].

3 More in parallel to van Fraassen’s original definition, one may equivalently define:

[Df-S∗] OSA is true iff ∀v ∈ ‖¬A‖ : ∃v′ ∈ ‖A‖ : score(v) ⊂ score(v′)
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3 Predicaments and Dyadic Deontic Logic

Arguing for the possibility of moral conflicts, R. Barcan Marcus [33] gave the
following example:

“Under the single principle of promise keeping, I might make two promises
in all good faith and reason that they will not conflict, but then they
do, as a result of circumstances that were unpredictable and beyond my
control.”

Note that there is no conflict at the outset: any dilemma could have been averted
by not promising anything. Moreover, there might have been some point in
time at which keeping both promises was possible: having 500 $ with me and
another 1000 $ in the office, I promise Raoul and Johnny 500 $ each on Saturday
with every intention of paying them on Monday, only to find out that the office
had been burglarized over the weekend. Donagan [8] argues that this is not
a genuine conflict, because three resolving principles apply: (i) one must not
make promises one cannot or must not keep, (ii) all promises are made with the
implicit condition that they are void if they cannot or must not be kept, (iii)
one must not make promises when one does not believe that the other party has
fully understood (ii). But as I well knew beforehand, neither Raoul nor Johnny
are going to let me off the hook, regardless of what may happen at the office.
According to (iii), I was wrong to make the promises. So am I entitled to break
them (both)? – We have here what G.H. von Wright [48] terms a ‘predicament’:
a situation from which there is no permitted way out, but to which there also
is no permitted inlet. The normative order is consistent, it is only through one’s
own fault that one finds oneself in a predicament.4 Von Wright then asks:

“The man in a predicament will, of necessity, react in some way or other,
either do something or remain passive. Even though every reaction of his
will be a sin, is it not reasonable to think that there is yet something
he ought to do rather than anything else? To deny this would be to
admit that it makes, deontically, no difference what he does. But is this
reasonable? (...) If all our choices are between forbidden things, our duty
is to choose the least bad thing.” ([48] p. 80)

Sub-ideal demands are usually represented by a dyadic deontic sentence O(A/C),
meaning that it ought to be that A given C is true. By accepting all instances

4 That predicaments only arise from an agent’s own faults, and not through misfor-
tune or the wrongdoings of others, is a view von Wright and Donagan ascribe to
Thomas Aquinas, but this does not seem quite correct: In the discussion of oaths
(Summa Theologica II.II Qu. 89 art. 7 ad 2), Thomas considers the objection that
it would sometimes be contrary to virtue, or an obstacle to it, if one were to fulfill
what one has sworn to do – so oaths need not always be binding. In answering,
Thomas distinguishes oaths that are unlawful from the outset, where a man sinned
in swearing, and oaths that could be lawful at the outset but lead to an evil result
through some new and unforeseen emergency: fulfillment of such oaths is unlawful.
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of (DD-⊤) O(A/⊤) → P (A/⊤) as a logical truth in [48], von Wright dismisses
an inconsistent normative system as ‘conceptual absurdity’: if A is obligatory on
tautological conditions (i.e. unconditionally obligatory), then there cannot be a
likewise unconditional obligation to the contrary. Although von Wright originally
used the stronger (DD) O(A/C) → P (A/C) for arbitrary C (axiom A1 of the
‘old system’ in [44], and axiom B1 of the ‘new system’ in [46]), he later turned
against it, arguing that while morality makes no conflicting claims, it is not a
logical impossibility that conflicting promises can give rise to predicaments.5

Dyadic operators seem essential for even making this distinction.6

Turning object language oughts into a special sort of conditionals does not
necessarily imply a change in the formalization of the background imperatives:
consider the set I = {(¬C∨A), (¬C∨¬A)}, corresponding to background imper-
atives in the usual way. I is also its single maximally consistent subset, which
derives ¬C, so OF¬C and OS¬C are both true. But a single standard is no
longer available once C becomes true: the imperatives have not all been fulfilled
(otherwise one would not be in condition C), and any maximal set of impera-
tives that is consistent with the given circumstances cannot contain all. So the
proposal is to call A obligatory in case C iff A is necessary for doing ‘the most’
that can be achieved, given the truth of C. Formally:

[Df-DF] OF (A/C) iff ∃I ′ ∈ I⊥¬C : I ′ ∪ {C} ⊢BL A

According to this definition, OF (A/C) is true iff there is some set, among the
maximal subsets of I consistent with C, that together with C derives A. This is
obviously a conservative extension of the definition given for the unconditional
case, so we may define OF A =def OF (A/⊤).

If a cautious, disjunctive approach were appropriate for cases of conflict, then
it would be hard to see why predicaments should be treated differently: that
conflicts must be accounted for at the outset, but analogues of Buridan’s ass
cannot be brought about by fate or unpredictable human nature, would hardly
be plausible. Distrusting any single standard, such an approach would accept,
given the circumstances C, only what is necessary by any standard that could
still be met – no crying over spilled milk. Formally:

[Df-DS] OS(A/C) iff ∀I ′ ∈ I⊥¬C : I ′ ∪ {C} ⊢BL A

According to this definition, OS(A/C) is true iff all the maximal subsets of I
consistent with C derive A, given the truth of C. This is again a conservative
extension of the unconditional case, so one may define OSA =def OS(A/⊤).

After a comparison of the above definitions with similar approaches namely
in the study of nonmonotonic reasoning, I will give an axiomatic dyadic deontic
system DDL{F,S}, which I prove to be sound and (only) weakly complete with
respect to the above semantics.

5 Cf. [47], [48] pp. 36, 81, 89
6 Below, I extend the treatment of conflicts to the area of predicaments, and do not

follow von Wright in ruling out conflicts. However, this can easily be done by ax-
iomatically adding (DD-⊤) to the system presented below.
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4 Comparisons

Though the truth definitions introduced in the preceding section naturally ex-
tend the proposals of van Fraassen and Horty for dealing with normative con-
flicts to the dyadic context and the related problem of predicaments, and though
their resolution mechanisms are not exactly new (cf. below), there has not been
much discussion of these concepts in the deontic logic literature. Notably, Horty’s
own dyadic operator in [21] is defined with respect to (simply) maximally non-
conflicting sets of prima facie oughts, and it is disregarded that their joint de-
mands may now be inconsistent with the situation. However, the more general
literature on nonmonotonic reasoning includes a range of parallel concepts.

Regarding OS , the most obvious parallel is Kratzer and Lewis’s premise
semantics in [25] and [30] which has a set of formulas H (the premises) to define
counterfactuals in much the same way as the set I is used here in the definition
of deontic conditionals. Considering Kratzer’s definition, and setting aside the
world-relativity of H, let SH,C = {H ′ ⊆ H | H ′ 0BL ¬C} be the set of all
subsets of H that are, according to some basic logic BL, consistent with C.
Then the counterfactual conditional ¤→ is defined in the following way:

H |= C ¤→ A iff ∀H ′ ∈ SH,C : ∃H ′′ ∈ SH,C : H ′ ⊆ H ′′,H ′′ ∪ {C} ⊢BL A

In other words, C ¤→ A is true iff each set in SH,C has a superset in SH,C that
implies C → A.7 The truth definition is tailored for a basic logic that may fail
compactness and so accommodates sets H with ever-larger C-consistent subsets,
but no maximal ones. Here, BL was assumed to be compact, and we obtain:

Observation 1 (Relation to premise semantics)
For any set I ⊆ LPL: I |= OS(A/C) iff I |= C ¤→ A

Proof. Left-to-right: Suppose that C ¤→ A is false, so there is some I ′ ∈ SI,C :
∀I ′′ ∈ SI,C : if I ′ ⊆ I ′′ then I ′′ ∪ {C} 0PL A. I ′ 0PL ¬C, so by definition there
is some I ′′ ∈ I⊥¬C such that I ′ ⊆ I ′′. So I ′′ ∪ {C} 0PL A, so ¬∀I ′ ∈ I⊥¬C :
I ′ ∪ {C} ⊢PL A and so OS(A/C) is false. Right-to-left: Suppose OS(A/C) is
false, so ∃I ′ ∈ I⊥¬C : I ′ ∪ {C} 0 A. Then I ′ ∈ SI,C , and by definition of
I⊥¬C there is no other I ′′ ∈ SI,C : I ′ ⊆ I ′′, so ∀I ′′ ∈ SI,C : if I ′ ⊆ I ′′ then
I ′′ ∪ {C} 0 A, and C ¤→ A is false.

Then, the definition of OS parallels that of a consequence relation associated
to a Poole system without constraints [35]: This has two sets Γ,∆ of formulas,
the facts and the defaults. A scenario is a set ∆′ ∪ Γ such that ∆′ ⊆ ∆ and
∆′ ∪ Γ 0BL ⊥. A ‘maximal scenario’ is one where ∆′ ∈ E(Γ ), E(Γ ) being the

7 Lewis’s [30] variation requires this property only of non-empty H ′ ∈ SH,C . This
corresponds to replacing I ′ ∪ {C} ⊢BL A in the truth definition for OS with
∃B1, ..., Bn ∈ I ′ :⊢BL (B1 ∧ ... ∧ Bn ∧ C) → A to produce a regular instead of
a normal operator. – Lewis notes (p. 233) that for deontic conditionals, the premises
of the premise semantics might be understood to be “something that ought to hold”,
so he is to be credited for the imperative semantics employed here.
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set of all ∆′ ⊆ ∆ such that ∆′ ∪ {Γ} 0BL ⊥, and for all ∆′′ ⊆ ∆, if ∆′ ⊂ ∆′′

then ∆′′ ∪ {Γ} ⊢PL ⊥. Cn being BL-consequence, a prediction A from the facts
Γ and the defaults ∆ is then defined as:

Γ |∼skept(∆) A =def A ∈
⋂

∆′∈E(Γ )

Cn(∆′ ∪ Γ )

So A is predicted from Γ and ∆ if all maximal scenarios derive A. – Likewise, a
‘credulous prediction’ can be defined as

Γ |∼cred(∆) A =def A ∈
⋃

∆′∈E(Γ )

Cn(∆′ ∪ Γ )

(cf. Brass [5] for the analogy and notation). The following is then immediate:

Observation 2 (Relation to Poole systems)
For any set I ⊆ LBL: I |= OS(A/C) iff {C} |∼skept(I) A,

I |= OF (A/C) iff {C} |∼cred(I) A.

Regarding the OF -operator, it is perhaps not quite as obvious that its cor-
responding PF -operator is closely related to the ‘X-logics’ of Siegel and Forget
[38], [10]: The consequence relation |∼X of these logics holds between a set of
formulas Γ and a formula A modulo a set X of formulas, where the definition is

Γ |∼X A iff Cn(Γ ∪ {A}) ∩ X = Cn(Γ ) ∩ X

As Makinson [31] pointed out, X can be understood as a set of ‘bad’ propositions
that one is to avoid. So Γ |∼X A is true iff A can be realized together with Γ
without increasing the set of ‘bad’ proposition above those that were already
true given Γ . Here we have a set I of ‘desired’ propositions, so a statement
seems ‘bad’ if it asserts that some desired proposition be false, e.g. ¬A is true
for some A ∈ I, or that at least one A1, ..., An ∈ I is false, i.e. ¬(A1 ∧ ...∧¬An)
is true. Let If = {¬

∧
{A1, ..., An} | {A1, ..., An} ⊆ I, 1 ≤ n ≤ card(I)} be the

‘bad set’ corresponding to I. We then obtain:

Observation 3 (Relation to X-logics)
For any set I ⊆ LPL, X = If: I |= PF (A/C) iff {C} |∼X A.

Proof. Right-to-left: Suppose {C} |≁X A, so Cn(C∧A)∩If 6= Cn(C)∩If, so by
monotony of Cn there is a Bf ∈ Cn(C∧A)∩If such that Bf /∈ Cn(C)∩If. By
definition, Bf = ¬(B1 ∧ ...∧Bn) for some B1, ..., Bn ∈ I. The first fact provides
{C ∧A} ⊢BL ¬(B1 ∧ ...∧Bn) and by contraposition {B1, ..., Bn} ⊢BL C → ¬A.
From the second fact we obtain {C} 0BL ¬(B1 ∧ ... ∧ Bn), so by contraposition
{B1, ..., Bn} 0BL ¬C, so {b1, ..., Bn} ⊆ I ′ for some maxi-consistent I ′ ∈ I⊥¬C,
and so there is some I ′ ∈ I⊥¬C : I ′ ∪ {C} ⊢BL ¬A, so I |= OF (¬A/C) and
by definition I 2 PF (A/C). Left-to-right: Suppose I 2 PF (A/C), so there is a
I ′ ∈ I⊥¬C : I ′∪{C} ⊢BL ¬A. By compactness of BL there are {B1, ..., Bn} ⊆ I ′

with {B1, ..., Bn} ⊢BL C → ¬A, and {B1, ..., Bn} 0BL ¬C since they are in I ′.
By definition there is a Bf ∈ If such that Bf = ¬(B1 ∧ ... ∧ Bn). By the first
fact {C∧A} ⊢BL Bf, so Bf ∈ Cn(C∧A)∩If, and by the second {C} 0BL Bf,
so Bf /∈ Cn(C) ∩ If. So Cn(C ∧ A) ∩ If 6= Cn(C) ∩ If, and {C} |≁X A.
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A unified treatment of both, skeptical and credulous consequence can be
found in Bochman’s ‘epistemic states’-semantics in [2], [3], [4]. Epistemic states,
equivalent to the cumulative models in [26], are triples E = 〈S,≺, ℓ〉, where S
is a set of objects (belief states), ≺ some asymmetric ‘preference’ relation on
S, and ℓ a labeling function that assigns each state s ∈ S a deductively closed
theory. min S′ = {s ∈ S′ | ∀t ∈ S′, t 6= s : t ⊀ s} is the set of minimal states
in S′ ⊆ S. 〈A〉 = {s ∈ S | ¬A /∈ ℓ(s)} is the set of belief states consistent with
A. For each A, 〈A〉 must be ≺-smooth, i.e. for any s ∈ 〈A〉, either s ∈ min〈A〉
or there is some t ∈ min〈A〉 with t ≺ s. With BL as basic logic, Bochman’s
definitions for skeptical and credulous consequence relations |∼ and |≈ are:

A |∼E B iff ∀s ∈ min〈A〉 : ℓ(s) ⊢PL A → B

A |≈E B iff 〈A〉 = ∅ or ∃s ∈ min〈A〉 : ℓ(s) ⊢PL A → B

Observation 4 (Relation to Bochman’s epistemic states)
Let I ⊆ LPL, and let the corresponding ‘epistemic state’ EI = 〈S,≺, ℓ〉 be such
that (i) S = P(I), (ii) ℓ(s) = Cn(s), and (iii) s ≺ t iff t ( s. Then

I |= OS(A/C) iff C |∼EI
A,

I |= OF (A/C) iff 0PL ¬C and C |≈EI
A.

Proof. I prove first (a) I ′ ∈ min〈A〉 iff I ′ ∈ I⊥¬A, (b) EI is an epistemic state,
(c) 〈A〉 = ∅ iff ⊢BL ¬A: For (a), by definition 〈A〉 = {I ′ ⊆ I | I ′ 0BL ¬A},
so 〈A〉 is the set of subsets of I consistent with A. I ′ ∈ min〈A〉 means that for
any I ′′ ∈ min〈A〉, I ′ 6= I ′′: I ′′ ⊀ I ′. By definition for any I ′′ ∈ 〈A〉, I ′ 6= I ′′:
I ′ * I ′′. This means there is no I ′′ ∈ I consistent with A such that I ′ ⊆ I ′′,
which means I ′ ∈ I⊥¬A. For (b), if I ′ ⊆ I is in 〈A〉, i.e. it is consistent with A,
and I ′ /∈ I⊥¬A then by definition of I⊥¬A there is some I ′′ ∈ I⊥¬A such that
I ′ ⊂ I ′′, so there is some I ′′ ∈ min〈A〉 with I ′′ ≺ I ′. So EI is smooth, hence
it is an epistemic state. For (c), 〈A〉 = ∅ iff {I ′ ∈ P(I) | I ′ 0BL ¬A} = ∅ iff
∅ ⊢BL ¬A holds by monotony of BL. – Putting together, we get: I |= OS(A/C)
iff ∀I ′ ∈ I⊥¬C : I ′ ∪ {C} ⊢BL A iff ∀I ′ ∈ min〈C〉 : I ′ ⊢BL C → A iff C |∼EI

A.
Likewise: I |= OF (A/C) iff ∃I ′ ∈ I⊥¬C : I ′ ∪ {C} ⊢BL A iff ∃I ′ ∈ min〈C〉 :
I ′ ⊢BL C → A iff 〈C〉 6= ∅ and [ 〈C〉 = ∅ or ∃I ′ ∈ min〈C〉 : I ′ ⊢BL C → A ] iff
0BL ¬C and C |≈EI

A.

A final parallel brings us back to deontic logic, namely the multiplex prefer-
ence semantics of Goble in [12], [13] and [14], where a multitude of preference
relations enables definitions like ‘all-best’ (universally preferred) and ‘some-best’
(existentially preferred), which are then used in definitions of deontic operators.
That, in the finite case, such semantics corresponds closely to the present ac-
count will be explicated in sec. 6. Regarding meta-theory, for a somewhat more
general semantic setting the skeptical consequence relation was axiomatized by
Kraus, Lehmann and Magidor [26], and the credulous consequence relation by
Bochman [2]. However, a completeness proof for a system that includes both8

seems to be missing so far and this is what I shall now turn to.

8 One might add a third (monadic) deontic modality O2 that ‘more directly talks about
the imperatives’ to axiomatize consistent agglomeration, but I must leave the details
to future study (cf. [17] sec. 6 for the the resulting monadic system DL{2,F,S}).
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5 The Dyadic Deontic Logic DDL
{F,S}

Let the basic logic be propositional logic PL: The alphabet has proposition letters
Prop = {p1, p2, ...}, operators ‘¬’, ‘∧’, ‘∨’, ‘→’, ‘↔’ and parentheses ‘(’, ‘)’. The
language LPL is defined as usual.

∧
,
∨

in front of a set of sentences means their
conjunction and disjunction, and e.g.

∧n
i=1 Ai further abbreviates

∧
{Ai, ..., An}.

Semantically, valuation functions v : Prop → {1, 0} define the truth of sentences
A ∈ LPL as usual (written v |= A), B is the set of all such valuations, and ‖A‖
is the extension {v ∈ B | v |= A} of A. PL is a sound and complete axiomatic
system, and ⊢PL A means that A is provable in PL.

The alphabet of the language L
DDL{F,S} additionally has the operators ‘OF ’,

‘OS ’, and the auxiliary ‘/’. DDL{F,S} is then the smallest set such that

a) for all A, C ∈ LPL, OF (A/C) and OS(A/C) ∈ DDL
{F,S},

b) if A,B ∈ DDL
{F,S}, so are ¬A, (A ∧ B), (A ∨ B), (A → B), (A ↔ B).

Outer parentheses will be mostly omitted. We define P ∗(A/C) =def ¬O∗(¬A/C),
where ∗ is F or S. For simplification we do not permit mixed expressions and
nested deontic operators like p1 ∧ OS(p2/p1), PS(OF (p2/p2)/p1).

For DDL{F,S}-semantics, the truth of DDL{F,S}-sentences is defined with
respect to a set I ⊆ LPL (Boolean operators being as usual):

I |= OF (A/C) iff ∃I ′ ∈ I⊥¬C : I ′ ∪ {C} ⊢PL A
I |= OS(A/C) iff ∀I ′ ∈ I⊥¬C : I ′ ∪ {C} ⊢PL A

If I |= A, A is called DDL{F,S}-satisfiable, and DDL{F,S}-valid if I |= A for all
I ⊆ LPL (we write |=

DDL{F,S} A).

Consider the following axiom-schemes (∗ is the uniform index F or S):

(CExt∗) If ⊢PL C → (A ↔ B) then ⊢DDL{F,S} O∗(A/C) ↔ O∗(B/C)

(ExtC∗) If ⊢PL C ↔ D then ⊢DDL{F,S} O∗(A/C) ↔ O∗(A/D)

(DM∗) O∗(A ∧ B/C) → (O∗(A/C) ∧ O∗(B/C))

(DCS) OS(A/C) ∧ OS(B/C) → OS(A ∧ B/C)

(DCSF ) OS(A/C) ∧ OF (B/C) → OF (A ∧ B/C)

(DNS) OS(⊤/C) (DN-R∗) If 0PL ¬C then ⊢DDL{F,S} O∗(⊤/C)
(DPF ) PF (⊤/C) (DP-R∗) If 0PL ¬C then ⊢DDL{F,S} P ∗(⊤/C)

(Cond∗) O∗(A/C ∧ D) → O∗(D → A/C)

(CCMon∗) O∗(A ∧ D/C) → O∗(A/C ∧ D)

(RMonF ) PF (D/C) → (OF (A/C) → OF (A/C ∧ D))

(RMonFSS) PF (D/C) → (OS(A/C) → OS(A/C ∧ D))

(RMonSSF ) PS(D/C) → (OS(A/C) → OF (A/C ∧ D))

The system DDL{F,S} is then the set such that (i) all L
DDL{F,S}-instances

of PL-tautologies are in DDL{F,S}, (ii) all LPL-instances of the above axiom
schemes are in DDL{F,S}, and (iii) DDL{F,S} is closed under modus ponens.
If A ∈ DDL{F,S} we write ⊢DDL{F,S} A and call A provable in DDL{F,S}.
Γ ⊆ LDDL{F,S} is DDL{F,S}-inconsistent iff there are A1,..., An in Γ, n ≥ 1,
with ⊢DDL{F,S} (A1 ∧ ... ∧ An) → ⊥, otherwise Γ is DDL{F,S}-consistent. A ∈
LDDL{F,S} is DDL{F,S}-derivable from Γ ⊆ LDDL{F,S} (written Γ ⊢DDL{F,S} A)
iff Γ ∪ {¬A} is DDL{F,S}-inconsistent.
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Theorem 1 (DDL
{F,S}-theorems).

The following are DDL{F,S}-derivable (∗ is a uniform index or as indicated):

(RefS) OS(A/A) (Ref-R∗) If 0PL ¬A then ⊢DDL{F,S} O∗(A/A)

(RW∗) If ⊢PL A → B then ⊢DDL{F,S} O∗(A/C) → O∗(B/C)

(Pres∗) O∗(⊥/C) → (O∗(A/D) → O∗(A ∧ ¬C/D))

(CMon∗) O∗(D/C) → (O∗(A/C) → O∗(A/C ∧ D)) SSS, SFF , FSF

(Cut∗) O∗(D/C) → (O∗(A/C ∧ D) → O∗(A/C)) SSS, SFF , FSF

(Or∗) (O∗(A/C) ∧ O∗(A/D)) → O∗(A/C ∨ D) SSS, SFF , FSF

(DR∗) O∗(A/C ∨ D) → (O∗(A/C) ∨ O∗(A/D)) FFF , SFS, SSF

(FH∗) P ∗(C/D) → (O∗(A/C ∨ D) → O∗(A/C)) FFF , FSS, SSF

(FH+∗) P ∗(A → C/C ∨ D) → (O∗(A/C ∨ D) → O∗(A/C)) FFF , FSS, SSF

(Trans∗) P ∗(A/A ∨ B) ∧ P ∗(B/B ∨ C) → P ∗(A/A ∨ C) FFF , FSS, SFS

(P -LoopF ) P F (A2/A1) ∧ ... ∧ P F (An/An−1) ∧ P F (A1/An) → P F (An/A1)

(LoopS) OS(A2/A1) ∧ ... ∧ OS(An/An−1) ∧ OS(A1/An) → OS(An/A1)

Proof. All easy and left to the reader.

Regarding axioms and theorems, (CExt∗) is a contextual extensionality rule
for consequents, and (ExtC∗) an extensionality rule for antecedents. (DM∗) and
(DC∗) are dyadic versions of their monadic analogues. The OS-axioms are like
those of Kraus, Lehmann and Magidor [26], but (CondS) and (CCMonS) equiv-
alently replace (OrS) and (CMonS), and (DP-RS) is added. The OF -axioms are
those of Bochman [2], where his (PresF ) is strengthened to (DPF ). Instead of
(CondF ), (CCMonF ) and (RMonF ), Goble [14] more elegantly employs (TransF )
and (DRF ), which is equivalent given (DP-RF ). The ‘mixed schemes’ are again
Bochman’s. Instead of (DC SF ), (RMonFSS), and (RMonSSF ), Goble has

(DKSF ) OS(A → B/C) → (OF (A/C) → OF (B/C)),

(TransFSS) and (TransSFS), which is again equivalent. The names are from the
study of nonmonotonic logics, namely reflexivity, right weakening, preservation,
(conjunctive) cautious monotony, conditionalization and disjunctive reasoning.
(Ref∗) is Hansson’s [18] th. 2, (CCMon∗) Rescher’s [36] th. 4.4, (Or∗) is the right-
to-left version of von Wright’s (B3) in [46], and (DR∗) Hansson’s th. 13. Føllesdal
and Hilpinen [9] introduced the strong version (FH∗) of (RMon∗) (their th. 77).
(FH+∗) is even stronger: its displayed versions could replace (CCMon∗) and
(RMon∗∗), ∗∗=F, FSS, SSF . (Trans∗) is transitivity of weak preference given by
A 4 B =def P ∗(A/A ∨ B) (Lewis [28] p. 54). Spohn [39] introduced (P -LoopF )
to define the relevant equivalence classes in his completeness proof of Hansson’s
DSDL3, and its O-form was rediscovered by Kraus, Lehmann and Magidor [26]
who put it to the same use. Note that (CCMon∗) is (P -Cond∗), and (Cut∗) is
(P -RMon∗), where the deontic operators are swapped in the P -versions.

Theorem 2. DDL{F,S} is sound.

Proof. The validity of (DM∗), (DCS), (DCSF ), (CExt∗), and (ExtC∗) is im-
mediate. (DNS), (DPF ) are valid since any subset of LPL derives ⊤, and any
maximally consistent subset is consistent. If 0PL ¬C then at least ∅ is in I⊥¬C,
hence I⊥¬C 6= ∅ and then both (DN-RF ) and (DP-RS) hold likewise.
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(CondF ) Assume OF (A/C ∧ D), so there is an I ′ ∈ I⊥¬(C ∧ D) such that
I ′ ∪ {C ∧D} ⊢PL A and I ′ ∪ {C} ⊢PL D → A. Since I ′ 0PL ¬(C ∧D), also
I ′ 0PL ¬C, so by maximality there is an I ′′ ∈ I⊥¬C such that I ′ ⊆ I ′′, so
there is an I ′′ ∈ I⊥¬C : I ′′ ∪ {C} ⊢PL D → A, so OF (D → A/C).

(CondS) Assume OS(A/C∧D). So for all I ′ ∈ I⊥¬(C∧D) : I ′∪{C∧D} ⊢PL A.
If there is an I ′′ ∈ I⊥¬C : I ′′ ∪ {C} 0PL D → A then I ′′ ∪ {C} 0PL ¬D
and I ′′ 0PL ¬(C ∧ D). By maximality ∃I ′ ∈ I⊥¬(C ∧ D) : I ′′ ⊆ I ′. Since
I ′ 0PL ¬(C ∧ D), I ′ 0PL ¬C, so there is an I ′′′ ∈ I⊥¬C : I ′ ⊆ I ′′′. Then
I ′′ ⊆ I ′′′ and by maximality of I ′′ ∈ I⊥¬C, I ′′ = I ′′′ and hence I ′′ = I ′. So I ′′

is in I⊥¬(C ∧D) and I ′′∪{C ∧D} 0PL A, but this violates the assumption.
So for all I ′′ ∈ I⊥¬C : I ′′ ∪ {C} ⊢PL D → A, and OS(D → A/C).

(CCMonF ) Assume OF (A∧D/C), so ∃I ′ ∈ I⊥¬C : I ′ ∪ {C} ⊢PL A∧D. Then
I ′∪{C} 0PL ¬D, for otherwise I ′ ⊢PL ¬C which is excluded by the definition
of I⊥¬C. So I ′ 0PL ¬(C ∧ D), by maximality ∃I ′′ ∈ I⊥¬(C ∧ D) : I ′ ⊆ I ′′

and I ′′ ∪ {C} ⊢PL A, I ′′ ∪ {C ∧ D} ⊢PL A. Hence OF (A/C ∧ D).
(CCMonS) Assume OS(A ∧ D/C), so for all I ′ ∈ I⊥¬C : I ′ ∪ {C} ⊢PL A ∧ D,

and so I ′ ∪{C} 0PL ¬D, for otherwise I ′ ⊢PL ¬C contrary to the definition
of I⊥¬C, and so for all I ′ ∈ I⊥¬C : I ′ 0PL ¬(C∧D). Suppose I ′′ ∈ I⊥¬(C∧
D), so I ′′ 0PL ¬(C ∧ D) and I ′′ 0PL ¬C. By maximality ∃I ′ ∈ I⊥¬C such
that I ′′ ⊆ I ′. In turn I ′ 0PL ¬(C ∧D) as just proved, so ∃I ′′′ ∈ I⊥¬(C ∧D)
such that I ′ ⊆ I ′′′. But then I ′′ = I ′′′ by maximality of I ′′ ∈ I⊥¬(C∧D), so
I ′′ = I ′ ∈ I⊥¬C and I ′′ ∪ {C} ⊢PL A as assumed. So I ′′ ∪ {C ∧ D} ⊢PL A
for any I ′′ ∈ I⊥¬(C ∧ D). So OS(A/C ∧ D) is true.

(RMonF ) Assume OF (A/C), so ∃I ′ ∈ I⊥¬C : I ′∪{C} ⊢PL A. If PF (D/C) then
∀I ′ ∈ I⊥¬C : I ′∪{C} 0PL ¬D. So I ′ 0PL ¬(C∧D). So by maximality ∃I ′′ ∈
I⊥¬(C∧D) : I ′ ⊆ I ′′, so I ′′∪{C} ⊢PL A, by monotony I ′′∪{C∧D} ⊢PL A,
so OF (A/C ∧ D) is true.

(RMonFSS) Assume OS(A/C), so ∀I ′ ∈ I⊥¬C : I ′∪{C} ⊢PL A, and PF (D/C),
so ∀I ′ ∈ I⊥¬C : I ′ ∪ {C} 0PL ¬D, so I ′ 0PL ¬(C ∧ D). Suppose I ′′ ∈
I⊥¬(C ∧ D), so also I ′′ 0PL ¬C and by maximality ∃I ′ ∈ I⊥¬C : I ′′ ⊆ I ′.
We have I ′ ∪ {C} ⊢PL A, so ∃B1, ..., Bn ∈ I ′ : {B1, ..., Bn} ∪ {C} ⊢PL A by
PL-compactness. If I ′′ ∪ {C} 0PL A then {B1, ..., Bn} * I ′′, by maximality
I ′′ ∪{B1, ..., Bn} ⊢PL ¬(C ∧D), but I ′′ ∪{B1, ..., Bn} ⊆ I ′, so I ′ ∪{C} ⊢PL

¬(C∧D) contrary to the assumption. So I ′′∪{C} ⊢PL A, I ′′∪{C∧D} ⊢PL A
for any I ′′ ∈ I⊥¬(C ∧ D). So OS(A/C ∧ D) is true.

(RMonSSF ) Assume OS(A/C), so ∀I ′ ∈ I⊥¬C : I ′∪{C} ⊢PL A, and PS(D/C),
so ∃I ′ ∈ I⊥¬C : I ′ ∪ {C} 0PL ¬D. So I ′ 0PL ¬(C ∧ D). So by maximality
∃I ′′ ∈ I⊥¬(C ∧ D) : I ′ ⊆ I ′′, so I ′′ ∪ {C} ⊢PL A, so I ′′ ∪ {C ∧ D} ⊢PL A,
so OF (A/C ∧ D) is true.

Theorem 3. DDL{F,S}-semantics are not compact.

Proof. In [17], I provided a counterexample to the compactness of semantics
that only employ the monadic deontic operator OF . Since OF A can be defined
as OF (A/⊤), this also refutes the compactness of DDL{F,S} and of the sub-
system containing only the dyadic operator OF . The following counterexample
is expressed in terms of the dyadic operators OS only, which also refutes the
compactness of the subsystem containing only this operator: let
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Γ = {OS(p2/⊤)}

∪ {PS(¬p2/p1)} ∪
⋃∞

i=3{O
S(pi/p1)}

∪ {PS(¬p2/¬p1)} ∪
⋃∞

i=3{O
S(pi/¬p1)}

∪ {PS(¬p2/p1 ↔ p2)} ∪
⋃∞

i=3{O
S(pi/p1 ↔ p2)}

∪ {PS(¬p2/p1 ↔ ¬p2)} ∪
⋃∞

i=3{O
S(pi/p1 ↔ ¬p2)}

Γ is finitely DDL{F,S}-satisfiable: let n be the greatest index of any proposition
letter occurring in some finite Γf ⊆ Γ . Then

If = { pn+1 ∧ (p1 → ¬p2) , ¬pn+1 ∧ (¬p1 → ¬p2) , p2, p3, ..., pn}

satisfies Γf . For easy verification, I list the relevant sets of maximal subsets:

If⊥¬⊤ =

{
{pn+1 ∧ (p1 → ¬p2), p2, p3, ..., pn)},
{¬pn+1 ∧ (¬p1 → ¬p2), p2, p3, ..., pn)}

}

If⊥¬p1

If −⊥¬(p1 ↔ p2)
=

{
{pn+1 ∧ (p1 → ¬p2), p3, ..., pn)},
{¬pn+1 ∧ (¬p1 → ¬p2), p2, p3, ..., pn)}

}

If⊥p1

If⊥¬(p1 ↔ ¬p2)
=

{
{ pn+1 ∧ (p1 → ¬p2), p2, p3, ..., pn) },
{ ¬pn+1 ∧ (¬p1 → ¬p2), p3, ..., pn)}

}

However, Γ is not DDL{F,S}-satisfiable: suppose I ⊆ LPL satisfies Γ , and let
A ∈ {p1,¬p1, p1 ↔ p2, p1 ↔ ¬p2}. Observe that

(i) There are I1, I2 ∈ I⊥¬⊤ such that I1 ⊢PL p1 ∧ pi, I2 ⊢PL ¬p1 ∧ pi, i ≥ 2.
Proof : From OS(p2/⊤), PS(¬p2/¬p1) ∈ Γ and the validity of (RMonFSS),
follows OF (p1/⊤), i.e. there is an I1 ∈ I⊥¬⊤ : I1 ⊢PL p1. Likewise from
OS(p2/⊤) and PS(¬p2/p1) ∈ Γ , it follows that there is an I2 ∈ I⊥¬⊤ :
I2 ⊢PL ¬p1. To satisfy OS(p2/⊤) it is necessary that for all I ′ ∈ I⊥¬⊤ :
I ′ ⊢PL p2, and from OS(pi/p1), O

S(pi/¬p1) ∈ Γ , and the validity of (OrS),
it is obtained that for all I ′ ∈ I⊥¬⊤ : I ′ ⊢PL pi, i ≥ 3.

(ii) For each A, there is an IA ∈ I⊥¬A : IA ∪ {A} ⊢PL ¬p2.
Proof: Let A ∈ {p1, p1 ↔ p2}. Then by observation (i) I1 ∈ I⊥¬A. Since
I1 ⊢PL p2, to satisfy PS(¬p2/A) ∈ Γ there is an IA ∈ I⊥¬A such that
IA ∪ I1 ⊢PL ¬A. So IA ∪{A} ⊢PL ¬(p1 ∧p2 ∧ ...∧pn) for some n. If n ≥ 3,
then IA∪{A} ⊢PL ¬(p1∧p2∧ ...∧pn−1), since IA∪{A} ⊢PL pn is necessary
for OS(pn/A) ∈ Γ . So IA ∪ {A} ⊢PL ¬(p1 ∧ p2), so IA ∪ {A} ⊢PL ¬p2.
Likewise, the proof for A ∈ {¬p1, p1 ↔ ¬p2} is obtained from I2 ∈ I⊥¬A.

