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1 Introduction

Epistemic logic investigates what agents know or believe about certain factual descriptions
of the world, and about each other. This makes precise what information is (statically)
available in a given system, and what the general principles are for knowledge and belief. The
information in a systems may also change due to certain events, or observations by the agents,
or communication between the agents. This requires an information update. Such information
updates have been investigated in computer science as interpreted systems, and in philosophy
and in artificial intelligence as belief revision. A more recent development is called dynamic
epistemic logic. Dynamic epistemic logic is an extension of epistemic logic with dynamic
modal operators for belief change (i.e., information update). Dynamic epistemic logics are
the focus of our contribution, but their relation to other ways to model dynamics will also be
discussed in some detail.

Observations on how epistemic states change as a result of new information have been
around since the setting of the field of epistemic logic by Hintikka [27]. This focussed initially
on ‘puzzling’ phenomena involving higher-order belief change, for a single agent. A typical
example from [27] is the so-called ‘Moore’-problem about the inadequacy of information up-
dates with ‘fact p is true and I don’t believe that’. As this example crops up in very different
settings, and as it is so crucial for a proper understanding of dynamic epistemics, we dis-
cuss its origin in some detail, as a proper historical primer to the subject area. Hintikka’s
‘Knowledge and belief’ [27, p.64] provides a list of excellent references on the topic of Moore-
sentences. This also reveals an interesting development of the notion—we explain this using
the notation used in this chapter. In [42, p.78] Moore writes that if I assert a proposition ¢, I
express or imply that 1 think or know ¢, in other words I express By or K. But ¢ cannot be
said to mean By [42, p.77] as this would cause, by substitution, an infinite sequence BBy,
BBBy, ad infinitum. “But thus to believe that somebody believes, that somebody believes,
that somebody believes ... quite indefinitely, without ever coming to anything which is what
is believed, is to believe nothing at all” [42, p.77]. All this is in the context of a discussion
on whether moral judgements are judgements about our feelings, or about our beliefs. Moore
does not state in [42] (to our knowledge) that ¢ A =By cannot be believed. In Moore’s “A
reply to my critics”, a chapter in the ‘Library of Living Philosophers’ volume dedidated to
him, he writes “ ‘I went to the pictures last Tuesday, but I don’t believe that I did’ is a
perfectly absurd thing to say, although what is asserted is something which is perfectly pos-
sibly logically” [43, p.543]. The absurdity follows from the implicature ‘asserting ¢ implies
By’ pointed out in [42]. In other words, B(p A =Bp) is ‘absurd’ for the example of factual
information p. As far as we know, this is the first full-blown occurrence of a Moore-sentence.



Then in [44, p.204] Moore writes “ ‘I believe he has gone out, but he has not’ is absurd. This,
though absurd, is not self-contradictory; for it may quite well be true.” This is an example
of =p A Bp. Together with [43] it also sufficiently shows, we think, that Moore really had
either of the general forms ¢ A =By or ¢ A B—p in mind. Note that he does not claim that
B(p N —=Byp) is inconsistent (‘self-contradictory’) as such, but ‘only’ that asserting ¢ A =By
implies By, which contradicts —By [43, pp.204-205]. The further development of this no-
tion, addressed in our contribution, firstly puts Moore-sentences in a multi-agent perspective
of announcements of the form ‘I say to you that: p is true and that you don’t believe that’,
and, secondly, puts Moore-sentences in a dynamic perspective of announcements that cannot
be believed after being announced. Both perspectives appear to go beyond Moore.

The area of epistemic logic appears to thrive on such puzzling phenomena, others involve
unfaithful wives, unfaithful husbands, or differently coloured hats (this puzzle possibly orig-
inating in the 1950s [71, 17] is by now generally known as the ‘wisemen’ or ‘muddy children
puzzle’, for a logical treatment see [46, 47]), letters with mysterious contents opened under
diverse conditions, and coins being thrown for heads or tails, or turned, also including various
devices as one-way mirrors, or lying, cheating and bluffing about the results. Yet another
productive area for explanation and exposition of dynamic epistemic phenomena are card
deals. An introductory example illustrating dynamics for more than one agent is given in this
setting. A similar setting will then often reappear during the later formal treatment of the
logics. Of course this is a mere choice for reasons of a succinct exposition, we apologize to
the reader who would have preferred more diverse examples.

Three players Anne, Bill, and Cath each hold one card from a stack of three cards clubs,
hearts, and spades. They know their own card, but do not know which other card is held by
which other player. Also, all of the previous is common knowledge. Assume that the actual
deal is that Anne holds clubs, Bill holds hearts and Cath holds spades. Now Anne announces
that she does not have hearts. What was known before this announcement, and how does
this knowledge change as a result of that action? Before, Cath did not know that Anne holds
clubs, but afterwards she knows that Anne holds clubs. This is because Cath can reason as
follows: “I have spades, so Anne must have clubs or hearts. If she says that she does not
have hearts, she must therefore have clubs.” Bill knows that Cath now knows Anne’s card,
even though he does not know himself what Anne’s card is. Both before and after, players
know which card they hold in their hands. Note that the only change that appears to have
taken place is epistemic change, and that no factual change has taken place, such as cards
changing hands. How do we describe such an information update in an epistemic setting?
We can imagine various other actions that affect the knowledge of the players, for example,
the action where Anne shows her clubs card to Bill, in such a way that Cath sees that Anne
is doing that, but without seeing the actual card. How does that affect the knowledge of the
players about each other? After that action, Cath still does not know whether Anne holds
clubs or hearts. But Cath now knows that Bill knows Anne’s card.

Overview The knowledge of these card players and how this changes as a result of such
information updates will modelled in dynamic epistemic logic. We start with a concise intro-
duction to epistemic logic. We then give an overview of the interpreted systems way to model
dynamics. After that we pay ample attention to public announcement logic (as in “Anne
announces that she does not have hearts”), which models one particular form of dynamics.
A well-known generalization of that for more complex dynamic events (such as ‘Anne shows
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Figure 1: A pointed Kripke model, also known as an epistemic state, that represents Anne’s
knowledge of the card deal where Anne holds clubs, and where hearts is on top of the two-
card stack on the table. On the right a simpler visualisation of the model, used when the
accessibility relation, as here, is an equivalence relation.

clubs to Bill’ above) goes under the name of action model logic. Our closing observations are
on links between (theory) belief revision [1] to dynamic epistemic logic. References to the
literature are mainly given near the end of each section.

2 Epistemic Logic

One agent As in the inception of epistemic logic by Hintikka, we start by modelling the
knowledge of a single agent.

Anne draws the clubs card from a stack of three different cards clubs, hearts, and
spades. Is hearts or spades the top card of the two left on the table?

We would like to be able to evaluate system descriptions such as “Anne knows that she
holds clubs” (in fact equated with Anne seeing that she holds clubs, as she can look at her
card), “Anne does not know that hearts is on top,” and “Anne considers it possible that
hearts is on top.” Let propositional letter Clubs, stand for the factual/atomic proposition
‘the clubs card is held by Anne’, and similarly Hearts; for ‘the hearts card is on top’ (of the
two-card stack with hearts and spades). Further, we use standard propositional connectives A
for conjunction, V for disjunction, = for negation, — for implication, and < for equivalence.
A formula of the form Ky expresses that ‘Anne knows that ¢’ —‘K’ is the common name in
epistemic logic (Know) for the O-type modal operator—and a formula of the form Ko (K is
the dual of K) expresses that ‘Anne considers possible that ¢’. The informal descriptions are
then formalized as K Clubs,, =K Hearts;, and K Hearts;, respectively. There is no generally
accepted notation for ‘considers possible that’. The ‘hat’ in the notation K p—the notation
we will keep using—is reminiscent of the diamond in {¢. Other notations for K¢ are M,
(K), and k.