(iii) If A ∈ {p1, p1 ↔ ¬p2} then IA ∪ {p1,¬p2, p3, p4, ...} 0PL ⊥.
If A ∈ {¬p1, p1 ↔ p2} then IA ∪ {¬p1,¬p2, p3, p4, ...} 0PL ⊥.
Proof: Suppose A ∈ {p1, p1 ↔ ¬p2} and IA ∪ {p1,¬p2, p3, p4, ...} ⊢PL ⊥.
Then IA∪{A,¬p2, p3, p4, ...} ⊢PL ⊥. So IA∪{A} ⊢PL ¬(¬p2∧p3∧p4∧ ...∧
pn) for some n. But also IA∪{A} ⊢PL ¬p2∧p3∧p4∧...∧pn by observation (ii)
and from the fact that I satisfies OS(pi/A) ∈ Γ , 3 ≤ i ≤ n. So IA ⊢PL ¬A,
but this contradicts IA ∈ I⊥¬A. The proof for A ∈ {¬p1, p1 ↔ p2} and
the set IA ∪ {¬p1,¬p2, p3, p4, ...} is done likewise.
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It follows that Ip1
∪ I(p1↔¬p2) 0PL ⊥ and I¬p1

∪ I(p1↔p2) 0PL ⊥. This is most
easily seen by appealing to PL-semantics: some v ∈ B satisfies {p1,¬p2, p3, p4, ...}
and by (iii) all elements of Ip1

as well as all of I(p1↔¬p2), so their union is
satisfiable and therefore consistent (likewise for {¬p1,¬p2, p3, p4, ...} and I¬p1

∪
I(p1↔p2)). From (ii) it follows that

Ip1
∪ I(p1↔¬p2) ⊢PL (p1 → ¬p2) ∧ ((p1 ↔ ¬p2) → ¬p2)

I¬p1
∪ I(p1↔p2) ⊢PL (¬p1 → ¬p2) ∧ ((p1 ↔ p2) → ¬p2)

But the conclusions are tautologically equivalent to ¬p2, so there are consistent
subsets of I that derive ¬p2, and I 2 OS(p2/⊤), although OS(p2/⊤) ∈ Γ .

Theorem 4. DDL{F,S} is weakly complete.

Proof. The proof follows the completeness proof of Spohn [39] for B. Hansson’s
[18] preference-based dyadic deontic logic DSDL3. Since parts of this proof will
be reused in the next section for logics that might not include unrestricted (DN∗)
or (DP∗), I will avoid their use up to the last step of this proof.

A: Preliminaries

We must prove that if |=DDL{F,S} A then ⊢DDL{F,S} A for any A ∈ LPL.
We assume 0DDL{F,S} A so ¬A is DDL{F,S}-consistent. We build a disjunctive
normal form of ¬A and obtain a disjunction of conjunctions, where each conjunct
is O∗(B/C) or ¬O∗(B/C). One disjunct must be DDL{F,S}-consistent. Let δ
be that disjunct. Let the δ-restricted language L δ

PL be the PL-sentences that
contain only proposition letters occurring in δ. Let r(L δ

PL) be 22n

mutually non-
equivalent representatives of L δ

PL, where n is the number of proposition letters
in δ. By writing PL-sentences (including ⊤ and ⊥), we now mean their unique
representatives in r(L δ

PL). We construct a set ∆ with the following properties:

(a) Any conjunct of δ is in ∆.
(b) For all B, C ∈ r(L δ

PL):
− either PF (B/C) or OF (¬B/C) ∈ ∆, and
− either PS(B/C) or OS(¬B/C) ∈ ∆.

(c) ∆ is DDL{F,S}-consistent.

It then suffices to find a set I ⊆ LPL that makes true all B ∈ ∆.

B: Identifying the deontic bases

We identify syntactically what Hansson called the deontic basis in an exten-
sion ‖C‖ (Spohn [39] writes C̃). Monadic deontic logic has just one basis, dyadic
deontic logic usually has one basis for any C, and here there may be several
bases, which expresses some conflict or predicament in case C.

Definition 1. For any C 6= ⊥, C ∈ r(L δ
PL), let

− OS
C =

∧
{A ∈ r(L δ

PL) | OS(A/C) ∈ ∆},

− OF
C = min {A ∈ r(L δ

PL) | OF (A/C) ∈ ∆}.

where minΓ = {A ∈ Γ | ∀B ∈ Γ , if ⊢PL B → A then ⊢PL B ↔ A}, Γ ⊆ LPL.
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From (DCS), (RW∗), and DDL{F,S}-consistency of ∆ we obtain, for any C 6= ⊥:

(B1) OS(A/C) ∈ ∆ iff ⊢PL OS
C → A

(B2) OF (A/C) ∈ ∆ iff ∃O ∈ OF
C : ⊢PL O → A

C: Identifying the relevant class of domains

We identify the most general circumstances CA where A is PF -permitted.
To the same effect, Spohn employs equivalence classes [A]≈ defined using (P -
LoopF ): A ≈ B iff B is in some {B1, ..., Bn} ⊆ r(L δ

PL) with PF (B1/A),
PF (B2/B1), ..., PF (Bn/Bn−1), PF (A/Bn) ∈ ∆. The set of all such classes
is then {[C]≈ | C ∈ C}.

Definition 2. For all A ∈ r(L δ
PL), let

CA = max {C ∈ r(L δ
PL) | PF (A/C) ∈ ∆},

C =
⋃

A∈r(L δ
P L

) CA,

where maxΓ = {A ∈ Γ | ∀B ∈ Γ : if ⊢PL A → B, then ⊢PL B ↔ A}.

(C1) If PF (A/D) ∈ ∆, then there is a C ∈ CA such that ⊢PL D → C.

Proof : Immediate from definition of CA and finitude of r(L δ
PL).

(C2) For all C ∈ C: CC = {C}.

Proof : By definition C ∈ CA for some A ∈ r(L δ
PL), so by definition

PF (A/C) ∈ ∆, and PF (C/C) due to (CExtF ). Suppose C′ ∈ CC : then by
definition PF (C/C′) ∈ ∆. With (FHF ) we get PF (A/C ∨ C′), PF (C/C ∨
C′) ∈ ∆, so C = (C ∨ C′) = C′ follows from maximality of C, C′.

(C3) For all C ∈ C, if PF (C/D) ∈ ∆, then ⊢PL D → C.

Proof : By definition C ∈ CA for some A ∈ r(L δ
PL), so by definition

PF (A/C) ∈ ∆. If PF ( C/D) ∈ ∆, then we get PF (A/ C ∨ D) ∈ ∆ with
(FHF ). So C = ( C ∨ D) by maximality, hence ⊢PL D → C.

(C4) For all A 6= ⊥: CA = {CA} for some CA ∈ CA and ⊢PL A → CA.

Proof : If A 6= ⊥ then PF (A/A) ∈ ∆ due to (DP-RF ) and (CExtF ), so
there is some C ∈ CA such that ⊢PL A → C by (C1). Assume C′ ∈ CA:
By definition PF (A/C), PF (A/C′) ∈ ∆, so we get PF (C/C′) ∈ ∆ with
(RWF ), and PF (A/C ∨ C′) ∈ ∆ with (FHF ), so C = (C ∨ C′) = C′ by
maximality. So C is the desired CA.

(C5) For all A 6= ⊥: ⊢PL OS
A ↔ (A ∧ OS

CA
).

Proof : ⊢PL A → CA due to (C4), and by (B2) OS(OS
A/A) ∈ ∆, so with

(CondS) we obtain OS(A → OS
A/CA) ∈ ∆ and thus the right-to-left di-

rection ⊢PL (A ∧ OS
CA

) → OS
A. For the opposite, ⊢PL OS

A → A follows

from (CExtS), by definitions and (C4) PF (A/CA), OS(OS
CA

/CA) ∈ ∆, so

we get OS(OS
CA

/A) ∈ ∆ with (RMonFSS). So ⊢PL OS
A → (A ∧ OS

CA
).
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(C6) For all A 6= ⊥, OA ∈ OF
A: ∃OCA

∈ OF
CA

: ⊢PL OA ↔ (A ∧ OCA
).

Proof : Let OA ∈ OF
A, so OF (OA/A) ∈ ∆. ⊢PL A → CA and (CondF ) de-

rive OF (A → OA/CA) ∈ ∆, so ∃OCA
∈ OF

CA
with ⊢PL (A ∧ OCA

) → OA.

If PF (¬OCA
/A) ∈ ∆, then from OF (OCA

/CA) ∈ ∆ and (RMonF ) we get
OF (¬A/CA) ∈ ∆, but by definition PF (A/CA) ∈ ∆. So OF (OCA

/A) ∈ ∆,
and OF (A ∧ OCA

/A) ∈ ∆ by (CExt). Since ⊢PL (A ∧ OCA
) → OA we

obtain ⊢PL OA ↔ (A ∧ OCA
) by minimality of OA.

(C7) For all C 6= ⊥, C ∈ C: If {C → OC}∪{D} 0 ⊥, then OF (C → OC/D) ∈ ∆.

Proof : Assume {C → OC} ∪ {D} 0 ⊥. If OF (¬C/D) ∈ ∆, then the
conclusion is trivial. Otherwise PF (C/D) ∈ ∆, so ⊢PL D → C by (C3).
For r.a.a. suppose PF (¬OC/D) ∈ ∆. With OF (OC/C) ∈ ∆ we obtain
OF (OC ∧ ¬D/C) ∈ ∆ by (FH+F ), and ⊢PL OC → ¬D by minimality of
OC . But then ⊢PL D → (C ∧ ¬OC), which refutes the assumption. Hence
OF (OC/D) ∈ ∆ and OF (C → OC/D) ∈ ∆ by use of (CExtF ).

D: Identifying the multiple system of spheres

If this were ‘ordinary’ dyadic deontic logic with agglomeration and so just
one basis OC for any C, we would be almost done: like Spohn [39] orders his
equivalence classes [C]≈ by a relation before, C could be ordered into 〈C1, ..., Cn〉
with C1 = ⊤, and Ci+1 = Ci ∧ ¬OCi

until this equals ⊥. 〈S1, ..., Sn〉 with Si =
(Ci ∧ ¬Ci+1), 1 ≤ i < n, is then the ‘system of spheres’. Here this method fails
since no C ∈ C is guaranteed to have a single basis. But as it turns out, C has
the structure of a ‘multiple’ system of spheres that is similarly identified.

(D1) {⊤} ⊆ C

Proof : PF (⊤/⊤) ∈ ∆ by (DP-RF ), and ⊢PL C → ⊤ for any PF (⊤/C) ∈
∆, so ⊤ ∈ C⊤, ⊤ ∈ C.

(D2) For all C ∈ C, O ∈ OF
C : If C ∧ ¬O 6= ⊥, then C ∧ ¬O ∈ C.

Proof : If C∧¬O 6= ⊥ then PF (⊤/C∧¬O) ∈ ∆ by (DP-RF ), CC∧¬O ∈ CF .
We prove CC∧¬O = C ∧ ¬O: ⊢PL (C ∧ ¬O) → CC∧¬O is immediate from
(CExtF ) and (C1). If 0PL CC∧¬O → (C∧¬O) then {C → O} 0PL ¬CC∧¬O,
so OF (C → O/CC∧¬O) ∈ ∆ follows from (C7). PF (C ∧ ¬O/CC∧¬O) ∈ ∆
by definition, so ∆ is DDL{F,S}-inconsistent, but we assumed otherwise.

(D3) For all C ∈ C: If ⊢PL C → D, C 6= D, then ∃O ∈ OF
D: ⊢PL C → (D ∧¬O).

Proof : Either PF (C/D) ∈ ∆, so ⊢PL D → C, C = D (C3). Or OF (¬C/D)
∈ ∆, so ⊢PL O → ¬C for some O ∈ OF

D and ⊢PL C → (D ∧ ¬O).

(D4) For all D ∈ r(L δ
PL), O ∈ OF

D ∪ {OS
D}: If D 6= ⊥, then D 6= (D ∧ ¬O).

Proof : If D = (D∧¬O), then ⊢PL D → ¬O. But also ⊢PL O → D due to
(CExt∗), so O = ⊥ and O∗(⊥/D) ∈ ∆ by (B1-2). So D = ⊥ by (DP-R∗).

(D5) Let D be such that (i) ⊤ ∈ D, and (ii) if D ∈ D, O ∈ OF
D and (D∧¬O) 6= ⊥,

then (D ∧ ¬O) ∈ D. Then D = C\{⊥}.

Proof : D ⊆ C is immediate from (D1), (D2). As for C ⊆ D, for each C ∈ C,
C 6= ⊥, there is some D ∈ D such that (a) ⊢PL C → D, and (b) for no
O ∈ OF

D :⊢PL C → (D∧¬O). (a) is guaranteed by ⊤ ∈ D, and (b) follows
from (D3), (D4) and finiteness of r(L δ

PL). So C = D by (D3).
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E: Canonical construction and coincidence lemma

Definition 3 (Canonical Construction). For all C ∈ C∪{⊥}, D ∈ r(L δ
PL):

– F-Succ(D) = {D ∧ ¬O | O ∈ OF
D},

– F-Chain(C) be the set of sequences 〈D1, ..., Dn〉, 1 ≤ n, where D1 = ⊤,
Di+1 ∈ F-Succ(Di), Di 6= Di+1 for any 1 ≤ i < n, and Dn = C,

– S-Chain(C, D) be the set of sequences 〈D1, ..., Dk, Dk+1, ..., Dn〉, 1 ≤ k < n,
where 〈D1, ..., Dk〉 ∈ F-Chain(C), Di+1 = Di ∧ ¬OS

Di
, Di 6= Di+1 for any

k ≤ i < n, and Dn = D.

For any C ∈ C\{⊥}, C′ ∈ F-Succ(C), let

– π : C∪{⊥} → [Prop\L δ
PL] be a function that associates a unique proposition

letter not occurring in δ with each element of C ∪ {⊥},

– φ(C, C′) = π(C′) ∧
∧
{¬π(C′′) | C′′ ∈ F-Succ(C), C′ 6= C′′},

– σ(C) =
∧
{¬π(C′) | C′ ∈ F-Succ(C)}.

For any C ∈ C ∪ {⊥} \ {⊤}, 〈C1, ..., Cn〉 ∈ F-Chain(C), let

– iF [〈C1, ..., Cn〉] = ¬ C ∧
∧n−1

i=1 φ(Ci, Ci+1).

For any C ∈ C, 〈D1, ..., Dk, Dk+1, ..., Dn〉 ∈ S-Chain(C, D), Dk = C, let

– iS [〈D1, ..., Dk, Dk+1, ..., Dn〉] = ¬D ∧

{
σ(C) ∧

∧k−1
i=1 φ(Ci, Ci+1) if C 6= ⊤,

σ(C) otherwise.

Let IF be the set of all such iF [〈C1, ..., Cn〉], and likewise IS be the set of all such
iS [〈D1, ..., Dk, Dk+1, ..., Dn〉]. Then finally I = IF ∪ IS.

The definition provides the construction of the canonical set I to make all of ∆
true. F-Succ(C) is the set of immediate ‘contrary-to-duty’ successors C′ of C, i.e.
∃O ∈ OF

C with C′ = C ∧ ¬O. (D2) showed each C ∈ C to be such a successor of
(a successor of ...) ⊤, and F-Chain(C) is the set of all such chains beginning with
⊤ and ending with C. φ is used to make any two iF [ch(C′)], iF [ch(C′′)], C′ 6= C′′

being successors of (successors of...) C, inconsistent with each other and with
any iS [ch(C, D)] via σ. Since C is finite, so is the number of proposition letters
introduced by π, IF , IS and I. – Regarding the sequences used to construct I,
I use ch(C) for 〈D1, ..., Dn〉 ∈ F-Chain(C) with C ∈ C ∪ {⊥} \ {⊤}, ch(C, D) for
〈D1, ..., Dn〉 ∈ S-Chain(C, D) with C ∈ C, D ∈ r(L δ

PL), and ch, ch′ etc. for any
sequence for which either holds. – We obtain:

(E1) For all ch=〈D1, ..., Dn〉, ⊢PL Di+1 → Di and 0PL Di → Di+1, 1 ≤ i < n.

(E2) If {iF [ch(C)], iF [ch(C′)]} 0PL ⊥, then ch(C) is a segment of ch(C′) or vice
versa.

(E3) If {iS [ch(C, D)], iS [ch(C′, D′)]} 0PL ⊥, then C = C′ and ch(C, D) is a
segment of ch(C′, D′) or vice versa.

(E4) If {iF [ch(C)], iS [ch(C′, D)]} 0PL ⊥, then ch(C) = 〈C1, ..., Ci〉 is a segment
of ch(C′, D) = 〈D1, ..., Dk, Dk+1, ..., Dn〉, where Dk = C′ and 1 ≤ i ≤ k <
n.

(E5) No iF [ch(C)] or iS [ch(C, D)] ∈ I is a contradiction.
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Proof. (E1) is immediate from (D4). (E2-4) are immediate from the definitions of
φ and σ. For (E5), first note that each i ∈ I consists of a r(L δ

PL)-conjunct and a
[LPL\L

δ
PL]-conjunct. Since no proposition letter occurring in one occurs in the

other, if i is a contradiction, then so must be one of its conjuncts. Regarding the
r(L δ

PL)-conjunct, for any iF [ch(C)] it is ¬C which must be consistent since C = ⊤
is excluded. For any iS [ch(C, D)] the r(L δ

PL)-conjunct is ¬D, and ch(C, D) =
〈D1, ..., Dn〉 with D1 = ⊤, Dn = D and n 6= 1, so by (E1) D = ⊤ is excluded. For
the [LPL\L

δ
PL]-conjunct of any iF [ch(C)], ch(C) = 〈C1, ..., Cn〉 ∈ F-Chain(C), it

is
∧n−1

i=1 φ(Ci, Ci+1), a conjunction of conjunctions of non-negated and negated
proposition letters, which cannot be a contradiction:

− No conjunct φ(Ci, Ci+1), 1 ≤ i < n, is a contradiction: For any C′ 6= C′′ ∈ C,
π(C′) 6= π(C′′), and no π(C′) occurs negated and non-negated in φ(Ci, Ci+1).

− If π(C′) occurs non-negated in φ(Ci, Ci+1) and negated in φ(Cj , Cj+1), i < j,
then C′ = Ci+1 and C′ ∈ F-Succ(Cj). So there is a ch(C′) ∈ F-Chain(C′),
ch(C′) = 〈C1, ..., Ci, C

′, ..., Cj , C
′〉, which violates (E1).

− If π(C′) occurs negated in φ(Ci, Ci+1) and non-negated in φ(Cj , Cj+1), i < j,
then C′ ∈ F-Succ(Ci) and C′ = Cj+1. ⊢PL Cj+1 → Ci+1, so ⊢PL C′ → Ci+1.
So there are O1,O2 ∈ OF

Ci
with C′ = Ci ∧ ¬O1, Ci+1 = Ci ∧ ¬O2, and ⊢PL

(Ci ∧ ¬O1) → (Ci ∧ ¬O2). Then ⊢PL O2 → (Ci → O1), and with (CExtF )
⊢PL O2 → O1. By minimality O2 = O1 and C′ = Ci+1, but φ(Ci, Ci+1) left
π(Ci+1) non-negated.

For the [LPL\L
δ
PL]-conjunct of iS [ch(C, D)], the case that π(C′) occurs non-

negated in φ(Ci, Ci+1) and negated in σ(C) is done like the second case above.

For any B ∈ r(L δ
PL), I ′ ∈ I⊥¬B, I ′ 6= ∅:

(E6) there is some designated ix ∈ I ′, ix = iF [ch] or ix = iS [ch], such that for
all iF [ch′], iS [ch′] in I ′, ch is a segment of ch′,

(E7) the r(L δ
PL)-conjunct of ix PL-derives the r(L δ

PL)-conjunct of any i ∈ I ′,

(E8) ix is iF [ch] or iS [ch] with ch = 〈D1, ..., Dn〉 such that ⊢PL B → Dn−1.

Proof. (E6) is immediate from (E2-4) and finiteness of I ′. For (E7), the r(L δ
PL)-

conjunct of i is ¬Dn, where Dn is the last member of some ch = 〈D1, ..., Dn〉 such
that i = iF [ch] or i = iS [ch]. By (E6) the r(L δ

PL)-conjunct of ix is ¬Dk for some
1 ≤ k ≤ n, and by (E1) ⊢PL ¬Dk → ¬Dn. For (E8), note that Dn−1 exixts as
ch = 〈⊤〉 is excluded by the construction. If Dn−1 = ⊤, then ⊢PL B → Dn−1 is
trivial. Otherwise there must be some ch′ = 〈D1, ..., Dn−1〉 such that i∗(ch′) ∈ I,
∗ being F or S. By (E6), i∗(ch′) cannot be in I ′, though the r(L δ

PL)-conjunct
¬Dn−1 derives the r(L δ

PL)-conjunct ¬Dn of ix by (E1) and hence that of any
other i′ ∈ I ′ due to (E7), while its [LPL\L

δ
PL]-conjunct is derived by that of ix.

So it must be that {¬Dn−1} ∪ {B} ⊢PL ⊥, and ⊢PL B → Dn−1.

Lemma 1 (Coincidence Lemma). For all A,B ∈ r(L δ
PL):

I |= OF (A/B) iff OF (A/B) ∈ ∆
I |= OS(A/B) iff OF (A/B) ∈ ∆



Conflicting Imperatives 19

Proof. Coincidence for OF :

Right-to-Left: Assume OF (A/B) ∈ ∆, so some OB ∈ OF
B derives A. By (C6)

⊢PL ((CB → OCB
) ∧ B) ↔ OB for some CB ∈ C, OCB

∈ OF
CB

. By (D2),

CB ∧ ¬OCB
∈ C ∪ {⊥}, so iF [ch] ∈ I for some ch ∈ F-Chain(CB ∧ ¬OCB

).
If {iF [ch]} PL-derives ¬B, only its r(L δ

PL)-conjunct CB → OCB
can be rel-

evant, since the [LPL\L
δ
PL]-conjunct is consistent (E5) and has no propo-

sition letter in common with ¬B. If {CB → OCB
, B} ⊢PL ⊥, then OB = ⊥

which contradicts PF (⊤/B) ∈ ∆ by (DPF ) and DDL{F,S}-consistency of
∆. So {iF [ch]} 0PL ¬B, so for some I ′ ∈ I⊥¬B: I ′ ∪ {B} ⊢PL CB → OCB

,
hence I ′ ∪ {B} ⊢PL A.

Left-to-Right: Assume OF (A/B) /∈ ∆, so PF (A/B) ∈ ∆ and for r.a.a. suppose
∃I ′ ∈ I⊥¬B: I ′ ∪ {B} ⊢PL ¬A. Suppose I ′ 6= ∅, so let ix be the designated
member of I ′ and ¬D its r(L δ

PL)-conjunct. Then {¬D} ∪ {B} ⊢PL ¬A
as the r(L δ

PL)-conjuncts of any i ∈ I are PL-derived by ¬D (E7), and the
[LPL\L

δ
PL]-conjuncts are not relevant for a derivation of ¬A ∈ r(L δ

PL). ix is
iF [ch] or iS [ch] for some ch = 〈D1, ..., Dn〉 with ¬D = ¬Dn = (Dn−1 → O),
O ∈ OF

Dn−1
∪ {OS

Dn−1
}. So {O} ⊢PL B → ¬A, so OF (B → ¬A/Dn−1) ∈

∆ or OS(B → ¬A/Dn−1) ∈ ∆ by (B1), (B2). From PF (A/B) ∈ ∆ we
get PF (¬(B → ¬A)/B) ∈ ∆ with (CExtF ). By (E8) ⊢PL B → Dn−1, so
with (FH+F ) or (FH+SSF ) we obtain OF ((B → ¬A) ∧ ¬B/Dn−1) ∈ ∆ or
OS((B → ¬A) ∧ ¬B/Dn−1) ∈ ∆ respectively. But then ⊢ O → ¬B follows
from minimality of O. So {B} ⊢PL Dn−1 ∧ ¬O, i.e. {B} ⊢PL D, and since
{ix} ⊢PL ¬D we get ix /∈ I ′. So there is no designated member of I ′, so by
(E6) I ′ = ∅. Then {B} ⊢PL ¬A. With PF (A/B) ∈ ∆ and (CExtF ) we get
PF (⊥/B), so by (DN-RF ) B = ⊥ and I⊥¬B = ∅, completing the r.a.a.

Coincidence for OS :

Right-to-Left: Assume OS(A/B) ∈ ∆ and for r.a.a. suppose that there is some
I ′ ∈ I⊥¬B, : I ′ ∪ {B} 0PL A. Assume I ′ 6= ∅, so let ix be the designated
member of I ′, and ¬D its r(L δ

PL)-conjunct. ix is iF [ch] or iS [ch] for some
ch = 〈D1, ..., Dn〉 with ¬D = ¬Dn = (Dn−1 → O). Either O ∈ OF

Dn−1
,

then ⊢PL O → OS
Dn−1

follows from (DCSF ), or trivially if O = OS
Dn−1

. By

(E8) ⊢PL B → Dn−1, so by (CondS) ⊢PL OS
Dn−1

→ (B → OS
B), and also

I ′ ∪ {B} ⊢PL O. Chaining the results, we get I ′ ∪ {B} ⊢PL OS
B , and I ′ ∪

{B} ⊢PL A by definition of OS
B , contrary to what was assumed. So I ′ = ∅.

For any B ∈ r(L δ
PL), B 6= ⊥, we have iS [ch(CB , (CB ∧¬OS

CB
))] ∈ IS by (C4)

and definition of IS . If I ′ = ∅, then {iS [ch(CB , (CB∧¬OS
CB

))]}∪{B} ⊢PL ⊥,

and {CB → OS
CB

} ∪ {B} ⊢PL ⊥ since only the r(L δ
PL)-conjunct is relevant.

By (C4) we have ⊢PL B → CB , so {B ∧OS
CB

} ⊢PL ⊥, and by (C5) OS
B = ⊥.

From (DP-RS) we get B = ⊥, so I⊥¬B = ∅, which completes the r.a.a.
Left-to-Right: Assume OS(A/B) /∈ ∆. B 6= ⊥ due to (DNS) and (CExtS), so

iS [ch(CB , (CB ∧¬OS
CB

))] ∈ I ′ for some I ′ ∈ I⊥¬B (otherwise again B = ⊥).

If iF [ch(C′)] ∈ I ′, then ch(C′) is a segment of ch(CB , (CB∧¬OS
CB

)) by (E4), so

⊢PL ¬C ′ → ¬CB and as ⊢PL B → CB also ⊢PL ¬C ′ → ¬B. So iF [ch(C′)] /∈
I ′ and I ′ ∩ IF = ∅. If iS [ch(C′, D′)] ∈ I ′, then ch(CB , (CB ∧ ¬OS

CB
)) is

a segment of ch(C′, D′) by (E3), so its r(L δ
PL)-conjunct ¬D′ is derived by
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that of iS [ch(CB , (CB∧¬OS
CB

))]. The [LPL\L
δ
PL]-conjuncts are not relevant,

so if I ′ ∪B ⊢PL A, then {CB → OS
CB

)}∪{B} ⊢PL A. Since ⊢PL B → CB , by

(C4) then {B ∧OS
CB

)} ⊢PL A, and by (C5) ⊢PL OS
B → A, so OS(A/B) ∈ ∆

by (B1), contrary to the assumption. So I ′ ∪ B 0PL A, so not for all I ′ ∈
I⊥¬B : I ′ ∪ {B} ⊢PL A, so I |= OS(A/B) is false.

6 A Link to Multiplex Preference Semantics

In the preceding section, the completeness theorem was proved by identifying a
multiple system of spheres. This multiple system of spheres can just as well be
used to construct a multitude of preference relations, which – as originated with
Goble [13], [14] – can then in turn be used to define the deontic operators: let
P be a non-empty set of preference relations P ⊆ B × B such that each P is
transitive, connected, and satisfies the ‘limit assumption’ :

(LA) If ‖A‖ 6= ∅ then bestP (‖A‖) 6= ∅

where bestP (‖A‖) = {v ∈ ‖A‖ | ∀v′ ∈ ‖A‖ : vPv′}. For Hansson-type operators,

let L
DDL{F+,S} be like LDDL{F,S} except that OF+

replaces OF , and let the
truth definitions for the deontic operators read:

P |= OF+

(A/C) iff ∃P ∈ P : bestP (‖C‖) ⊆ ‖A‖
P |= OS(A/C) iff ∀P ∈ P : bestP (‖C‖) ⊆ ‖A‖

Likewise, for Lewis-type operators, let L
DDL{F,S−} be like LDDL{F,S} except

that OS−

replaces OS , and the truth definitions now read:

P |= OF (A/C) iff ∃P ∈ P : ∃v ∈ ‖C ∧ A‖) : ∀v′ ∈ ‖C ∧ ¬A‖ : not v′Pv

P |= OS−

(A/C) iff ∀P ∈ P : ∃v ∈ ‖C ∧ A‖) : ∀v′ ∈ ‖C ∧ ¬A‖ : not v′Pv

The axiomatic system DDL{F+,S} is like DDL{F,S} except that (DNF ) replaces

(DN-RF )and (DP-RF ) replaces (DPF ). Similarly, DDL{F,S−} is like DDL{F,S}

except that (DN-RS) replaces (DNS) and (DPS) replaces (DP-RS). So all sys-
tems only differ on the ‘mind-boggling’ [29] question whether everything or

nothing is obligatory in impossible circumstances. DDL{F+,S} and DDL{F,S−}

are sound (cf. [14], also Arrow’s axiom: if bestP (‖C ∨ D‖) ∩ ‖C‖ 6= ∅, then
bestP (‖C‖) = bestP (‖C ∨ D‖) ∩ ‖C‖, is helpful). I have no counterexample to
compactness, so the semantics might just be compact. Weak completeness is eas-
ily obtained from the previous constructions, but seems not to have been stated
before, so I shall give the proof in full.

Theorem 5 (Completeness of DDL
{F+,S} and DDL

{F,S−}).

The systems DDL{F+,S} and DDL{F,S−} are weakly complete with respect to the
above multiplex preference semantics.

Proof. In proving DDL{F,S}-completeness, up till the coincidence lemma no use
was made use of unrestricted (DPF ) and (DNS) missing in DDL{F+,S} and

DDL{F,S−} respectively. So we can reuse and continue that construction with all
pertaining lemmas in the canonical construction for DDL{F+,S} and DDL{F,S−},
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with the implicit understanding that for DDL{F+,S} the index meant is F+

rather than F , and for DDL{F,S−} the index meant is S− instead of S.

Let F-Chain(⊥), S-Chain(C,⊥), be defined as before, C ∈ C. We only consider
ch = 〈D1, ..., Dn〉 that are in such a set. Let Och

Di
= Di∧¬Di+1, for any 1 ≤ i < n.

Note that Di+1 = Di∧¬O for some O ∈ OF
Di

∪{OS
Di

}, and ⊢ O → Di by (CExt∗),

so ⊢PL Och
Di

↔ O. For any 1 ≤ i < j ≤ n:

(S1) ‖Dj‖ ⊆ ‖Di‖

(S2) ‖Dj‖ ∩ ‖Och
Di

‖ = ∅ (and ‖Och
Dj

‖ ∩ ‖Och
Di

‖ = ∅ with CExt∗, j 6= n)

(S3) n 6= ∞

(S4) ‖Och
D1

‖ ∪ ... ∪ ‖Och
Dn−1

‖ = B

Proof. (S1) and (S2) are immediate from (E1) and the definition of ch. n is
finite (S3) since r(L δ

PL) is finite and repetitions in ch are excluded. For (S4),
B\‖Och

D1
‖ ∪ ... ∪ ‖Och

Dn
‖ = ‖Dn−1 ∧ ¬Och

Dn−1
‖ = ‖Dn−1 ∧ (Dn−1 → Dn)‖, and

Dn = ⊥ by definition.

For any ch = 〈D1, ..., Dn〉, v, v′ ∈ B, let Pch be such that

vPchv′ iff v ∈ ‖Och
Di

‖, v′ ∈ ‖Och
Dj

‖, i ≤ j < n

By (S2) and (S4), each v must belong to exactly one sphere. The index of each
Ci is transitive and connected, so Pch is as well. LA holds due to (S3) and (S4).

Let ch = 〈D1, ..., Dn〉 be as described above. Let Di be its “smallest A-permitting
sphere”, i.e. a Di with ‖Och

Di
‖∩‖A‖ 6= ∅ and ∀j, 1 ≤ j < i < n: ‖Och

Dj
‖∩‖A‖ = ∅

(we write DA for Di). We then obtain, for any ch and A 6= ⊥:

(S5) There is a DA ∈ ch,

(S6) ‖A‖ ⊆ ‖DA‖, and

(S7) bestPch
(‖A‖) = ‖Och

DA
‖ ∩ ‖A‖.

Proof. (S5) is immediate from (S1), (S4) and D1 = ⊤. For (S6) let DA =
Di ∈ ch, 1 ≤ i < n: If ‖A‖ * ‖DA‖, then A ∧ ¬DA 6= ⊥, so by (S5) there
is a DA∧¬DA

= Dj ∈ ch. If DA = DA∧¬DA
, then ‖Och

DA
‖ = ‖Och

DA∧¬DA
‖, by

construction ⊢PL Och
DA

→ DA, so ‖Och
DA∧¬DA

‖∩ ‖A∧¬DA‖ = ∅ contrary to the

definition of DA∧¬DA
. If i < j, then ‖DA∧¬DA

‖ ⊆ ‖DA‖, but then ‖DA∧¬DA
‖∩

‖A ∧ ¬DA‖ = ∅ and again ‖Och
DA∧¬DA

‖ ∩ ‖A ∧ ¬DA‖ = ∅. So j < i, but then

‖Och
DA

‖∩‖A∧¬DA‖ 6= ∅ implies ‖Och
DA

‖∩‖A‖ 6= ∅, so DA was not the smallest

A-permitting sphere. (S7) then follows from the definitions of Och
DA

and Pch.

Finally, let
P = { Pch | ch ∈ F-Chain(⊥) ∪

⋃

C∈C

S-Chain(C,⊥) }

Note that P 6= ∅: by (D1) ⊤ ∈ C, so even if ⊤ ∧O⊤ = ⊥ for all O ∈ OF
⊤ ∪ OS

⊤,
then 〈⊤,⊥〉 ∈ F-Chain(⊥), 〈⊤,⊥〉 ∈ S-Chain(⊤,⊥), hence P〈⊤,⊥〉 = B×B ∈ P.
So P is as required.

The next lemma holds for all A ∈ r(L δ
PL), A 6= ⊥ and P ∈ P and saves us from

having to do separate proofs for the two systems:
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(S8) bestP (‖A‖) ⊆ ‖B‖ iff ∃v ∈ ‖A ∧ B‖ : ∀v′ ∈ ‖A ∧ ¬B‖ : not v′Pv.

Proof : Assume bestP (‖A‖) ⊆ ‖B‖: A 6= ⊥, so bestP (‖A‖) 6= ∅ due to (LA). So
∃v ∈ bestP (‖A‖) s.t. v ∈ ‖A ∧ B‖. Suppose v′Pv for some v′ ∈ ‖A ∧ ¬B‖: so
v′ ∈ ‖A‖ and v′ ∈ bestP (‖A‖) by transitivity of P and definition of best. But then
bestP (‖A‖)∩‖¬B‖ 6= ∅, contradicting the assumption. Assume ∃v ∈ ‖A∧B‖) :
∀v′ ∈ ‖A∧¬B‖ : not v′Pv, and for r.a.a. suppose that bestP (‖A‖)∩ ‖¬B‖ 6= ∅:
So ∃v′ ∈ bestP (‖A‖) ∩ ‖¬B‖. Then v′ ∈ ‖A ∧ ¬B‖ by definition of best, and not
v′Pv, as assumed. But v ∈ ‖A ∧ B‖, so v ∈ ‖A‖, so since v′ ∈ bestP (‖A‖) we
have v′Pv by definition of best, which completes the r.a.a.

Lemma 2 (Coincidence Lemma). For all A,B ∈ r(L δ
PL):

P |= OF (A/B) iff OF (A/B) ∈ ∆
P |= OS(A/B) iff OF (A/B) ∈ ∆

Proof. Coincidence for OF :

Case B = ⊥: If B = ⊥, then in the case of DDL{F+,S}, OF+(⊤/⊥) ∈ ∆ holds

due to (DNF+

), so OF+

(A/⊥) ∈ ∆ due to (CExtF+

). Also, if B = ⊥, then
for any P ∈ P, bestP (‖B‖) = ∅. P 6= ∅, so ∃P ∈ P : bestP (‖B‖) ⊆ ‖A‖ holds
for any A, and both sides of the iff-clause are true, and so is the iff-clause. –
In the case of DDL{F,S−}, if B = ⊥, then PF (⊤/⊥) ∈ ∆ due to (DPF ), so
PF (¬A/⊥) ∈ ∆ due to (CExtF ), and so by definition of ∆, OF (A/⊥) /∈ ∆.
Also, if B = ⊥, then ‖A ∧ B‖ = ∅, so for any P it is false that there is
some v ∈ ‖A∧B‖ such that ∀v′ ∈ ‖A∧¬B‖ : not v′Pv. So both sides of the
iff-clause are false, and the iff-clause true.

Case B 6= ⊥: Right-to-left: OF (A/B) ∈ ∆, so ∃OB ∈ OF
B : ⊢PL OB → A, so

by (C6) ∃OCB
∈ OF

CB
: OCB

∧ B = OB . Since CB ∈ C, there is a ch ∈
F-Chain(⊥) such that ch = 〈D1, ..., Di, Di+1, ..., Dn〉, 1 ≤ i < n, D1 = ⊤,
Di = CB , Di+1 = C∧¬OCB

, and Dn = ⊥. By definition Och
Di

= OCB
. For any

1 ≤ j < i, ‖Och
Dj

‖ ∩ ‖CB‖ = ∅ due to (S2), so also ‖Och
Dj

‖ ∩ ‖B‖ = ∅, and

‖Och
Di

‖∩‖B‖ 6= ∅, for otherwise OCB
∧B = ⊥ = OB , by (B2) OF (⊥/B) ∈ ∆,

and by (DP-RF ) B = ⊥, contrary to what was assumed. So Di = DB , and
bestPch

(‖B‖) = ‖Och
DB

‖∩‖B‖ = ‖OCB
∧B‖ = ‖OB‖, and so bestPch

(‖B‖) ⊆

‖A‖ and by (S8) P |= OF (A/B).

Left-to-right: Suppose P |= OF (A/B), so ∃P ∈ P : bestP (‖B‖) ⊆ ‖A‖ by
(S8). By construction there is some ch = 〈D1, ..., Dn〉 such that P = Pch,
ch ∈ F-Chain(⊥) or ch ∈ S-Chain(C,⊥) for some C ∈ C. As B 6= ⊥, by (S5)
there is some ‘smallest B-permitting sphere’ DB in ch, with bestP (‖B‖) =
‖Och

DB
‖∩‖B‖ and ‖Och

DB
‖∩‖B‖ 6= ∅. Either DB ∈ C and Och

DB
∈ OF

DB
: then

{DB → Och
DB

} 0PL ¬B, so OF (DB → Och
DB

/B) ∈ ∆ by (C7), ⊢PL B → DB

by (S6), so OF (Och
DB

∧ B/B) ∈ ∆ with (CExtF ) and OF (A/B) ∈ ∆ by

(RWF ). Or Och
DB

= OS
DB

, so OS(Och
DB

/DB) ∈ ∆, and OS(B → A/DB) ∈ ∆

by (RWS). Assume OF (A/B) /∈ ∆, then PF (¬A/B) ∈ ∆ by definition of ∆,
so PF (¬(B → A)/B) ∈ ∆ by (CExtF ), and so with (FH+SSF ) we obtain
OS((B → A) ∧ ¬B/DB) ∈ ∆, so by definition ⊢PL OS

DA
→ ¬B, but then

‖Och
DA

‖ ∩ ‖B‖ = ∅, contrary to what was assumed. So OF (A/B) ∈ ∆.
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Coincidence for OS :

Case B = ⊥: If B = ⊥, then in the case of DDL{F+,S}, OS(⊤/⊥) ∈ ∆ holds
due to (DNS), so OS(A/⊥) ∈ ∆ due to (CExtS). Also, if B = ⊥, then for
any P ∈ P, bestP (‖B‖) = ∅, so for all P ∈ P : bestP (‖B‖) ⊆ ‖A‖ holds
for any A, and both sides of the iff-clause are true, as is the iff-clause. – In
the case of DDL{F,S−}, if B = ⊥, then PS(⊤/⊥) ∈ ∆ due to (DPS), so
PS(¬A/⊥) ∈ ∆ due to (CExtS), and by definition of ∆, OS(A/⊥) /∈ ∆.
Also, if B = ⊥, then ‖A ∧ B‖ = ∅, and since P 6= ∅ there is some P for
which it is false that ∃v ∈ ‖A ∧ B‖ : ∀v′ ∈ ‖A ∧ ¬B‖ : not v′Pv, so it is not
true for all P . So both sides of the iff-clause are false, and the clause true.

Case B 6= ⊥: Right-to-left: Assume OS(A/B) ∈ ∆, and for r.a.a. P 2 OS(A/B),
so by (S8) ∃P ∈ P: bestP (‖B‖) ∩ ‖¬A‖ 6= ∅. By construction there is
some ch = 〈D1, ..., Dn〉 such that P = Pch, ch ∈ F-Chain(⊥) or ch ∈
S-Chain(C,⊥) for some C ∈ C. Since B 6= ⊥, by (S5) there is some ‘small-
est B-permitting sphere’ DB in ch, with bestP (‖B‖) = ‖Och

DB
‖ ∩ ‖B‖ and

‖Och
DB

‖ ∩ ‖B‖ 6= ∅. Either DB ∈ C and Och
DB

∈ OF
DB

, or Och
DB

= OS
DB

: In

both cases, since ⊢PL B → DB by (S6), we have OS(B → A/DB) ∈ ∆ from
OS(A/B) ∈ ∆ and (CondS), and {Och

DB
} ⊢PL B → A either by (DCSF )

and minimality of Och
DB

∈ OF
DB

, or by definition of OS
DB

. So ‖Och
DB

‖∩‖B‖ =
bestP (‖B‖) ⊆ ‖A‖, which completes the r.a.a.

Left-to-right: Suppose P |= OS(A/B), OS(A/B) /∈ ∆, so PS(¬A/B) ∈ ∆.
B 6= ⊥, so CB ∈ C by (C4), so let ch = 〈D1, ..., Dn〉 be in S-Chain(CB ,⊥).
Then DB = CB : Suppose DB = Di and CB = Dj for j < i. By construction of
ch, Och

Dj
= OS

CB
, and OS

CB
∧B 6= ⊥ for otherwise OS

B = ⊥ by (C6), which with

(DP-RS) derives B = ⊥, but this was excluded. So ‖OS
CB

‖∩‖B‖ 6= ∅, so DB

is not the ‘smallest B-permitting sphere’. Suppose DB = Di and CB = Dj

for j > i, then ‖CB‖ ∩ ‖Och
DB

‖ = ∅ by (S2), as ⊢PL B → CB by (C4F ),

‖B‖ ∩ ‖Och
DB

} = ∅, and again DB is not the ‘smallest B-permitting sphere’.

So DB = CB and by construction of ch, Och
DB

= OS
CB

. Since PS(¬A/B) ∈ ∆,

0PL OS
B → A follows from (B1) and construction of ∆. With (C5), (S7) we

get ‖OS
B‖ = ‖OS

CB
∧B‖ = ‖Och

DB
‖∩ ‖B‖ = bestPch

(‖B‖). So bestPch
(‖B‖) *

‖¬A‖ and by (S8) P 2 OS(A/B), contradicting the assumption.

7 The Puzzle Is Still Incomplete

From a complete picture of dyadic deontic reasoning about conflicting impera-
tives, at least two pieces are still missing. The first is that an imperative itself
may be conditional in a way irreducible to a material implication in its con-
tent: e.g. if I’m to throw rice as the wedding party leaves the church, but Huey,
Dewey and Louie have stolen the bag, blocking the doors won’t garner me any
praise. It has been argued that such conditional imperatives have two associated
propositions, the antecedent and the consequent, and that obligations are only
‘triggered’, if the antecedents hold, thus providing the opportunity for norm sat-
isfaction or violation. Secondly, even though weighing out the relevant factors
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may not always produce an unequivocal result, imperatives can be ordered by
rank of the issuing authority or normative weight: e.g. finding the victim of an
accident on my way to a crucial appointment, it seems clear what my obligations
are and to not be the time for skeptical or credulous reasoning.

In an attempt to tackle these complexities, Horty [21] proposed the following
definition of the imperatives ‘binding’ in some circumstances A:

Binding(I ,<)(A) =def {i ∈ I | (1) i ∈ TriggeredI (A),

(2) there is no j ∈ TriggeredI (A) such that
(a) i < j, and
(b) {consequent(i), consequent(j)} ⊢BL ⊥ }

where TriggeredI (A) =def {i ∈ I | A ⊢BL antecedent(i)}, and < is some strict
partial order on I , i < j meaning that i ranks higher than j. The truth of the
(skeptical or credulous) dyadic deontic formula O∗(B/A) is then defined with
respect to the set of consequents of the imperatives in Binding(I ,<)(A).

Yet Horty’s proposal is problematic for several reasons. First, the triggering
condition does not capture all senses in which antecedents may hold. Consider
the situation (C ∨D) and let I = 〈C ⇒ A,D ⇒ A, !(¬A∧B)〉, where for short
A ⇒ B means the imperative with antecedent(A) and consequent(B), !(¬A∧B)
is the unconditional imperative ⊤ ⇒ (¬A∧B), and the sequence represents the
ordering <. Though we do not know which imperative overrides the weakest im-
perative !(¬A∧B), we know for sure that it is overridden in these circumstances
and so should not be included in Binding(I ,<)(C ∨D), but with Horty’s defini-
tion it is. I suggest that, for a better definition of the set TriggeredI (C ∨D), we
need an operation like Makinson and van der Torre’s [32] ‘basic output’, which
is expressly tailored to process such disjunctive inputs (triggering conditions) in-
telligibly. But directly applying their construction seems difficult, since it would
also close the set of the relevant imperatives’ consequents under consequences,
and this is hardly an option when conflicts are allowed.

Secondly, the inconsistency check seems both too rigid and not rigid enough.
For the latter, let I1 = 〈!(A∧¬B), !(B∧C)〉 and I2 = 〈!((A∧¬B)∨D), !¬D, !(B∧
C)〉: in both cases more important imperatives are in conflict with the weakest,
but it is rejected only in the first. For the former, let I = 〈C ⇒ ¬D,C ⇒ (B ∧
D)〉 and the situation be (C ∧D). C ⇒ (B ∧D)〉 is not in Binding(I ,<)(C ∧D),
its consequent contradicting that of a more important imperative. But this has
become unfulfillable, which intuitively clears the way for obligatoriness of B. For
a solution, I propose to leave inconsistency checks entirely to the (credulous or
skeptical) reasoning strategy defined via sets consistent with the circumstances
C: let each of these include a maximally C-consistent subset of the most impor-
tant triggered imperatives’ consequents, a maximal subset of the second most
important triggered imperatives’ consequents that can be C-consistently added
to the former, etc. This is the incremental maximizing employed for belief revi-
sion by Brewka [6] and Nebel [34] (to work, < must be well-founded). Drawing
on a parallel result by Rott ([37] th. 7), my conjecture is that as long as conflicts
between incomparable or equally important imperatives are allowed, the logic
for accordingly defined deontic operators will still be DDL{F,S}.
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Abstract. When a conflict of duties arises, a resolution is often sought by use of an ordering of

priority or importance. This paper examines how such a conflict resolution works, compares

mechanisms that have been proposed in the literature, and gives preference to one developed by

Brewka and Nebel. I distinguish between two cases – that some conflicts may remain unresolved,

and that a priority ordering can be determined that resolves all – and provide semantics and

axiomatic systems for accordingly defined dyadic deontic operators.

Keywords: deontic logic, logic of imperatives, priorities

1. Introduction

W. D. Ross (1930) argued that whenever there appears to be a conflict of

duties, through careful study of all aspects of the situation one will arrive

at the conclusion – or rather: the considered opinion – that one of these

duties is ‘‘more pressing’’ than others, and this duty is then one’s duty sans

phrase, whereas the others were prima facie only. Ross gives the following

example:

EXAMPLE (The road accident). ‘‘If I have promised to meet a friend at

a particular time for some trivial purpose, I should certainly think myself jus-

tified in breaking my engagement if by doing so I could prevent a serious

accident or bring relief to the victims of one.’’

There are two conflicting obligations: to keep the promise, and to prevent the

accident or help its victims. The second takes priority: it is in these circum-

stances ‘‘more of a duty’’ than keeping the appointment.

While in the example the determination of the priority ordering seems to

rely on a comparison of the outcomes of satisfying or violating the conflicting

duties under considerations of utility and possible harm, in the case of legal
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obligations or individual imperatives the ordering can often be directly

obtained from the norm’s position in a normative hierarchy or the rank of

the issuing authority. These factors may also relate to each other, e.g. when

the decision of a commander in the field overrules that of her superior due to

some unforeseen danger or opportunity. I will leave aside the question of

how a particular ordering is determined, and also not address Ross’s

notoriously problematic distinction between a prima facie duty and a duty

sans phrase. What interests me here is rather how a conflict resolution

based on (established) priorities works, i.e. what the resolution mechanism

looks like, or should look like, when an ordering of priority or importance

of possibly conflicting norms is assumed. Section 2 introduces the formal

framework and explains how it is used to define deontic operators. After

pointing out counterintuitive results of a conflict resolution based on a

method by Horty (2003), I show in Section 3 that a method developed for

the resolution of inconsistencies in prioritized theory bases by Brewka

(1989, 1991) and Nebel (1991, 1992) fares better (Section 3). A broader

comparison includes ordering based mechanisms by Alchourrón and

Makinson (1981), Gärdenfors (1984), Alchourrón (1986), and variants

(Section 4). Section 5 explores what a priority ordering must be like to

resolve all possible conflicts, and provides a sound and weakly complete

axiomatic system (which readers might find familiar) for a corresponding

dyadic deontic operator. All formal proofs are delegated to the Appendix.

Section 6 concludes.

2. Imperative semantics and deontic logic

When a conflict between norms is resolved by an appeal to some priority

ordering, I assume that what is thus conceived as ordered are the norms

themselves, though their ordering may reflect a ranking of their sources, or an

axiological order of the states realized when fulfilling the norms. So for a

logical analysis, some formal representation of norms is required. I only

consider unconditional imperatives,1 like ‘‘Invite Jones to dinner!’’, and I is a

set of such imperatives. To each imperative corresponds a descriptive sentence

like ‘‘You invite Jones to dinner,’’ which – grammatically similar, but in the

indicative, not the imperative mood – describes what must be the case if and

only if (iff) the imperative is satisfied. Any such descriptive sentence is as-

sumed to have a formalization in the language of a basic logic, which I let be

propositional logic PL.2 A function f : I ! LPL assigns every imperative in I

theLPL-formalization of its corresponding descriptive sentence, and the tuple

hI; f i is called a basic imperative structure. I write !A for an i in I with f (i)=A,

and use the superscripted i f;C f instead of fðiÞ; f ðCÞ for better readability. In
analogue to the usual concept of remainders, let IfA be the maximal sets of
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imperatives such that the sets of corresponding descriptive sentences do not

derive A (I also call these ‘‘A-remainders’’ of I), i.e. IfA contains all C � I

such that (i) Cf
0PL A and (ii) there is no D � I : C � D and D f

0PL A.

In the ‘imperativist tradition’ of deontic logic, authors used such

semantics to interpret deontic formulas, rather than employing the usual

possible worlds semantics.3 Let deontic formulas be those of a language

LDL, based on an alphabet like the one for LPL, except that it additionally

contains the operator symbol ‘O’, whereby OA formalizes the (true or false)

statement that what A describes is obligatory. LDL is then the smallest set

such that

(a) for all A 2 LPL;OA 2 LDL,

(b) if A;B 2 LDL, so are :A; ðA ^ BÞ; ðA _ BÞ; ðA ! BÞ; ðA $ BÞ.

Interpretations of Boolean operators being as usual, the truth definition

ðtd-1Þ hI; f i � OA iff I f ‘PL A:

defines a normal modal logic, i.e. the set of LDL-sentences defined as true for

all tuples hI; f i equals the axiomatically defined set that contains all LDL-

instances into tautologies, furthermore all LPL-instances into

ðExtÞ If ‘PL A $ B; then OA $ OB is in the set:

ðMÞ OðA ^ BÞ ! ðOA ^OBÞ

ðCÞ ðOA ^OBÞ ! OðA ^ BÞ

ðNÞ O>

and is closed under modus ponens. Furthermore, the above truth definition

defines standard deontic logic SDL, which adds the ‘‘deontic’’ scheme (D):

ðDÞ OA ! PA

iff hI; fi is required to be such that I f is consistent (as usual, PA abbre-

viates :O:A). Requiring I f to be consistent excludes conflicts between

imperatives and is thus a severe and in this case unwanted restriction, for to

show how conflicts are resolved they must first be semantically modeled.

But if e.g. two imperatives !p1 and !( p2 ^ :p1) can both be in I, then not

only does (D) fail, but also (td-1) is not very useful, making OA true for

any A 2 LPL. Instead, the following definition for a ‘‘disjunctive’’ ought

operator was put forward:
4

ðtd-2Þ hI; f i � OA iff 8C 2 If ? : Cf ‘PL A:

So OA is true when all maximally consistent subsets of what the imperatives

demand derive A. It is apparent that the definition tolerates conflicts and e.g.

if !p1 and !(p2 ^ :p1) are in I, then O(p1� p2), but not O^ is true. Moreover,
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this solution is easily adapted to the dyadic case and the related problem of

dilemmas. Dyadic deontic logic uses a language LDDL that employs the

additional auxiliary sign ‘‘/’’ and is likeLDL, except that clause (a) now reads

(a) for all A;C 2 LPL;OðA=CÞ 2 LDDL,

where O(A/C) is read as ‘‘A is obligatory in the circumstances characterized

by C’’. The truth definitions for dyadic deontic formulas should allow some

influence of the circumstances, so e.g. if John must either not impregnate

Suzy Mae or marry her, and she is in fact pregnant by him, then marrying her

seems to be what he must do. But simply putting

ðtd-3Þ hI; f i�OðA=CÞ iff I f [ fCg ‘PL A:

will not suffice if subjects can get (themselves) into dilemmas, i.e. situations

where the norms are collectively satisfiable at the outset, but due to misfor-

tune or failure they cannot all be satisfied anymore. To handle such situa-

tions, and to e.g. prevent the derivation of O(^/p1) when I contains

!ð:p1 _ p2Þ and !ð:p2 ^ p3Þ , the truth definition for a ‘‘disjunctive’’ dyadic

ought operator can be given as:

ðtd-4Þ hI; f i � OðA=CÞ iff 8C 2 If:C : Cf [ fCg ‘PL A:

So A is obligatory in the situation described by C if A is what the imperatives

in any :C-remainder demand, given C. With usual truth conditions for

Boolean operators, this semantics has a sound and (weakly) complete axiom

system PD defined as containing all LDDL-instances into tautologies, all

LPL-instances into

ðCExtÞ If ‘PL C ! ðA $ BÞ then ‘PD OðA=CÞ $ OðB=CÞ

ðExtCÞ If ‘PL C $ D then ‘PD OðA=CÞ $ OðA=DÞ

ðDMÞ OðA ^ B=CÞ ! ðOðA=CÞ ^OðB=CÞÞ

ðDCÞ OðA=CÞ ^OðB=CÞ ! OðA ^ B=CÞ

ðDNÞ Oð>=CÞ

ðDD-RÞ If 0PL:C then ‘PD OðA=CÞ ! PðA=CÞ

ðCondÞ OðA=C ^DÞ ! OðD ! A=CÞ

ðCCMonÞ OðA ^D=CÞ ! OðA=C ^DÞ

and closed under modus ponens.5 PD resembles the system P defined by

Kraus et al. (1990) with the (restricted) dyadic ‘‘deontic’’ scheme (DD-R)

added, hence the name.

For the present purposes, I define a prioritized imperative structure to be a

tuple hI; f; <i that is like a basic imperative structure, except that it addi-

tionally includes an ordering relation < on I, where the formal properties of

this relation are for the moment left open. Unfortunately, authors disagree
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on the direction in which ‘i1 < i2’ is to be read, if it means that i1 takes

priority over i2 (reading < like a preference relation), or that i1 is less

important than i2 (reading < like a utility function). I assume the former,

and adapt differing definitions to this convention, so e.g. a tuple

i1 < i2 < i3. . . is read like a list that starts with what is most important. For

any ordering < on some set C; I define min<C ¼ fi 2 C j 8i0 2 C : if i0 6¼ i,

then i0hig, so min<I is the set of the highest ranking, most important, etc.

imperatives, and max<C ¼ fi 2 C j 8i0 2 C : if i0 6¼ i, then ihi0g, so max<I are

the imperatives that come last, are least important, rank lowest, etc.

3. Reasoning with prioritized imperatives

As explained by Ross, in the case of a normative conflict one proceeds by

examining the situation for clues to an ordering of the obligations involved,

e.g. by considering the rank of the issuing authority, notions of urgency or a

gross difference in the utilities of the outcomes. The example of the road

accident illustrates that the disjunctive ought operator defined in the previous

section, which pays no attention to priorities, produces inadequate results:

EXAMPLE (The road accident: disjunctive reasoning). Let A be

helping the accident victims, B keeping the promise, and T a conjunction of

actual necessities, including the agent’s present physical and psychical capa-

bilities (I write for :T ). An imperative interpretation produces I={!A, !B}

and ‘PL T ! ðA ! :BÞ as helping causes me to miss the meeting. so

(td-1) makes O true and the impossible obligatory, so it is not very useful.

so (td-4) makes O(A�B/T) true but O(A/T) false, as

fB;Tg0PLA. So there is only a disjunctive obligation to help or proceed to the

meeting. But intuitively, helping takes priority over anything else.

The situation looks like a conflict: there exist requirements which cannot

all be satisfied. But the conflict is avoided by (so far intuitively) giving

priority to the norm of greater weight. Note that if symmetrical or incom-

parable obligations are not ruled out, then a demand that takes priority can

not only dissolve a dilemma, but also create a conflict for an otherwise

conflict-free situation:

EXAMPLE (The road accident II). It is Tuesday afternoon, and like on

all Tuesdays, Mirjam must fetch her grandmother from the day care center

before it closes at 6:30. Today, Mirjam was also asked by her boss to bring the

office mail to the post office after hours, which also closes at 6:30, but lies in the

opposite direction. However, when she told of her other duty, she was allowed

to leave early. Driving at 5:30 in the direction of the post office, Mirjam
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becomes involved in a traffic accident. The law requires her to stay at the

accident site until the police have recorded it, which won’t happen before 6:00.

Then she can only get to one place, the post office or the day care center, on

time. The law takes priority over her other duties, but a ranking of these is not

obvious; in particular it is difficult to say which violation could have worse

consequences, and Mirjam will have a hard time making up her mind.

To formalize the reasoning about priorities when faced with conflicting

demands, Horty (2003) proposed that the priority ordering is used to first

determine a set of ‘‘binding imperatives’’ in the set of all imperatives:

DEFINITION 1 (Binding imperatives). Let hI; f; <i be a prioritized

imperative structure. Then

So an imperative is ‘‘binding’’ if there is no higher ranking imperative with a

materially inconsistent demand (cf. Horty 2003, p. 560). If it is also higher-

ranking than any such imperative, Horty calls it ‘‘overriding’’. Binding,

instead of I, is then used to define a disjunctive dyadic ought operator:

ðtd-5Þ hI; f;<i � OðA=CÞ iff 8C 2 Bindingf:C : Cf [ fCg ‘PL A

I examine how this definition6 copes with the examples and variants:

EXAMPLE (The road accident: Horty’s solution). A is helping the

accident victims, and B keeping the promise. So I={!A, !B} models the logical

situation, where ‘PL T ! ðA ! :BÞ, as the situation excludes both helping at

the accident site and meeting my friend. The ordering is !A < !B, so !A over-

rides !B and Binding = {!A}. (td-5) makes OðA=TÞ;Oð:B=TÞ and Pð:B=TÞ
true, so helping is obligatory, keeping the appointment forbidden, and not

keeping the appointment permitted, which is as it should be.

EXAMPLE (The road accident II: Horty’s solution). Let A be

Mirjam’s staying at the accident site, B taking her boss’s mail to the post

office, and C fetching her grandmother from the day care center. I={!A, !B, !C}

is the logical model of the normative situation. Mirjam left early enough

to get to both the post office and the day care center in time, so

0PLT ! ðB ! :CÞ, but ‘PL T ! ðA ! :ðB ^ CÞÞ as waiting excludes her

accomplishing both. The legal obligation takes priority, so !A < !B and

!A < !C, while the ranking between !B and !C unclear. Binding = I, as the

truth of A only excludes satisfying both !B and !C, but getting to one place

remains possible. Binding f

T

¼ ff!A; !Bg; f!A; !Cg; f!B; !Cgg, (td-5) making
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OðA=TÞ false as fT;B;Cg0PL A, and only OððA ^ ðB _ CÞÞ _ ðB ^ CÞ=TÞ
true, so it seems Mirjam can choose to wait or go on driving to her destinations,

which is counterintuitive.

EXAMPLE (The road accident III, with Horty’s solution).
Things are as in variant II, but suppose some grave danger arises fromMirjam’s

not being at the day care center before it closes, as the disturbed old lady will

wander off on her own and may fall or get lost. Hence, fetching her is much

more urgent than posting the letters, of which the important ones were very

likely faxed beforehand. Fetching her grandma may be even more important

than waiting for the police, but Mirjam is not sure about that and can do both

anyway. So beside !A < !B we have !C < !B, with the ranking between !A and

!C unclear. Intuitively, Mirjam must stay until the police are finished and then

fetch her grandma. But as it is two higher-ranking imperatives that exclude, if

satisfied, the satisfaction of the lower-ranking one, still Binding = {!A, !B,

!C}=I, making OðA=TÞ false and even PðB ^ :C=TÞ true even though !C ranks

higher than !B.

EXAMPLE (The road accident IV, with Horty’s solution).
Mirjamdid not dare askher boss for permission to leave early, sneakingout at 5:45

instead, but thatwas too late to get to both places in time, i.e.‘PL T ! ðC ! :BÞ.
Again, Mirjam gets involved in a traffic accident and is required to wait for the

police. Fetching her grandmother takes priority over posting the mail, so I={!A,

!B, !C}, !C < !B and !A < !B. Imagine the accident left her car a wreck,

making it impossible to get to the day care center in time, but when the police

finish around 6:15 she can still get to the post office. Let S be this situation

(including T), so ‘PL S ! :C. Binding = {!A, !C}, as !B is not reinstated

when satisfying !C is excluded, so Binding f:S ¼ ff!Agg, making Pð:B=SÞ
true. But it is hard to see why Mirjam should not have to post the letters.

EXAMPLE (The road accident V, with Horty’s solution). As in
variant IV, Mirjam left too late to make it to both the post office and the day

care center on time, so ‘PL T ! ðC ! :BÞ. Again, fetching grandma takes

priority over posting the letters, i.e. !C< !B. Suppose it is not the damage, but

the time required by the police that makes it impossible to get to the day care

center on time (it is too far from the accident site, while the post office is just a

block away), so ‘PL T ! ðA ! :CÞ. Making up her mind, Mirjam decides

that the legal obligation to wait for the police probably takes priority over her

familial duty, i.e. !A < !C < !B. Both !B and !C are overridden by higher

ranking imperatives and so are not in Binding f:S ¼ ff!Agg, making

Pð:B=SÞ true. But again it is hard to see why Mirjam is relieved from posting

the letters.
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Thus Horty’s set Binding solves simple cases, but is not adequate for

complex hierarchies wheremore than two imperativesmay be in conflict, and it

makes life too easy when conflicting higher ranking imperatives become un-

fulfillable or are themselves overridden.7 To overcome these difficulties when

formalizing that disregard for a lower ranking imperative can (only) be excused

by obedience to higher-ranking ones (and not vice versa), I suggest that neither

remainder sets of I, nor of a fixed subset Binding, but an ‘‘incremental’’ max-

imizing strategy should be used. For a situation C, the relevant sets are con-

structed by first adding a maximal set of the most important imperatives such

that their demands do not derive :C, then adding a maximal subset of the

second most important imperatives that can be added without the corre-

sponding demands now deriving :C, etc. Introduced by Rescher (1964, p. 50),

such incremental maximizing was more rigorously defined and employed for

the purpose of theory revision by Brewka (1989, 1991) andNebel (1991, 1992).

Both employ a strict partial order, i.e. < is irreflexive and transitive. Nebel

additionally assumes < to be the asymmetric part of a complete preorder £,

i.e. obtained from a reflexive, transitive and connected ordering £ via defining

i<j iff i £ j and j 6� i. Both agree that < must be well-founded, i.e. infinite

descending chains are excluded.8 For any <, Brewka defines a full prioritiza-

tion� to be any (strict) well-order on the given set that preserves<, i.e. for all i,

j: if i< j then i � j. Clearly:

THEOREM 1 (Existence of full prioritizations). For every well-

founded strict partial order < on a set C there is a full prioritization �, i.e. a

strict well-order that is order-preserving with respect to <.

Brewka then defines subsets of the set as ‘preferred subtheories’. Calling

them preferred remainders (they are not theories here), his definition trans-

lates thus:9

DEFINITION 2 (Brewka’s preferred remainders). Let hI; f; <i be a
prioritized imperative structure, where < is a well-founded strict partial order

on I. Then C � I belongs to the preferred remainder set I + A iff (i) Cf
0PLA,

and (ii) C is obtained from a full prioritization � by defining

SA
½�#i� ¼

S

j�i S
A
½�#j� [ fig if ½

S

j�i S
A
½�#j��

f [ fif g0PL A, and
S

j�i S
A
½�#j� otherwise,

(

for any i 2 I, and letting SA
� ¼

S

i2I S
A
½�#i� and C ¼ SA

�.

(i) bans the empty set from I + A for tautological A, and (ii) recursively

defines S½�#i� to include all elements of some such set for a prior element j,

adding i if possible without the corresponding set deriving A. C is the union
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of all such sets. I drop superscripts if the meaning is clear. The following is

almost immediate:

THEOREM 2 (Preferred remainders are remainders). Let hI; f; <i
be a prioritized imperative structure, where < is a well-founded strict partial

order on I. Then I + A � IfA.

As noted, Nebel’s (1992) approach defines < as the asymmetric part of a

complete, well-founded preorder £. For each i 2 I, the priority class

[i ]={j 2 I | i £ j and j £ i} contains all j 2 I of the same £-priority as i. A

preference-ordering�N between all subsets D;C of I is then defined by letting

D �N C iff 9i 2 I : 8j < i : C \ ½ j� ¼ D \ ½ j� and C \ ½ i� � D \ ½i�

i.e. by preferring D over C iff both agree for all priority classes up to some [i],

of which D contains all elements of C plus more. Then choosing a maximally

�N-preferred set among all C � I with Cf
0PLA equals choosing from I + A:

THEOREM 3 (Nebel’s prioritized removals). Let hI; f; <i be a

prioritized imperative structure, where < is the asymmetric part of a complete,

well-founded preorder £ on I. Then I + A equals

fC � I j Cf
0PLA and 8D � I : ifD �N C then D f ‘PL Ag:

There is an alternative, non-constructive definition of Brewka’s pre-

ferred remainders, attributed to Ryan (1992) by Rintanen (1994) and also

appearing in Sakama and Inoue (1996): Let hI; f; <i be a prioritized imper-

ative structure, where < is a well-founded strict partial order on I, and define

p ðIfAÞ to be the set

fC 2 IfA j 9 �: 8D 2 IfA n fCg : 9i 2 C n D : 8j 2 D n C : i � jg:

So some A-remainder C is in p ðIfAÞ iff for some full prioritization �;C
contains for any other A-remainder D some exclusive element that �-ranks

higher than any element exclusively in D. The following holds.

THEOREM 4 (Preferred remainders, after Ryan and Sakama &
Inoue). Let hI; f; <i be a prioritized imperative structure, < a well-founded

strict partial order on I and I + A and pðIfAÞ be as defined. Then

I + A ¼ pðIfAÞ.

Proposing use of Brewka’s and Nebel’s concept of preferred remainders,

based on some strict partial, well-founded ordering <, as the resolution

mechanism for conflicts between imperatives or dilemmas that arise in certain

situations, a disjunctive ought operator can be defined parallel to (td-4) as

follows:
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ðtd-6Þ I � OðA=CÞ iff 8C 2 I + :C : Cf [ fCg ‘PL A:

This truth definition fares better in dealing with the above examples:

EXAMPLE (The road accident: the Brewka/Nebel solution). A is

helping the accident victim, B keeping the promise, I={!A, !B} and

‘PL T ! ðA ! :BÞ. The ordering is !A < !B, being its only full prioritization.

The construction of S< includes !A but rejects !B, so I +

T

={{!A}} and (td-6)

makes true OðA=TÞ;Oð:B=TÞ and Pð:B=TÞ, which is as it should be.

EXAMPLE (The road accident II: the Brewka/Nebel solution).
I ¼ f!A; !B; !Cg: ‘PL T ! ðA ! :ðB ^ CÞÞ, as waiting allows Mirjam to get to

one place, the post office or the day care center in time, but not both. The

ordering is !A < !B and !A < !C, and for !B, !C unclear. Its two full priori-

tizations are !A � !B � !C or !A � !C � !B, producing I +

T

={{!A, !B}, {!A,

!C}}. Then (td-6) makes true O(A � (B � C)/T), so waiting and then going to

one place, the post office or the day care center, is obligatory as it should be.

EXAMPLE (The road accident III: the Brewka/Nebel solution).
Still ‘PL T ! ðA ! :ðB ^ CÞÞ, i.e. waiting excludes getting to both places.

Fetching her grandma now takes priority over going to the post office, so

!C < !B and !A < !B, this time the ranking between !A, !C being unclear. The

two full prioritizations are !A � !C � !B and !C � !A � !B, so I +

T

={{!A,

!C}}, and (td-6) makes O(A � C/T ) true. So Mirjam must stay at the site until

the police are finished with her and then go to fetch her grandmother, as it

should be.

EXAMPLE (The road accident IV: the Brewka/Nebel solution).
Getting to both the post office and the day care center on time was never

possible, so ‘PL T ! ðC ! :BÞ. The car being wrecked, the assumed situation

S excludes getting to the day care center on time, so ‘PL S ! :C. Again
!C < !B and !A < !B, with the relation between !A and !C unclear, so

!A � !C � !B and !C � !A � !B are the full prioritizations, producing

I + :S ¼ ff!A; !Bgg. Hence O(A � B/S), i.e. Mirjam must wait and then hurry

to the post office, which is as it should be.

EXAMPLE (The road accident V: the Brewka/Nebel solution).
Again, Mirjam cannot get to both the post office and the day care center on

time, so ‘PL T ! ðC ! :BÞ. Waiting for the police excludes getting to the day

care center on time, i.e. ‘PL T ! ðA ! :CÞ. Mirjam decides that the law
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overrides her familial duty, so !A < !C < !B, which, being its only full

prioritization, yields I +

T

={{!A, !B}}. So Mirjam must wait and post the

letters, as it should be.

Let a semantics be called a prioritized imperative semantics iff it defines the

truth of LDDL-sentences using (td-6), with respect to arbitrary prioritized

imperative structures hI; f; <i. Then it may be surprising – though Rott

(1993, Theorem 7) already proved a similar result – that the logical properties

of such a semantics are not different from that defining the deontic operator

using (td-4), i.e. with respect to basic imperative structures and simple

remainders, since the system PD remains sound and (only) weakly complete:

THEOREM 5 (Soundness, completeness of PD). PD is sound and

(only) weakly complete with respect to prioritized imperative semantics.

4. Alternative resolution mechanisms

4.1. LEAST EXPOSURE AND ITS VARIANTS

Alchourrón and Makinson (1981) seem to have been the first to logically

examine the idea of resolving contradictions in a body of norms, or con-

tradictions that arise from such a body together with some set of true

empirical facts, by imposing an order upon that body. The object of their

study is a set of regulations that is partially ordered by a relation £, which

does not necessarily stand for an ordering by priority or importance. Rather,

i £ j means that j is as much exposed, or more exposed, to the risk of

legislative derogation as i. If a conflict occurs between two parts of the code,

or between the code and some empirical facts, the aim is to find a (possibly

maximal) non-conflicting subset that is most secure from the changes which

the law-giver will presumably enact upon learning of this situation. Their

definition translates to the present framework as follows:

DEFINITION 3 (Alchourrón and Makinson’s strict exposure).
Let hI; f; <i be a prioritized imperative structure, where < is a strict partial

order on I (like the asymmetric part of a partial order £). Then for all

C;D � I :

C �AM D iff D 6¼ [ and 8i 2 C : 9j 2 D : i < j:

So a subset is strictly less exposed than some other if for any member

of the first there is a member of the second which is strictly more exposed.

To see how this approach compares to Brewka and Nebel’s, consider three

cases:
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Case 1. Let hI; f; <i be !p1< !ðp2 ^ :p3Þ<!p3, the imperative in the

‘middle’ conflicting with the lowest. Then we have

– If ?¼ ff!p1; !ðp2 ^ :p3Þg; f!p1; !p3gg and

– I +?¼ ff!p1; !ðp2 ^ :p3Þgg.

The exposure criterion yields f!p1; !ðp2 ^ :p3Þg �AM f!p1; !p3g: for each left

member, a right member is strictly more exposed, namely !p3.

Case 2. Let hI; f; <i be !p1 < !ð:p1 ^ p2Þ < !p3, so the ‘‘middle’’ now

conflicts with the higher-ranking imperative. Then we have

– If ?¼ ff!p1; !p3g; f!ð:p1 ^ p2Þ; !p3gg and

– I +?¼ ff!p1; !p3gg.

But f!p1; !p3g 6�AM f!ð:p1 ^ p2Þ; !p3g: from the left set, !p3 is not less exposed

than !ð:p1 ^ p2Þ from the right. The authors recognize that a conflict between

higher-ranking norms excludes lower-ranking norms from a least exposed set

and propose to use relevant logic for determining conflicts as a cure (Al-

chourrón and Makinson 1981, p. 139).

Case 3. Let hI; f; <i be !p1 < !ð:p1 ^ p2 ^ :p3Þ < !p3, the ‘‘middle’’ now in

conflict with both ends of the hierarchy (by whatever logic). Then we have

– If ?¼ ff!p1; !p3g; f!ð:p1 ^ p2 ^ :p3Þgg and

– I +?¼ ff!p1; !p3gg.