We interpret such formulas on Kripke models. Kripke models consist of a domain of
abstract states, an accessibility relation between those states, and a valuation of propositional
letters in a given state. Also, one reasons from the perspective of an actual state in the model.
In our example the two states correspond to two deals of cards, namely the deal $0& where
Anne holds the clubs card, and the hearts card is on top of the spades card (both facedown)
on the table, and the deal &O& where Anne also holds clubs but where hearts is on the bottom
of the two-card stack. These ‘names’ for states are of course suggestive, as they express which
facts are true in which state. The binary relation of accessibility between states expresses
what the player knows about the facts. Assume that deal %O is actually the case. Anne
considers that possible, so that the pair (&0, &OM) is in the accessibility relation, but she
also considers it possible that hearts is at the bottom of the stack, so that (&0, &) is also
in the accessibility relation. Similarly, reasoning from the hypothetical case that &&#® were
the actual deal, (%#Q, hQ) and (SAQ, &VM) are in the accessibility relation. The resulting



pointed Kripke model (or epistemic state, or information state) is depicted in Figure 1. It is
formally an epistemic state (D, &) where the model D = (S, R, V') consists of a domain
S = {#Vh, &4V}, accessibility relation R with R = {(&0#, &0h), («0Vh, $40), ...}, and
valuation V' such that V(Clubs,) = {#&OM, %40} and V (Hearts;) = {#Ob} (we identify a fact
with the subset of the domain where it is true).

A proposition is known in an epistemic state if and only if it is true in all accessible
states. For example, D, &V# |= K Clubs, (Anne knows that she holds clubs in the actual
state), because for all states s, if (O, s) € R then D, s |= Clubs,. This is true because the
only states that are accessible from &V are &0 itself and sdO—we have R(&Ob, &Vb) and
R(&OM, $40)—and both D, &0 |= Clubs, and D, & |= Clubs,. Finally, D, &V |= Clubs,
because &b € V(Clubs,) = {#Oh, &40}, and, similarly, D, & |= Clubs, because »&Q €
V(Clubsy) = {#Oh, SO}

If one assumes certain properties of knowledge, the accessibility relation for the agent is
an equivalence relation. The (often contested) properties are that ‘what you know is true’,
which is formalized by the schema K¢ — ¢; that ‘you are aware of your knowledge’, which is
formalized by the schema K¢ — KK, and that ‘you are aware of your ignorance’, which is
formalized by the schema - K¢ — K-K¢. Without K¢ — ¢ but with, instead, the schema
K¢ — K¢ the operator models introspective belief instead of knowledge, in that case we
write B instead of K. For equivalence relations, we will occassionally write ~ instead of R
(namely when discussing interpreted systems), and use a simpler visualization wherein we
only visually link states that are in the same class, as in Figure 2 (which will be explained
below).

More agents Many features of formal dynamics can be presented based on the single-agent
situation. For example, the action of Anne picking up from the table the card that has been
dealt to her, is a significantly complex epistemic action. But a proper and more interesting
perspective is that of the multi-agent situation. This is because players may now have knowl-
edge about each others’ knowledge. Even for a single fact the Kripke models representing
such knowledge can become arbitrarily complex. To distinguish different knowledge operators
and corresponding accessibility relations for different agents, we label them.

Consider three players Anne, Bill, and Cath (a, b, ¢), each of who blindly draws a card from
the stack of three cards clubs, hearts, and spades. Assume that the actual deal is that Anne
draws clubs, Bill hearts, and Cath spades. This is represented by state &0&. Propositional
letters q, stand for ‘agent a holding card q.” We can now describe that “Bill considers
it possible that Anne has spades but actually Anne has clubs” as KbSpadesa A Clubs,; and
“Anne knows that Bill knows that Cath knows her own card” as K, Kj,(K.Clubs.V K. Hearts.V
K. Spades,). Figure 2 depicts the corresponding epistemic state.

The language, structures, and semantics of multi-agent epistemic logic, relative to a set
of agents A and a set of atoms P as background parameters, are formally defined as follows.

Definition 1 (Language)
pu=p| | (@A) | Kap
where p € P, and a € A.

Other connectives are defined by notational abbreviation.
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Figure 2: The epistemic state (Heza, dO#) for the card deal where Anne holds clubs, Bill
holds hearts, and Cath holds spades. For example, Anne cannot distinguish &Oé from &&
as she holds clubs in both deals. But Bill cannot distinguish &V# from #O& as he holds
hearts in both. As all accessibility relations are equivalence relations, we only have to link
states in the same class by labelled (undirected) arcs.

Definition 2 (Structures) An epistemic model M = (S,~,V) consists of a domain S of
(factual) states (or ‘worlds’), accessibility (function) R : A — P(S x S), and a wvaluation
(function) V : P — P(S). For s € S, (M, s) is an epistemic state. For valuation V (p) we also
write V), and for accessibility relation R(a) we also write R,.

Definition 3 (Semantics)

M,sEp iff seV,

M,skE-p  if Mspo

M,s=oANy iff M,sEpand M,s 1

M,sE=Kqp iff forall te€S: (s,t) € R, implies M,t |= ¢

Formula ¢ is valid on model M, notation M = ¢, if and only if for all states s in the domain
of M: M,s | ¢. Formula ¢ is valid, notation = ¢, if and only if for all models M (of the
class of models for the given parameters of A and P): M = ¢. These validity notions will be
similarly defined for all expansions of the language, in the continuation.

Notes Hintikka is broadly acknowledged as the father of modern epistemic logic, and his
‘Knowledge and Belief” [27] (republished in 2005 by King’s College, London) given as the
principal historical reference. Hintikka himself thinks that von Wright [73] deserves these
credits. Modern epistemic logic started to flourish after modal logic (with its roots in Aris-
totle) was formalised and given a possible world semantics. It is hard to track down the
exact origins of this semantics, but it is widely known as Kripke semantics, after Kripke, who
devoted a number of early papers to the semantics of modal logic [32]. A contemporary and
thorough reference for modal logic is the monograph [10]. From the late 1970s, epistemic logic
became subject of study or applied in the areas of artificial intelligence (as in (R.C.) Moore’s
early work [45] on reasoning about actions and knowledge), philosophy (as in Hintikka’s [28]),
and game theory (e.g. Aumann [5]). In the 1980s, computer scientists became interested in
epistemic logic. In fact, the field matured a lot by a large stream of publications around
Fagin, Halpern, Moses and Vardi. Their important textbook ‘Reasoning about Knowledge’
[15] which appeared in 1995, is in fact a survey of many papers co-authored by (subsets of)



them over a period of more than ten years. We refer to [15] for more references. It counts as
a standard reference in epistemic logic. Another standard reference is [41].

Common knowledge Well-known epistemic operators for a group of agents are ‘general
knowledge’ and ‘common knowledge’. We introduce the concepts by way of an example.

In the epistemic state (Heza, &O#) of Figure 2 both Anne and Bill know that the deal of
cards is not #&O: both K,—(Spades, A\ Clubsy A\ Hearts.) and K,—(Spades, A\ Clubs, \ Hearts,)
are true. If a group of agents all know that o, we say that ¢ is general knowledge. The modal
operator for general knowledge of a group B is Ep. For an arbitrary subset B C A of the
set of agents A, we define Epy := A, .5 Ksp. So in this case we have that E,,—(Spades, A
Clubsy \ Hearts.)—we abuse de language and write Ey; instead of Ey, ;. Now even though
¢ may be generally known, that does not imply that agents know about each other that
they know ¢. For example, Bill, who has hearts, considers it possible that Anne has spades
instead of clubs. In that case, Anne considers it possible that the card deal is #&9. So
R’akb(Spadesa A Clubsy N\ Hearts.) is true, and therefore K, K,—(Spades, A Clubs, N Hearts,)
is false in (Heza, $OM).

One can construct formulas that are true to some extent K, K, K.K,K,Kpp in some epis-
temic state but no longer if one adds one more operator at the start: KK, K,K.K,K,Kpp
is false—and where just the difference between the two is essential to model a given problem
properly. A formula ¢ is common knowledge for a group B, notation Cgp, if it holds for arbi-
trary long stacks of individual knowledge operators for individuals in that group. For example,
if B ={a,b,c}, we get something (involving an enumeration of all finite stacks of knowledge
operators) like Copep := @AKo AKpyo NKcp ANK g Kgp ANK Kyp ANKoKep N . Ko Ko Ko .
Alternatively, we may see common knowledge as the conjunction of arbitrarily many appli-
cations of general knowledge: Cpp := o A Epp A EpEpp A .... Such infinitary definitions are
often undesirable for various reasons. Common knowledge C'p is typically added as a primitive
operator to the language, whereas general knowledge is typically defined (for a finite set of
agents) by notational abbreviation, as above. Common knowledge can be given its intended
meaning in the semantics without changing the Kripke structures used to interpret individual
knowledge, namely by an operation on the accessibility relations for the individual agents in
the group. Something is common knowledge in the actual state, if it is true in all states in the
transitive closure of the union of the accessibility relations for all agents in the group. The in-
teraction between common and individual knowledge can then be specified in valid principles
for the logic. Valid principles involving common knowledge are C(¢ — 1) — (Cpp — Cpp)
(distribution of common knowledge over implication), Cpp — Ep(p A Cpy) (use of common
knowledge), and “from ¢ — Ep(¢ A ) infer (¢ — Cp1)) (induction rule).

Definition 4 (Language and semantics) Add an inductive clause Cpp to the definition
of the language, where B C A. For the semantics, add clause:

M,s=Cpp iff forall teS: Rg(s,t) implies M,t |= ¢
where RE = (U,cp Ra)™

Alternatively said, Cgy is true in an epistemic state (M, s) if ¢ is true in any state s,, that
can be reached by a finite path of states si,..., s, such that, for not necessarily different
agents a,b,c € B: Ry(s1,2), Ry(s2,s3), and ..., and R.(S;,—1,5m). ‘Reachability by a finite
path of non-zero length’ is the same as ‘being in the transitive closure’. There are two



different but both wide-spread semantics for common knowledge. The one above is popular
for logics of belief, and in philosophical circles. In computer science one often prefers to
take the reflezive transitive closure R = (|J,cp Ra)* to interpret common knowledge (which
means ‘reachability by a finite path’). If all individual accessibility relations are equivalence
relations, RE is also an equivalence relation, and in that case RE equals Ry anyway. Common
knowledge for the entire group A of agents is called public knowledge.

In the model Heza, access for any subgroup of two players, or for all three, is the entire
model. For such groups B, Cpyp is true in an epistemic state (Heza,t) iff ¢ is valid on the
model Heza. For example, we have that “It is public knowledge that Anne knows her card”,
formally Heza |= Cgpe (K, Clubs, V K, Hearts, V K, Spades,), and (possibly surprisingly) “Anne
and Bill share the same knowledge as Bill and Cath,” which is formally Heza = Cypp — Chep.

Notes In Lewis’ ‘Convention’ [34] the notion of common knowledge was informally dis-
cussed. In the area of game theory Aumann’s [5] gives one of the first formalisations of
common knowledge. McCarthy formalises common knowledge in a rather off-hand way when
solving a well-known epistemic riddle, the Sum and Product-riddle [40] (although at the time
it was unknown to him that this riddle originated with the Dutch topologist Freudenthal [16])
as an abstract means towards solving this riddle. This work dates from the seventies but was
only published later in a collection of McCarthy’s work that appeared in 1990.

From two standard references [15, 41] to epistemic logic, Fagin et al. [15] defines common
knowledge by transitive closure, whereas Meyer and Van der Hoek [41] define it by reflexive
transitive closure. There is a recent resurging interest in variants of the notion, e.g. Artemov’s
evidence-based common knowledge, also known as justified common knowledge [2].

3 Interpreted Systems and Temporal Epistemic Logic

A general framework involving information change as a feature of interpreted systems was
developed by Halpern and collaborators in the 1990s [15]. Central to this approach is the
notion of the global state of a system. Given a number of agents or processors, each of which
has a local state (such as ‘holding clubs’ for agent Anne), a global state is a list of all the
local states of the agents involved in the system plus a state of the environment. The last
represents actions, observations, and communications, possibly outside the sphere of influence
of the agents. An example global state is (&0, ) wherein Anne has local state &, i.e., she
holds clubs, Bill local state @, and Cath local state #, and where ‘nothing happened so far in
the environment,’ represented by a value ). It is assumed that agents know their local state,
in other words, that they can distinguish global states from one another wherein they have
the same local state. This induces an equivalence relation among global states that the reader
will obviously recognize as an accessibility relation. Another crucial concept in interpreted
systems is that of a run: a run is a (typically infinite) sequence of global states. For example,
when Anne says that she does not have hearts, this corresponds to a transition from global
state (%O, ) to global state (&, nohearts). Atomic propositions may also be introduced
to describe facts. For example, not surprisingly, one may require an atom Hearts, to be true
in both global state (#O#, ) and in global state (&Y, nohearts).

Formally, an interpreted system T is a pair (G, R) consisting of a set of global states G and
a set of runs R relating those states. A global state g € G is a tuple consisting of local states
gq for each agent and a state g. of the environment. A run r € R is a sequence of global



(Od, uQ) (B, uQ)
Hearts; -~ Hearts;
(SO, y©) (BAD, nQ)

Figure 3: Anne holds clubs, hearts is on top of spades on the two-card stack on the table,
and Anne does not know (in the underlined, actual global state) if it is. The two visualized
runs reveal which card is on top.

states. The m-th global state occurring in a run r is referred to as r(m), and the local state
for agent a in a global state r(m) is written as rq(m).