Yet f!ð:p1 ^ p2 ^ :p3Þg �AM f!p1; !p3g: from the right set, !p3 is more ex-

posed than any left member. Mediocrity rules! But even if !p3 is more exposed

to legislative change, if that change came about and removed !p3, the right set

would still contain a member that ranks higher than any in the left.

Prakken, pursuing an argumentative approach, wants to employ Al-

chourrón and Makinson’s criterion at the heart of his ‘‘rebuttal’’ mechanism

used to determine justified arguments (derivations from facts and defaults.

But the criterion he presents (Prakken 1997, p. 192) translates differently:

DEFINITION 4 (Prakken’s criterion for hierarchical rebuttal).
Let hI; f; <i be a prioritized imperative structure, where < is a strict partial

order on I (like the asymmetric part of a partial order £). Then for all C;D � I:

C �P D iff 9j 2 D : 8i 2 C : i<j:

So D can be improved by exchanging some member with any member of

C. Giving the rationale here and in Prakken and Sartor (1997, p. 36)10, the

change in the order of the quantifiers seems intentional – yet it makes a

difference: let I be f!p1; !p2; !ðp3 ^ :p1Þ; !ðp4 ^ :p2Þg and !p1 < !ðp3 ^ :p1Þ and
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!p2 < !ðp4 ^ :p2Þ. E.g. p1, p2 may be primary targets and p3 ^ :p1; p4 ^ :p2
respective secondary ones, where reaching the secondary target includes

failing to reach the (better) primary one. Reaching both primary targets

seems best, and in fact f!p1; !p2g �AM f!ðp3 ^ :p1Þ; !ðp4 ^ :p2Þg: for every

member in the left set there is a lower-ranking one in the right. Also

I +?¼ ff!p1; p2gg, since all four full prioritizations yield this preferred

remainder. But f!p1; !p2g 6�P f!ðp3 ^ :p1Þ; !ðp4 ^ :p2Þg as no member in the

right set ranks lower than all in the left. So Prakken’s criterion appears even

less suited to our task than Alchourrón & Makinson’s.11

Sartor (1991) used Alchourrón and Makinson’s criterion for a

‘‘prevailing’’ relation between subsets modulo a rejected sentence A,12 as

follows:

DEFINITION 5 (Sartor’s ‘‘prevailing’’ relation). Let hI; f; <i be a
prioritized imperative structure, where < is a strict partial order on I, and

�AM be as defined above. Then for all C;D � I :

C �A
S D iff ½C [ D� f ‘PL A; and 8D0 � D such that ½C [ D0� f ‘PL A :

9C0 � C : ½C0 [ D0� f ‘PL AandC0 �AM D0:

Finally pref ðIfAÞ ¼ min�A
S
ðIfAÞ.

To see how his definition works, consider first the ‘‘mediocrity rules’’

example: hI; f;<i is !p1<!ð:p1 ^ p2 ^ :p3Þ<!p3. Then f!p1; !p3g �?
S f!ð:p1

^ p2 ^ :p3Þg, as the only subset of the right set conflicting with the left set is

the right set itself, and for this set some conflicting subset of the left set,

namely {!p1}, is strictly less exposed than the right set. So now the result is as

it intuitively should be. Sartor’s relation also handles the example against

Prakken’s criterion well: here I ¼ f!p1; !p2; !ðp3 ^ :p1Þ; !ðp4 ^ :p2Þg, with

!p1<!ðp3 ^ :p1Þ and !p2<!ðp4 ^ :p2Þ. Then f!p1; !p2g � ?
S f!ðp3 ^ :p1Þ;

!ðp4 ^ :p2Þg, as the three subsets of the right set conflicting with the left

set are f!ðp3 ^ :p1Þg; f!ðp4 ^ :p2Þg and the right set itself, with which

the following respective subsets of the left set are both in conflict and strictly

less exposed: {!p1}, {!p2}, and the left set itself. So reaching the primary

targets is best, as it should be. In fact, it can be proved that pre-

ferred remainders are always prevailing remainders, but the converse does

not hold:

EXAMPLE (Counterexample to prefðIfAÞ � I + AÞ. Let hI; f;<i
be such that I consists of

i1 : !ðp1 ^ ððp2 _ p3Þ ! qÞÞ i3 : !p2

i2 : !ð:p1 ^ ððp2 ^ p3Þ ! :qÞÞ i4 : !ðp3 ^ ðp1 ! :p2ÞÞ
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and the ordering i1 < i2 < [i3, i4]. Intuitively, to satisfy i1 takes priority, and

then the only choice is the one between the equally ranking i3 and i4, and indeed,

I +?¼ ffi1; i3g; fi1; i4gg. But the remainder {i2, i3, i4}, missing the most

important imperative i1, is also in prefðI f ?Þ, as

ðaÞ fi1; i3g 6� ?
S fi2; i3; i4g; ðbÞ fi1; i4g 6�?

S fi2; i3; i4g:

For (a), consider {i4}, which is a subset of the right hand set: it conflicts with the

left hand set, so for the relation to hold, a strictly less exposed subset of the left

set must also conflict with {i4}. The only such subset is the left set itself, but since

for its member i3 there is no strictly more exposed member in {i4}, it is not

strictly less exposed. The refutation of (b) works similarly using {i3}.

So Sartor’s definition also produces counterintuitive results where Brewka

and Nebel’s approach does not.13

4.2. UTILITY-REFLECTING PRIORITIES

Regarding the neighboring realm of epistemic logic, and the related problem

of revising belief sets in the face of conflicting information, such information

often finds the reasoner less willing to give up some beliefs than others. In an

attempt to allocate this ordering of ‘‘epistemic importance’’ a rôle in deter-

mining which of the contradictory beliefs should be given up, Gärdenfors

(1984) proposed the following: Let K be a belief set (set of descriptive sen-

tences) that is the logical closure of some finite basis, and £ a relation (of

epistemic importance) that is a complete preorder on this set, which addi-

tionally ranks logically equivalent beliefs equally. For any remainder

C 2 K ? A there is then a ‘‘spanning sentence’’ SC in C that derives any

element in C. Then for any C;D 2 K ? A:

C �G D iff SC<SD

So a remainder is preferred to some other iff its spanning sentence is epi-

stemically at least as important as that of the other. It is essential for the

construction that < is a complete ordering on K, which due to logical clo-

sure includes the spanning sentence that is the ‘‘sum’’ of a remainder. But, the

logical philosophers not being kings, a set of imperative-contents is rarely

logically closed, which precludes a direct parallel. Yet, choosing subsets that

‘‘in sum’’ are the most important has an analogue if the ordering of the

imperatives reflects not so much their importance or rank of the source, but a

measure of ‘‘goodness’’ or utility of the outcome when satisfying the

imperative. For this, let the (well-founded, strict partial) order <u corre-

spond to a function u : X ! R, with I f � X � LPL, that assigns a real
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number to (at least) what the imperatives demand in a manner conversely

respecting <u, i.e. if i <u j then u(i f) > u( j f). Then let

I uA ¼ fC � IjCf 6‘PL A and 8D � I : if
X

uðD fÞ �
X

uðCfÞ thenD f ‘PL Ag:

So an A-consistent subset is preferred to another if the good brought about by

satisfying all of its demands sums up to a higher value than by doing so for the

other set. I uA includes the maximally preferred among such sets. Obviously

I uA � IfA if u assigns just positive values. TheO-operator is then defined by

ðtd-7Þ hI; f;<ui � OðA=CÞ iff 8C 2 I u:C : Cf [ fCg ‘PL A:

If a set of imperatives that requires A to be true in the situation C constitutes

a ‘‘reason’’ to call A obligatory in this situation, then O(A/C) is true if the

reasons for obligatoriness A have more collective weight (sum up to a higher

value) than any such reasons for :A.14 Well-foundedness of <, with the

condition that u respects <, excludes infinitely increasing utilities and thus

corresponds to the limit assumption in preference semantics, which avoids

counterintuitive results but may be criticized as superficial (cf. Fehige 1994).

Still, infinitely lower and lower ranking imperatives, whose satisfaction

nevertheless produces some good, are not excluded, and thus not the scenario

of McNamara (1995) where a bad act like killing your mum will eventually

become permitted by (only then) piling up good deeds of small value. To

protect imperatives from getting overruled by inferiors in this manner, one

could assign to an imperative’s satisfaction a utility that is absolutely higher

than the sum of the utilities assigned to the satisfaction of any number of

lower-ranking imperatives (think of the sequence 1, 0.5, 0.25, 0.125, ...). It is

immediate that if <u is thus protected, i.e. for all i 2 I, u(if) ‡
P

u({ j 2 I | i

<u j}
f), and u assigns just positive values, then I u A � I + A.

4.3. SAFE CONTRACTION AND A MODIFICATION

What characterizes Brewka and Nebel’s approaches is that they try to

maximize the number of higher-ranking imperatives in a set that avoids a

conflict. This intuition has a counterpart formulated by Alchourrón (1986):15

‘‘It is logical to believe that the reasonable way of overcoming a

conflict of obligations is to leave aside the less important norms

contributing to its creation.’’

Alchourrón’s proposal is then to remove from the set of norms all those that

are least-ranking in a minimal conflicting subset, thus removing the conflict

as well. For the formal description of this ‘‘safe contraction’’, let IgA be the

minimal sets of imperatives such that the corresponding sentences derive

A (the ‘‘A-kernels’’ of I), i.e. the set of all C � I such that (i) Cf ‘PL A and
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(ii) for all D � I, if D � C then D f
0PLA. < being a strict partial ordering on

I, the following defines the set of all the least important imperatives of

A-kernels of I:

rðIgAÞ ¼def fmax<C j C 2 IgAg:

Due to PL-compactness, any C 2 I gA is finite and so max<C 6¼ 	 if

C 6¼ 	. Then the set I/A of elements of I that are ‘‘safe’’ with respect to A is

defined by

I=A ¼ def InrðI gAÞ:

If C characterizes the situation, the dyadic deontic operator can then be

defined as in (td-3), but using I=:C instead of I:16

ðtd-8Þ hI; f;<i � OðA=CÞ iff ½I=:C� f [ fCg ‘PL A:

To see how this works, consider again the example of the road accident:

EXAMPLE (The road accident: safe contraction). I={!A, !B},

with !A < !B, as helping the victims of the accident is more important than

proceeding to the appointment. ‘PL T ! ðA ! :BÞ, because staying excludes

meeting my friend. hence

= {!A}. Hence I must stay and help, as it should be.

EXAMPLE (The road accident V: safe contraction). I={!A, !B, !C}.

Mirjam left too late for both the post office and the day care center, so

‘PL T ! ðC ! :BÞ. Waiting makes her too late for the day care center, so

‘PL T ! ðA ! :CÞ. The legal requirement to stay and her duty to fetch her

grandma are both more important than posting the letters, and Mirjam decides

that the law also overrides her familiar duty, so !A<!C<!B. Intuitively

Mirjam must wait and then hurry to the post office. But

¼f!A; !Cg; f!B; !Cgg; max< f!A:!Cg ¼ f!Cg; max<f!B; !Cg ¼ f!Bg: So
and = {!A}. Hence a solution by safe contraction only

requires Mirjam to wait for the police, though she could still post the letters when

the police are finished.

The last example illustrates that safe contraction removes elements too

liberally; even when it has already removed some element of a kernel, further

elements get removed as well even though under the definition of a kernel

removing one suffices: !C was removed due to its conflict with !A, so there

was no need to also remove !B to avoid the conflict with !C. This makes life
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too easy for the norm subjects, and some moderation appears necessary.

Following the idea that the removal mechanism should somehow be adjusted

to the set’s shrinking it brings about, a moderated version of safe contraction

can be defined as follows:

DEFINITION 6 (Moderated safe contraction). Let hI; f;<i be a

prioritized imperative structure, where < is a well-founded strict partial order

on I. For each A 2 LPL, let M½<;a� � I; 0 � a � card(I), be

MA
½<;a� ¼def

[

b<a
MA

½<;b� [min<rð½In
[

b<a
MA

½<;b��gAÞ:

Finally MA
< ¼def

ScardðIÞ
a¼1 MA

½<;a� and .

So if X are the <-minimal elements in rðIgAÞ, then the moderated mech-

anism first puts X in the set M< of elements to be removed, then the

<-minimal elements in rð½In X �gAÞ, etc. Thus elements get removed in

each step until there is noA-kernel left in Iminus the last version ofM<, which

alsomeans that the cardinality of I suffices for the indices (I omit superscripts if

themeaning is clear). To see how this works, consider again the above example:

EXAMPLE (The road accident V: moderated safe contraction).
!C is the minimal element in Removing !C is unavoidable:

the only other element !A in the -kernel in which !C is maximal ranks

before !C, so if !A was maximal in some -kernel, !C would not be in

So !C is in M½<;1� ¼ f!Cg, equalling M< since no -kernel is left

in Inf!Cg. Hence , so both obligations – to wait and post the

letters – remain.

If < is not a well-order, the moderated method still removes too much:

if it removes anything from a kernel, it removes all <-maximal members,

but by definition of a kernel, one is enough. Instead, one might again consider

the full prioritizations that preserve <, rather than <. The relation between

moderated safe contraction and Brewka’s method is then the following:

THEOREM 6 (Moderated safe contractions and preferred
remainders). Let hI; f;<i be a prioritized imperative structure, where < is

a well-founded strict partial order on I. Then is some full

prioritization of <}.

5. Uniquely prioritized imperatives

As demonstrated, the method proposed by Brewka and Nebel seems adequate

for a resolution of normative conflicts by use of priority orderings of the
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underlying norms. Whether all conflicts and dilemmas are thus avoidable is a

matter of dispute. W. D. Ross may be understood as claiming that conflicts

are merely apparent and that by weighing all relevant facts and reasons, it can

be decided which of the conflicting prima facie duties are really our duties (cf.

Ross 1930, Searle 1980, p. 242). G. H. von Wright stated that an axiological

order can ‘‘provide a safeguard against any genuine predicament’’ (cf. von

Wright 1968, p. 68, 80). And Hare’s description of ‘‘critical moral thinking,’’

that lets principles override other, less important principles, suggests that this

process can overcome all moral conflicts (Hare 1981, p. 43, 50). On the other

hand, Barcan Marcus (1980) and Horty (2003, p. 564) have argued that if it is

the presence of certain facts that determines the ordering, i.e. this is not an

arbitrary hacking through the Gordian knot, then situations might be

incomparable (if all such facts are missing), or be completely symmetrical (e.g.

identical obligations towards identical twins), so conflicts remain possible.

Rather than take sides in this controversy, I will examine what is required if

the method of Brewka and Nebel is to resolve all conflicts and dilemmas. For

all possible17 situationsC; I + :Cmust then be a singleton: otherwise there are

C;D 2 I + :C such that Cf [ Df ‘PL :C, and there is a dilemma. So I define:

DEFINITION 7 (Uniquely prioritized imperatives). Let hI; f;<i
be a prioritized imperative structure, Then hI; f;<i is called uniquely priori-

tized iff for all C 2 LPL such that, 0PL:C, cardðI + :CÞ ¼ 1.

The question of a resolution of all conflicts can now be rephrased to ask

what an imperative structure hI; f;<i must be like to be uniquely prioritized.

The most obvious way to avoid all conflicts for any situation C is to let the

strict partial order < be total, i.e. for any two i, j 2 I, either i < j or j < i.

Then there is just one full prioritization � that preserves <, namely < itself.

This result was also noted by Nebel (1992, Proposition 11), who con-

structs < as the strict part of a complete preorder £ ) then requiring < to

be total makes each equivalence class [i] a singleton. Gärdenfors (1984,

p. 146), who also constructs < as the strict part of some complete preorder

£, points out that it is enough if the only choice left is between equivalents,

i.e. here either i < j or j < i for any i, j 2 I with 0PLi
f $ j f. But this still

requires too much. It suffices that the demands of elements in each [i] are

chained, so for all j1; j2 2 ½i� :‘PL j
f
1 ! j

f
2 or ‘PL j

f
2 ! j

f
1 – then it does not

matter in which order j1 and j2 appear in a full prioritization � of <.18 And

one can be even more lax, as demonstrated by the following cases, which also

are of a sort in which no ambiguity ever arises:

Case 1: Let hI; f;<i be ½!p1; !p2�<!ðp1 ^ p2Þ, so the demands of the two

higher-ranking imperatives are ‘‘doubled’’ by a lower one. If both, !p1, !p2 are

in S� 2 I + :C, then adding !ðp1 ^ p2Þ adds nothing. Otherwise

½S½�#!ðp1^p2Þ� [ f!ðp1 ^ p2Þg�
f ‘PL :C, so !:ðp1 ^ p2Þ cannot be in S�.
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Case 2: Let hI; f;<i be ½!p1; !p2�<!:ðp1 ^ p2Þ, so the demands of the two

higher-ranking imperatives run contrary to the lower one’s. Either both

!p1,!p2 are in S� 2 I + :C, so !:ðp1 ^ p2Þ cannot be consistently added, or

½S½�#!:ðp1^p2Þ��
f [ fCg ‘PL :ðp1 ^ p2Þ, so adding !:ðp1 ^ p2Þ adds nothing.

Case 3: Let hI; f;<i be !ðp1 ^ p2Þ<!ðp1 ^ :p2Þ<½!p1; !p2�. If p1 ^ p2
is consistent with C, then I + :C is ff!ðp1 ^ p2Þ; !p1; !p2gg. Otherwise,

fCg ‘PL :ðp1 ^ p2Þ. If p1 ^ :p2 is consistent with C, then I + :C is

ff!ðp1 ^:p2Þ; !p1gg. Otherwise, also fCg ‘PL;:ðp1 ^:p2Þ. Hence fCg ‘PL :p1.
Then any set in I + :C contains at most !p2, depending on whetherC is consistent

with p2.

Unable to make out a necessary and sufficient requirement for

cardðI + :CÞ ¼ 1, without reference to particular C, I can only rephrase its

definition as follows:

THEOREM 7 (Property of uniquely prioritized imperatives).
Any hI; f; <i,where < is the strict part of some complete preorder £, is uniquely

prioritized iff for all consistent C 2 LPL;C 2 I + :C; i 2 I and j1, j2 2 [i],

fi0 2 Cji0<igf [ fCg ‘PL j
f
1 ! j

f
2 or fi0 2 Cji0<igf [ fCg ‘PL j

f
2 ! j

f
1 :

Let a semantics be called a uniquely prioritized imperative semantics iff it

defines the truth of LDDL-sentences using (td-6), but only considers uniquely

prioritized imperative structures. It validates the additional axiom scheme:

ðRMonÞ PðD=CÞ ! ðOðA=CÞ ! OðA=C ^DÞÞ:

Consider the system PD that was sound and (weakly) complete with respect

to prioritized imperative semantics. The system that results when (RMon) is

added is Hansson’s (1969) DSDL3 as axiomatized by Spohn (1975):

THEOREM 8 (PD+RMon equals DSDL3). Let PD+(RMon) be

like PD, except that (RMon) is added as art axiom scheme. Then

PD+(RMon) = DSDL3, which is the smallest set that contains all LDDL-

instances into tautologies as well as all LPL-instances of the following schemes:

ðA0Þ OðA=AÞ

ðA1Þ If 0PL A then ‘DSDL3 :Oð? =AÞ

ðA2Þ OðB ^ C=AÞ $ ðOðB=AÞ ^OðC=AÞÞ

ðA3Þ If ‘PL A $ A0 and ‘PL B $ B0 then ‘DSDL3 OðB=AÞ $ OðB0=A0Þ

ðA4Þ PðB=AÞ ! ðOðC=A ^ BÞ $ OðB ! C=AÞÞ

and is closed under modus ponens.
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Hansson’s DSDL3, which is also the core of Åqivist’s (1986) system G,

usually characterizes a preference-based dyadic deontic semantics, i.e. an

interpretation of deontic formulas using a ‘‘betterness relation’’ between

valuations or possible worlds, and not using explicitly given norms as it is

here. However, this extreme interpretational change did not result in a

changed logical behavior of the deontic operators, i.e. DSDL3 can be

reconstructed quite naturally using an imperative semantics with an axio-

logical order in the spirit of von Wright (1968):

THEOREM 9 (Soundness, completeness of DSDL3). DSDL3 is

sound and (only) weakly complete for uniquely prioritized imperative

semantics.

The construction used to prove the completeness theorem also exhibits

the following relation between priorities and contrary-to-duty norms: sup-

pose there is a finite, or finitely based, set of deontic truths D � LDDL, and

hI; f; <i is a uniquely prioritized imperative structure that makes true all of

D. The construction used to prove DSDL3-completeness provides a un-

iquely prioritized imperative structure hI0; f0;<0i that also makes true all of

D, but the demands of these imperatives are now chained and so the pri-

ority relation can remain empty or let all imperatives rank equally (cf.

Theorem 7). E.g. if hI; f;<i is !p1 < !p2, then hI0; f0;<0i is

½!ðp1 ^ p2Þ; !ð:ðp1 ^ p2Þ ! p1Þ; !ðð:ðp1 ^ p2Þ ^ :p1Þ ! p2Þ�. These can be

viewed as contrary-to-duty norms, where the primary obligation is: to make

p1 ^ p2 true, if that is not possible, to make p1 true, and if that is also not

possible, to make p2 true. So instead of using ranks and priorities to avoid

conflicts, contrary-to-duty formalizations can be employed to produce the

same effect. While there may be pragmatic reasons to attach higher priority

to the commands of the king than the wishes of his jester, from the

standpoint of logic, exception clauses like ‘‘if the king did not say other-

wise’’ suffice.

6. Conclusion

Describing how a resolution of normative conflicts using priorities works is

surprisingly difficult. A method based on a proposal by Horty could not solve

complex cases where more than two norms conflict or overriding norms are

no longer satisfiable or are themselves overridden. A method developed for

theory revision by Brewka and Nebel, which creates maximally non-con-

flicting sets by starting with a maximal set of what is most important and
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incrementally adding maximally to it, is able to resolve these difficulties.

Alternative mechanisms discussed in normative theory, namely Alchourrón

and Makinson’s exposure criterion and variants by Prakken and Sartor, have

counterintuitive results in cases that Brewka and Nebel’s method adequately

solves. The same holds for Alchourrón’s ‘‘safe contractions’’, but the intui-

tion underlying his construction, that in a conflict the least important norms

should be set aside, is captured in a moderated version that is equivalent to

Brewka’s. I explain how a semantics that models explicitly given imperatives

can be used to define deontic operators. When the ‘‘preferred remainders’’

from Brewka and Nebel’s method are thus used for the definition of a dis-

junctive (skeptical) dyadic deontic operator, then such a semantics is char-

acterized by the axiom system PD, which resembles Kraus, Lehmann and

Magidor’s system P with the dyadic D-axiom added. Whether all conflicts

can be resolved using priorities is left to philosophical dispute, but conditions

are discussed that guarantee priority orderings, which do just that. For a

semantics that defines its dyadic deontic operators with respect to such

‘‘uniquely prioritized’’ imperatives, Hansson’s axiom system DSDL3 is

proved to be sound and complete. The proof’s construction also exhibits the

fact that priorities are dispensable and that contrary-to-duty constructions

can take their place.

Most of the approaches discussed here include conditional entities,

which pose different problems like the following (rephrased from Rintanen

1994):

(1) a says: if you drink anything, then don’t drive.

(2) b says: if you go to the party, then you do the driving.

(3) c says: if you go the party, then have a drink with me.

(4) You go the party.

Suppose that b does not mind if you have one drink with c, and c does not

care that you may be driving, and let the three imperatives be ranked in des-

cending order. One may be tempted to reason as follows: consider first the

imperative in line (1), but it has not yet been ‘triggered’ as you have not yet

drunk anything, so it is set aside. Regarding (2), its condition is true, so you

must do the driving. Still, only (3) is triggered, so you should have a drink with

c. But satisfying (2) and (3) both triggers and violates the highest-ranking

imperative. Is it not more prudent to violate one of the lower-ranking imper-

atives instead of the higher-ranking one? For a solution, we need an adequate

definition of triggering (that can handle e.g. disjunctive inputs, like Makinson

and van der Torre’s ‘‘basic output’’ (Makinson and van der Torre 2000, 2001),

and to find a maximizing strategy that is consistent with the above intuition. It

is clear that the present discussion has not provided the tools to properly

address such problems, so these must be left to further study.
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Notes

1 Though some discussed approaches cover conditional imperatives, or entities that can be

interpreted as such, these cause problems that are best considered separately.
2 PL is based on a language LPL, defined from a set of proposition letters Prop ={p1,

p2,...}, Boolean connectives ‘‘ :’’, ‘‘ ^’’, ‘‘ _’’, ‘‘ fi ’’, ‘‘M’’ and brackets ‘‘(’’,‘‘)’’ as usual,

The truth of a LPL-sentence A is defined recursively using a valuation function v :

Prop ! f1; 0g (I write v � A), starting with v � p iff v(p)=1 and continuing as usual. If

A 2 LPL is true for all valuations it is called a tautology. PL is the set of all tautologies,

and this set is used to define provability, consistency and derivability (I write C ‘PL A) as

usual. > is an arbitrary tautology, and ? is :>.
3 E.g. (td-1) most closely resembles definitions of Kanger (1957) and Alchourrón and

Bulygin (1981). For authors belonging to this tradition cf. Hansen (2001), Section 1 and

Hansen (2004), fn. 1, in addition to which Ziemba (1971) must be mentioned.
4 Cf. Horty (1997). The ‘‘disjunctive’’ ought is more commonly referred to as ‘‘skeptical’’

non-monotonic inference. Horty (2003) attributes the proposal to Brink (1994), yet the idea

to use such a definition for (dyadic) deontic logic already appears in Lewis (1981). For

alternatives in the deontic-logical treatment of normative conflicts cf. Goble (2005).
5 Cf. Kraus et al. (1990), where, however, the proofs are done in a more general setting. Also

cf. my (Hansen 2005) for constructive proofs in the manner of Spohn (1975) as well as more

comparisons and truth definitions and axioms for an alternative ‘‘credulous’’ O-operator.
6 Horty’s definition only employs circumstances to derive consequents from a set of condi-

tional imperatives, but this has no effect on the solution of the examples.
7 Horty is preparing a refined version of Binding that solves all of the examples (private

correspondence).
8 Brewka (1991) and for Nebel cf. Rott (1993, fn. 9). For the rationale, let the ordered I

be hi0; . . . ; i0:125; i0:25; i0:5; i1i, with i1 ¼ !p; i0:5 ¼ !:p; i0:25 ¼ !p; i0:125 ¼ !:p, etc., and i0=!q.

We cannot tell whether p or :p is obligatory, but this is not a case of conflict either, all

imperatives !p being overridden by ones demanding :p, and vice versa.
9 I use notation from both, Brewka (1989, 1991), Brewka and Eiter (1999), and Nebel

(1991, 1992).
10 Also cf. Sartor (2005, p. 734): ‘‘preference must be given to the argument such that its

weakest defeasible subreasons are better than the weakest defeasible subreasons in the other’’.
11 Prakken could argue that he only compares minimal conflict pairs (subargu-

ments), which f!p1; !p2g; f!ðp3 ^ :p1Þ; !ðp4 ^ :p2Þg is not, while f!p1g �P f!ðp3 ^ :p1Þg and

f!p2g �P f!ðp4 ^ :p2Þg hold. But let I ¼ f!p1; !p2; !ðp3 ^ ðp4 ! :ðp1 ^ p2ÞÞÞ; !ðp4 ^ ðp3 ! :
ðp1 ^ p2ÞÞÞg, with !p1 < !ðp3 ^ ðp4 ! :ðp1 ^ p2ÞÞÞ and !p2 < !ðp4 ^ ðp3 ! :ðp1 ^ p2ÞÞÞ, so

with the primary targets one ‘‘bonus’’ secondary target is reachable. Still

f!p1; !p2g 6�P f!ðp3 ^ ðp4 ! :ðp1 ^ p2ÞÞÞ; !ðp4 ^ ðp3 ! :ðp1 ^ p2ÞÞÞg, and this is a minimal

conflict pair. Yet intuitively, the argument for p1 � p2 should win over any for :ðp1 ^ p2Þ.
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12 Sartor (1991) simply rejects contradictions, yet the adjustment to any A is immediate.
13 The indicative version of the example also shows that Prakken cannot avoid counterin-

tuitive results by replacing, in his definition of a rebuttal in (1997), his own relation �P

by the relation �AM of Alchourón and Makinson for the comparison of minimal conflict

pairs: then all arguments for q are rebutted by arguments for :q as demonstrated, but

intuitively any consistent argument including i1 cannot be defeated and so the argument

for q should win.
14 For resolving legal arguments by summing up weights of reasons cf. Hage (1991, 1996).
15 Also cf. Iwin (1972, p. 486): ‘‘When we are in a situation compelled to satisfy two

obligations requiring contradictory actions, then the most natural way out of this diffi-

culty consists in comparing the two obligations and not satisfying the less important

one.’’
16 I=:C is the notation in Alchourrón and Makinson (1985), whereas the notation in

Alchourrón (1986) would be I/C. Alchourrón’s own truth definition for deontic operators

employs a deontic logic as basic logic and conditional imperatives that are not treated

here.
17 If C is a contradiction, then by definition I + :C ¼ [.
18 I owe this insight to Leon van der Torre (private correspondence).

Appendix: Proofs

THEOREM 1 (Existence of full prioritizations). For every well-

founded strict partial order < on a set C there is a full prioritization �, i.e. a

strict well-order that is order-preserving with respect to <.

Proof. Let < be a well-founded strict partial order on the set C. Let each

x 2 C be assigned an ordinal ax in the following way: ax=0 for the elements

in min<C, and for any other x 2 C; ax ¼ supfayjy<xg þ 1, where sup denotes

the supremum of a set of ordinals. Transfinite induction available for well-

founded partial ordered sets tells us that ax is well-defined for any x 2 C. Let

the equivalence class ½x� ¼ fy 2 Cjay ¼ axg. Finally � is an arbitrary strict

well-order on elements of the same equivalence class, and x � y if ax is

smaller than ay. Clearly � is a strict well-order on C. To prove x � y if x<y,

for any x; y 2 C, suppose x<y. Then ax is in {az|z<y}, so ay=sup

{az|z<y}+1 is at least ax+1. Hence x � y.

THEOREM 2 (Preferred remainders are remainders). Let hI; f; <i
be a prioritized imperative structure, where < is a well-founded strict partial

order on I. Then I + A � IfA.

Proof. Suppose S� 2 I + A. Since ½S��
f
0A there is some C 2 IfA such

that S� � C. Suppose C 6� S�. Let i be some element such that i 2 C, but

i 62 S�. Then by the construction of S�; ½
S

j�i S½�#j��
f [ fifg ‘PL A, and since

S

j�i S½�#j� � S�, also ½S��
f [ fi fg ‘PL A. But then Cf ‘PL A, which is ex-

cluded by C 2 IfA. So C ¼ S� and S� 2 IfA.
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THEOREM 3 (Nebel’s prioritized removals). Let hI; f;<i be a

prioritized imperative structure, where < is the asymmetric part of a complete,

well-founded preorder £ on I. Then I + A equals

fC � I j Cf
0PLA and 8D � I : ifD �N C thenDf ‘PL Ag:

Proof. Left-to-right: Suppose C 2 I + A. Suppose for some

D � I : D �N C. Then there is a priority class [i] such that for all

j < i;C \ ½j� ¼ D \ ½j� and C \ ½i� � D \ ½i�. Let � be the full prioritization

used to construct C ¼ S� and i be the �-first element of [i] with i 62 C, but

i 2 D. By construction of S�; ½
S

j�i S½�#j��
f [ fi fg ‘PL A, and also

S

j�i S½�#j� ¼ fj 2 S� j j � ig. Since � is order-preserving, for all j 2 S�, if

j � i, then j< i or j 2 [i]. Then j 2 D, by definition of �N or by choice of i.

Hence Df ‘PL A.

Right-to-left: Suppose C � I; Cf
0PLA and 8D � I. If D �N C,

then Df ‘PL A. Let� be a well ordering on I respecting < which puts i � j for

any i 2 C and j 2 ½i�nC, i.e. an ordering that positions the elements of C before

their £-equals, and D ¼ S�. We prove 8i 2 I : D \ ½i� ¼ C \ ½i� by induction

on <:

For the induction basis, let i be some £-least element. By definition of �
the elements of C \ ½i� are positioned �-before any other elements of D,

and by assumption Cf \ ½i�0PLA, so C \ ½i� � D due to the construction of

S� ¼ D. Suppose there is some j 2 D \ ½i� such that j 62 C \ ½i�. Then

C \ ½i� � D \ ½i�, and since trivially 8j < i : C \ ½j� ¼ D \ ½j� as i was £-least and
so no such j exists, D �N C holds. Then it must be that Df ‘PL A, but by

definition of S� ¼ D this is excluded. So D \ ½i� � C \ ½i� and, hence,

D \ ½i� ¼ C \ ½i�.
For the induction step, let i be some arbitrary element of I. By definition of

�, the elements of C \ ½i� are positioned �-before any other elements of

D \ ½i�. The induction hypothesis guarantees that for all j 2 I with

j<i : D \ ½j� ¼ C \ ½j�, so fj 2 D j j � ig ¼ fj 2 C j j � ig. As fj 2 C j j � igf

[½C \ ½i��f0PLA (otherwise C ‘PL AÞ, for any j 2 C \ ½i� : ½
S

k�j S½�#k��
f

[fj fg0PLA, so j 2 D and hence C \ ½i� � D. Suppose there is some j 2 D \ ½i�
with j 62 C \ ½i�. Then C \ ½i� � D \ ½i�, and since also 8j<i : C \ ½i� ¼ D \ ½i�
by the induction hypothesis, D �N C holds. Then it must then be that

Df ‘PL A, but by definition of S� ¼ D this is excluded. So D \ ½i� � C \ ½i� and
hence D \ ½i� ¼ C \ ½i�.

Since 8i 2 I : D \ ½i� ¼ C \ ½i� we have C ¼ D ¼ S� and so C 2 I + A.

THEOREM 4 (Preferred remainders, after Ryan and Sakama &
Inoue). Let hI; f; <i be a prioritized imperative structure, < a well-founded

strict partial order on I and I + A and pðIfAÞ be as defined. Then

I + A ¼ pðIfAÞ.
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Proof. Left-to-right: Suppose S� 2 I + A. Assume for r.a.a. that there is a

C 6¼ S� in IfA such that for all i 2 S�nC there is a j 2 CnS� with j � i. Let i

be the �-least element in S�nC, which is not empty, because otherwise

S� � C, but this is excluded by maximality of S�, so existence of i is guar-

anteed by well-foundedness of �. Then
S

k�i S½<#k� � C: otherwise there is

some k 2 S� with k � i but k 62 C and so i would not be the �-least. Since

j 62 S� it must be that ½S½<#j��
f [ fj fg ‘PL A. But j � i, so S½<#j� �

S

k�i S½<#k�,

and chaining results we get Cf ‘PL A, which contradicts C 2 IfA.

Right-to-left: Suppose C 2 pðIfAÞ. Let � be a full prioritization for which

the statement in the definition of pðIfAÞ is true. By definition, S� is in I + A

and so also in IfA. Assume for r.a.a. that S� 6¼ C. Then there is some

i 2 CnS� such that for all j 2 S�nC; i � j. Suppose
S

j�i S½�#j� 6� fj 2 C j j � ig.
Then there is a j 2 S� nC : j � i and so i 6� j by the antisymmetry of �, and

ihj since � preserves <, but we assumed otherwise. So
S

j�i S½�#j� � fj 2 C j j � ig. Since i 2 CnS� it must be that i 62 S�, so by

definition ½
S

j�i S½�#j��
f [ fi fg ‘PL A. So Cf ‘PL A, which contradicts

C 2 IfA.

THEOREM 5 (Soundness, completeness of PD). PD is sound and

(only) weakly complete with respect to prioritized imperative semantics.

Proof. (Sketch) We must prove that PD is (a) sound with respect to

prioritized imperative semantics, (b) (weakly) complete with respect to pri-

oritized imperative semantics and (c) only weakly complete, i.e. not compact.

(a) Soundness. The validity of (CExt), (ExtC), (DM) and (DC) is

immediate. (DN) is unrestrictedly valid since 8C 2 I + :C : Cf ‘PL > is

trivial. Theorem 1 guarantees the existence of a generating �, so if C is

not a contradiction (then I + :C ¼ [ by definition) at least [ is in I + :C,
so I + :C 6¼ [ and (DD-R) must hold. Leaving details to the reader, for

(Cond), suppose OðA=C ^DÞ, so 8C 2 I + :ðC ^DÞ : Cf [ fC ^Dg ‘PL A

and assume for r.a.a. that O(D fi A/C) is false, which yields

9D 2 I + :C : D f [ fCg0PLD ! A and also includes D f
0PL:ðC ^DÞ.

Likewise, for (CCMon) suppose OðA ^D=CÞ, which yields

8D 2 I + :C : D f [ fCg ‘PL A ^D and also includes D f
0PL:ðC ^DÞ. D is

obtained from some full prioritization � via Definition 2, i.e. D ¼ S:C
� .

Appealing to the �-first element on which they might differ, prove that

S:C
� ¼ S

:ðC^DÞ
� .

(b) Weak completeness. We must prove that for any A 2 LDDL such

that :A 62 PD there is a prioritized imperative structure hI; f; <i that

models A. I proved PD to be weakly complete for basic imperative

semantics and (td-4) in Hansen (2005), so take the basic imperative struc-

ture hI; f i that models A and define <¼ [. Then I + :C ¼ If:C for any

C. Hence hI; f; <i also models A using (td-6).

DEONTIC LOGICS FOR PRIORITIZED IMPERATIVES



(c) Non-compactness. Leaving details to the reader, I gave a counterex-

ample to compactness of basic imperative semantics in Hansen (2005, The-

orem 3), i.e. a non-satisfiable set C � LDDL of which all finite subsets are

satisfiable, which applies here as well. The tricky part is to show that the sets

Ip1 [ Iðp1$:p2Þ and I:p1 [ Iðp1$p2Þ are in I +?, which works using the complete

preorder induced by ordinal labels from the proof of Theorem 1 (for each

union choose a full prioritization � that puts its elements �-first in any

equivalence class and prove that S� in I +? constructed from � equals the

respective union).

THEOREM 6 (Moderated safe contractions and preferred
remainders). Let hI; f; <i be a prioritized imperative structure, where < is a

well-founded strict partial order on I. Then is some full

prioritization of <}.

Proof. I first give a construction next(i), containing the – compared to i –

‘‘next-larger’’ element in M�, and a helpful lemma:

LEMMA 1. Let � be a full prioritization of <;A 2 LPL and M� be

accordingly defined (cf. Definition 8). For any i 2 I, let

nextðiÞ ¼df min�fj 2 M� j i ¼ j or i � jg

contain i if i 2 M� or else the element in M� that comes �-next to i. Let

Mi ¼
min�fM½�;a� j nextðiÞ � M½�;a�g if nextðiÞ 6¼ [,

M� otherwise

�

be the first set in the construction of M� that includes next(i) if that is non-

empty and otherwise the whole of M�. Then

Mi n nextðiÞ ¼ M� \ fj 2 I j j � ig:

Proof. For next(i), note that due to well-orderliness, the �-minimum of a

non-empty set is a singleton, and so is next(i), unless there is no j in M� with

i=j or i � j, in which case it is[. ForMi, note that sinceM½�;a� increases with

each step a, 0 £ a < card(I), the inclusion-minimum is well defined. To prove

the lemma, if neither i 2 M� nor a �-next member in M� exists and so

Mi ¼ M�, then the equivalence is trivial. Otherwise Mi ¼ M½�;a� for some a,

and we must prove that (i) if j 2 I is in M½�;a� n nextðiÞ then j � i, and (ii) that

if j 2 M� is not in M½�;a� n nextðiÞ then j =� i.

ad i): Let j 2 M½�;a�. We assumed next(i) to be non-empty, so let next(i)={i0}.

By definition, i0 is the element of M½�;a� that was added at step a and so if i0=j,

then j is not in M½�;a�A n nextðiÞ. Otherwise, by the construction of M½�;a�; j is in

some M½�;b� with b < a. Let b be the smallest of these. To be in the increase of
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M½�;a�; i
0 must be �-maximal in some A-kernel X in I n

S

c<aM½�;c�. Since the

process is incremental, we have I n
S

c<a M½�;c� � I n
S

c<b M½�;c�. So

X � I n
S

c<bM½�;c�. Hence, if i0 � j, then j is not �-minimal among the �-

maximal members of A-kernels in I n
S

c<b M½�;c�, but this contradicts that j is the

element by whichM½�;b� was increased at step b. So i0 =� j, we supposed i0 „ j, and

so by �-connectedness j � i0. Also, if i=j or i � j, then i0=j or i0 � j by the

definition of next(i) and j 2 M�. By the previous result and �-transitivity, we

obtain j � j, contradicting �-irreflexivity. So i =� j; i 6¼ j and hence by connect-

edness, j � i.

ad ii): Assume j 2 M� is not in M½�;a� n nextðiÞ. Again let next(i)={i0}. So

i0 is the element of M½�;a�, which is added at step a. If j=i¢, then i=j or i � j

and in both cases j =� i. Otherwise j must be in someM½�;b� with a<b. Let b be

the smallest of these. To be in the increase of M½�;b�; j must be �-maximal in

some A-kernel X in I n
S

c<b M½�;c�. Since the process is incremental, we have

I n
S

c<bM½�;c� � I n
S

c<a M½�;c�. So X � I n
S

c<aM½�;c�. Suppose j � i0, then

i0 is not �-minimal among the �-maximal members of A-kernels in

I n
S

c<aM½�;c�. But this contradicts that i
0 is the element by which M½�;a� was

increased at step a. So j =� i0, and we supposed j „ i0. Thus by �-connect-

edness, i0 � j and hence i � j by �-transitivity and definition of next(i).

For the theorem, it now suffices to prove that for each full prioritization

�;A 2 LPL and accordingly constructed sets S� (Definition 2) and M�

(Definition 8), I nM� ¼ S�; which is done by induction over �:

Induction basis: Let i0 be the �-least element in I. Suppose i0 is in

I nM� : I nM� contains no A-kernels, so fi0g0PLA and so i0 is in S�. Sup-

pose i0 is not in I nM�. Then i0 is �-maximal in some A-kernel of I. So for all

other j in this A-kernel, j � i, but also i � j because i0 is �-least. So by �-

antisymmetry this A-kernel equals {i0}, so fif0g ‘PL A and by definition

i0 62 S�. Hence i0 2 I nM� iff i0 2 S�.

Induction step: Right-to-left: Suppose i 62 I nM�, so i 2 M�. Let a be

the step that has i in its increase, i.e. M½�;a� ¼
S

b<aM½�;b� [ fig.
Since i 2 M�; nextðiÞ ¼ i, so M½�;a� is Mi as defined above. So

Mi n fig ¼
S

b<aM½�;b� ¼ M� \ fj 2 I j j < ig by Lemma 1. Hence

½I n
S

b<aM½�;b�� \ fj 2 I j j � ig ¼ ½I n ½M� \ fj 2 I j j � ig�� \ fj 2 I j j � ig ¼
½I nM�� \ fj 2 I j j � ig which by the induction hypothesis equals

S� \ fj 2 I j j � ig, and bydefinition this equals
S

j�i S½�#j�. To be in the increase

of M½�;a�; i must be �-maximal in some A-kernel X in I n
S

b<aM½�;b�, so

X � ½I n
S

b<a M½�;b�� \ fj 2 I j j � ig [ fig. So by definition of anA-kernel and
the above equation, ½

S

j�i S½�#j��
f [ fifg ‘PL A. Hence i 62 S½�#i� and i 62 S�.

Left-to-right: Suppose i 62 S�. So by definition ½
S

j�i S½�#j��
f [ fifg ‘PL A

and ½
S

j�i S½�#j��
f
0PLA. By the induction hypothesis

S

j�i S½�#j� ¼
S� \ fj 2 I j j � ig ¼ ½I nM�� \ fj 2 I j j � ig. By the above lemma, M� \
fj 2 I j j � ig ¼ Mi n nextðiÞ and so ½I nM�� \ fj 2 I j j � ig ¼ ½I n ½M� \
fj 2 I j j � ig�� \ fj 2 I j j � ig ¼ ½I n ½Mi n nextðiÞ�� \ fj 2 I j j � ig, which,
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since nextðiÞ � I, equals ½½I nMi� [ nextðiÞ� \ fj 2 I j j � ig, which equals

½I nMi� \ fj 2 I j j � ig since nextðiÞ \ fj 2 I j j � ig ¼ [ by definition of nex-

t(i). So we obtain the results that ½½I nMi� \ fj 2 I j j � ig� f [ fifg ‘PL A and

½½I nMi� \ fj 2 I j j � ig� f0PLA. First observe nextðiÞ 6¼ [ – otherwise

Mi ¼ M� by definition, so ½I nM��
f [fifg ‘PL A, but by definition

½I nM��
f
0PLA, so i 62 ½I nM�� and, hence, i is in M�, but then

nextðiÞ ¼ fig 6¼ [. So Mi ¼ M½�;a� for some a. Next assume i 62 M�. Then

i 2 I nMi. By the first result obtained above, i is �-maximal in some A-

kernel in I nMi. Suppose i is not �-minimal among the �-maximal mem-

bers of A-kernels in I nMi: then some A-kernel must lie completely

in ½I nMi� \ fj 2 I j j � ig, but the other result excluded this. So

min�rð½I n
S

b<a M½�;b��gAÞ ¼ fig, so i is in the increase at step a, i.e. i 2 Mi,

so i 2 M�, which contradicts its assumed negation and so is true. So

i 62 I nM�.

THEOREM 7 (Property of uniquely prioritized imperatives).
Any hI; f; <i, where < is the strict part of some complete preorder £, is un-

iquely prioritized iff for all consistent C 2 LPL;C 2 I + :C; i 2 I and

j1; j2 2 ½i�;

fi0 2 C j i0<igf [ fCg ‘PL j
f
1 ! j

f
2 or fi0 2 Cj i0<igf [ fCg ‘PL j

f
2 ! j

f
1:

Proof. For the left-to-right direction (in contraposition), suppose there are

j1, j2 2 [i], a consistent D 2 LPL and C 2 I + :D with neither fi0 2 C j i0<igf

[fDg ‘PL j
f
1 ! j

f
2 nor fi0 2 C j i0<igf [ fDg ‘PL j

f
2 ! j

f
1. Consider C ¼

D ^ :ðj f1 ^ j
f
2Þ. If fi0 2 C j i0<igf ‘PL :C, then fi0 2 C j i0<igf ‘PL :D_

ðj f1 ^ j
f
2Þ, which includes fi0 2 C j i0<igf [ fDg ‘PL j

f
1 ! j

f
2, contrary to what

we supposed. Let �1 be a full prioritization of < that for all i¢ <i is like C,

i.e. it contains fi0 2 C j i0<ig, and then puts j1 �1-first among the members of

[i]. Likewise let �2 be a full prioritization of < that contains fi0 2 C j i0<ig

and puts j2 �2-first among the members of [i]. fi0 2 C j i0<igf ‘PL :C is ex-

cluded, so regarding the constructions S�1
;S�2

2 I + :C;
S

k�1j1
S½�1#k� ¼

fi0 2 C j i0<ig ¼
S

k�2j2
S½�2#k�. If ½

S

k�1j1
S½�1#k��

f [ fj f1g ‘PL :C, then fi0 2 C j

i0<igf [ fj f1g ‘PL :D _ ðj f1 ^ j
f
2Þ or equivalently fi0 2 C j i0 < igf[

fDg ‘PL j
f
1 ! j

f
2, but that was excluded. So ½

S

k�1j1
S½�1#k��

f [ fj f1g0PL:C and

so j1 2 S�1
, and likewise j2 2 S�2

is proved. But then S�1
6¼ S�2

– otherwise

½S�1
� f ‘PL j

f
1 ^ j

f
2 and so ½S�1

� f ‘PL :C, which is excluded. So card

ðI + :CÞ 6¼ 1 for some non-contradictory C 2 LPL.

For the right-to-left direction, assume for r.a.a. that cardðI + :CÞ 6¼ 1 for

some consistent C 2 LPL, so there are two full prioritizations �1 and �2
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such that S�1
6¼ S�2

for the according S�1
;S�2

2 I + :C. Then there is a i 2 I

such that S�1
\ ½i� 6¼ S�2

\ ½i�: let [i] be the <-first such equivalence class. So

there is a j1 2 [i] with either j1 2 S�1
and j1 62 S�2

or vice versa. This being

equal, assume the former, so ½
S

k�2j1
S½�2#k��

f [ fj f1g ‘PL :C. So there is a

(j
f
1 ! :C)-kernel X in

S

k�2j1
S½�2#k�, and X \ ½i� 6¼ [, else X � S�1

by choice

of [i] and since j1 2 S�1
we obtain ½S�1

� f ‘PL :C, which is excluded. We get

fj 2 S�2
j j < igf [ fCg ‘PL j

f
2 ! j

f
1 or fj 2 S�2

j j < igf [ fCg ‘PL j
f
1 ! j

f
2

from the right side of the iff-clause for any j2 2 X \ ½i�. Suppose the first case
holds for a j2 2 X \ ½i�. Since j2 2 X �

S

k�2j1
S½�2#k� we obtain

½
S

k�2j1
S½�2#k��

f ‘PL C ! j
f
1, and since the ( j

f
1 ! :C)-kernel X is in

S

k�2j1
S½�2#k�, this yields ½

S

k�2j1
S½�2#k��

f ‘PL :C, which is excluded. So for all

j2 2 X \ ½i�: fj 2 S�2
j j<igf [ fCg ‘PL j

f
1 ! j

f
2. For all other k 2 X, i.e.

k 62 ½i�, we have k �2 i by X �
S

k�2j1
S½�2#k� and so k 2 S�1

since j1 2 [i] and

due to the choice of i. So since j1 is in S�, and also fj 2 S�2
j j<ig � S� by the

choice of i, for any k 2 X : ½S��
f [ fCg ‘PL kf. Hence, ½S��

f ‘PL :C, which
the construction of the antecedent excludes. This completes the r.a.a.

THEOREM 8 (PD + RMon equals DSDL3). Let PD+(RMon) be

like PD, except that (RMon) is added as an axiom scheme. Then

PD+(RMon) = DSDL3.

Proof. Easy and left as exercise to the reader.

THEOREM 9 (Soundness, completeness of DSDL3). DSDL3 is

sound and (only) weakly complete for uniquely prioritized imperative seman-

tics.

Proof. We must prove that DSDL3 is (a) sound with respect to prioritized

imperative semantics, (b) (weakly) complete with respect to prioritized

imperative semantics, and (c) only weakly complete, i.e. not compact.

(a) Soundness. Only the validity of (RMon) needs to be proved, as The-

orem 5 proved validity of the PD-axioms with respect to all, not necessarily

uniquely, prioritized imperative structures. The proof is like the one for

(CCMon) in Theorem 5, i.e. we assume O(A/C ) and obtain that for all

D 2 I + :C : D f [ fCg ‘PL A and obtain the additionally included fact that

for all such D;D f [ fCg0PL:D by assuming P(D/C) and from card

ðI + :CÞ ¼ 1 in case C is consistent (otherwise DN and CExt make the

conclusion OðA=C ^DÞ trivially true).

(b) Weak completeness. The proof is a condensed version of its more

widely applicable variants in Spohn (1975) and my (2001, 2005), to which I

refer for further features of the construction. We must prove that for

any DSDL3-consistent. A 2 LDDL, i.e. :A 62 DSDL3, there is a uniquely
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prioritized imperative structure hI; f; <i that models A. We build a disjunc-

tive normal form of A and obtain a disjunction of conjunctions, where each

conjunct is O(B/D) or :OðB=DÞ. One disjunct must then be DSDL3-con-

sistent. Let d be that disjunct. Let the d-restricted language L
d
PL be the PL-

sentences that contain only proposition letters occurring in d. Let rðLd
PLÞ be

22
n

mutually non-equivalent representatives of Ld
PL, n being the number of

proposition letters in d. LPL-sentences now mean their representatives in

rðLd
PLÞ. Construct a set D � LDDL such that:

(a) Any conjunct of d is in D.

(b) For all B;D 2 rðLd
PLÞ: either P(B/D) or Oð:B=DÞ 2 D.

(c) D is DSDL3-consistent.

It then suffices to find a uniquely prioritized imperative structure that

makes true all of D. We identify what Hansson (1969) called the deontic basis

in an extension kCk (Spohn 1975 writes ~C) by letting OC ¼
V

fA 2
rðLd

PLÞ jOðA=CÞ 2 Dg be the ‘‘sum’’ of everything demanded in the situation

C. From this definition and (b), (c) it follows immediately that OðOC=CÞ 2 D.

Furthermore, observe

(O1) OðA=CÞ 2 D iff ‘PL OC ! A:

System of spheres: Let S ¼ hC1; . . . ;Cni be defined recursively by letting
(i) C1 ¼ >,

(ii) if Ci 2 S and Ci 6¼? then Ciþ1 ¼ Ci ^ :OCi
(otherwise i=n).

Observe that for all Ci, Cj, 1 £ i < j £ n:

(O2) ‘PL Cj ! Ci

(O3) Cj ^ OCi
¼?

Proof. Immediate (due to A0 and O1, ‘PL OCj
! Cj so also OCj

^ OCi
¼?).

(O4) Ci 2 rðLd
PLÞ; 1 � i � n

(O5) The sequence is finite, i.e. n 6¼ 1

(O6) OC1
_ . . . _ OCn

¼ >

Proofs. (O4) is immediate from the definitions. Regarding (O5), rðLd
PLÞ is

finite, so if S is infinite, then Ci=Cj for some 1 £ i < j £ n. Then

Ci ^ OCi
¼? due to (O3), but since ‘PL OCi

! Ci due to (A0) and (O1), then

OCi
¼? and so due to (A1) Ci ¼?. But then the sequence ends with i. For

(O6), if OC1
_ . . . _ OCn

6¼ > then > ^ :O> ^ . . . ^ :OCn
1
^ :OCn

6¼?. The

left side equals Cn ^ OCn
, so Cn is not last in the sequence, contrary to what

was assumed.

Smallest A-permitting sphere: Let CA be the first Ci with

0PLðA ^ OCi
Þ !?, i.e. for all j < i : ðA ^ OCj

Þ ¼?. Then furthermore:
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(O7) For any rðLd
PLÞ-sentence A 6¼? there is some CA 2 S:

(O8) ‘PL A ! CA

(O9) IfA 6¼?; then PðA=CAÞ 2 D:

(O10) ‘PL OA $ ðOCA
^ AÞ

Proofs. (O7) is immediate from (O6). Regarding (O8) let CA=Ci, so for all

j < i : OCj
^ A ¼?, so ‘PL A ! ð> ^ :O> ^ . . . ^ :OCi
1

Þ and thus ‘PL A

! Ci. For (O9), if CA exists, then by the construction of D either

PðA=CAÞ 2 D or Oð:A=CAÞ 2 D, but in the second case OCA
^ A ¼? due to

(O1), which is excluded by the definition of CA. Regarding (O10): due to (O8)

and derivability of (Cond) we obtain OðA ! OA=CAÞ 2 D from

OðOA=AÞ 2 D, so ‘PL ðOCA
^ AÞ ! OA, which is the right-to-left direction. If

A ¼?, then OA ¼? since ‘PL OA ! A due to (A0) and (O1) and then the left-

to-right direction is trivial. Otherwise PðA=CAÞ 2 D due to (O9) and

OðOCA
=AÞ 2 D is obtained from OðOCA

=CAÞ, (O8) and derivability of

(RMon). Thus ‘PL OA ! OCA
and due to (A0) and (O1) also ‘PL OA ! A.

Both include the left-to-right version.

Canonical construction of hI; f; <i: Let I ¼ fC ! OC jC 2 Sg; f be iden-

tity and < be the strict part of £=I� I (or [, al gusto). Verification: due to

the constructions of S and I it is immediate that for all i; j 2 I :‘PL i f ! j f or

‘PL j f ! i f, so the demands of the imperatives are chained and I is uniquely

prioritized (Theorem 7). All imperatives are equally ranked, so I + A ¼ IfA.

Coincidence: We must prove that for all B;D 2 rðLd
PLÞ , hI; f; <i models

O(B/D) iff OðB=DÞ 2 D. Right-to-left: Assume OðB=DÞ 2 D. If D =^, then

by definition I + :D ¼ If:D ¼ [, so (td-6) makes O(B/D) trivially true.

Otherwise, by (O7) there is some CD 2 S. By its definition, D ^ OCD
is con-

sistent, so D ^ ðCD ! OCD
Þ is also consistent and so CD ! OCD

must be in

(the) C 2 If:D. Since ‘PL D ! CD by (O8) and ‘PL ðOCD
^DÞ ! OD by

(O10) we have ‘PL ððCD ! OCD
Þ ^DÞ ! OD , so C [ fDg ‘PL OD and due to

(O1), C [ fDg ‘PL B and so (td-6) makes O(B/D) true. Left-to-right: Assume

that for C 2 I + :D ¼ If:D we have C [ fDg ‘PL B. If D=^, then

OðB=DÞ 2 D follows trivially from (A0), (A2) and (A3). Otherwise, by (O7)

there is a CD 2 S: D ^ OCD
is by definition consistent, so D ^ ðCD ! OCD

Þ is
consistent and CD ! OCD

must be in (the) set C. CD=Ci for some i in the

construction of S. For all j < i;‘PL D ! Cj due to (O8) and (O2), and

‘PL D ! :OC j
by definition of CD, so Cj ! OC j

62 C. For all

j > i;‘PL OCD
! :Cj by (O3), so with (O8) we obtain fCD ! OCD

g[
fDg ‘PL Cj ! OC j

for any Cj ! OC j
2 C. So if C [ fDg ‘PL B, then

fCD ! OCD
g [ fDg ‘PL B. Hence ‘PL ðOCD

^DÞ ! B by (O8), ‘PL OD ! B

by (O10), so OðB=DÞ 2 D by (O1).
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(c) Non-Compactness. Compactness is disproved by any infinite set D of

LDDL-sentences, of which any finite subset Df is satisfiable, but not D.

Consider

D ¼ fOðp1=>Þg [ fPð:p1=:ðp1 ^ . . . ^ pnÞÞ j n > 1g

[ fPðA ^ :pn=:ðp1 ^ . . . ^ pnÞÞ j n > 1 and fAg0PL png

Let Df � D be a finite subset of D. Let n be the highest index such that pn
occurs in some formula in Df. Then hI; f; <i with I ¼ f!ðp1 ^ . . . ^ pnÞg,
< being [, satisfies Df : I +?¼ fIg ¼ ff!ðp1 ^ . . . ^ pngg. So for all sets C in

I +? : Cf ‘PL p1, so Oðp1=>Þ is true. The only C 2 I + ðp1 ^ . . . ^ pnÞ, n > 1,

is the empty set and that plus :ðp1 ^ . . . ^ pnÞ is consistent with :p1
and A ^ :pn if fAg0PL pn. So Pð:p1=:ðp1 ^ . . . ^ pnÞÞ and PðA ^ :pn=:
ðp1 ^ . . . ^ pnÞÞ are true for any n > 1. Hence D is finitely satisfiable.

Suppose D is satisfiable, i.e. there is a uniquely prioritized impera-

tive structure hI; f; <i that makes all D true. The sets I +? and

I + ðp1 ^ . . . ^ pnÞ must be singletons (Definition 9). To make Oðp1=>Þ
true, there must be some full prioritization � such that ½S?

��
f ‘PL p1,

where S?
� 2 I +? is as described in Definition 2. Due to PL-compactness

there must be some i 2 I such that ½S?
½�#i��

f ‘PL p1. Let i be the �-first such

element. Its existence is guaranteed by well-foundedness of � since 0PL p1. So

½
S

j�i S
?
½�#j��

f
0PLp1 and i 2 S?

�. Let n be the smallest index such that fi fg0PL pn.

i f must be consistent since i 2 S?
�, so the finite length of if alone guarantees the

existence of such an n. We have ½
S

j�i S
?
½�#j��

f
0PL p1 ^ . . . ^ pn and so

S

j�i S
?
½�#j� � S

ðp1^...^pnÞ
� , where S

ðp1^...^pnÞ
� 2 I + ððp1 ^ . . . ^ pnÞÞ is as described

in Definition 2. S?
½�#i� 6� S

ðp1^...^pnÞ
� , for otherwise Pð:p1=:ðp1 ^ . . . ^ pnÞÞ

could not be true, so it must be that ½S?
½�#i��

f ‘PL p1 ^ . . . ^ pn. But then

½S
ðp1^...^pnÞ
� � f ‘PL i f ! ðp1 ^ . . . ^ pnÞ, which includes ½S

ðp1^...^pnÞ
� � f ‘PL i f ! pn.

Hence Pði f ^ :pn=:ðp1 ^ . . . ^ pnÞÞ cannot be true. But PðA ^ :pn=
:ðp1 ^ . . . ^ pnÞÞ must be true for all A such that fAg0PL pn and if meets the

condition. So D is not satisfiable.

References

Alchourrón, C. E. (1986). Conditionality and the Representation of Legal Norms, in Martino,

A. A. and Socci Natali, F. (eds.), Automated Analysis of Legal Texts: Edited Versions of

selected papers from the Second International Conference on ‘‘Logic, Informatics, Law’,

Florence, Italy, September 1985. North Holland, Amsterdam, 173–186.

Alchourrón, C. E. and Bulygin, E. The Expressive Conception of Norms, in Hilpinen, R.

(1981). New Studies in Deontic Logic. Reidel: Dordrecht, 95–124.

Alchourrón, C. E. and Makinson, D. Hierarchies of Regulations and Their Logic, in Hilpinen,

R. (1981). New Studies in Deontic Logic. Reidel: Dordrecht 95–124, 125–148.
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Abstract. The sentences of deontic logic may be understood as describ-
ing what an agent ought to do when faced with a given set of norms. If
these norms come into conflict, the best the agent can be expected to
do is to follow a maximal subset of the norms. Intuitively, a priority or-
dering of the norms can be helpful in determining the relevant sets and
resolve conflicts, but a formal resolution mechanism has been difficult
to provide. In particular, reasoning about prioritized conditional imper-
atives is overshadowed by problems such as the ‘order puzzle’ that are
not satisfactorily resolved by existing approaches. The paper provides a
new proposal as to how these problems may be overcome.

Keywords: deontic logic, default logic, priorities, logic of imperatives

1 Drinking and Driving

Imagine you have been invited to a party. Before the event, you become the
recipient of various imperative sentences:

(1) Your mother says: if you drink anything, then don’t drive.
(2) Your best friend says: if you go to the party, then you do the driving.
(3) Some acquaintance says: if you go to the party, then have a drink with me.

Suppose that as a rule you do what your mother tells you – after all, she is the
most important person in your life. Also, the last time you went to a party your
best friend did the driving, so it really is your turn now. You can enjoy yourself
without a drink, though it would be nice to have a drink with your acquaintance
– your best friend would not mind if you had one drink, and your acquaintance
does not care that you may be driving – but your mother would not approve of
such a behavior. Making up your mind,

(4) You go to the party.

I think it is quite clear what you must do: obey your mother and your best friend,
and hence do the driving and deny your acquaintance’s request. However, it is
not so clear what formal algorithm could explain this reasoning.

⋆ I am grateful to Lou Goble, John F. Horty and Leon van der Torre for helpful
comments and discussions in preparing this paper.
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An example of a similar form was first employed in epistemic logic,1 and
has been termed the ‘order puzzle’ (cf. Horty [22]). For the epistemic version,
consider the following sentences:

(5) You remember from physics: if you are in a car, lightning won’t strike you.
(6) The coroner tells you: he was struck by lightning.
(7) Your neighbor says: he must have been drinking and driving.

Suppose that driving includes being in a car, that you firmly believe in what you
remember from physics, that you believe that information by medical officers is
normally based on competent investigation, and that you usually don’t question
your neighbor’s observations, but think that sometimes she is just speculating.
It seems quite clear what happens: you keep believing what you remember from
school, and don’t doubt what the coroner told you, but question your neighbor’s
information, maybe answering: “This can’t be true, as the authorities found he
was struck by lightning, and you can’t be struck by lightning in a car”.

In both cases, the problem as to how the underlying reasoning can be formally
reconstructed seems so far unsolved. Both involve a ranking, or priority ordering,
of the sentences involved. Concentrating on the imperative side of things, in what
follows, I will consider various proposals from the literature that have been put
forward to explain the reasoning about such prioritized conditionals, discuss
their strengths and weaknesses in relation to problems such as the one above,
and finally propose a fresh solution that solves the problem.

2 Formal Preliminaries

To formally discuss problems such as the one presented above, I shall use a
simple framework: let I be a set of objects, they are meant to be (conditional)
imperatives. Two functions g and f associate with each imperative an antecedent
and a consequent – these are sentences from the language of a basic logic that
here will be the language LPL of propositional logic.2 g(i) may be thought of
as describing the ‘grounds’, or circumstances in which the consequent of i is to
hold, and f(i) as associating the sentence that describes what must be the case if
the imperative i is satisfied, its ‘deontic focus’ or ‘demand’.3 In accordance with
tradition (cf. Hofstadter and McKinsey [20]), I write A ⇒!B for an i ∈ I with
g(i) = A and f(i) = B, and !A means an unconditional imperative ⊤ ⇒!A. Note

1 Cf. Rintanen [36] p. 234, who in turn credits Brewka with its invention.
2

PL is based on a language LPL, defined from a set of proposition letters Prop =
{p1, p2, ...}, Boolean connectives ‘¬’, ‘∧’, ‘∨’, ‘→’, ‘↔’ and brackets ‘(’, ‘)’ as usual.
The truth of a LPL-sentence A is defined recursively using a valuation function
v : Prop → {1, 0} (I write v |= A), starting with v |= p iff v(p) = 1 and continuing
as usual. If A ∈ LPL is true for all valuations it is called a tautology. PL is the set of
all tautologies, and this set is used to define provability, consistency and derivability
(I write Γ ⊢PL A) as usual. ⊤ is an arbitrary tautology, and ⊥ is ¬⊤.

3 In analogy to Reiter’s default logic one might add a third function e that describes
exceptional circumstances in which the imperative is not to be applied. I will not
address this additional complexity here.
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that A ⇒!B is just the name for a conditional imperative that demands B to be
made true in a situation where A is true – it is not an object that is assigned truth
values. I write m(i) for pg(i) → f(i)q and call m(i) the ‘materialization’ of i, as
it represents the material implication that may be thought of as corresponding
to the conditional imperative. For any i ∈ I and ∆ ⊆ I, instead of f(i), g(i),
m(i), f(∆), g(∆) and m(∆), I may use the superscripted if , ig, im, ∆f , ∆g and
∆m for better readability.

Let I be a tuple 〈I, f, g〉, let W ⊆ LPL be a set of sentences, representing
‘real world facts’, and ∆ ⊆ I be a subset of the imperatives: then we define

TriggeredI(W,∆) =df {i ∈ ∆ | W ⊢PL g(i)}.

So an imperative i ∈ ∆ is triggered if its antecedent is true given W . Tradition
wants it that a conditional imperative can only be fulfilled or violated if its
condition is the case.4 So I define:

SatisfiedI(W,∆) =df {i ∈ ∆ | W ⊢PL ig ∧ if},

ViolatedI(W,∆) =df {i ∈ ∆ | W ⊢PL ig ∧ ¬if},

An imperative in SatisfiedI(W,∆) [ViolatedI(W,∆)] is called satisfied [violated]
given the facts W . It is of course possible that an imperative is neither satisfied
nor violated given the facts W . If an imperative is triggered, but not violated,
we call the imperative satisfiable:

SatisfiableI(W,∆) =df {i ∈ TriggeredI(W,∆) | W 0PL ¬if}.

Moreover, we define

ObeyableI(W,∆) =df {Γ ⊆ ∆ | Γm ∪ W 0PL ⊥}.

So a subset Γ of ∆ is obeyable given W iff it is not the case that for some
{i1, ..., in} ⊆ Γ we have W ⊢PL (ig1 ∧ ¬if1 ) ∨ ... ∨ (ign ∧ ¬ifn): otherwise we know
that whatever we do, i.e. given any maxiconsistent subset V of LPL that extends
W ⊆ V , at least one imperative in Γ is violated.5 We speak of a conflict of
imperatives when the triggered imperatives cannot all be satisfied given the
facts W , i.e. when TriggeredI(W,∆)f ∪W ⊢PL ⊥. More generally speaking I will
also call imperatives conflicting if they are not obeyable in the given situation.

As prioritized conditional imperatives are our concern here, we let all im-
peratives in I be ordered by some priority relation <⊆ I × I. The relation <
is assumed to be a strict partial order on I, i.e. < is irreflexive and transitive,
and additionally we assume < to be well-founded, i.e. infinite descending chains
are excluded. For any i1, i2 ∈ I, i1 < i2 means that i1 takes priority over i2
(ranks higher than i2, is more important than i2, etc.). A tuple 〈I, f, g〉 will be
called a conditional imperative structure, and 〈I, f, g, <〉 a prioritized conditional
imperative structure. If all imperatives in I are unconditional, we may drop any
reference to the relation g in the tuples and call these basic imperative structures
and prioritized imperative structures respectively.

4 Cf. Rescher [35], Sosa [40], van Fraassen [10]. Also cf. Greenspan [12]: “Oughts do
not arise, it seems, until it is too late to keep their conditions from being fulfilled.”

5 Terms differ here, e.g. Downing [8] uses the term ‘compliable’ instead of ‘obeyable’.
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3 Deontic Concepts

Given a set of imperatives, one may truly or falsely state that their addressee
must, or must not, perform some act or achieve some state of affairs according to
what the addressee was ordered to do. For instance, in the ‘drinking and driving’
example from sec. 1 I think it is true that the agent ought to do the driving, as
this is what the second-ranking imperative, uttered by the best friend, requires
the agent to do, but that it would be false to say that the agent ought to drink
and drive. Statements that something ought to be done or achieved are called
‘normative’ or ‘deontic statements’, and the ultimate goal is to find a logical
semantics that models the situation and defines the deontic concepts in such a
way that the formal results coincide with our natural inclinations in the matter.

3.1 Deontic operators for unconditional imperatives

For unconditional imperatives, such definitions are straightforward. Given a basic
imperative structure I = 〈I, f〉, a monadic deontic O-operator is defined by

(td -m1) I |= OA if and only if (iff) If ⊢PL A.

So obligation is defined in terms of what the satisfaction of all imperatives logi-
cally implies. With the usual truth definitions for Boolean operators, it can easily
be seen that such a definition produces a normal modal operator, i.e. one that
is defined by the following axiom schemes plus modus ponens:

(Ext) If ⊢PL A ↔ B, then OA ↔ OB is a theorem.
(M) O(A ∧ B) → (OA ∧ OB)
(C) (OA ∧ OB) → O(A ∧ B)
(N) O⊤

Furthermore, (td -m1) defines standard deontic logic SDL, which adds

(D) OA → ¬O¬A

iff the imperatives are assumed to be non-conflicting and so If is PL-consistent,
i.e. If

0PL ⊥. It is immediate that in the case of conflicts, (td -m1) pronounces
everything as obligatory, and in particular defines O⊥ true, thus making the
impossible obligatory. If conflicts are not excluded, a solution is to only consider
(maximal) subsets of the imperatives whose demands are consistent and define
the O-operator with respect to these (I write I f ¬C for the set of all ‘¬C-
remainders’, i.e. maximal subsets Γ of I such that Γ f

0PL ¬C):

(td -m2) I |= OA iff ∀Γ ∈ I f⊥ : Γ f ⊢PL A

Quite similarly, a dyadic deontic operator O(A/C), meaning that A ought to
be true given that C is true, can be defined with respect to the maximal subsets
of imperatives that do not conflict in these circumstances:

(td -d1) I |= O(A/C) iff ∀Γ ∈ I f¬C : Γ f ⊢PL A

So A is obligatory given that C is true if A is what the imperatives in any ¬C-
remainder demand. In the case of conflicts, this definition produces a “disjunctive
solution”: e.g. if there are two imperatives !A and !B with ⊢PL C → (A → ¬B),
then neither O(A/C) nor O(B/C) but O(A ∨ B/C) is true.6

6 For alternative solutions to the problem of conflicts cf. Goble [11] and my [13], [14].
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Often, we want to use the information that we have about the circumstances
also for reasoning about the obligations in these circumstances. E.g. if the set
of imperatives is {!(p1 ∨ p2)}, ordering me to either send you a card or phone
you, and I cannot send you a card, i.e. ¬p1 is true, I should be able to conclude
that I should phone you, and so O(p2/¬p1) should be true. Such ‘circumstantial
reasoning’ is achieved by the following change to the truth definition:

(td -d2) I |= O(A/C) iff ∀Γ ∈ I f¬C : Γ f ∪ {C} ⊢PL A

With the usual truth conditions for Boolean operators, a semantics that employs
(td -d2) has a sound and (weakly) complete axiom system PD that equals the
system P of Kraus, Lehmann, Magidor [23], defined by these axiom schemes

(DExt) If ⊢PL A ↔ B then O(A/C) ↔ O(B/C) is a theorem.

(DM) O(A ∧ B/C) → (O(A/C) ∧ O(B/C))

(DC) O(A/C) ∧ O(B/C) → O(A ∧ B/C)

(DN) O(⊤/C)
(ExtC) If ⊢PL C ↔ D then O(A/C) ↔ O(A/D) is a theorem.

(CCMon) O(A ∧ D/C) → O(A/C ∧ D)

(CExt) If ⊢PL C → (A ↔ B) then O(A/C) ↔ O(B/C) is a theorem.