A point (r,m) is a pair consisting of a run and a point in time m—this is the proper abstract
domain object when defining epistemic models for interpreted systems. In an interpreted
system, agents can distinguish global states from one another iff they have the same local
state in both, which induces (for an indistinguishability relation that is an equivalence we
choose to write ~ instead of R)

(r,m) ~q (r',m') iff 7(m) ~q r'(m') iff ro(m) = r(m')

With the obvious valuation for local and environmental state values, that defines an epistemic
model. For convenience we keep writing Z for that. Given an actual point (r/,m'), we thus
get an epistemic state (Z, (r',m’)). Epistemic and (LTL) temporal (next) operators have the
interpretation

Z,(r,m) = Xe i I,(rm+1) e
Z,(r,m) E Ko iff forall (r',m'): (r,m) ~, (r',;m') implies Z, (r',m') = ¢

It will be clear that subject to some proper translation (see e.g. [38]) interpreted systems
correspond to some subclass of the S5 models: all relations are equivalence relations, but the
interaction between agents is even more than that. The relation between Kripke models and
interpreted systems is not entirely trivial, partly because worlds or states in Kripke models
are abstract entities that may represent the same set of local states. The main difference
between the treatment of dynamics in interpreted systems and that in dynamic epistemics is
that in the former this is encoded in the state of the environment, whereas in the latter it
emerges from the relation of a state (i.e., an abstract state in a Kripke model) to other states.

Example For a simple example, consider the single agent example in the previous section,
and in Figure 1, wherein a single agent Anne holds clubs, and the hearts card is on top of the
spades card (both facedown) on the table. She may now be informed about the card on top
of the stack. This is represented by the interpreted system depicted in Figure 3. It consists
of four global states. The card Anne holds represents her local state. The other cards are
(in this case, unlike in the three-agent card deal) part of the environment. The state of the
environment is represented by which of the two cards is on top, and by an ‘observation’ state
variable obs that can have three values uQ, y®, and nQ, corresponding to the state before the
announcement which card is on top, the state resulting from the announcement that hearts is



on top, and the other state resulting from the announcement that it is at the bottom.! The
valuation V' is now such that V (Clubs,) = {(#Oh, uQ), (&, u?), (#Vh, y0), (&, nQ)}, and
V (Hearts;) = {(#0h, uQ), (#Ob, y©)}. The system consists of two runs, one from (&Ob, uQ)
to (#Va, yO) (optionally extended with an infinite number of idle transitions), and the other
run from (S&Q, uQ) to (##V, nV). One can now compute that in the actual state (&b, uQ)
it is true that —K,Hearts;, but in state (#O#,y®) she has learnt that hearts is on top:
K,—Hearts; is now true. Or, for another example, that in the actual state X K, Hearts;. How
the treatment of announcements in interpreted systems relates to public announcement logic,
will be made precise at the end of the following section.

Interpreted systems have been highly successful as an abstract architecture for multi-
agent systems, where agents are either human operators or computer processors, and where
the assumption that an agent ‘knows its own state’ is a realistic simplification. For that
reason they can be said to model interaction between ideal agents. This assumption is also
implicitly applied when modelling perfectly rational agents as in game theory and economics.
Also, given that all the dynamics is explicitly specified in the runs through the system, it
combines well with temporal epistemic logics (LTL, CTL) wherein dynamics is implicitly
specified by referring to an underlying structure wherein such a change makes information
sense. Temporal epistemic logics have been fairly successful. Their computational properties
are well-known and proof tools have been developed. See, for example, [61, 13, 25]. The work
of Fagin et al. [15] also generated lots of complexity results on knowledge and time, we also
mention the work of van der Meyden in this respect, e.g. [60, 61].

Their are two rather pointed formal differences between the temporal epistemic approach
and the dynamic epistemic approach.

Closed versus open systems First, the temporal epistemic description takes as models
systems together with their whole (deterministic) history and future development, in the
shape of ‘runs’. As such, it can be easily applied to ‘closed’ systems, in which all the possible
developments are fixed in advance, where there are no accidents, surprises or new interactions
with the outside world, and thus the future is fully determined. Moreover, in practice the
approach is more applicable to closed systems having a small number of possible moves: that’s
the only ones for which it is feasible to draw the transition graph of the full history.

In contrast, the dynamic epistemic approach can also be applied to ‘open’ systems. This
is for example the case with epistemic protocols which can be modified or adapted at any
future time according to new needs, or which can interact with an unpredictable environment.
But it is also applicable to closed systems in which the number of possible different changes
is large or indefinite.

There are two analogies here to be made. The first is with open-versus-closed-system
paradigms in programming. People in concurrency are usually interested in open systems.
The program might be run in many different contexts, in the presence of many other programs,
etc. More recently (in the context of mobile computation), people have looked at approaches
that allow programs to be changed at any time inside the same logical frame. The temporal
logic approach is not fit for this, since it assumes the full current program to be fixed and given
as ‘the background model’. That is why people in this area have used totally different kinds
of formalisms, mainly process algebraic, such as w-calculus. In contrast to that, dynamic

! An environmental local state variable with options ‘unknown’, ‘true’ and ‘false’ to model an announcement
formula is used in work in progress by Ji Ruan.



epistemic logics are interesting in that, although based on a modal logic, which is not an
algebraic kind of formalism, they are able to express changes in an open system through the
semantic trick of changing the models themselves, via ‘epistemic updates’.

The second analogy is with game theory. The temporal approach is like the description
of a game through explicitly giving its full extensional form: the graph of all possible plays.
For instance, chess (in this approach) is defined as the set of all possible chess plays. This
set is finite but huge! But there is of course another (more commonly used) way to describe
a game: by giving only the ‘rules of the game’ (which type of actions are allowed in which
type of situations), together maybe with an ‘initial state’ (or set of states) and some ‘winning
rules’. This is a much more economic and insightful way to describe a game. Of course,
once this is given, one could draw the game in extensional form as the set of all plays, if
one is given enough computational power... If we neglect the winning rules, the dynamic
epistemic approach can naturally describe epistemic games in precisely this way: one gives
an epistemic Kripke model of ‘initial states’ and also an epistemic Kripke model or other
semantically precise description of possible ‘epistemic actions’, including preconditions that
tell us on which type of states a given action can be applied. Then one can play the game,
by repeatedly updating the state model with the action model. A ‘full play’ or ‘run’ of the
game is obtained when we reach a state (at the end of many updates) on which no action (in
our given action model) can be applied.

Information change description The second difference between the interpreted systems
and the dynamic epistemics approach simply concerns the ability to model and classify various
‘types’ or ‘patterns’ of information change, or information exchange, such as public announce-
ments, private announcements, game announcements etc. The dynamic epistemic approach
obviously has this in-built ability, while the temporal approach doesn’t have it, at least not
in a direct, usable manner. In the temporal approach, one can only say what is true ‘before’
and ‘after’ a given action, and thus only implicitly get some information about the type of the
action itself, through its input-output behaviour. Moreover, this information is not enough to
isolate the type of the action, since it only gives us the local input-output behaviour of a given
action; and different actions may behave identically in one local context, but differ in general.
For instance in the two players and two cards case, in an epistemic state in which the fact
that the card deal is &V is common knowledge, public announcement of that fact will have
the same input-output description as a ‘skip’ action corresponding to ‘nothing happens’. But
in the epistemic state where the cards were dealt but not seen, or the subsequent one where
all players only know their own card, this fact was not common knowledge and its public
announcement will in that case induce an informative (i.e. non-skip) transition.