(Or) O(A/C) ∧ O(A/D) → O(A/C ∨ D)

with the additional (restricted) dyadic ‘deontic’ axiom scheme

(DD-R) If 0PL ¬C then ⊢PD O(A/C) → ¬O(¬A/C)

added (hence the name PD).7

3.2 Deontic operators for conditional imperatives

Unlike their unconditional counterparts, conditional imperatives have been found
hard to reason about. G. H. von Wright [47] called conditional norms the “touch-
stone of normative logic”, and van Fraassen [10] wrote with regard to logics for
conditional imperatives: “There may be systematic relations governing this moral
dynamics, but I can only profess ignorance of them.”

Representing a conditional imperative as an unconditional imperative that
demands a material conditional to be made true yields undesired results. Most
notorious is the problem of contraposition: consider a set I with the only imper-
ative !(p1 → p2), meaning e.g. ‘if the police stops you, show your drivers licence’.
(td -d1) makes true O(p2/p1), but also O(¬p1/¬p2), so if you can’t present your
drivers licence (you don’t have one) you must see to it that the police does not
stop you, which is hardly what the speaker meant you to do.One may think
that such problems arise from the fact that antecedents of conditional impera-
tives often describe states of the affairs that the agent is not supposed to, and
often cannot, control. But consider the set {!(p1 → p2), !(¬p1 → p3)}, it yields
O(p2/¬p3) with (td -d1). Here, p2 is what the consequent of some imperative
demands, so it supposedly describes something the agent can control. Now let

7 For proofs, and an additional “credulous ought” that defines O(A/C) true if the
truth of A is required to satisfy all imperatives in some ¬C-remainder, cf. my [14].
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the imperatives be interpreted as ordering me to wear my best suit if it does not
rain, and a rain coat if it does: it is clear nonsense that I am obliged to wear
a raincoat given that I can’t wear my best suit (e.g. it is in the laundry). Such
problems are the reason why we cautiously use special models for conditional
imperatives (i.e. conditional imperative structures), and write p1⇒!p2 instead of
!(p1 → p2). But this only delegates the problem from the level of representation
to that of semantics, where now new truth definitions must be found.

Let I = 〈I, f, g〉 be a conditional imperative structure, and let us ignore for
the moment the further complication of possible conflicts between imperatives.
Then the following seems a natural way to define what ought to be the case in
circumstances where C is assumed to be true:

(td -cd1) I |= O(A/C) iff [TriggeredI({C}, I)]f ⊢PL A

So dyadic obligation is defined in terms what is necessary to satisfy all imper-
atives that are triggered in the assumed circumstances. E.g. if I = {p1⇒!p2},
with its only imperative interpreted as “if you have a cold, stay in bed”, then
O(p2/p1) truly states that I must stay in bed given that I have a cold.

Like in the unconditional case, it seems important to be able to use ‘cir-
cumstantial reasoning’, i.e. employ the information about the situation not only
to determine if an imperative is triggered, but also for reasoning with its con-
sequent. E.g. if the set of imperatives is {p1⇒!(p2 ∨ p3)}, with its imperative
interpreted as expressing “if you have a cold, either stay in bed or wear a scarf”,
one would like to obtain O(p3/p1∧¬p2), expressing that given that I have a cold
and don’t stay in bed, I must wear a scarf. So (td -cd1) may be changed into

(td -cd2) I |= O(A/C) iff [TriggeredI({C}, I)]f ∪ {C} ⊢PL A.

Though the step from (td -cd1) to (td -cd2) seems quite reasonable, such defini-
tions have also been criticized for defining the assumed circumstances as oblig-
atory. E.g. if the set of imperatives is {p1⇒!p2}, where the imperative is inter-
preted as expressing “if you hit someone, apologize to him”, then (td-5) makes
true O(p1 ∧ p2/p1), and hence also O(p1/p1), so given that I hit someone, this
is something I ought to do. The criticism looses much of its edge in the present
setting, where one can point to the distinction between imperatives (there is no
imperative that demands p1) and ought sentences that describe what must be
true when all triggered imperatives are satisfied in the supposed circumstances:
then the truth of O(p1/p1) seems no more paradoxical than the truth of O⊤
that is accepted in most systems of deontic logic.

3.3 Further modifications

In Makinson & van der Torre’s [25] more general theory of ‘input/output logic’,
(td -cd1) is termed ‘simple-minded output’, and (td -cd2) is its ‘throughput ver-
sion’.8As the names suggests, the authors also discuss more refined operations,
which again might be considered for reasoning about conditional imperatives.
One modification addresses the possibility of ‘reasoning by cases’ that e.g. makes

8 If I resembles the generating set G of input/output logic, then O(A/C) means that
A is an output given the input C (Makinson & van der Torre write A ∈ out(G, {C})).
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true O(p2 ∨ p4/p1 ∨ p3) for a set of imperatives I = {p1⇒!p2, p3⇒!p4}. This may
be achieved by the following definition, where LPL⊥¬C is the set of all maximal
subsets of the language LPL that are consistent with C:9

(td -cd3) I |= O(A/C) iff ∀V ∈ LPL⊥¬C : [TriggeredI(V, I)]f ⊢PL A

In the example, each set V ⊂ LPL that is maximally consistent with p1 ∨ p3

either contains p1, then p1⇒!p2 is triggered and so p2 and also p2 ∨ p4 is implied
by [TriggeredI(V, I)]f , or it contains ¬p1, but then it cannot also contain ¬p3

and so must contain p3, so p3⇒!p4 is triggered and therefore p4 and also p2 ∨ p4

implied, so for all sets V , p2 ∨ p4 is implied and so O(p2 ∨ p4/p1 ∨ p3) made true.
In order to add ‘circumstantial reasoning’ to (td -cd3) – or, in Makinson &

van der Torre’s terms, for its ‘throughput version’ –, one might, in the vein of
(td -d2) and (td -cd2), try this definition:

(td -cd4−) I |= O(A/C) iff ∀V ∈ LPL⊥¬C : [TriggeredI(V, I)]f ∪ {C} ⊢PL A

But the definition seems too weak. Consider the set {p1⇒!(¬p2 ∨ p4), p3⇒!p4}
and the situation (p1 ∧ p2)∨ p3. We would expect a reasoning as follows: in this
situation, either p1∧p2 is true, so the first imperative is triggered but we cannot
satisfy it by bringing about ¬p2, and so must bring about p4. Or p3 is true, then
the second imperative is triggered and we must again bring about p4. So we
must bring about p4 in the given situation. But the definition fails to make true
O(p4/(p1 ∧ p2)∨ p3). Like Makinson and van der Torre [25], I therefore combine
reasoning by cases with a stronger version of throughput:

(td -cd4) I |= O(A/C) iff ∀V ∈ LPL⊥¬C : [TriggeredI(V, I)]f ∪ V ⊢PL A

As is easy to see, this resolves the difficulty: for {p1 ⇒!(¬p2 ∨ p4), p3 ⇒!p4},
O(p4/(p1 ∧ p2) ∨ p3) is now true, as desired. However, this modification has a
surprising consequence: it makes the reasoning about conditional imperatives
collapse into reasoning about consequences of their materializations:

Observation 1 By (td-cd4), I |= O(A/C) iff m(I) ∪ {C} ⊢PL A.

Proof. For the right-to-left direction, for any imperative i ∈ I and any set
V ∈ LPL⊥¬C, either V includes g(i), so i ∈ TriggeredI(V, I) and therefore
[TriggeredI(V, I)]f ⊢PL g(i) → f(i), or it does not include g(i), but then it in-
cludes ¬g(i) by maximality, hence V ⊢PL g(i) → f(i). So [TriggeredI(V, I)]f ∪
V ⊢PL g(i) → f(i). For the left-to-right direction, if m(I) ∪ {C} 0PL A then
m(I)∪{C}∪{¬A} is consistent, so there is a V ∈ LPL⊥¬C such that m(I)∪{C}∪
{¬A} ⊆ V . It is immediate that for each i ∈ TriggeredI(V, I), m(I)∪V ⊢PL f(i),
so if [TriggeredI(V, I)]f ∪ V ⊢PL A then m(I) ∪ V ⊢PL A and since m(I) ⊆ V
also V ⊢PL A. Since V was consistent and included ¬A, it cannot also derive A,
and so by contraposition [TriggeredI(V, I)]f ∪ V 0PL A.

But such an equivalence makes all the problems discussed above for identifying
conditional imperatives with unconditional imperatives that demand their mate-

9 Makinson & van der Torre’s [25] call the resulting operator ‘basic output’, of which
a syntactical version was first presented by Świrydowicz [41] p. 32.
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rializations reappear, in particular the problem of contraposition.10 So it seems
we must choose between ‘reasoning by cases’ and ‘circumstantial reasoning’.11

Another modification that these authors consider is that of ‘reusable output’:
when an imperative is triggered that demands A, and A is the trigger for some
imperative A ⇒!B, then we also ought to do B. Such a modification can easily
be incorporated into a truth definition and its ‘throughput’ version:

(td -cd5) I |= O(A/C) iff [Triggered∗I({C}, I)]f ⊢PL A

(td -cd6) I |= O(A/C) iff [Triggered∗I({C}, I)]f ∪ {C} ⊢PL A

where Triggered∗I(W,Γ ) means the smallest subset of Γ ⊆ I such that for all i ∈
Γ , if [Triggered∗I(W,Γ )]f ∪W ⊢PL g(i) then i ∈ Triggered∗I(W,Γ ). Moreover, the
two modifications of ‘reasoning by cases’ and ‘reusable output’ can be combined
to produce the following definition and its ‘throughput’ variant:

(td -cd7) I |= O(A/C) iff ∀V ∈ LPL⊥¬C : [Triggered∗I(V, I)]f ⊢PL A

(td -cd8) I |= O(A/C) iff ∀V ∈ LPL⊥¬C : [Triggered∗I(V, I)]f ∪ V ⊢PL A

The topic of ‘reusable output’ is discussed under the name of ‘deontic detach-
ment’ in the literature on deontic logic, and there is no agreement whether such
a procedure is admissible (Makinson [24] p. 43 argues in favor, whereas Sven Ove
Hansson [17] p. 155 disagrees). E.g. let I = {!p1, p1⇒!p2,¬p1⇒!¬p2}, and for its
interpretation assume that it is imperative for the proper execution of your job
that you develop novel methods, which make you eligible for a bonus, and that
if you develop such novel methods you owe it to yourself to apply for the bonus,
but that if you don’t develop such methods you must not apply for the bonus.
Truth definitions that accept ‘deontic detachment’ make true O(p2/⊤), and so
tell us that you ought to apply for the bonus, which seems weird since it may
be that you never invent anything. However, proponents of deontic detachment
may argue that in such a situation, O(p1 ∧ p2/⊤) should hold, i.e. you ought to
invent new methods and apply for the bonus, and that the reluctance to also
accept O(p2/⊤) is – like the inference from “you ought to put on your parachute
and jump” to “you ought to jump” – just a variant of Ross’ Paradox that is
usually considered harmless.

For (td -cd7) we once again obtain O(p2/¬p3) for I = {p1⇒!p2,¬p1⇒!p3}:
for any V ∈ LPL⊥p3, ¬p3 ∈ V , furthermore either p1 ∈ V and so p1⇒!p2 ∈
Triggered∗I(V, I), or ¬p1 ∈ V , then ¬p1⇒!p3 ∈ Triggered∗I(V, I), and since {p3}∪

10 (td-cd4−) does not fare much better: though it does not include contraposition, it
again makes O(p2/¬p3) true for I = {p1⇒!p2,¬p1⇒!p3}, which is counterintuitive.

11 Legal use of ‘reasoning by cases’, or Wahlfeststellung, is controversial. It means that if
the defendant either committed crime α or crime β, the defendant would be convicted
according to the milder law. A proponent would argue that since the defendant
committed a crime (though it remains open which), justice demands that he should
not go free, while the defense would argue that this violates the in dubio pro reo

principle, since neither charge is sufficiently proved. After a Reichsgericht ruling in
1934 allowed Wahlfeststellung for cases in which the crimes in question were ‘ethically
and psychologically equivalent’, the national-socialist lawmakers introduced a law
prescribing its unrestricted application in 1935, considered ideological and lifted
again by the Allied Control Council of Germany in 1946 (cf. [43]).
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{¬p3} ⊢PL p1, again p1⇒!p2 is in Triggered∗I(V, I), hence [Triggered∗I(V, I)]f ⊢PL

p2 for all V ∈ LPL⊥p3. But as we saw above, when interpreting the imperatives
as ‘if it rains, wear a raincoat’ and ‘if it does not rain, wear your best jacket’,
this result seems counterintuitive.12 Note that (td -cd8) is again equivalent to
I |= O(A/C) iff m(I) ∪ {C} ⊢PL A and thus to (td -cd4) (cf. Makinson & van
der Torre [25] observation 16; [26], p. 156):

Observation 2 By (td-cd8), I |= O(A/C) iff m(I) ∪ {C} ⊢PL A.

Proof. Similar to the proof of observation 1. For the left-to-right direction, use
that for each i ∈ Triggered∗I(V, I), m(I) ∪ V ⊢PL f(i), which is immediate.

3.4 Operators for prioritized conditional imperatives

This paper focuses on prioritized conditional imperatives, and for these there
is a further hurdle to finding the proper truth definitions for deontic concepts.
Priorities are only required if the imperatives cannot all be obeyed – otherwise
there is no reason not to obey all, and the priority ordering is not used. So the
truth definitions must be able to deliver meaningful results for possibly conflict-
ing imperatives. The intuitive idea is to use the information in the ordering to
choose subsets of the set of imperatives under consideration that contain only
the more important imperatives and leave out less important, conflicting ones,
so that the resulting ‘preferred subset’ (or rather, subsets, since the choice may
not always be determined by the ordering) only contains imperatives that do not
conflict in the given situation. More generally, let I be a prioritized conditional
imperative structure 〈I, g, f, <〉, and let ∆ be a subset of I. Then PI(W,∆)
contains just the subsets of ∆ that are thus preferred given the world facts W .
The above truth definitions can then be adapted such that they now describe
something as obligatory iff it is so with respect to all the preferred subsets of
the imperatives, i.e. they take on the following forms:

(td -pcd1) I |= O(A/C) iff ∀Γ ∈ PI({C}, I) :
(td -pcd1) [TriggeredI({C}, Γ )]f ⊢PL A ,
(td -pcd2) [TriggeredI({C}, Γ )]f ∪ {C} ⊢PL A ,
(td -pcd3) ∀V ∈ LPL⊥¬C : [TriggeredI(V, Γ )]f ⊢PL A ,
(td -pcd4) ∀V ∈ LPL⊥¬C : [TriggeredI(V, Γ )]f ∪ V ⊢PL A ,
(td -pcd5) [Triggered∗I({C}, Γ )]f ⊢PL A ,
(td -pcd6) [Triggered∗I({C}, Γ )]f ∪ {C} ⊢PL A ,
(td -pcd7) ∀V ∈ LPL⊥¬C : [Triggered∗I(V, Γ )]f ⊢PL A ,
(td -pcd8) ∀V ∈ LPL⊥¬C : [Triggered∗I(V, Γ )]f ∪ V ⊢PL A .

So e.g. (td -pcd1) defines A as obligatory if the truth of A is required to satisfy the
triggered imperatives in any preferred subset. Of course, the crucial and as yet
missing element is the decision procedure that determines the set PI({C}, I)
of preferred subsets. The next section discusses several proposals to define such
subsets; a new proposal is presented in the section that follows it.

12 With respect to their out4-operation that corresponds to (td-cd7), Makinson & van
der Torre [25] speak of a ‘ghostly contraposition’.



10 Hansen

4 Identifying the Preferred Subsets

4.1 Brewka’s preferred subtheories

The idea that normative conflicts can be overcome by use of a priority ordering
of the norms involved dates back at least to Ross [37] and is also most prominent
in von Wright’s work (cf. [45] p. 68, 80). However, it has turned out to be difficult
to determine the exact mechanism by which such a resolution of conflicts can be
achieved. This is true even when only unconditional imperatives are considered,
and when special problems are left out of the picture, such that the ordering
itself might be dependent on the facts (e.g. when the command of an officer in
the field may override that of her superior due to unexpected circumstances), or
be the subject of normative regulation (e.g. when we are commanded to obey
the law of God more than the law of man). Discussing various proposals for
resolution of conflicts between unconditional imperative, I have argued in [15]
that an ‘incremental’ definition be used for determining the relevant subsets.
Based on earlier methods by Rescher [34], such a definition was first introduced
by Brewka [4] for reasoning with prioritized defaults. For any priority relation <,
the idea is to consider all the ‘full prioritizations’ ≺ of < (strict well orders that
preserve <), and then work ones way from top to bottom by adding the ≺-next-
higher imperative to the thus constructed ‘preferred subtheory’ if its demand is
consistent with the given facts and the demands of the imperatives that were
added before. For the present setting, the definition can be given as follows:

Definition 1 (Brewka’s preferred subtheories).
Let I = 〈I, f, g, <〉 be a prioritized conditional imperative structure, ∆ be a
subset of I, and W ⊆ LPL be a set of PL-sentences. Then Γ ∈ PB

I (W,∆) iff
(i) W 0PL ⊥, and (ii) Γ is obtained from a full prioritization ≺ by defining

Γ[≺↓i] =

{

⋃

j ≺ i Γ[≺↓j] ∪ {i} if W ∪ [
⋃

j ≺ i Γ[≺↓j] ∪ {i}]f 0PL ⊥, and
⋃

j ≺ i Γ[≺↓j] otherwise,

for any i ∈ ∆, and letting Γ =
⋃

i∈∆ Γ[≺↓i].

Clause (i) ensures that for an inconsistent set of assumed ‘facts’, no set is pre-
ferred. Somewhat roundabout, owed to the possibility of infinite ascending sub-
chains, clause (ii) then recursively defines a set Γ ∈ PB

I (W,∆) for each full
prioritization ≺: take the ≺-first i (the exclusion of infinite descending sub-
chains guarantees that it exists) and if W ∪ {if} 0PL ⊥ then let Γ[≺↓i] = {i};
otherwise Γ[≺↓i] is left empty.13 Similarly, any ≺-later i is tested for possible
addition to the set

⋃

j ≺ i Γ[≺↓j] of elements that were added in the step for a
j ∈ ∆ that occurs ≺-prior to i. Γ is then the union of all these sets.

To see how this definition works, consider the set I = {!(p1∨p2), !¬p2, !¬p1},
with the ranking !(p1 ∨ p2) < !¬p1 and !¬p2 < !¬p1. For an interpretation, let
!(p1 ∨ p2)) be your mother’s request that you buy cucumbers or spinach for
dinner, !¬p1 be your father’s wish that no cucumbers are bought, and !¬p2 your

13 As usual, the union of an empty set of sets is taken to be the empty set.
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sister’s desire that you don’t buy any spinach. We have two full prioritizations
!(p1 ∨ p2) < !¬p2 < !¬p1 and !¬p2 < !(p1 ∨ p2) < !¬p1 – let these be termed ≺1

and ≺2, respectively. The construction for ≺1 adds the imperative !(p1∨p2) in the
first step and, since no conflict with the situation arises, !¬p2 in the second step.
In the third and last step, nothing is added since !¬p1 conflicts with the demands
of the already added imperatives. For ≺2 the only difference is that the first two
imperatives are added in inverse order. Thus PB

I (W, I) = {{!(p1 ∨ p2), !¬p2}}.
Using (td -pcd2) we obtain O(p1 ∧ ¬p2/⊤), which means that you have to buy
spinach and not cucumbers, thus fulfilling your parents’ requests but not your
sister’s, which seems reasonable.

As I showed in [15], Brewka’s method is extremely successful for dealing
with unconditional imperatives. It is provably equivalent for such imperatives to
methods proposed by Ryan [38] and Sakama & Inoue [39], and it avoids problems
of other approaches by Alchourrón & Makinson [2], Prakken [31] and Prakken
& Sartor [32]. Moreover, an equally intuitive maximization method proposed
by Nebel [29], [30], that adds first a maximal number of the highest-ranking
imperatives, then a maximal number of the second-ranking imperatives, etc., but
for its construction requires the ordering to be based on a complete preorder, can
be shown to be embedded in Brewka’s approach for such orderings. So my aim
will be to retain Brewka’s method for the unconditional case. However, when it
is applied without change to conditional imperatives, the algorithm may lead to
incorrect results. E.g. consider a set I with two equally ranking imperatives {p1⇒
!p2,¬p1⇒!¬p2}, meaning e.g. “if you go out, wear your boots” and “if you don’t
go out, don’t wear your boots”. Since the consequents contradict each other,
an unmodified application of Brewka’s method produces PB

I ({p1}, I) = {{p1⇒
!p2}, {¬p1⇒!¬p2}}, which fails to make true O(p2/p1) by any truth definition
(td -pcd1-8): the right set contains no imperatives that are in any way triggered
by p1. So we cannot derive that you ought to wear your boots, given that you are
going out. But intuitively there is no conflict, since the conflicting obligations
arise in mutually exclusive circumstances only.

4.2 A näıve approach

A straightforward way to adopt Brewka’s method to the case of conditional
imperatives is to use not all imperatives for the construction, but only those
that are triggered by the facts W , i.e. to use TriggeredI(W,∆) instead of ∆:

Definition 2 (The näıve approach).
Let I = 〈I, f, g, <〉 be a prioritized conditional imperative structure, ∆ be a
subset of I, and W ⊆ LPL be a set of PL-sentences. Then Γ ∈ Pn

I (W,∆) iff
Γ ∈ PB

I (W,TriggeredI(W,∆)).

The change resolves our earlier problems with Brewka’s method: consider again
the set of imperatives {p1⇒!p2,¬p1⇒!¬p2}, where the imperatives were inter-
preted as ordering me to wear my boots when I go out, and not wear my boots
when I don’t. The new definition produces Pn

I ({p1}, I) = {{p1⇒!p2}}, its only
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‘preferred’ subset containing just the one imperative that is triggered given the
facts {p1}. By any truth definition (td -pcd1-8), O(p2/p1) is now defined true, so
given that you go out, you ought to wear your boots, which is as it should be.

The näıve approach is clearly a conservative extension of Brewka’s origi-
nal method to conditional imperatives: for sets ∆ of unconditional imperatives,
TriggeredI({⊤},∆) = ∆. It is similar to Horty’s proposal in [21] in that con-
flicts are only removed between imperatives that are triggered (though the exact
mechanism differs from Horty’s). When I nevertheless call it ‘näıve’, this is be-
cause there are conceivable counterexamples to this method. Consider the set
of imperatives {!p1, p1⇒!p2, !¬p2}, ranked !p1 < p1⇒!p2 < !¬p2, and for an
interpretation suppose that your job requires you to go outside p1, that your
mother, who is concerned for your health, told you to wear a scarf p2 if you
go outside, and that your friends don’t want you to wear a scarf, whether you
go outside or not. In the default situation ⊤ only the first imperative and the
third are triggered, i.e. TriggeredI({⊤}, I) = {!p1, !¬p2}. Since their demands
are consistent with each other, we obtain Pn

I ({⊤}, I) = {{!p1, !¬p2}}, for which
all truth definitions (td -pcd1-8) make O(p1 ∧ ¬p2/⊤) true. So you ought to go
out and not wear a scarf, thus satisfying the first and the third imperative, but
violating the second-ranking imperative. But arguably, if an imperative is to be
violated, it should not be the second-ranking p1⇒!p2, but the lowest ranking
!¬p2 instead.

4.3 The stepwise approach

To avoid the difficulties of the ‘näıve’ approach, it seems we must not just take
into account the imperatives that are triggered, but also those that become trig-
gered when higher ranking imperatives are satisfied. To this effect, the following
modification may seem reasonable:

Definition 3 (The stepwise approach).
Let I = 〈I, f, g, <〉 be a prioritized conditional imperative structure, ∆ be a
subset of I, and W ⊆ LPL be a set of PL-sentences. Then Γ ∈ Ps(W,∆) iff (i)
W 0PL ⊥, and (ii) Γ is obtained from a full prioritization ≺ by defining

Γ[≺↓i] =

{

⋃

j ≺ i Γ[≺↓j] ∪ {i} if i ∈ SatisfiableI(W ∪ [
⋃

j ≺ i Γ[≺↓j]]
f ,∆), and

⋃

j ≺ i Γ[≺↓j] otherwise,

for any i ∈ ∆, and letting Γ =
⋃

i∈∆ Γ[≺↓i].

So at each step one considers what happens if the imperatives that were included
so far are satisfied, and adds the current imperative only if it is satisfiable given
the truth of W and the satisfaction of these previous imperatives. Note that
satisfiability of an imperative, like its satisfaction and violation, presupposes that
the imperative is triggered. In contrast to the näıve approach, the new definition
not only includes, at each step, those imperatives that are triggered and can be
satisfied given the facts and the supposed satisfaction of the previously added
imperatives: it also includes those that become triggered when a previously added
imperative is satisfied.
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The modification avoids the previous difficulty: consider again the set of
imperatives {!p1, p1⇒!p2, !¬p2}, with the ranking !p1 < p1⇒!p2 < !¬p2. There
is just one full prioritization, which for W = {⊤} yields in the first step the set
{!p1}, and in the second step {!p1, p1⇒!p2}, since p1⇒!p2 is triggered when the
previously added imperative !p1 is assumed to be satisfied. In the third step,
nothing is added: though the imperative !¬p2 is triggered, it cannot be satisfied
together with the previously added imperatives. So we obtain Ps

I({⊤}, I) =
{{!p1, p1⇒!p2}}, and hence O(p1/⊤), but not O(p1 ∧ ¬!p2/⊤), is defined true
by all of (td -pcd1-8). Operators that accept ‘deontic detachment’ (as defined by
td -pcd5-8) even make true O(p1 ∧ p2/⊤), and so in the given interpretation you
must go out and wear a scarf, which now is as it should be.

However, a small change in the ordering shows that this definition does not
suffice: let the imperatives now be ranked p1⇒!p2 < !p1 < !¬p2. (For the inter-
pretation, assume that the conditional imperative to wear a scarf when leaving
the house was uttered by some high-ranking authority, e.g. a doctor.) Then again
Ps

I({⊤}, I) = {{!p1, !¬p2}}: in the first step, nothing is added since p1⇒!p2 is
neither triggered by the facts nor by the assumed satisfaction of previously added
imperatives (there are none). In the next two steps, !p1 and !¬p2 are added, as
each is consistent with the facts and the satisfaction of the previously added im-
peratives. So again all of (td -pcd1-8) make true O(p1∧¬p2/⊤), i.e. you ought to
go out and not wear a scarf, satisfying the second and third ranking imperatives
at the expense of the highest ranking one. But surely, if one must violate an
imperative, it should be one of the lower-ranking ones instead.

4.4 The reconsidering approach

The merits of the stepwise approach were that it did not only consider the
imperatives that are triggered, but also those that become triggered when already
added imperatives are satisfied. Such considerations applied to those imperatives
that follow in the procedure. Yet the satisfaction of already added imperatives
might also trigger higher-ranking imperatives, which by this method are not
considered again. So it seems necessary, at each step, to reconsider also the
higher-ranking imperatives. An algorithm that does that was first introduced
for default theory by Marek & Truszczyński [28] p. 72, and later employed by
Brewka in [5]; it can be reformulated for the present setting as follows:

Definition 4 (The reconsidering approach).
Let I = 〈I, f, g, <〉 be a prioritized conditional imperative structure, ∆ be a
subset of I, and W ⊆ LPL be a set of PL-sentences. Then Γ ∈ Pr

I(W,∆) iff (i)
W 0PL ⊥, and (ii) Γ is obtained from a full prioritization ≺ by defining

Γi =
⋃

j ≺ i Γβ ∪ min≺[SatisfiableI(W ∪ [
⋃

j ≺ i Γj ]
f ,∆) \

⋃

j ≺ i Γj ]

for i ∈ ∆, and letting Γ =
⋃

i∈∆ Γi.

The definition reconsiders at each step the whole ordering, and adds the ≺-first14

imperative that has not been added previously and is satisfiable given both the

14 For any ordering < on some set Γ , min<Γ = {i ∈ Γ | ∀i′ ∈ Γ : if i′ 6= i, then i′ ≮ i},
and max<Γ = {i ∈ Γ | ∀i′ ∈ Γ : if i′ 6= i, then i ≮ i′}, as usual.
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circumstances C and the consequents of the previously added imperatives. Note
that in ‘Γi’, i is used just as a index – it does not mean that i is considered
for addition to the set at this step, and in fact it may be added at an earlier
or later step (or not at all). To see how the definition works, consider again the
example which the stepwise approach failed, i.e. the set of imperatives {!p1, p1⇒
!p2, !¬p2}, with the ranking p1 ⇒!p2 < !p1 < !¬p2. We are interested in the
preferred sets for the default circumstances ⊤, i.e. the sets in Pr

I({⊤}, I). I is
already fully prioritized, so there is just one such set. Applying the algorithm, we
find the minimal (highest ranking) element in SatisfiableI({⊤}, I) is !p1, so this
element is added in the first step. In the second step, we look for the minimal
element in SatisfiableI({⊤} ∪ {!p1}

f , I), other than the previously added !p1. It
is p1⇒!p2, since the assumed satisfaction of all previously added imperatives
triggers it, and its consequent can be true together with {⊤} ∪ {p1}. So p1⇒
!p2 is added in this step. In the remaining third step, nothing is added: !¬p2

is not in SatisfiableI({⊤} ∪ {!p1, p1 ⇒!p2}
f , I), and all other elements in this

set have been previously added. So Pr
I({⊤}, I) = {{!p1, p1 ⇒!p2}}. Now all

truth definitions (td -pcd1-8) make true O(p1/⊤), but not O(p1 ∧ ¬!p2/⊤), and
operators that accept ‘deontic detachment’ make true O(p1 ∧ p2/⊤). So, in the
given interpretation, you must go out (as your job requires) and wear a scarf (as
the doctor ordered you to do in case you go out), which is as it should be.

However, again problems remain. Reconsider the set {!p1, p1⇒!p2, !¬p2}, but
let the ranking now be p1⇒!p2 < !¬p2 < !p1. Let p1⇒!p2 stand for the doc-
tor’s order to wear a scarf when going outside, let !¬p2 stand for your friends’
expectation that you don’t wear a scarf, and let !p1 represent your sister’s
wish that you leave the house. Construct the set in Pr

I({⊤}, I) – since I re-
mains fully prioritized, there is again just one such set. The minimal element in
SatisfiableI({⊤}, I) is !¬p2, and so is added in the first step. The minimal ele-
ment in SatisfiableI({⊤}∪{!¬p2}

f , I), other than !¬p2, is !p1 which therefore gets
added in the second step. Nothing is added in the remaining step: !¬p2 and !p1

have already been added, and p1⇒!p2 is not in SatisfiableI({⊤}∪{!¬p2, !p1}
f , I):

though it is triggered by the assumed satisfaction of !p1, its consequent is con-
tradicted by the assumed satisfaction of !¬p2. So Pr

I({⊤}, I) = {{!p1, !¬p2}}.
Hence all truth definitions (td -pcd1-8) again makes true O(p1 ∧ ¬p2/⊤), so you
ought to go out without a scarf, again satisfying the second and third ranking
imperatives at the expense of the first, which seems the wrong solution.

4.5 The fixpoint approach

To eliminate cases in which the ‘reconsidering approach’ still adds imperatives
that can only be satisfied at the expense of violating a higher-ranking one, a
‘fixpoint’ approach may seem adequate. Such an approach was first proposed for
default reasoning by Brewka & Eiter [6]. It tests each set that may be considered
as preferred to see if it really includes all the elements that should be included:
imperatives that are triggered given the facts and the assumed satisfaction of all
imperatives in the set, and would be added by Brewka’s [4] original method that
adds the higher ranking imperatives first. The procedure translates as follows:
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Definition 5 (The fixpoint approach).
Let I = 〈I, f, g, <〉 be a prioritized conditional imperative structure, ∆ be a
subset of I, and W ⊆ LPL be a set of PL-sentences. Then

Γ ∈ P f
I(W,∆) iff Γ ∈ PB

I (W,TriggeredI(W ∪ Γ f ,∆)).

To see how this definition works, consider the above set of imperatives I =
{!p1, p1 ⇒!p2, !¬p2}, with the ranking p1 ⇒!p2 < !¬p2 < !p1. It is immediate
that the set {!p1, !¬p2} cannot be in P f

I({⊤}, I): if we assume all imperatives in
this set to be satisfied, then all imperatives are triggered, i.e. TriggeredI({⊤} ∪
{!p1, !¬p2}

f , I) = I. By Brewka’s original method, PB
I (W, I) = {{p1⇒!p2, !p1}}:

< is already fully prioritized, and for this full prioritization the method adds
p1 ⇒!p2 in the first step, !¬p2 cannot be added in the second step since its
consequent contradicts the consequent of the previously added p1⇒!p2, and in
the third step !p1 is added. So since the considered set {!p1, !¬p2} is not in
PB

I (W, I), it is not a ‘fixpoint’. Rather, as may be checked, the only ‘fixpoint’ in
P f

I({⊤}, I) is {p1⇒!p2, !p1}. For this set all truth definitions (td -pcd1-8) make
true O(p1/⊤), but no longer O(p1∧¬p2/⊤). Moreover, truth definitions like (td -
pcd5-8) that allow ‘deontic detachment’ make true O(p1 ∧ p2/⊤). In the given
interpretation this means that you must leave the house at your sisters request
and wear a scarf, as the doctor ordered you to do in case you go out.

Though the construction now no longer makes true O(p1∧¬p2/⊤), its solution
for the example, that determines the set {p1⇒!p2, !p1} as the fixpoint of the set
of imperatives {!p1, p1⇒!p2, !¬p2} with the ranking p1⇒!p2 < !¬p2 < !p1, seems
questionable. Though this now includes the doctor’s order, you now have no
obligation anymore to satisfy the imperative that is second ranking, i.e. your
friends’ request that you don’t wear a scarf; truth definitions (td -pcd4-8) even
oblige you to violate it by wearing a scarf. Now consider the situation without
the third ranking imperative !p1: it can easily be verified that for a set I =
{p1⇒!p2, !¬p2} the only fixpoint in P f

I({⊤}, I) is {!¬p2}. So for the reduced
set, (td -pcd2) makes true O(¬p2/⊤), i.e. you ought to obey your friends’ wish.
That the satisfaction of this higher ranking imperative !¬p2 should no longer be
obligatory when a lower ranking imperative !p1 is added, seems hard to explain.
If the ranking is taken seriously, I think one should still satisfy the higher ranking
imperatives, regardless of what lower ranking imperatives are added.

However, there is another, perhaps even more severe problem with the fix-
point approach.15 Consider a new set of imperatives {p1⇒!p2, !(p1 ∧ ¬p2), !p3},
with the ranking p1⇒!p2 < !(p1 ∧ ¬p2) < !p3. For an interpretation, let the first
imperative be again the doctor’s order to wear a scarf in case you go out, the
second one be your friends’ request to go out and not wear a scarf, and the third
ranking imperative be the wish of your aunt that you write her a letter. Try to
find a fixpoint for the default circumstances, i.e. some Γ ∈ P f

I({⊤}, I): either Γ
contains the highest ranking imperative p1⇒!p2 or it does not. If Γ contains it,
then p1⇒!p2 must be in TriggeredI({⊤} ∪ Γ f , I). It can only be in there if also
!(p1 ∧¬p2) is in Γ , for otherwise p1⇒!p2 could not be triggered. But no set that

15 Both problems also arise for a new fixpoint approach by John F. Horty in [22].
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is constructed by Brewka’s method can include both of these imperatives, since
their consequents contradict each other. So Γ does not contain p1⇒!p2, contrary
to our assumption. So assume Γ does not contain p1⇒!p2. Whatever Γ is like,
TriggeredI({⊤} ∪ Γ f , I) includes !(p1 ∧ ¬p2). By Brewka’s method, !(p1 ∧ ¬p2)
will only not be added to the set Γ ∈ PB

I ({⊤},TriggeredI({⊤} ∪ Γ f , I)) if the
consequents of previously added imperatives conflict with its consequent – but
the only higher ranking imperative is p1⇒!p2 and we already established that it
is not in Γ . So !(p1∧¬p2) is in Γ . But then p1⇒!p2 is in TriggeredI({⊤}∪Γ f , I),
and so is added to Γ in the first step of the construction, contrary to the as-
sumption that it is not in Γ . So there is a reductio ad absurdum for both possible
cases, hence there can be no Γ ∈ P f

I({⊤}, I), i.e. there is no fixpoint. So there is
also no fixpoint that contains !p3, and hence none of the truth definitions make
O(p3/⊤) true, and so you do not even have to write to your aunt. But even if the
presence of both a higher ranking conditional imperative and a lower ranking,
unconditional imperative to violate it poses a problem (why should it? after all,
the lower ranking imperative is outranked), it is hard to see why the subject
should be left off the hook for all other, completely unrelated obligations.16

4.6 Discussion

For a discussion of our results so far, let us return to the ‘drinking and driving’
example from the introduction. Let the three imperatives:

(1) Your mother says: if you drink anything, then don’t drive.
(2) Your best friend says: if you go to the party, then you do the driving.
(3) Some acquaintance says: if you go to the party, then have a drink with me.

be represented by a prioritized conditional imperative structure I = 〈I, f, g, <〉,
where I = {(p1⇒!¬p2, p3⇒!p2, p3⇒!p1} and p1⇒!¬p2 < p3⇒!p2 < p3⇒!p1. Let
the set of facts be {p3}, i.e. you go to the party. As we noted, Brewka’s original
method is not tailored to be directly employed to conditional imperatives. The
next three approaches, the näıve, the stepwise and the reconsidering ones, pro-
duce Pn

I ({p3}, I) = Ps
I({p3}, I) = Pr

I({p3}, I) = {{p3⇒!p2, p3⇒!p1}}, which
by all truth definitions (td -pcd1-8) makes true O(p1 ∧ p2/p3), so you ought to
drink and drive. The fixpoint approach produces P f

I({p3}, I) = {{p1⇒!¬p2, p3⇒
!p1}}, so all truth definitions make true O(p1/p3), which means you ought to
drink. Truth definition with ‘deontic detachment’ like (td -pcd5-8) additionally
make true O(p1 ∧¬p2/p3), so you ought to drink and not drive. But the natural
reaction is to ignore the third ranking imperative and drive, as your best friend
asked you to do. So it seems we have to look for a different solution.

16 An independent approach by Makinson in [24], which, however, only considers non-
prioritized conditionals, also fails in this case: for the default circumstances ⊤ it
produces the set {!(p1 ∧ ¬p2), !p3}. p1 ⇒!p2 is not considered, since its only ‘la-
bel’ (roughly: a conjunction of the circumstances, the imperatives’ antecedents that
would trigger∗ it, and its consequent) is inconsistent (it is ⊤∧ (p1∧¬p2)∧p2). But it
is requires explanation why the agent should not be allowed to obey p1⇒!p2, rather
than having to violate it by satisfying !(p1 ∧ ¬p2).
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Before we do that, I will, however, question again our intuition in this mat-
ter. John F. Horty [22] has recently used a structurally similar example to argue
for just the opposite, that the solution by the fixpoint approach is correct, i.e.
that (in our example) you should drink and not drive. His example is that of
three commands, uttered by a colonel, a major and a captain to a soldier, Cor-
poral O’Reilly. The Colonel, who does not like it too warm in the cabin, orders
O’Reilly to open the window whenever the heat is turned on. The Major, who is
a conservationist, wants O’Reilly to keep the window closed during the winter.
And the Captain, who does not like it to be cold, orders O’Reilly to turn the
heat on during the winter. The intended representation is again the prioritized
conditional imperative structure employed above for the ‘drinking and driving’
example, where p1 now means that the heat is turned on, p2 means that the
window is closed, and p3 means that it is winter. As we have seen, the fixpoint
approach yields the preferred subset {p1⇒!¬p2, p3⇒!p1}, making true O(p1/p3)
with (td -pcd1-3), and O(p1∧¬p2/p3) with (td -pcd4-8), so O’Reilly must turn on
the heat and then open the window, and thus violate the Major’s order. Horty
argues as follows in support of the choice of this set:

“O’Reilly’s job is to obey the orders he has been given exactly as they
have been issued. If he fails to obey an order issued by an officer without
an acceptable excuse, he will be court-martialed. And, let us suppose,
there is only one acceptable excuse for failing to obey such an order:
that obeying the order would, in the situation, involve disobeying an
order issued by an officer of equal or higher rank. (...) So given the set
of commands that O’Reilly has been issued, can he, in fact, avoid court-
martial? Yes he can, by (...) obeying the orders issued by the Captain
and the Colonel (...). O’Reilly fails to obey the Major’s order, but he has
an excuse: obeying the Major’s order would involve disobeying an order
issued by the Colonel.”

Horty’s principle seems quite acceptable: for each order issued to the agent, the
agent may ask herself if obeying the order would involve disobeying an order of a
higher ranking officer (then he is excused), and otherwise follow it. The result is a
set of imperatives where each imperative is either obeyed, or disobeyed but the
disobedience excused. When I nevertheless think the argument is not correct,
it is because I think it confuses the status quo and the status quo posterior.
Obeying the Major’s order does not, in the initial situation, involve disobeying
the Colonel’s order. Only once O’Reilly follows the Captain’s order and turns
on the heat, it is true that he must obey the Colonel, open the window and
thus violate the Major’s order. But this does not mean that he should follow the
Captain’s order in the first place – as by doing so he brings about a situation
in which he is forced, by a higher ranking order, to violate a command from
another higher ranking officer. Quite to the contrary, I think that being forced
to violate a higher ranking order when obeying a lower ranking one is a case
where following the lower one ‘involves’ such a violation, and so the only order
the agent is excused from obeying is the lowest ranking command.
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Another notion seems of importance in such examples: that of coherence,
or coherent interpretation, of the imperatives that are accepted by an agent.
Suppose I am a trainee at a factory, and over my new workplace there is a large
sign: “If the light flashes, press the red button. By order of the Director.” On
the first day, the foreman tells me “Don’t you ever press the red button.” A bit
later a colleague comes round and tells me “Let’s have some fun. Make the light
flash. Just short-circuiting it does the job”. Obviously I have not been told not
to make the light flash. By doing so, I will have to do what the sign tells me and
press the red button, and thus violate the foreman’s explicit order on my first
day. But I can reason as follows: ‘Surely, the foreman did not want to contradict
the Director’s order. But it would amount to a contradiction if the light flashes
and I do as he told me and not press the button, though the sign says otherwise.
So what the foreman meant was probably this: don’t press the button if the
light does not flash. So I can safely make the light flash as my colleague told me,
and then press the button, thus making everybody happy.’ (The consequence of
such reasoning would probably be that I lose my job, which might be what my
colleague meant by ‘fun’.) Such coherent reinterpretation plays an important role
in judicial reasoning. But our concern are sets of imperatives that may stem from
various sources and contain explicit conflicts. It is the preference ordering that
is supposed to take care of arising conflicts. And by closer examination of the
situation, if the light flashes, the apparent conflict is resolved since the foreman’s
order is overridden. Yet that does not mean that I have to accept an obligation
to bring about such a situation. If some order is to get me to make the light
flash, I think it would have to rank at least as high as the foreman’s command,
e.g. if my colleague had uttered the imperative in some state of emergency.

Consider finally this variant: suppose that if I am attacked by a man, I must
fight him (to defend my life, my family etc.). Furthermore, suppose I have pacifist
ideals which include that I must not fight the man. Now you tell me to provoke
him, which in the given situation means that he will attack me. Let self-defense
rank higher than my ideals, which in turn rank higher than your request. Should
I do as you request? By the reasoning advocated by Horty, there is nothing wrong
with it: I satisfy your request, defend myself as I must, and though I violate my
ideals, I can point out to myself that the requirement to fight back took priority.
But I think if I really do follow your advice, I would feel bad. I think this would
not just be some irrational regret for having to violate, as I must, my ideals,
but true guilt for having been tempted into doing something I should not have
done, namely provoking the man: it caused the situation that made me violate
my ideals. So I think our intuitions in the ‘drinking and driving’ example and
the other cases have been correct.

5 New Strategies and a New Proposal

In the face of the difficulties encountered so far, it seems necessary to address the
issue of finding an appropriate mechanism for a resolution of conflicts between
prioritized conditional imperatives in a more systematic manner.
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5.1 Deontically Tailored Preferred Subsets

In the unconditional case, the reason to move from definition (td -m1) to (td -m2)
was that when there are conflicts between imperatives, the former makes true
the monadic deontic formula O⊥, i.e. the agent ought to do the logically impos-
sible. This result was avoided by considering only maximal sets of imperatives
with demands that are collectively consistent, i.e. sets that do not make O⊥
true. When faced with the question what dyadic deontic formula should not be
true when conflicts are resolved for arbitrary situations C, the formula O(¬C/C)
appears to be the dyadic equivalent: it would be weird if a mechanism for con-
flict resolution results in telling the agent to do something that contradicts the
assumed facts.17 So to define the set PI({C}, I) for a truth definition (td -pcd1-
8), we can modify Brewka’s original method in such a way that it tests, at each
step, for each of the constructed subsets, if the corresponding truth-definition
(td -cd1-8) does not make O(¬C/C) true for this set.18 Formally:

Definition 6 (Deontically Tailored Preferred Subsets).
Let I = 〈I, f, g, <〉 be a prioritized conditional imperative structure, and C ∈
LPL describe the given situation. Let (td-pcd∗) be any of the truth definitions
(td-pcd1-8). Then Γ is in the set P∗

I({C}, I) employed by this truth definition
iff (i) {C} 0PL ⊥, and (ii) Γ is obtained from a full prioritization ≺ by defining

Γ[≺↓i] =

{

⋃

j ≺ i Γ[≺↓j] ∪ {i} if 〈
⋃

j ≺ i Γ[≺↓j] ∪ {i}, f, g〉 2 O(¬C/C) by (td-cd∗),
⋃

j ≺ i Γ[≺↓j] otherwise,

for any i ∈ I, and letting Γ =
⋃

i∈I Γ[≺↓i].

By this construction, each of the preferred subsets contains a maximal number
of the imperatives such that they do not make true O(¬C/C) for the situation C
and the truth definition that is employed, and so the resulting truth definition
likewise avoids this truth. Such a construction of the preferred subsets might
be considered ‘tailored’ to the truth definition in question, and any remaining
deficiencies might be seen as stemming from the employed truth definition. But
this being so, the method reveals a strong bias towards truth definitions that
accept ‘deontic detachment’, and in particular truth definitions (td -pcd4-8):

Consider the set of imperatives I = {!p1, p1 ⇒!p2, !¬p2} with the ranking
!p1 < p1⇒!p2 < !¬p2, that was used to refute the ‘näıve approach’. As can be
easily checked, P∗

I({⊤}, I) = {I} for all truth definitions (td -pcd1-3). So by all
these truth definitions, O(p1 ∧ ¬p2/⊤) is true. So they commit us to violating
the second-ranking imperative, whereas intuitively, the third-ranking imperative
should be violated instead. By contrast, all truth definitions (td -pcd5-8), that
employ reusable output, and of course likewise (td -pcd4) that is equivalent to
(td -pcd8), handle all given examples exactly as they should be. For the set I =

17 For arguments why O(¬C/C) should be chosen, i.e. for their setting, the ‘output’
should be consistent with the ‘input’, rather than the formula O(⊥/C) and thus
consistency of output simpliciter, cf. Makinson & van der Torre [26] p. 158/159.

18 The preferred subsets are thus a choice from the ‘maxfamilies’ defined in [26].
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{!p1, p1⇒!p2, !¬p2} they produce for both, the ranking !p1 < p1⇒!p2 < !¬p2 that
was used to refute the ‘näıve approach’, and the ranking p1⇒!p2 < !p1 < !¬p2

that was used to refute the stepwise approach, the set P∗
I({⊤}, I) = {{!p1, p1⇒

!p2}}, ∗ = 4, 5, 6, 7, 8. Thus they all make true O(p1 ∧ p2/⊤), committing us to
violate the lowest-ranking imperative only, as it should be for these examples.
If the imperatives’ ranking is instead p1⇒!p2 < !¬p2 < !p1, that was used to
refute both the ‘reconsidering’ and the ‘fixpoint’ approaches, then P∗

I({⊤}, I)
is {{p1⇒!p2, !¬p2}}, making O(¬p2/⊤) true by all these truth definitions, which
thus commit us to satisfying the second ranking imperative, and not to violating
it in favor of satisfying the third ranking imperative as these approaches did.
Finally the set I = {p1⇒!p2, !(p1 ∧ ¬p2), !p3} with the ranking p1⇒!p2 < !(p1 ∧
¬p2) < !p3, that was also mishandled by the ‘fixpoint approach’, produces the
set P∗

I({⊤}, I) = {{p1⇒!p2, !p3}}. So it rejects the second ranking imperative,
that commits to violating the higher ranking one, and keeps both others, as it
should be. The ‘drinking and driving’ example is also handled correctly: the set
{p1⇒!¬p2, p3⇒!p2, p3⇒!p1}, with the ranking p1⇒!¬p2 < p3⇒!p2 < p3⇒!p1

produces, for the situation p3, the set PI({p3}, I) = {{p1⇒!¬p2, p3⇒!p2}}. So
the third ranking imperative, that commits the agent to drinking and thus, by
observation of the highest ranking imperative, prevents the agent from driving,
is disregarded. Instead, the truth definitions make true O(p2/p3), so the agent
must do the driving if she goes to the party, as her best friend asked her to.

Is this the solution to our problems, then? Some uneasiness remains as to the
quick way with which definitions (td-pcd1-3) were discharged as insufficient. Why
should it not be possible to maintain, as these definitions do, that conditional
imperatives only produce an obligation if they are factually triggered, while at
the same time maintaining that the above examples should not be resolved the
way they are by (td-pcd1-3)? The purpose of a truth definition for the deontic
O-operator is to find a formal notion of ‘ought’ that reflects ordinary reasoning,
and our intuitions on that matter may differ from our ideas as to what may
constitute a good choice from a possibly conflicting set of prioritized conditional
imperatives. I will now make a new proposal how to construct the ‘preferable
subsets’, that keeps the positive results without committing us to prefer any of
(td-pcd1-8) by virtue of their handling of prioritized imperatives alone.

5.2 Preferred Maximally Obeyable Subsets

What made Brewka’s approach so successful is that it maximizes the number of
higher ranking imperatives in the preferred subsets of a given set of unconditional
imperatives: for each ‘rank’, a maximal number of imperatives are added that can
be without making the set’s demands inconsistent in the given situation. As was
shown, Brewka’s approach cannot be directly applied to conditional imperatives,
since it makes no sense to test the demands of imperatives for inconsistencies
if these imperatives may not be triggered in the same circumstances. Just con-
sidering triggered imperatives is also not enough, as was demonstrated for the
‘näıve approach’. But if the maximization method is to include imperatives that
are not (yet) triggered, then we must look for something else than inconsistency
of demands to take the role of a threshold criterion for the maximization process.
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To do so we should ask ourselves why, for the unconditional case, the aim
was to find a maximal set of imperatives with demands that are collectively
consistent with the situation. I think that by doing so we intend to give the
agent directives that can be safely followed. While in the unconditional case
this means that the agent can satisfy all the chosen imperatives, the situation
is different for conditional imperatives: here an agent can also obey imperatives
without necessarily satisfying them. If you tell me to visit you in case I go to
Luxembourg next month, I can safely arrange to spend all of next month at
home and still do nothing wrong. If we think not so much of imperatives, but of
legal regulations, then I can obviously be a law-abiding citizen by simply failing
to trigger any legal norm (even though this might imply living alone on an
island): whether I do that or boldly trigger some of the regulations’ antecedents
and then satisfy those I have triggered seems not a question of logic, but of
individual choice. So I think the threshold criterion to be used should be that of
obeyability: we should maximize the set of imperatives the agent can thus obey,
and only stop when the addition of an imperative means that, given the facts, it
or some already added imperative, i.e. one that ranks higher or at least as high,
can no longer be obeyed, and so will be violated.19

For a given set of conditional imperatives ∆ and a set of factual truths W ,
the subsets of imperatives that can be obeyed are described by ObeyableI(W,∆),
i.e. they are those subsets Γ ⊆ ∆ such that W ∪Γm

0PL ⊥. To maximize not by
collective consistency of demands, but by collective obeyability, Brewka’s original
approach can therefore be changed as follows:

Definition 7 (Preferred Maximally Obeyable Subsets).
Let I = 〈I, f, g, <〉 be a prioritized conditional imperative structure, ∆ be a
subset of I, and W ⊆ LPL be a set of PL-sentences. Then Γ ∈ Po

I(W,∆) iff (i)
W 0PL ⊥, and (ii) Γ is obtained from a full prioritization ≺ by defining

Γ[≺↓i] =

{

⋃

j ≺ i Γ[≺↓j] ∪ {i} if W ∪ [
⋃

j ≺ i Γ[≺↓j] ∪ {i}]m 0PL ⊥, and
⋃

j ≺ i Γ[≺↓j] otherwise,

for any i ∈ ∆, and letting Γ =
⋃

i∈∆ Γ[≺↓i].

The change from Brewka’s original definition is only minute: we test not the de-
mands of the imperatives for consistency, but their materializations. Note that
this is a conservative extension of Brewka’s method, since for any unconditional
imperative i we have ⊢PL f(i) ↔ m(i). As can easily be seen, the new construc-
tion solves all of the previously considered difficulties, regardless of the chosen
truth definition for the deontic O-operator:

• To refute a direct application of Brewka’s original method, we used the set
I = {p1⇒!p2,¬p1⇒!¬p2} with no ranking imposed. m(I) is consistent and
so Po

I({p1}, I) = {I}, making O(p2/p1) true for all definitions (td-pcd1-8).
So you ought to wear your boots in case you go out, as it should be.

19 While S. O. Hansson, in [17] p. 200, also advocates a move from ‘consistency’ to
‘obeyability’, what is meant there is rather the step from (td-m2) to (td-d1).



22 Hansen

• To refute the ‘näıve approach’, we used the set I = {!p1, p1 ⇒!p2, !¬p2}
with the ranking !p1 < p1 ⇒!p2 < !¬p2. Since I is already fully priori-
tized, the construction produces just one maximally obeyable subset, which
is {!p1, p1⇒!p2}, as its two imperatives get added in the first two steps, and
nothing is added in the third since m(I) is inconsistent. All of (td-pcd1-8)
make true O(p1/⊤), none makes true the non-intuitive formula O(¬p2/⊤),
and the definitions (td-pcd5-8) that accept ‘deontic detachment’ make true
O(p1 ∧p2/⊤). So you must go out and wear a scarf, which is as it should be.

• To refute the stepwise approach we used I = {!p1, p1⇒!p2, !¬p2} with the
ordering p1⇒!p2 < !p1 < !¬p2. Still Po

I(⊤}, I) = {{!p1, p1⇒!p2}}, so the
sentences made true by truth definitions (td-pcd1-8) likewise do not change,
and in particular the non-intuitive formula O(¬p2/⊤) is still false, and defi-
nitions (td-pcd5-8) that accept ‘deontic detachment’ make true O(p1∧p2/⊤),
so again you must go out and wear a scarf, which is as it should be.

• To refute the reconsidering and the fixpoint approaches we used again the set
{!p1, p1⇒!p2, !¬p2}, but the ranking was changed into p1⇒!p2 < !¬p2 < !p1.
Now Po

I(⊤}, I) = {{p1 ⇒!p2, !¬p2}}. Truth definitions (td-pcd1-8) make
true O(¬p2/⊤) but not O(p1/⊤) so you must satisfy the second ranking
imperative, but not the third ranking imperative, which is as it should be.

• Troublesome for the fixpoint approach was the set {p1⇒!p2, !(p1∧¬p2), !p3},
with the ranking p1⇒!p2 < !(p1 ∧ ¬p2) < !p3: no fixpoint could be made
out in the set and so the approach produced no preferred subset, making
everything obligatory. The preferred maximally obeyable subset is {p1 ⇒
!p2, !p3}, eliminating the second ranking imperative that demands a violation
of the first, and making O(p3/⊤) true under all truth definitions (td-pcd1-8),
which again is as it should be.

• Finally, consider the ‘drinking and driving’ example: the set of imperatives
{p1⇒!¬p2, p3⇒!p2, p3⇒!p1} produces, for the situation p3, the set of pre-
ferred maximally obeyable subsets Po

I({p3}, I) = {{p1 ⇒!¬p2, p3 ⇒!p2}},
making true O(p2/p3) for all truth definitions (td-pcd1-8), so given that I go
to the party I must do the driving, which is as it should be.

As could be seen, all truth definitions now produce the ‘right’ results in the
examples used. Moreover, since all truth definitions refer to the same preferred
subsets Po

I({C}, I), it is possible to index the O-operators according to the
truth definition employed, and e.g. state truths like O1(A/C) ∧ O5(B/C) →
O7(A ∧ B/C), meaning that if, for any maximal set of imperatives that I can
obey in the situation C, imperatives are triggered that demand A, and that if I
satisfy all such triggered imperatives, I will have to do B, then obeying a maximal
number of imperatives includes having to do A∧B. It may well be that natural
language ‘ought-statements’ are ambiguous in the face of conditional demands,
the discussion in sec. 3 suggested this. If maximal obeyability is accepted as the
threshold criterion that limits what norms an agent can be expected to conform
to in a given situation, then definition 7 leaves the philosophical logician with
maximal freedom as to what deontic operator is chosen.
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6 Further Research

6.1 Benchmark examples for non-prioritized imperatives

Inevitably there remains further work to do. First of all, it seems worthwhile to
consider what happens if the imperatives are not prioritized, in the sense that
either there is no ranking between them or that they all have the same priority.
It is immediate that for such imperatives, the set of preferred subsets Po

I(W,∆)
for a prioritized conditional imperative structure I = 〈I, f, g, <〉 and a subset
of the imperatives ∆, equals max⊆ObeyableI(W,∆), i.e. the preferred subsets
are just all the maximally obeyable subsets of ∆, given the facts W . There exist
a number of benchmark examples for non-prioritized conditional imperatives,
given by Makinson in [24], and I list without proof the solutions we obtain for
these examples for the O-operators defined here.

Source and name Imperatives Non-truths Truths

von Wright [?]
window closing

r ⇒!c, s ⇒!¬c O(c ∧ ¬c/r ∧ s) O(c ∨ ¬c/r ∧ s)

Chisholm [7]
help and inform

!h, h ⇒!i, ¬h ⇒!¬i O(h/¬h),
O(i/¬h)

O(h ∧ i/⊤),
O(¬i/¬h)

Forrester [9]
gentle murderer

!¬k, k ⇒!g O(g/⊤),
O(¬k/k)

O(¬k/⊤),
O(g/k)

Belzer [3]
Reykjavik scenario

1. !(¬r∧¬g), r ⇒!g, g ⇒!r
2. !¬r, !¬g, r ⇒!g, g ⇒!r

O(¬g/r) O(g/r)

Prakken& Sergot [33]
cigarettes from a killer

!¬k, !¬c, k ⇒!c O(¬k/k) O(c/k) fails!

Prakken& Sergot [33]
white fence and dog

!¬f ,f ⇒!(f ∧ w),
d ⇒!(f ∧ w)

O(¬f/f),
O(¬f/f ∧ d)

O(f ∧ w/f),
O(f ∧ w/d ∧ f)
O(f∧w/d) fails!

van der Torre [42]
apples and pears

1. !(a ∨ p), !¬a

2. !(a ∨ p)
3. ¬p ⇒!a, ¬a ⇒!p

O(¬a/a) O(¬a ∧ p/⊤),
O(¬a ∧ p/¬a)
O(p/¬a)I

O(p/¬a)

van der Torre [42]
joining paths

!a, !b O(a∧ b/¬a∨¬b) O(a∨b/¬a∨¬b)

Makinson [24]
Möbius strip

a ⇒!b, b ⇒!c, c ⇒!¬a O(¬a/a) O(c/a) fails!

Makinson [24]
exclusive options

c ⇒!(a ∧ b), ¬c ⇒!(a ∧ ¬b) O(a/⊤)II

I O-operators that accept ‘circumstantial reasoning’ only, i.e.(td-pcd2,4,6,8).
II O-operators that accept ‘reasoning by cases’ only, i.e. (td-pcd3,4,7,8).

So there are three benchmark examples for which our definitions fail:
In the first one, proposed by Prakken & Sergot [33] and termed ‘cigarettes

from a killer’, the imperative !¬k is intended to mean that you should not kill
a certain man, !¬c means that you should not offer this man a cigarette, and
k ⇒!c means that if you kill the man, you should offer him a cigarette first.
Prakken & Sergot argue that the solution should make true O(c/k), as this
applies the imperative that is more specific for the given circumstances, but
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none of the operators provides this result. A similar idea underlies the second
example, also proposed by Prakken & Sergot [33] and termed above ‘white fence
and dog’. There is a general prohibition of fences !¬f except if there already is
one – in that case it should be white, i.e. f ⇒!(f ∧ w) – or if the owner has
a dog, in which case the owner should have a white fence, i.e. d ⇒!(f ∧ w).
Again, Prakken & Sergot intend the more specific imperative to be applied in
the situation where there is a dog, and so argue that O(f ∧ w/d) should hold.
It is true none of the operators defined above includes a ‘specificity test’, and
I do not think that this is a defect. The legal principle lex specialis derogat legi
generali is not universally applicable to all sets of norms, in particular if they
may stem from various sources, and even in the realm of law it competes with
other principles like lex posterior, lex superiori, or standard argument forms like
teleological interpretation. But if in the given case the more specific imperative
should take priority, we can use a priority ordering that includes k ⇒!c < !¬c
in case of the first example, and d ⇒!(f ∧ w) < !¬f in the case of the second.
Then all operators (td -pcd1-8) make true O(c/k) and O(f ∧ w/d), as intended.

The third example that the truth definitions fail is Makinson’s [24] ‘Möbius
strip’: here the set of imperatives is {a ⇒!b, b ⇒!c, c ⇒!¬a}. Makinson argues
that intuitively, O(b ∧ c/a) should hold. But as is immediate, any maximally
obeyable set includes just two of the given imperatives, which does not suffice
for the truth of O(b∧ c/a) for any of (td -pcd1-8). The argument why O(b∧ c/a)
ought to be true seems to be that since the consequent of the third imperative
c ⇒!¬a is false in the supposed situation a, the agent cannot do anything about
it even if its antecedent becomes true, and so this imperative should not be
considered.20 But is this argument sound? Even if the consequent is inevitably
false, there will be a violation only if its antecedent is (made) true. Certainly,
I do not think that the agent should, in such cases, be under an obligation
to make the antecedent false – this would introduce a ‘deontic contraposition’
that, as we saw, is not generally desirable. But that does not mean that the
agent should accept an obligation to make the antecedent true. Consider this
example: a professor tells a student that next time he sees her, he must have
some written paper to present. The student’s mother, who is worried about his
PhD not getting finished, wants him to see his professor. The fact is: he does not,
and will not, have a written paper. Should he therefore have to go and see his
professor? I think that it is entirely up to the agent which of the two imperatives
he is going to obey, either attributing higher weight to the explicit order of his
professor, or giving priority to alleviating his mother’s worries. Similarly, in the
case of the Möbius strip, it may be that the agent has reasons to think that
she must rather disobey one of the first two imperatives than violate the third.
Then the set {a ⇒!b, b ⇒!c} is not an acceptable choice in the situation a, so
O(b∧c/a) should not be true, and so not providing this truth seems not a defect.

20 Similarly, Greenspan [12] argues that “it seems that oughts are no longer in force
when it is too late to see to it that their objects are fulfilled”.
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6.2 Theorems

Truth definitions (td-pcd1-8) define when a sentence of the form O(A/C) is true
or false with respect to a prioritized conditional structure I and a situation C. So
I briefly consider what sentences are theorems, i. e. hold for all such structures,
given the usual truth definitions for Boolean operators. It is immediate that
for all truth definitions, (DExt), (DM), (DC), (DN) and (DD-R) are theorems.
(DD-R) states that there cannot be both an obligation to bring about A and one
to bring about ¬A unless the situation C is logically impossible, so our truth
definitions succeed in eliminating conflicts. All these theorems are ‘monadic’ in
the sense that the situation C is kept fixed; in fact, they are the C-relative equiv-
alents of standard deontic logic SDL. More interesting are theorems describing
the relations between obligations in different circumstances. Obviously we have

(ExtC) If ⊢PL C ↔ D then O(A/C) ↔ O(A/D) is a theorem

for all truth definitions, i.e. for equivalent situations C, the obligations do not
change. As long as truth definitions are not sensitive to conflicts, e.g. for (td -
cd1-8), we have ‘strengthening of the antecedent’, i.e. for these definitions

(SA) O(A/C) → O(A/C ∧ D)

holds. When only maximally obeyable subsets are considered, i.e. for truth def-
initions (td -pcd1-8), both (SA) and the weaker ‘rational monotonicity’ theorem

(RM) ¬O(¬D/C) ∧ O(A/C) → O(A/C ∧ D)

are refuted e.g. by a set I = {!(p1 ∧ p2), !(p1 ∧¬p2), p2⇒¬p1} of equally ranking
imperatives: though O(p1/⊤) is true and O(¬p2/⊤) false, O(p1/p2) is false.
However, for all definitions(td -pcd1-8), ‘(conjunctive) cautious monotonicity’

(CCMon) O(A ∧ D/C) → O(A/C ∧ D)

holds, which states that if you should to two things and you do one of them,
you still have the other one left.21 Moreover, truth definitions (td -pcd2,4,6,8)
validate the ‘circumstantial extensionality’ rule

(CExt) If ⊢PL C → (A ↔ B) then O(A/C) ↔ O(B/C) is a theorem

that corresponds to ‘circumstantial reasoning’. All definitions that accept ‘rea-
soning by cases’, i.e. (td -pcd3,4,7,8), make

(Or) O(A/C) ∧ O(A/D) → O(A/C ∨ D)

a theorem. Note that (CExt) and (Or) derive

(Cond) O(A/C ∧ D) → O(D → A/C),

which in turn derives (Or) in the presence of (DC), and that by adding (CExt)
and (Or) we obtain again the system PD (cf. sec. 3). Finally, all definitions with
‘deontic detachment’, i.e. (td -pcd5,6,7,8), make

(Cut) O(A/C ∧ D) ∧ O(D/C) → O(A/C)

a theorem. (Cut) is derivable given (Cond) (use Cond on the first conjunct
O(A/C ∧ D) to obtain O(D → A/C), agglomerate with O(D/C), and from
O(D ∧ (D → A)/C) derive O(A/C)), which syntactically mirrors the semantic

21 This is B. Hansson’s [16] theorem (19).
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equivalence of definitions (td -pcd4) and (td -pcd8). Theoremhood of all of the
above theorems for semantics that employ the respective truth definitions is
easily proved and left to the reader (cf. my [14] and [15] as well as Makinson &
van der Torre [25] for the general outline). Makinson & van der Torre’s results
also suggest that these theorems axiomatically define complete systems of deontic
logic with respect to semantics that employ the respective truth definitions (td -
pcd1-8), but this remains a conjecture that further study must corroborate.22

6.3 Questions of representation

One might wonder if it is always adequate to represent a natural language con-
ditional imperative ‘if ... then bring about that ww’ by use of a set I containing
an imperative i with a g(i) that formalizes ‘...’ and a f(i) that formalizes ‘ww’.
This is because there is a second possibility: represent the natural language con-
ditional imperative by an unconditional imperative p!(g(i) → f(i))q. We saw in
sec. 3 that this is not generally adequate. But that does not mean that such a
representation is not sometimes what is required. Consider the crucial imper-
atives in the previous examples: perhaps what your mother meant was simply
‘don’t drink and drive’; perhaps what the doctor meant was ‘don’t go out with-
out a scarf’; perhaps the Colonel meant to tell O’Reilly not to do both, turn
the heat on and keep the window closed; perhaps the sign wanted me to see to
it that the light does not flash without the button being pressed, perhaps self-
defense required me to see to it that I am not attacked without fighting back.
These interpretations seem not wholly unreasonable, and if they are adequate,
then the best representation would be by an imperative p!(g(i) → f(i))q instead
of pg(i) ⇒!f(i)q. It is easy to see that with such a representation, all of the
discussed methods would have resolved these examples.

What then are the conditions that make a representation by an unconditional
imperative adequate? One test may be to ask: ‘Would bringing about the absence
of the antecedent condition count as satisfaction of the imperative?’. Would not
drinking, not going out, not turning on the heat, making the light not flash,
making the man not attack, count as properly reacting to the imperatives in
question? It should be if what the imperatives demand is a material conditional,
since then the conditional imperatives in question are equivalent to telling the
agent ‘either don’t drink or don’t drive, its your decision’, ‘either don’t go out, or
wear a scarf’, ‘either don’t turn on the heat, or open the window’, etc. Another
test would be to examine if contraposition is acceptable. Can we say that your
mother wanted you not to drink if you are going to drive, that the doctor wanted
you to stay inside if you are not going to wear a scarf, that the Colonel wanted
O’Reilly to turn off the heat if the window is closed, that the sign wants you to
make the light not flash if the button is not pressed, that self-defense requires
you to make the man not attack if you are not going to fight back? If the proper
representation is by imperatives that demand a material conditional, then the
answers should be affirmative. I do not think these are easy questions, however,
and leave them to the reader to discuss and answer at his or her own discretion.

22 For (td-pcd4,8), completeness of PD is immediate from the results in [14], [15].
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6.4 The problem of permission

The definition of the deontic notion of permission in a context of conditional
norms is troublesome.23 For monadic deontic logic it is generally accepted to
define (weak) permission through the absence of an obligation to the contrary, i.e.
PA =df ¬O¬A. This has the additional effect of making OA∨P¬A a tautology,
and so there are not ‘gaps’ – any state of affairs is positively or negatively
regulated. For dyadic operators, the analogue would be P (A/C) =df ¬O(¬A/C).
But this leads here to counterintuitive results: consider the set I = {p1⇒!p2},
with the intended interpretation ‘if you go out, wear your boots’, and truth
definitions (td -pcd1,2,3,5,6,7), i.e. those truth definitions that do not collapse
into reasoning about the imperatives’ materializations. For all these we have I 2

O(p1 → p2/⊤), and so by the above definition we have I |= P (p1 ∧ ¬p2/⊤). So
you are permitted to go out without your boots. There are several proposals that
overcome this difficulty. Von Wright, in his re-interpretation of deontic logic as
rules for rational norm-giving from [46] onwards, has denied the interdefinability
of obligation and permission altogether; his theory has the result that in the
absence of explicit permissive norms we only have that OA implies PA, i.e.
anything permitted is also obligatory. Quite similarly, Makinson & van der Torre
[27] have proposed two definitions of conditional permission that, in the absence
of explicit permissive norms, either make it coincide with obligation (‘forward
permission’), or come quite close to it, by demanding that by forbidding the
behavior for the same condition, a conflict would be created for some situation
(‘backward permission’). All these approaches have the strange result that the
less is obligatory, the less is allowed.24 But surely one can, in some weak sense,
say that given the presence of some (conditional) imperatives, an agent is still
free to do A in a situation C, without saying that A is also obligatory in this
situation. It is perhaps a better solution to define

I |= P (A/C) iff ∃Γ ∈ PI({C}, I) : Γm ∪ {C} 0PL ¬A,

thus defining A as permissible in a situation C if there is a preferred maximally
obeyable subset of the imperatives for which bringing about A does not cause
a violation. For operators other than (td -pcd4,8), this definition is not ‘gapless’.
E.g. consider the set I = {!p1, p1⇒!p2}. For truth definitions that do not accept
‘deontic detachment’, i.e. (td -pcd1,2,3), we have neither O(p2/⊤) nor P (¬p2/⊤):
though we are not yet under an obligation to bring about p2, we are also not
permitted to bring about ¬p2 and thus make satisfaction of the imperative im-
possible that ought to be triggered. Or consider conditional imperatives whose

23 I do not consider here the problem of how permissive norms, or licenses, may be
represented. For attempts to use a separate set of ‘P-norms’ alongside what is here
the set of imperatives cf. Alchourrón & Bulygin [1], von Wright [46], Makinson [24]
and Makinson & van der Torre [27].

24 Consider the set I = {p1⇒!pi | i > 1}, and for an interpretation suppose that I
have no obligations in the rest of the world, but am a slave once I go to Australia.
By ‘forward’ or ‘backward’ permission, P (A/¬p1) is false for any A, i.e. I am not
allowed to do anything if I do not go to Australia, and though P (pi/⊤) holds for
backward permission, it is only by virtue of pi being obligatory down under.
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consequent has become impossible to satisfy: for a set I = {p1⇒!p2} we do not
have O(¬p1/¬p2) for truth definitions other than (td -pcd4,8) since p1⇒!p2 is
not triggered in the situation ¬p2, but it is also not permitted to trigger it, i.e.
P (p1/¬p2) is not true. This deontic vagueness may indeed be adequate for such
situations. Further study must determine if such a definition does not create
counterintuitive results. But it is important to see that as far as reasoning about
conditional norms is concerned, the old definitions of permission as the absence
of prohibition, obligation as the absence of a permission to the contrary, and
prohibition as the absence of permission, do no longer hold.