4 Dynamic Epistemic Logic

We now move on to a different form of dynamics of knowledge. Starting from the perspective of
epistemic logic, knowledge and belief change can also be modelled by expanding the logic with
dynamic modal operators to express such change. A simple form of dynamics is that caused by
so-called public announcements. It is simple from the perspective of change, not particularly
simple seen as an extension of epistemic logic. Public announcement logic is discussed in
Subsection 4.1. The relation between interpreted systems and public announcement logic will
be readressed at the end of that section. More complex dynamics are treated in Subsection
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Figure 4: Given epistemic state (Heza, #O#) where Anne hold clubs, Bill holds hearts, and
Cath holds spades, the effect of Anne saying that she does not have hearts.

4.2.

4.1 Public Announcements

Assume our usual deal &0V of cards where Anne holds clubs, Bill hearts, and Cath spades.
Anne now says (‘announces’) that she does not have the hearts card. Therefore she makes
public to all three players that all deals where Hearts, is true can be eliminated from consid-
eration: everybody knows that everybody else eliminates those deals, etc. They can therefore
be publicly eliminated. This results in a restriction of the model Heza as depicted in Figure
4. The public announcement “I do not have hearts” can be seen as an ‘epistemic program’
with ‘precondition’ —Hearts,, and it is interpreted as an ‘epistemic state transformer’ of the
original epistemic state, exactly as a program in dynamic modal logic: given some program
7, in dynamic logic 7]y means that after every execution of 7 (state transformation induced
by 7), formula 1 holds. For announcements we want the form [p]iy to mean that after (every)
announcement of ¢, formula 1 holds. The effect of such a public announcement of ¢ is the
restriction of the epistemic state to all worlds where ¢ holds. So, ‘announce ¢’ can indeed be
seen as an epistemic state transformer, with a corresponding dynamic modal operator [¢].

We appear to be moving away slightly from the standard paradigm of modal logic. So
far, the accessibility relations were between states in a given model underlying an epistemic
state. But all of a sudden, we are confronted with an accessibility relation between epistemic
states as well. “I do not have hearts” induces a(n) (epistemic) state transition such that the
pair of epistemic states in Figure 4 is in that relation. The epistemic states take the role of
the points or worlds in a seemingly underspecified domain of ‘all possible epistemic states’.
By lifting accessibility between points in the original epistemic state to accessibility between
epistemic states, we can get the dynamic and epistemic accessibility relations ‘on the same
level’ again, and see this as an ‘ordinary structure’ on which to interpret a perfectly ordinary
multimodal logic. (There is also a clear relation here with interpreted systems, which will
be discussed in Subsection 4.1, later.) A crucial point is, that this ‘higher-order structure’ is
induced by the initial epistemic state and the actions that can be executed there, and not the
other way round. So it is standard modal logic after all.

Anne’s announcement “I do not have hearts” is a simple epistemic action in various
respects. It is public. A ‘private’ event would be when she learns that Bill has hearts without
Bill or Cath noticing anything. This required a more complex action description. It is
truthful. She could also have said “I do not have clubs.” She would then be lying, but, e.g.,
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may have reason to expect that Bill and Cath believe her. This would also require a more
complex action description. It is deterministic. In other words, it is a state transformer. A
non-deterministic action would be that Anne whispers into Bill’s ear a card she does not hold,
on Bill’s request for that information. This action would have two different executions: “I do
not have hearts”, and “I do not have spades.” Such more complex actions can be modelled
in the action model logic presented in the next subsection.

Definition 5 (Language and semantics) Add an inductive clause [p]p (BNF-format) to
the definition of the language. For the semantics, add clause:

M,s = ply iff  M,s|= ¢ implies M|p, s =1

where M|y = (S', R', V') is defined as

S = {deS|Ms E=p}
R, = R,N (8" x9")
vV, = V,ns

In other words: the model M|y is the model M restricted to all the states where ¢ holds,
including access between states (a submodel restriction in the standard meaning of that
term). The interpretation of the dual (p) of [¢] will be obvious: M,s |= ()¢ if and only
if M,s = ¢ and M|p,s |= 1. A proof system for this logic originates with and is proved
sound and complete in [8], with precursors (namely completeness results for the logic with
announcements but without common knowledge) in [49] and [21]. There are some alternative
semantics for public announcements. Gerbrandy [19, 20] and Kooi [31] propose a different
semantics for announcements in a setting possibly more suitable for ‘belief’. The execution
of such announcements is not conditional to the truth of the announced formula. Yet another
semantics in a setting where introspective agents remain introspective after announcements
has recently been proposed by Steiner [55].

Example After Anne’s announcement that she does not have hearts, Cath knows that Anne
has clubs (see Figure 4). We can verify this with a semantic computation as follows:

In order to prove that Heza, %O# |= [ Hearts,|K.Clubs,, we have to show that
Heza, &O# |= —Hearts, implies Heza|-Hearts,, V& = K. Clubs,. As it is indeed
the case that Heza, &0& = —Hearts,, it remains to show that Heza|—Hearts,, $89O® =
K. Clubs,. The set of states that is equivalent to &P for Cath, is the singleton
set {#Va}. So it is sufficient to show that Heza|-Hearts,, %0# = Clubs,, which
follows trivially from &M € Viop,pe = {#0OM, S}

To give the reader a feel for this public announcement logic we give some of its valid principles.

Announcements are functional If an announcement can be executed, there is only one
way to do it:

(p) — [p]y is valid

This is a simple consequence of the functionality of the state transition semantics for an-
nouncement. One might also say (from a program perspective) that announcements are
deterministic.
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Sequence of announcements A sequence of two announcements can always be replaced
by a single, more complex announcement. Instead of first saying ‘¢’ and then saying ‘@)’ you
may as well have said for the first time ‘¢ and after that ¢’. This is expressed in

[ A [p]9]x is equivalent to [p][4h]x

This is useful when analysing announcements that are made with specific intentions; or, more
generally, conversational implicatures a la Grice. Intentions can be postconditions 1 that
should hold after the announcement. So the (truthful) announcement of ¢ with the intention
of achieving v corresponds to the announcement @ A [p]1).

Being overtaken by one’s intentions When such intentions are publicly known, this
may land you into trouble. For an example in epistemic state (Heza, &O#), consider that:

An outsider says: “The deal of cards is neither &&Q nor Qh&k.”

This is formalized as —(Spades, A Clubsy A Hearts.) A—(Hearts, A Spades, A Clubs.). Abbreviate
this announcement as one. See Figure 5 for the result of the announcement of one. None of
the three players Anne, Bill, and Cath know the card deal as a result of this announcement!
Now imagine that the players know (publicly) that the outsider made the announcement
one in the happy knowledge of not revealing the deal of cards to anyone! For example, he
might have been boasting about his logical prowess and the players might inadvertently have
become aware of that. In other words, it becomes known that the announcement one was
made with the intention of keeping the players ignorant of the card deal. Ignorance of the
card deal (whatever the deal may have been) can be described as some long formula that is a
conjunction of eighteen parts and that starts as K, (Clubs, A Heartsy A Spades,) A= Ky ( Clubsg A
Heartsy A Spades,) A =K (Clubs, A\ Heartsy, A Spades,) A .... This formula is abbreviated as
two, and this intention two can be seen as a subsequent announcement, as it is (publicly)
known. In the model (Heza|one) resulting from the announcement of one, the formula two
is false in all states that are a singleton equivalence class for at least one player, and true
anywhere else. So it is only true in state &O#. For the result of the announcement of two, see
again Figure 5. In the epistemic state resulting from two all players know the card deal. So
in that epistemic state two is false. What does it mean that the players have become aware
of the intention of the outsider? This means that although the outsider was actually saying
one, he really meant ‘one, and after that two’, in other words, he was saying one A [one]two.
Unfortunately, Heza, &0 = [one A [one|two|—two. The outsider could have kept the card deal
a secret, but by intending to keep it a secret—and the assumption that this intention is public
knowledge—he was, after all, actually revealing the secret.