7 Conclusion

Reasoning about obligations when faced with different and possibly conditional
imperatives is a part of everyday life. To avoid conflicts, these imperatives may
be ordered by priority and then observed according to their respective ranks. The
‘drinking and driving’ case in the introduction presented an example of such nat-
ural reasoning. To provide a formal account is, however, additionally complicated
by the fact that there are various and mutually exclusive intuitions about what
belongs to the right definition of an ‘obligation in the face of conditional imper-
atives’, i.e. the definition of a deontic O-operator. Based on similar definitions of
operators by Makinson & van der Torre [25], [26] for their ‘input/output logic’,
but leaving the choice of the ‘right’ operator to the reader, I presented several
proposals in sec. 3 for definitions of a dyadic O-operator, namely (td -pcd1-8).
These were dependent on a choice of ‘preferred subsets’ among a given set of
prioritized conditional imperatives. A particularly successful method to identify
such subsets, but applying to unconditional imperatives only, was Brewka’s [4]
definition of ‘preferred subtheories’ within a theory. In sec. 4 I discussed various
approaches that extend this method to conditional imperatives, but these failed
to produce satisfactory results for a number of given examples. In sec. 5 I first
examined an approach that ‘tailors’ the choice procedure to the truth definition
for the deontic O-operator in question, where the only criterion is to avoid the
truth of O(¬C/C) for possible circumstances C. Though this finally produced
the intended results, it did so for truth definitions (td -pcd4-8) only, whereas
counterexamples remained for any of the weaker truth definitions (td -pcd1-3). I
then argued that the solution is to adapt Brewka’s method in such a way that it
constructs, instead of maximal subsets of imperatives that are collectively sat-
isfiable by an agent, maximally obeyable subsets of the imperatives. I showed
that this new proposal provides adequate solutions to all of the examples, and in
particular the ‘drinking and driving’ example is resolved in a satisfactory fashion
for all of the discussed deontic operators. In sec. 6 I demonstrated that the new
proposal also includes satisfactory results for benchmark examples developed for
non-prioritized conditional imperatives; I presented theorems of a deontic logic
based on this proposal (though the question of their completeness had to be left
open), and finally I showed that there are problems for the representation of
conditional imperatives and difficulties for the definition of a deontic P -operator
that further philosophical discussion and research must address.
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Normative multiagent systems as a research area can be defined as the intersection of

normative systems and multiagent systems. Since the use of norms is a key element of

human social intelligence, norms may be essential too for artificial agents that collaborate

with humans, or that are to display behavior comparable to human intelligent behavior.

By integrating norms and individual intelligence normative multiagent systems provide a

promising model for human and artificial agent cooperation and co-ordination, group de-
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cision making, multiagent organizations, regulated societies, electronic institutions, secure

multiagent systems, and so on.

With ‘normative’ we mean ‘conforming to or based on norms’, as in normative behavior

or normative judgments. According to the Merriam-Webster Online (2005) Dictionary,

other meanings of normative not considered here are ‘of, relating to, or determining norms

or standards’, as in normative tests, or ‘prescribing norms’, as in normative rules of ethics

or normative grammar. With ‘norm’ we mean ‘a principle of right action binding upon

the members of a group and serving to guide, control, or regulate proper and acceptable

behavior’. Other meanings of ‘norm’ given by the Merriam-Webster Online Dictionary but

not considered here are ‘an authoritative standard or model’, ‘an average like a standard,

typical pattern, widespread practice or rule in a group’, and various definitions used in

mathematics.

Normative multiagent systems are an example of the use of sociological theories in

multiagent systems, and more generally of the relation between agent theory and the social

sciences such as sociology, philosophy, economics, and legal science. The need for social

science theories and concepts like norms in multiagent systems is now well established.

For example, Wooldridge’s weak notion of agency is based on flexible autonomous action

(Wooldridge, 2002), and social ability as the interaction with other agents and co-operation

is one of the three meanings of flexibility; the other two are reactivity as interaction with

the environment, and pro-activeness as taking the initiative. In this definition autonomy

refers to non-social aspects, such as operating without the direct intervention of humans

or others, and have some kind of control over their actions and internal state. For some

other arguments for the need for social theory in multiagent systems, see, for example,

(Bond and Gasser, 1988; Conte and Gilbert, 1995; Verhagen and Smit, 1996). For a more

complete discussion on the need of social theory in general, and norms in particular, see

the AgentLink roadmap (roa, 2005).
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Social concepts like norms are important for multiagent systems, because multiagent

system research and sociology share the interest in the relation between micro-level agent

behaviour and macro-level system effects. In sociology this is the (in)famous micro-macro

link (Alexander et al., 1987) that focuses on the relation between individual agent behaviour

and characteristics at the level of the social system. In multiagent system research, this

boils down to the question “How to ensure efficiency at the level of the multiagent system

whilst respecting individual autonomy?”. According to Verhagen (2000) three possible

solutions to this problem comprise of the use of central control which gravely jeopardizes the

agent’s autonomy, internalized control like the use of social laws (Shoham and Tennenholtz,

1992), and structural coordination (Ossowski, 1999) including learning norms.

Before we discuss normative multiagent systems, we consider some discussions on norms

in the social sciences.

1 Norms and normative systems

In the 1960’s, the sociologist Gibbs (1965) wrote an influential article on the problems

concerning the definition and classification of norms, and observes that the various types

of norms involve “a collective evaluation of behavior in terms of what it ought to be; a

collective expectation as to what behavior will be; and/or particular reactions to behavior,

including attempts to apply sanctions or otherwise induce a particular kind of conduct.”

(Gibbs, 1965, p. 589, original emphasis)

More recently, Therborn (2002) presented an overview of the role of norms for social

theory and analysis. Normative action is based upon wanting to do the right thing rather

than the thing that leads to ends or goals, which he calls teleological action, or the thing

that leads to, expresses, or is caused by an emotion, called emotional action.

Therborn distinguishes among three kinds of norms. Constitutive norms define a sys-
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tem of action and an agent’s membership in it, regulative norms describe the expected

contributions to the social system, and distributive norms defining how rewards, costs, and

risks are allocated within a social system. Furthermore, he distinguishes between non-

institutionalized normative order, made up by personal and moral norms in day-to-day

social traffic, and institutions, an example of a social system defined as a closed system

of norms. Institutional normative action is equaled with role plays, i.e., roles find their

expressions in expectations, obligations, and rights vis-a-vis the role holder’s behaviour.

Therborn also addresses the dynamics and changing of norms. The dynamics of norms

at the level of the individual agent is how norms are learned or propagated in a popula-

tion. Socialization is based on identification, perceiving the compliance with the norms by

other agents, or the entering of an institution. Norms are (re)enforced by the presence of

incentives or sanctions. Changes in either of these three three socialization mechanisms

lead to changes in the set of norms of the individual agent. These changes may be inhib-

ited either by changes in the social system or changed circumstances, or by changes in the

interpretation of the norms by the agents within the system.

Within philosophy normative systems have traditionally been studied by moral and

legal philosophers. Alchourròn and Bulygin (1971) argue that a normative system should

not be defined as a set of norms, as is commonly done, but in terms of consequences:

“When a deductive correlation is such that the first sentence of the ordered pair

is a case and the second is a solution, it will be called normative. If among the

deductive correlations of the set α there is at least one normative correlation,

we shall say that the set α has normative consequences. A system of sentences

which has some normative consequences will be called a normative system.”

(Alchourròn and Bulygin, 1971, p.55).

In computer science, Meyer and Wieringa define normative systems as “systems in

the behavior of which norms play a role and which need normative concepts in order to
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be described or specified” (Meyer and Wieringa, 1993, preface). They also explain why

normative systems are intimately related with deontic logic.

“Until recently in specifications of systems in computational environments the

distinction between normative behavior (as it should be) and actual behavior

(as it is) has been disregarded: mostly it is not possible to specify that some

system behavior is non-normative (illegal) but nevertheless possible. Often il-

legal behavior is just ruled out by specification, although it is very important

to be able to specify what should happen if such illegal but possible behav-

iors occurs! Deontic logic provides a means to do just this by using special

modal operators that indicate the status of behavior: that is whether it is legal

(normative) or not” (Meyer and Wieringa, 1993, preface).

2 Normative multiagent systems

The agents in the environment of a normative system interact with the normative system

in various ways. First, from the perspective of the agents, agents can create new norms,

update or maintain norms, and enforce norms, using roles defined in the normative system

such as legislators or policemen. Secondly, from the perspective of social order, we can

also look at the interaction between the normative system and its environment from the

viewpoint of the normative system. In this viewpoint, the normative system uses the agents

playing a role in it – the legislators, policemen and the like – to maintain an equilibrium in

the normative multiagent system. In this perspective, we can distinguish at least two levels

of equilibrium. First, norms are used to maintain social order in a normative multiagent

system. Second, normative system contain a mechanism for updating themselves, to adapt

to changing circumstances in its environment.

Jones and Carmo (2001) define a normative system as “Sets of agents whose interactions
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are norm-governed; the norms prescribe how the agents ideally should and should not

behave. [...] Importantly, the norms allow for the possibility that actual behavior may

at times deviate from the ideal, i.e., that violations of obligations, or of agents’ rights,

may occur.” In our opinion, this is too general, as a normative system does not contain

the agents themselves. It also is not a satisfactory definition of normative multiagent

system, because it precludes the agents’ control over the set of norms. We therefore use

the following definition in this paper.

A normative multiagent system is a multiagent system together with normative

systems in which agents on the one hand can decide whether to follow the

explicitly represented norms, and on the other the normative systems specify

how and in which extent the agents can modify the norms.

Note that this definition makes no presumptions about the internal workings of an agent

nor of the way norms find their expression in agent’s behaviour.

Since norms are explicitly represented, according to our definition of a normative mul-

tiagent system, the question should be raised how norms are represented. Norms can be

interpreted as a special kind of constraint, and represented depending on the domain in

which they occur. However, the representation of norms by domain dependent constraints

runs into the question what happens when norms are violated. Not all agents behave ac-

cording to the norm, and the system has to deal with it. In other words, norms are not

hard constraints, but soft constraints. For example, the system may sanction violations or

reward good behavior. Thus, the normative system has to monitor the behavior of agents

and enforce the sanctions. Also, when norms are represented as domain dependent con-

straints, the question will be raised how to represent permissive norms, and how they relate

to obligations. Whereas obligations and prohibitions can be represented as constraints, this

does not seem to hold for permissions. For example, how to represent the permission to
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access a resource under an access control system? Finally, when norms are represented as

domain dependent constraints, the question can be raised how norms evolve.

We therefore believe that norms should be represented as a domain independent theory,

for example in deontic logic (von Wright, 1951; van der Torre and Tan, 1999; van der Torre,

2003; Makinson and van der Torre, 2000; Makinson and van der Torre, 2001; Makinson and

van der Torre, 2003). Deontic logic studies logical relations among obligations and per-

missions, and more in particular violations and contrary-to-duty obligations, permissions

and their relation to obligations, and the dynamics of obligations over time. Therefore,

insights from deontic logic can be used to represent and reason with norms. Deontic logic

also offers representations of norms as rules or conditionals. However, there are several

aspects of norms which are not covered by constraints nor by deontic logic, such as the

relation between the cognitive abilities of agents and the global properties of norms.

Conte, Falconi and Sartor (1999) say that normative multiagent systems research fo-

cuses on two different sets of problems. On the one hand, they claim that legal theory

and deontic logic supply a theory for of norm-governed interaction of autonomous agents

while at the same time lacking a model that integrates the different social and normative

concepts of this theory. On the other hand, they claim that three other problems are of

interest in multiagents systems research on norms: how agents can acquire norms, how

agents can violate norms, and how an agent can be autonomous. For artificial agents,

norms can be designed as in legal human systems, forced upon, for example when joining

an institution, or they can emerge from the agents making them norm autonomous (Verha-

gen, 2000). Agent decision making in normative systems and the relation between desires

and obligations has been studied in agent architectures (Broersen et al., 2002), which thus

explain how norms and obligations influence agent behavior.

An important question is where norms come from. Norms are not necessarily created by

a single legislator, they can also emerge spontaneously, or be negotiated among the agents.
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In electronic commerce research, for example, cognitive foundations of social norms and

contracts are studied (Boella and van der Torre, 2006a). Protocols and social mechanisms

are now being developed to support such creations of norms in multiagent systems. When

norms are created, the question how they are enforced can be raised. For example, when

a contract is violated, the violator may have to pay a penalty. But then there has to be a

monitoring and sanctioning system, for example police agents in an electronic institution.

Such protocols or roles in a multiagent system are part of the construction of social reality,

and Searle (1995) has argued that such social realities are constructed by constitutive

norms. This again raises the question how to represent such constitutive or counts-as

norms, and how they are related to regulative norms like obligations and permissions

(Boella and van der Torre, 2006a).

Not only the relation between norms and agents must be studied, but also the relation

between norms and other social and legal concepts. How do norms structure organizations?

How do norms coordinate groups and societies? How about the contract frames in which

contracts live? How about the legal contexts in which contract frames live? How about

the relation between legal courts? Though in some normative multiagent systems there is

only a single normative system, there can also be several of them, raising the question how

normative systems interact. For example, in a virtual community of resource providers each

provider may have its own normative system, which raises the question how one system

can authorize access in another system, or how global policies can be defined to regulate

these local policies (Boella and van der Torre, 2006b).

Summarizing, normative multiagent systems study general and domain independent

properties of norms. It builds on results obtained in deontic logic, the logic of obligations

and permissions, for the representation of norms as rules, the application of such rules,

contrary-to-duty reasoning and the relation to permissions. However, it goes beyond logical

relations among obligations and permissions by explaining the relation among social norms
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and obligations, relating regulative norms to constitutive norms, explaining the evolution

of normative systems, and much more.

The papers in this double special issue on normative multiagent systems address some

of these issues, but they also address new research issues that are of central importance for

the whole field of normative multiagent systems. These include how to combine theories of

teleological action (e.g., the BDI model of agency) with models of normative action, how to

model the dynamics of norms when institutions’ norm sets are to be combined, the devel-

opment and testing of logics of normative reasoning and dynamics, and the formalization

descriptive social theories of normative action into implementable formal models.

3 NorMAS 2005

NorMAS05 was an international symposium on normative multiagent systems, organized

in April 2005 by the authors of this article as part of the 2005 AISB convention (AISB

standing for the Society for the Study of Artificial Intelligence and the Simulation of

Behaviour). The symposium attracted papers from a variety of areas, such as the social

sciences (and computational sociology in particular), computer science, and formal logics.

A number of these papers representing these areas were selected for this double special

issue on normative multiagent systems. Four general themes are addressed in these papers,

namely intra-agent aspects of norms, interagent aspects of norms, normative systems and

their borders, and combining normative systems.

3.1 Intra-agent aspects of norms

The paper “My Agents Love to Conform: Norms and Emotion in the Micro-Macro Link”

by von Scheve et al. investigates the function of emotion in relation to norms in natural

and artificial societies. It shows that unintentional behavior can be normative and socially
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functional at the same time, thereby highlighting the role of emotion. By defining norms

as mental objects, the role of emotion in maintaining and enforcing norms is studied,

relates these findings social structural dynamics in natural and societies,and outlines the

possibilities of an application to a multi-agent architecture.

Sadri, Stati, and Toni’s “Normative KGP Agents” extends the logical model of agency

known as the KGP model to support agents with normative concepts, based on the roles

an agent plays and the obligations and prohibitions that result from playing these roles.

The proposed framework illustrates how the resulting normative concepts, including the

roles, can evolve dynamically during the lifetime of the agent. It also illustrates how these

concepts can be combined with the existing capabilities of KGP agents in order to plan for

their goals, react to changes in the environment, and interact with other agents. Finally,

the paper gives an executable specification of normative concepts that can be used directly

for prototyping applications.

3.2 Interagent aspects of norms

Kibble’s paper “Speech acts, commitment and multiagent communication” aims to recon-

sider the suitability of speech act theory as a basis for agent communication languages.

It models dialogue states as deontic scoreboards which keep track of commitments and

entitlements that speakers acknowledge and hearers attribute to other interlocutors and

outlines an update semantics and protocol for selected locutions.

Sauro’s paper “Qualitative Criteria of Admissibility for Enforced Agreements” focuses

on the desirablility of artificial agents to help each other when they cannot achieve their

goals, or when they profit from social exchanges. It studies the coalition formation processes

supported by enforced agreements and defines two qualitative criteria that establish when

a coalition is admissible to be formed. These two properties can be used when the space

of possible coalitions is unknown.
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3.3 Normative systems and their borders

Davidsson and Johansson classify artificial societies and identify four different types of

stakeholders in their paper “On the Potential of Norm-Governed Behavior in Different

Categories of Artificial Societies”. The potential of norm-governed behavior in different

types of artificial societies is investigated based on the preferences of the stakeholders and

how they influence the state of the society. The paper concludes that the more open a

society is the more it has to rely on agent owners and designers to achieve norm-governed

behavior, whereas in more closed societies the environment designers and owners may

control the degree of norm-governed behavior.

Hahn, Fley, and Florian argue in “A Framework for the Design of Self-Regulation of

Open Agent-based Electronic Marketplaces” that allowing self-interested agents to activate

social institutions during run-time can improve the robustness of open multiagent systems.

Based on sociological theory, institutions are seen as rules which have to be activated and

adopted by the agent population. A framework for self-regulation of multiagent system

for the domain of electronic marketplaces is developed, consisting of three different insti-

tutional forms that are defined by the mechanisms and instances that generate, change,

or safeguard them. The paper shows that allowing autonomous agents both the reasoning

about their compliance with a rule and the selection of the form of an institution helps to

balance the trade-off between the autonomy of self-interested agents and the maintenance

of social order in an open multiagent system and to ensure almost the same qualities as in

closed environments.

In “Mapping Deontic Operators to Abductive Expectations”, Alberti et al. propose

a mapping of deontic operators (obligations, prohibition, permission) to language entities

(expectations) available within the an agent framework developed for agent interaction

in open agent societies. The mapping is supported by showing a similarity between the

abductive semantics for expectations and the Kripke semantics that can be given to deontic

11



operators.

In “A Normative Framework for Agent-Based Systems”, López y López, Luck, and

d’Inverno present a formal normative framework for agent-based systems that adresses

two omissions of previous research on the use of norms in computational models of open

societies to help to cope with the heterogeneity, the autonomy and the diversity of interests

among their members. These are the lack of a canonical model of norms that facilitates

their implementation and enables the description of the processes of reasoning about norms,

and secondly the perspective of individual agents and what they might need to effectively

reason about the society in which they participate.

3.4 Combining normative systems

Grossi et al. introduce the notion of contextual ontologies in their paper “Ontological

Aspects of the Implementation of Norms in Agent-Based Electronic Institutions” and also

provide a formal machinery to characterise this notion. This notion solves the problem of

different institutions implementing the same set of norms in different ways presupposing

divergent ontologies of the concepts in which that set of norms is formulated.
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Abstract

At the second international workshop on normative multiagent sys-
tems, for short NorMAS07 [4], held at Schloss Dagstuhl, Germany, in
March 2007, a shift was identified in the research community from a legal
to an interactionist view on normative multiagent systems. In this pa-
per we discuss the shift, examples, and ten new challenges in this more
dynamic setting.

1 Towards a more dynamic interactionist view

Traditionally normative systems have been studied in philosophy, sociology, law,
and ethics, and during the past two decades they have been studied in deontic
logic in computer science (∆EON). Normative multiagent systems is a research
area where the traditional normative systems and ∆EON research fields meet
agent research. The proposed solutions to the ∆EON research problems are
changing, and solutions based on multiagent systems are increasing. Gradually
the ∆EON research focus changes from logical relations among norms, to, for
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example, agent decision making, and to systems in which norms are created
and in which agents can play the role of legislators. The eighth conference on
Deontic Logic in Computer Science in 2006 in Utrecht, the Netherlands had as
special focus “artificial normative systems” [10, 9], and the seventh conference
[13, 14] in 2004 in Madeira, Portugal had as special theme “deontic logic and
multiagent systems.” Continuing this trend, the third workshop on normative
multiagent systems is co-located in Luxembourg in July 2008 with the ninth
conference on Deontic Logic in Computer Science [10, 21], which has as special
topic “security and trust,” and the fourth workshop will again be a Dagstuhl
seminar to be held in March 2009.

The Agentlink Roadmap [15, Fig. 7.1.] observes that norms must be in-
troduced in agent technology in the medium term for infrastructure for open
communities, reasoning in open environments and trust and reputation. After
four days of discussion, the participants of the second workshop on normative
multiagent systems agreed to the following consensus definition:

“A normative multiagent system is a multiagent system organized by means
of mechanisms to represent, communicate, distribute, detect, create, mod-
ify, and enforce norms, and mechanisms to deliberate about norms and
detect norm violation and fulfilment.”

The shift towards a more dynamic interactionist view on normative multi-
agent systems is reflected in the way this definition builds on its predecessor
which emerged at the first workshop on normative multiagent systems held in
2005 as a symposium of the Artificial Intelligence and Simulation of Behaviour
convention (AISB) in Hatfield, United Kingdom: “A normative multiagent sys-
tem is a multiagent system together with normative systems in which agents
on the one hand can decide whether to follow the explicitly represented norms,
and on the other the normative systems specify how and in which extent the
agents can modify the norms” [3]. The emphasis has shifted from representa-
tion issues to the mechanisms used by agents to coordinate themselves, and in
general to organize the multiagent system. Norms are communicated, for exam-
ple, since agents in open systems can join a multiagent system whose norms are
not known. Norms are distributed among agents, for example, since when new
norms emerge the agent could find a new coalition to achieve its goals. Norm
violations and norm compliance are detected, for example, since spontaneous
emergence norms of among agents implies that norm enforcement cannot be
delegated to the multiagent infrastructure.

This shift of interest marks the passage of focus from the more static le-
galistic view of norms (where power structures are fixed) to the more dynamic
interactionist view of norms (where agent interaction is the base for norm re-
lated regulation. This ties in to what Strauss [18] called “negotiated order”,
Goffmans [11] view on institutions, and Giddens’ [8] structuration theory). The
workshop vote on next generation scenarios for normative multiagent systems
clearly preferred social scenarios like virtual communities and Second Life (over
50%) to more classical e-commerce settings where centralized solutions like e-
institutions are used (less than 20%).
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The legalistic view of normative multiagent systems is a top-down view which
considers the normative system as a regulatory instrument to regulate
emerging behavior of open systems without enforcing the desired behav-
ior. Agents are often motivated by sanctions to stick to norms, rather than
by their sharing of the norms. Even if agents are allowed some freedom to
create norms, this freedom is mostly restricted to the possibility for agents
to create contracts to regulate the interaction among them.

The interactionist view on normative multiagent systems represents a bottom-
up view. In this autonomous individually oriented view norms can be seen,
e.g., as regularities of behavior which emerge without any enforcement sys-
tem because agents conform to them either because their goals happen to
coincide, or because they feel themselves as part of the group or because
they share the same values of other agents. Sanctions are not always neces-
sary, where by sanctions we mean formal measures towards norm violating
agents carried out by agents whose task it is to sanction norm violations,
because social blame and spontaneous exclusion of non-conforming agents
are often enough. This interactionist view, which has been promoted in
the multiagent systems community by Cristiano Castelfranchi [6], becomes
essential in applications related to virtual communities. In Second Life,
for example, communities emerge in which the behavior of its members
show increasing homogeneity.

To put this shift from legal to interactionist view into perspective, we can
identify five levels in the development of normative multiagent systems. At
level 1 of off-line norm design [17], norms are imposed by the designer and
automatically enforced, and agents cannot organize themselves by means of
norms. At level 2 of norm representation, norms are explicitly represented,
they can be used in agent communication and negotiation, and a simple kind of
organizations and institutions can be created. At level 3 of norm manipulation,
a legal reality is created in which agents can add and remove norms following the
rules of the normative system. Whereas existing normative multiagent systems
are still at one of these first three levels of norm autonomy (for an introduction
to norm autonomy in multiagent systems, see [22]), multiagent system research
is now moving to level 4 of social reality, and is concerned with the ten challenges
discussed in Section 3 below. We believe that there is at least one more level to
be dealt with in the future. At level 5, the norms create a new moral reality.
This goes beyond present studies in machine ethics [1], which is more concerned
with agent decision making in the context of norms, which is an issue dealt with
at each level of normative multiagent systems, than with creating a new ethics.

Clearly, for each level the development of the normative multiagent system
will take a much larger effort than the development of similar systems at lower
levels. For example, if norm are explicitly represented (level 2) rather than
built into the system (level 1), then the system has to be much more flexible
to deal with the variety of normative systems that may emerge. However, it
may be expected that normative multiagent systems realized at higher levels
will have a huge effect on social interaction, in particular on the web. We
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discuss some examples and several research needs that arise in this more dynamic
interactionist view on normative multiagent systems.

2 Examples of an interactionist view

We illustrate the more dynamic interactionist viewpoint on normative multia-
gent systems using virtual communities in virtual reality settings like Second
Life. In these virtual communities, human agents interact with artificial agents
in a virtual world. The new communication instruments offered by the internet
have resulted in the creation of virtual communities of users sharing information,
emotions, or hobbies. When the interaction possibilities are multiplied in appli-
cations like Second Life or multi-player online games, new scenarios emerge. In
particular, given the higher degree of freedom of behavior with respect to the
real world, and the unaccountability offered by anonymity, on the one hand,
as said above, spontaneous communities emerge showing regularities of behav-
ior. However, to preserve the autonomy of the members of these communities,
interactionist mechanisms for regulating behavior are needed. Thus, members
of communities should be endowed with tools to make the community norms
explicit and communicable to preserve their members’ autonomy.

The participants will eventually end up creating their own norms and rules,
even if in virtual communities like Second Life and in multi-player games nor-
mative infrastructure is imposed by the designers. Sometimes, the rules created
by the participants counter the designers’ objectives and rules and players start
to play in ways unforeseen by the game designers. An example is discussed by
Peter Ludlow [16] from Sony’s EverQuest. EverQuest is a multiplayer online
game where gamers are supposed to fight each other in a world of snakes, drag-
ons, gods, and the Sleeper. Sony intended the Sleeper to be unkillable and gave
it extreme high hit points. However, a combined combat of close to 200 players
nearly succeeded to kill the ’animal’. Unfortunately, Sony decided to intervene
and rescue the monster. Most of the discussion on this example has highlighted
the decrease in trust of the game players in Sony, despite the fact that the next
day Sony let the game players beat the Sleeper. However, in this paper we
would like to highlight what this story tells us about the goals of game players,
and its consequences for necessary technology in games. The following quote
illustrates the excitement in killing the Sleeper.

A supposedly [player-vs.-player] server banded together 200 people.
The chat channels across the server were ablaze, as no less than
5,000 of us listened in, with OMG theyre attempting the Sleeper!
Good luck d00dz! Everyone clustered near their screens, sharing the
thrill of the fight, the nobility of the attempt and the courage of those
brave 200. Play slowed to a crawl on every server as whispers turned
to shouts, as naysayers predicted, It can’t be done or It will drop
a rusty level 1 sword and most of us just held our breath, silently
urging them forward. Rumors abounded: If they win, the whole EQ
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world stops and you get the text from the end of Wizardry 1, or If
they win, the president of Sony will log on and congratulate them.
With thousands watching and waiting, the Sleepers health inched
ever downward.

. . .

[EverQuest player] Ghenwivar writes, On Monday, November 17th,
in the most amazing and exciting battle ever, [EverQuest guilds]
Ascending Dawn, Wudan and Magus Imperialis Magicus defeated
Kerafyrm, also known as The Sleeper, for the first time ever on an
EverQuest server. The fight lasted approximately three hours and
about 170180 players from [EverQuest server] Rallos Zeks top three
guilds were involved. Hats off to everyone who made this possible
and put aside their differences in order to accomplish the impossible.
Congratulations RZ!!!” [16]

Normative multiagent systems study multiagent technology to support the
emergent cooperation in online multi-player games like EverQuest [2]. The ex-
ample illustrates that the game had been so well wrought that a real coalition of
communities of players had formed, one that was able to set aside the differences
between the communities, at least for a night, in pursuit of a common goal. This
was not intended or foreseen by Sony, and getting two hundred people to focus
on accomplishing the same task is a challenge.

“Why, you might ask, would anyone waste four hours of their life
doing this? Because a game said it couldn’t be done.

This is like the Quake freaks that fire their rocket launchers at their
own feet to propel themselves up so they can jump straight to the
exit and skip 90% of the level and finish in 2 seconds. Someone
probably told them they couldn’t finish in less than a minute.

Games are about challenges, about hurdles or puzzles or fights over-
come. To some players, the biggest hurdle or challenge is how to do
what you (the designer) said couldn’t happen. If you are making a
game, accept this.” [16]

A typical problem in virtual communities is caused by the ease in which new
participants can enter the community, known as “newbies”. The virtual commu-
nities should be able to defend itself from dangerous new players, and normative
systems are a way to pose virtual gates to such communities. “Griefers would
also maintain numerous alts that were sent out into greater Alphaville in at-
tempts to scam and disrupt other houses. Because alts were usually abandoned
soon after they had been created, they appeared to others as new characters,
and this had the effect of making many players highly suspicious of newbies, and
of generating virtual gated communities in response.” [16] However, a virtual
space should be able to deal with honest new participants. It has been noted
that existing communities establish practices which tend to exclude newly en-
tered participant in the virtual space: “Processes of norm building were visible,
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resulting in patterns of established users versus outsiders; new bonds were cre-
ated, and users experience an appropriation of this newly created virtual public
space: parts of the Digital City were ‘taken over’ by active established users
who behaved as a closed community and were perceived accordingly by the
outsiders.” [20]

As illustrated by the “newbies” example, there are some aspects in which
normative systems for virtual communities are more challenging than traditional
regulations. For example, the construction of autonomous virtual communities
cannot ground itself on an external legal system - apart from most serious cases
like frauds going beyond the virtual environment - as in e-commerce applications
that ground the validity of online contracts on the relevant human regulations.
Consequently, these normative systems should be developed separately, in the
same way as different national systems are created independently. Another is-
sue is related to the possibility to augment actions in virtual scenarios: in these
scenarios characters can be created with their own behavior that have more abil-
ities then humans in the real world (e.g., flying, walking through wall), objects
nor existing in reality, and even places. Moreover, the abilities of characters
are not only related to the ones of their players: e.g., an avatar in Second Life
entering a dancing room can acquire new dancing abilities which it did not have
before and will lose afterwards. Thus the autonomy of characters assumes new
dimensions.

3 Ten research challenges for the interactionist

view

For the ten challenges posed by the interactionist viewpoint, we take the per-
spective from an agent programmer, and consider which kinds of tools like pro-
gramming primitives, infrastructures, protocols, and mechanisms she needs to
deal with norms in the example scenario. Similar needs exist at the requirements
analysis level, or the design level, but we have chosen for the programming level
since it makes the discussion more concrete, and this level is often ignored when
norms are discussed. The list is not exhaustive, and there is some overlap be-
tween the challenges. Our aim is to illustrate the range of topics which have to
be studied, and we therefore do not attempt to be complete.

Challenge 1 Tools for agents supporting communities in their task of recogniz-
ing, creating, and communicating norms to agents.

Even if social norms emerge informally, e.g., when a community becomes
more complex and more open, an explicit representation of norms becomes nec-
essary. There are still numerous philosophical problems for the representation
of norms, see, for example, [12]. However, the new problem is the role of the
agents and humans involved in the interaction with the multiagent system.

Challenge 2 Tools for agents to simplify normative systems, recognize when
norms have become redundant, and to remove norms.
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Challenge 2 is the counterpart of Challenge 1, because the natural tendency
of overregulation creates the need for a counterbalance. Since all norms come
with a cost, for example to process them, to communicate them, to maintain
them, or to enforce them, norms should only be introduced when they are really
needed, and they should be removed as soon as they are no longer needed. For
example, when the number of violations is increasing, this is typically a case
where norms must be changed or removed, rather than where norm enforcement
has to be increased.

Challenge 3 Tools for agents to enforce norms.

If we allow communities of agents to create their own normative multiagent
systems, then the issue of how to enforce the norms arises. In case a centralized
approach is needed, the infrastructure should support the enforcement of norms
created by the communities. In a distributed approach, roles should be defined
for agents in charge of monitoring and sanctioning. The virtual environment
can offer new opportunities for norm enforcement not found in the usual en-
vironments. For example, evidence about agent behaviors can be collected via
the logfiles of the system.

Challenge 4 Tools for agents to preserve their autonomy.

Challenge 4 is the counterpart of Challenge 3, because there is a natural
tendency to enforce norms by regimenting them into the system. The danger
highlighted by Castelfranchi [7] is related to the “formalization” of the informal.
Norms have the nature of general directives which cannot cover all cases nor
avoid all conflicts with other norms. Thus, normative multiagent systems need
to preserve the autonomy of agents regarding the making of decisions about
norm compliance and norm violation. Agents in charge of monitoring and en-
forcing norms should be flexible enough to preserve the autonomy of the “norm
subject” agents with respect to norm violations, for instance in circumstances
that differ from the circumstances which the norms have been defined to preserve
and where norm compliance is not advantageous for the normative multiagent
system.

Challenge 5 Tools for agents to construct organizations.

As the example about EverQuest example shows, cooperation among the
participants of virtual reality can result in coalitions which can achieve results
which go beyond the ones reachable by their members. This is of great interest
for participants in virtual reality, also because Second Life is becoming a place
where business takes place. Thus, participants should be given some facilities
and tools which allow the construction and management of organizations to
achieve their goals. Note that in the real world such mechanisms exist, first of
all the laws which allow the creation of organizations and attribute the respon-
sibilities to different entities. E-institutions as proposed in multiagent systems
can be a starting point, but they are often too flat - i.e., not hierarchically
organized - and they usually do not support the dynamics of the underlying
normative systems by allowing the creation of new norms.
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Challenge 6 Tools for agents to create intermediate concepts and normative
ontology, for example to decide about normative gaps.

In real institutions norms have a fuzzy character in the sense that they are
not able to cover all possible situations. In particular because new situations can
arise, e.g., due to technological advancement (for instance: is a digital signature
the same as an handwritten signature?) This problem increases exponentially
in virtual worlds where all kind of new behaviors and objects can be defined.
The solution in real normative system is to endow some agents with powers to
decide whether a new concept is subsumed by another one. The role of agents
in the logical reasoning of a normative system is something which is still missing
in the state of the art of the field.

Challenge 7 Tools for agents to decide about norm conflicts.

This challenge is related to Challenge 6 since norms do not cover all possible
cases and conflicts between norms are possible. Thus agents need a mechanism
to take decisions in situations of conflicting norms. The mechanism cannot
always be automated, for example because the degree of freedom in virtual
world to create new behaviors and objects norms may become underspecified.
Thus, the problem is to define normative systems, where, like in human norma-
tive systems, roles are defined and role keepers are empowered to take decision
when automated reasoning alone is not enough. At some point, the view of the
normative system as a self contained logical system is not viable anymore.

Challenge 8 Tools for agents to voluntarily give up some norm autonomy by
allowing automated norm processing in agent acting and decision making.

In many examples, the autonomy of the agent must be adjusted to the
context. In general avatars are graphical representations of users of a system
and can be seen as interface agents. Avatars living in Second life are interface
agents for human players but also increasingly for autonomous agents. Consider
the example above, where new abilities like dancing are automatically added to
the avatar. Moreover, even if now prohibited, autonomous agents should be
allowed to on the player’s behalf cope with events that occur when the player
is not online. It is possible to envisage a scenario where avatars are partially
programmed to take autonomous decisions when the player is off-line. Among
these decisions is whether to comply with norms of the community the avatar
is acting into.

Note that these mechanisms are useful not only when the avatar is acting
autonomously on behalf of its off-line owner, but also during the activity of the
player. In real life norms are often violated just by distraction or ignorance
or by lack of resources and the violator does not gain anything by its deviant
behavior. The same will eventually happen in virtual worlds, especially when
norms to be respected will not be necessarily intuitive or similar to the ones
of real world. In these cases, the decision to conform to norms can be left to
the avatar and the player can be relieved from this task. E.g., consider the
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case of communities where nudity of avatars is prohibited. The player could
simply leave to its avatar the burden to conform to the norms by automatically
disabling actions which are deviant with respect to the norms.

Challenge 9 Tools for conviviality.

Since scenarios like Second life are aiming at people having pleasant social
interactions, and norms may interfere with the goals of the players, the impact
of norms on this dimension must be considered. Norms should not constrain
the freedom of participants too much and allow to avoid unpleasant behavior
from other agents, but there is also a more subtle effect to be considered. Social
interaction is regulated by social conventions, which can be modeled as a sort
of institution. Part of the fun of “living” in Second life, like when participating
in a carnival or when embodying a character of a drama depends - according to
Taylor [19, 5] who calls this effect “conviviality” - is the temporary displacement
with respect to the usual norms of social life. In particular, in the sense that in
social relations the player acquires new social powers which he does not have in
his first life.

The tools for conviviality should study social dependencies among players
and indicate how these dependencies can be made less unbalanced by attribut-
ing more social powers to some players. Note that, as in the example about
automatic learning of dancing abilities in Section 2, adding social powers in a
virtual reality can take a more extended sense, since in the real world physical
abilities cannot be added. Tools for conviviality should also facilitate the intro-
duction of new participants in a virtual community by addressing the “newbies”
problems.

Challenge 10 Tools for legal responsibility of the agents and their principals.

Nowadays, agents become subjects of human legislation. For example, it
is debated if agents have responsibilities beyond the ones attributed to their
owner, or if agents can be really attributed mental states which are to be taken
into account in the attribution of responsibilities. However, in scenarios like
Second life, new questions arise. Participants accept the rules of the game and
they should be made aware whether following the rules of some communities
leads to infringement of real legislations.
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