Announcement and knowledge Because [¢] is interpreted as a partial function, [¢] K,
is not equivalent to K,[¢]|t. A simple counterexample is the following: in (Heza, %0#) it is
true that after ‘every’ announcement of ‘Anne holds hearts’, Cath knows that Anne holds
clubs. This is because that announcement cannot take place in that epistemic state. In other
words, we have

Heza, &0 |= [Hearts,| K. Clubs,,

because of the peculiarity that all postconditions of -operators (i.e., formulas bound by
O-operators) are true when there are no accessible states. On the other hand, it is false that
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Figure 5: A sequence of two announcements can be replaced by a single announcement.
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Figure 6: A state transition illustrating what a and b commonly know before and after the
announcement of p.

Cath knows that after the announcement of Anne that she holds the hearts card (which she
can imagine to take place), Cath knows that Anne holds the clubs card. On the contrary:
Cath then knows that Anne holds hearts! So we have

Heza, &0 [~ K [Hearts,| Clubs,
If we make [¢] K1 conditional to the truth of the announcement, an equivalence indeed holds:

[p] K1 is equivalent to ¢ — K, [p]|9

Announcement and common knowledge If we restrict ourselves to the logic of an-
nouncements without common knowledge, every formula is logically equivalent to one in the
logic without announcements. But for the logic of announcements with common knowledge,
this is no longer the case. The principle describing the interaction between common knowl-
edge and announcement is rather involved. The straightforward generalization of the prin-
ciple [p]|Ko¢ < (p — Kg[p]) relating announcement and individual knowledge would be
[p]Catp < (¢ = Calp]yp). But this is not valid! The following countermodel M demonstrates
this clearly.

Consider a model M for two agents a and b and two facts p and ¢. Its domain is {11,01, 10},
where 11 is the state where p and ¢ are both true, 01 the state where p is false and ¢ is true,
and 10 the state where p is true and ¢ is false. Agent a cannot tell 11 and 01 apart, whereas
b cannot tell 01 and 10 apart. So the partition for @ on the domain is {11,01},{10} and
the partition for b on the domain is {11},{01,10}. See Figure 6. Now consider the instance
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[P]Cabq <> (p — Cap[plq) of this supposed principle. The left side of the equivalence is true in
state 11 of M, whereas the right side is false in that state. We show that as follows. First,
M, 11 |= [p]Cupq is true in 11, because M, 11 |=p and M|p,11 |= Cypq. For the result of the
announcement of p in (M, 11), see Figure 6. The model M|p consists of two disconnected
states; obviously, M|p,11 = Cyq, because M|p,11 = ¢ and 11 is now the only reachable
state from 11. On the other hand, we have that M, 11 = p — Cglplg, because M, 11 = p
but M,11 = Cy[plg. The last is because 11 ~g, 10 (because 11 ~, 01 and 01 ~j 10), and
M, 10 = [p]lg. When evaluating g in M |p, we are now in the other disconnected part of M|p,
where ¢ is false: M|q, 10 F~ q.

The general principle relating announcement and common knowledge is not an axiom, but
a derivation rule:

From x — [p]Y and x Ao — Eux, infer x — [©]Ca).

More recent developments in the area use a different modal notion, ‘relativised common
knowledge’, of which standard common knowledge can be seen as a special case [59, 31]. This
results in more expressive logics, and the relation between announcements and relativised
common knowledge is again an axiom. This greatly simplifies completeness proofs for such
logics.

Public announcements and interpreted systems We now outline the relation between
‘next’ operator X, as used to describe interpreted system behaviour, and the announcement
operators introduced in this section. An announcement is seen as a completely observable
clock tick, synchronizing the system. Announcing ¢ at time m is simulated in Z by changing
the value of some environmental variable p for exactly those points where ¢ is true, when
transiting from point (r,m) to point (r,m + 1), and passing on that information to the local
states of the agents. The static information available at time m is contained in the restriction
Z|m of the interpreted system Z to all points for time m. This determines the meaning
of purely epistemic formulas. But for formulas containing epistemic and ‘next’-temporal
operators the situation is more complex. Assume that for each time m there is a formula ¢
such that the only transitions allowed at m are those induced by announcement of ¢. We
can define a translation x where, given an epistemic state and a formula, each X-operator in
that formula is replaced by a corresponding dynamic operator [¢]. The following now are all
equivalent

if Z,(r,m) E ¢, then Z, (r,m) E X9

if Z,(r,m) E ¢, then Z, (r,m + 1) =

if Z|m, (r,m) = ¢*, then Z|m|p*, (r,m) E ¢*

m, (r,m) &= [¢*]p*

In case ¢ and v are both purely epistemic, so that ¢* = ¢, and ¥* = 1, we have that
Z,(r,m + 1) = 4 corresponds to Z|m|y, (r,m) = 1

There are other ways in which non-public actions relate to runs through interpreted systems
(the relation between interpreted systems, temporal logics, and dynamic logics is currently
much investigated by the research community).
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Notes The logic of multi-agent epistemic logic with public announcements and without
common knowledge has been formulated and axiomatised by Plaza [49]. For the somewhat
more general case of introspective agents this was done ‘again’ by Gerbrandy and Groeneveld
[21], who were not aware of Plaza’s work at the time. In [49], public announcement is seen as a
binary operation +, such that ¢+ 1) is equivalent to (¢)1. The logic of public announcements
with common knowledge was axiomatised by Baltag, Moss, and Solecki [8], see also [9, 6, 7],
in a more general setting that will be discussed in the next section: the completeness of their
proof system is a special case of the completeness of their more general logic of action models.

There are a fair number of precursors of these results. One prior line of research is in
dynamic modal approaches to semantics, not necessarily also epistemic: ‘update semantics’.
Another prior line of research is in meta-level descriptions of epistemic change, not necessarily
on the object level as in dynamic modal approaches. This relates to the temporal epistemics
and interpreted systems approach for which we therefore refer to the summary discussion in
the previous section.

The ‘dynamic semantics’ or ‘update semantics’ was followed in van Emde Boas, Groe-
nendijk, and Stokhof [69], Landman [33], Groeneveld [23], and Veltman [72]. There are
strong relations between that and more PDL-motivated work by de Rijke [12], and Jaspars
[29]. As background literature to various dynamic features introduced in the 1980s and 1990s
we recommend van Benthem [57, 56]. More motivated by runs in interpreted systems is van
Linder, van der Hoek, and Meyer [70]. All these approaches use dynamic modal operators for
information change, but (1) typically not (except [70]) in a multi-modal language that also
has epistemic operators, (2) typically not for more than one agent, and (3) not necessarily
such that the effects of announcements or updates are defined given the update formula and
the current information state: the PDL-related and interpreted system related approaches
presuppose a transition relation between information states, such as for atomic actions in
PDL.

We outline, somewhat arbitrarily, some features of these approaches. Groeneveld’s ap-
proach [23] is typical for dynamic semantics in that is has formulas [¢],1) to express that after
an update of agent a’s information with ¢, v is true. His work was later merged with that
of Gerbrandy, resulting in the seminal [21]. De Rijke [12] defines theory change operators
[+¢] and [x¢] with a dynamic interpretation that link an enriched dynamic modal language
to AGM-type theory revision [1] (see also Section 5 addressing dynamic epistemics for belief
revision). In functionality, it is not dissimilar from Jaspars [29] p-addition (i.e., expansion)
operators [¢], and p-retraction (i.e., contraction) operators [p]4, called updates and down-
dates by Jaspars. Van Linder, van der Hoek, and Meyer [70] use a setting that combines
dynamic effects with knowledge and belief, but to interpret their (various) action operators
they assume an explicit transition relation as part of the Kripke structure interpreting such
descriptions.

As somewhat parallel developments to [19] we also mention Lomuscio and Ryan [39].
They do not define dynamic modal operators in the language, but they define epistemic state
transformers that clearly correspond to the interpretation of such operators: M * ¢ is the
result of refining epistemic model M with a formula ¢, etc. Their semantics for updates is
only an approzimation of public announcement logic, as the operation is only defined for finite
(approximations of) models.
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Figure 7: On the left, the Kripke model for three players each holding one card. On the right, the
effect of Anne showing her clubs card to Bill.

4.2 Epistemic Actions

Some epistemic actions are more complex than public announcements, where the effect of
the action is always a restriction on the epistemic model. Let us reconsider the epistemic
state (Heza, &0#) wherein Anne holds clubs, Bill holds hearts, and Cath holds spades. And
consider again one of the example actions in the introduction:

Anne shows (only) to Bill her clubs card. Cath cannot see the face of the shown
card, but notices that o card is being shown.

It is assumed that it is publicly known what the players can and cannot see or hear. Call
this action showclubs. The epistemic state transition induced by this action is depicted in
Figure 7. Unlike after public announcements, in the showclubs action we cannot eliminate
any state. Instead, all b-links between states have now been severed: whatever was the actual
deal of cards, Bill now knows that card deal and cannot imagine any alternatives. We hope
to demonstrate the intuitive acceptability of the resulting epistemic state. After the action
showclubs, Anne considers it possible that Cath considers it possible that Anne has clubs.
That much is obvious, as Anne has clubs anyway. But Anne also considers it possible that
Cath considers it possible that Anne has hearts, because Anne considers it possible that Cath
has spades, and so does not know whether Anne has shown clubs or hearts. It is even the
case that Anne considers it possible that Cath considers it possible that Anne has spades,
because Anne considers it possible that Cath does not have spades but hearts, in which case
Cath would not have known whether Anne has shown clubs or spades. And in all those cases
where Anne shows her card, Bill obviously would have learnt the deal of cards. Note that, even
though for Cath there are only two ‘possible actions’—showing clubs or showing hearts—mnone
of the three possible actions can apparently be eliminated ‘from public consideration’.

But it can become even more complex. Imagine the following action, rather similar to the
showclubs action:

Anne whispers into Bill’s ear that she does not have the spades card, given a
(public) request from Bill to whisper into his ear one of the cards that she does not
have.

This is the action whispernospades. Given that Anne has clubs, she could have whispered
“no hearts” or “no spades”. And whatever the actual card deal was, she could always have
chosen between two such options. An epistemic state results that reflects that choice, and
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Figure 8: After Anne whispered into Bill’s ear that she does not have the spades card, given
a (public) request from Bill to whisper into his ear one of the cards that she does not have.
Assume transitivity of the accessibility relation for Cath.

that therefore consists of 6 x 2 = 12 different states. It is depicted in Figure 8 (wherein we
assume transitivity of the accessibility relation for ¢). The reader may ascertain that the
desirable postconditions of the action whispernospades indeed hold. For example, given that
Bill holds hearts, Bill will now have learnt from Anne what Anne’s card is, and thus the entire
deal of cards. So there should be no alternatives for Bill in the actual state (the underlined
state &V ‘at the back’ of the figure—for convenience, different states for the same card deal
have been given the same name). But Cath does not know that Bill knows the card deal,
as Cath considers it possible that Anne actually whispered “no hearts” instead. That would
have been something that Bill already knew, as he holds hearts himself—so from that action
he would not have learnt very much. Except that Cath could then have imagined him to
know the card deal... Note that in Figure 8 there is also another state named &Va, ‘in the
middle’, so to speak, that is accessible for Cath from the state &0 ‘at the back’, and that
satisfies that Bill doesn’t know that Anne has clubs.

The intuition behind action models An elegant formal way to model such actions and
a large class of similar events is called ‘action model logic’ [8]. The basic idea is that actions
can profitably be modelled in relation to other, ‘similar’, actions, in a way similar to how
different states in a Kripke model relate to each other. When Anne shows her clubs card
to Bill, this is indistinguishable for Cath from Anne showing her hearts card to Bill—f
she were to have that. And, as Anne considers it possible that Cath holds hearts instead
of spades, Anne also considers it possible that Cath interprets her card showing action as
yet a third option, namely showing spades. These three different card showing actions are
therefore, from a public perspective, all indistinguishable for Cath, but, again from a public
perspective, all different for Anne and Bill. We can therefore visualise the ‘epistemic action’
of Anne showing clubs to Bill as some kind of Kripke structure, namely with a domain of
three ‘action points’ standing for ‘showing clubs’, ‘showing hearts’, and ‘showing spades’,
and accessibility relations for the three players corresponding to the observations above. We
now have what is called an action model. What else do we need? To relate such ‘action
models’ to the preconditions for their execution, we associate to each action point in such a
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model a formula in a logical language: the precondition of that action point. To execute an
epistemic action, we compute what is known as the restricted modal product of the current
epistemic state and the epistemic action. The result is ‘the next epistemic state’. It is a
product because the domain of the next epistemic state is a subset of the cartesian product of
the domain of the current epistemic state and the domain of the action model. It is restricted
because we restrict that full product to those (state,action) pairs such that the precondition
for the action of the pair is satisfied in the state of the pair. Two states in the new epistemic
state indistinguishable (accessible), if and only if the states in the previous epistemic state
from which they evolved were already indistinguishable (accessible), and if the two different
actions executed there were also indistinguishable. For example, Cath cannot distinguish the
result of Anne showing clubs in state &O# from Anne showing hearts in state Od#, because
in the first place she could not distinguish those two card deals, and in the second place she
cannot distinguish Anne showing clubs from Anne showing hearts.

Formal definitions We successively define action models and their execution, the language
of action model logic, and the semantics of action model logic. An example follows, and also
some explanations for those readers puzzled by a seeming mixup of syntax and semantics (we
can allay their fears: there is no problem). As usual, we assume background parameters in
the form of a set of agents A and a set of propositional variables P.

Definition 6 (Action model) Let £ be alogical language. An action model U is a structure
(S,R, pre) such that S is a domain of action points, such that for each ¢ € A, R, is an
accessibility relation on S, and such that pre : S — £ is a preconditions function that assigns
a precondition pre(s) € L to each s € S. A pointed action model is a structure (U,s) with
seS.

Public announcement of ¢ is modelled by a singleton action model consisting of action point
s, accessible to all agents, and with precondition pre(s) = ¢.

Definition 7 (Execution) Given an epistemic state (M,s) with M = (S,R,V) and an
epistemic action (U,s) with U = (S, R, pre) such that M, s |= pre(s). The result of executing
(U,s) in (M,s) is the epistemic state (M ® U),(s,s)) where (M @ U) = (S',R", V') is a
restricted modal product of M and U defined as

S’ = {(s,s) | s€S,s€S, and M, s |= pre(s)}
R/ ((s,s), (t,t)) iff Ra(s,t) and R,(s,t)
(s,5) €V, iff seV,

There is only one more step to make: to give a logical language with an inductive construct for
action models. For obvious reasons of well-definedness such action models are now required
to be finite.

Definition 8 (Language) The language of action model logic is the union of the formulas
© and the epistemic actions a defined by

p = pl-p|(eAp) | Kap | Cpop | [alp
a == (Uys) | (aUa)

where p € P, a € A, B C A, and (U, s) a finite pointed action model.
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Definition 9 (Semantics)

M,s = [U,s]e iff M,s = pre(s) implies (M ® U), (s,s) E ¢
Msk[aUflp i M,s = [o]p and M,s F [Blg

A requirement that may be implicit in the definition of the language, is that given such a (U, s),
the preconditions for all (but finitely many) action points t in its domain S should already
have been constructed in a previous stage of this inductively defined hierarchy. As usual, ()
is defined by notational abbreviation as =[a]—¢. We also use the notational abbreviation U for
Uses(U,s), in other words, action model U can also be seen as a non-deterministic epistemic
action.

The reader may be puzzled by finding the semantic object of a pointed action model
reappear as a primitive in the language. Strictly, in the language we are only naming the
pointed frame underlying (U,s) as a name for that frame, and the precondition function pre
associated with U is the way to construct a more complex expression of type ‘epistemic action’
from that framename and from arguments that are simpler, already defined, expressions of
type ‘formula’. The arity of that framename is then of course the number of actions in the
domain S of U. We choose to ignore the difference, just as we ignore the difference between
agent names o in modal operators K, and actual agents a in the accessibility relations R,
that interpret such operators.

Definition 10 (Composition of action models) Let U = (S,R, pre) and U’ = (S',R’, pre’)
be two action models. Their composition (U ; U’) is the action model (S”, R", pre”) such that

s” = Sx¢
Ra((s,s'), (t,t')) iff  Ra(s,t) and Ri(s', t')
pre”((s,s)) = (U,s)pre’(s')

The definition of composition extends in the obvious way to pointed action models: given
two pointed action models (U,t) and (U’,t') as above, their composition (U,t) ; (U’ t') is
the pointed action model (U”,(t,t')), with U” defined as above. Note that pre”((t,t")) =
(U, t)pre’(t'). Compare this composition construction to the rule for a sequence of announce-
ments. Composition of action models is essential in the completeness proof of the logic.

From a logical philosophical point of view it is not surprising to see accessibility relations
on some domain of objects. But there are two surprising differences with how such accessi-
bility relations typically appear. First, the alternatives in the domain of an action model do
not stand for factual states of the world, in other words for ‘static objects’, but they stand
for possible actions, i.e., ‘dynamic objects’. Second, the domain objects appear not to be
semantic, but syntactic: preconditions of actions are formulas in the logical language! Rela-
tional structures such as Kripke models are from the realm of semantics, that tends, in logic,
to be strictly separated from the realm of syntax or logical language. But, we just have to
say this again, action models appear not to be partitioning semantic objects, but syntactic
objects: the preconditions associated with domain objects are formulas. The first difference is
something that makes logicians happy: “Right, so we have a dynamic counterpart of a static
object that we already know quite well.” And we will see that in other ways it also combines
well with the ‘static’ epistemic states that we already have. But the second difference, to
the contrary, is something that makes logicians unhappy: “Pfui! One must keep syntax and
semantics strictly separated, or the world will fall apart.” As we have already explained, the
solution is surprisingly simple, and means that we name Kripke frames, in the line of similar
solutions for dynamic logics incorporating automata.
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Figure 9: On the left, the Kripke model for three players each holding one card. On the right, the
effect of Anne showing her clubs card to Bill, shown as a restricted modal product. The preconditions
for action points s, t,u are, respectively Clubs,, Hearts,, Spades,. Compare to Figure 7.

Example For a more concrete example, we now model the epistemic action showclubs where
Anne shows her clubs card to Bill without Cath being able to see which card, as an action
model, and we execute it in the epistemic state (Heza, #9#). The action model correspond-
ing to showclubs consists of three action points s,t,u, with preconditions pre(s) = Clubs,,
pre(t) = Hearts,, and pre(u) = Spades,. These three action points are indistinguishable for
Cath (so her accessibility relation on that domain is the universal relation), but they can be
distinguished by both Anne and Bill from one another. The point of the model is, obviously,
s, as Anne actually holds clubs. The action model is depicted in Figure 9, and also the result
of its execution is shown.

Concerning accessibility relations, note that e.g. R,((&#V#,s), (#Q,s)) because R,(s,s)
and R, (&0, »aQ0). Also, R.((#VM,s), (Vka,t)), because R.(Oh, Ohd) and R.(s,t). But
Bill has learnt what the card deal is! Before the execution of the action, Ry(&Oh, #O&), but
afterwards these deals can now be distinguished by Bill: (&Ua,s) is different for Bill from
(4O, t) because s can be distinguished by Bill from t.

Similarly, we can compute the epistemic state resulting from the action whispernospades
where Anne whispers into Bill’s ear one of the cards that she does not have. It has a similarly
structured action model as the one for showclubs, except that the preconditions for action
points s, t,u are now pre(s) = —Clubs,, pre(t) = —Hearts,, and pre(u) = —Spades,. In this
case each action point is executable in four of Heza’s states (unlike the card showing action
where each action point was executable in only two of Heza’s states). The model in Figure 8
with twelve states results.

Notes The action model framework has been developed by Baltag, Solecki, and Moss, and
has appeared in various forms [8, 9, 6, 7]. The final form of their semantics is Baltag and
Moss’s [7]. A final publication on the completeness and expressivity results is still in prepa-
ration. A different but also rather expressive way to model epistemic actions was suggested
by Gerbrandy in [19]—this generalizes the results by Gerbrandy and Groeneveld in [21].
Gerbrandy’s action language can be seen as defined by relational composition, interpreted
on non-wellfounded set theoretical structures corresponding to bisimilarity classes of pointed
Kripke models. Van Ditmarsch explored another relational action language—but based on
standard Kripke semantics—[62, 63] and was influenced by both Gerbrandy and Baltag et al.
His semantics is restricted to S5 model transformations. Van Ditmarsch et al. later proposed
concurrent epistemic actions in [66]. Their treatment of concurrency for dynamic operators
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is similar to that in the logic cPDL—for ‘concurrent propositional dynamic logic’—proposed
by Peleg [48] and also mentioned in, e.g., Goldblatt [22] and Harel et al. [26]. How the ex-
pressivity of these different action logics compares is unclear. Recent developments include
a proposal by Economou in [14]. Relativised common knowledge, already discussed in the
previous subsection, also combines well with action models [59]; for adding assignments to
allow factual change as well, see the final notes to this chapter.

5 Belief Change and Dynamic Logic

Standard belief revision The traditional emphasis in what is known as the area of ‘belief
revision’ is theory revision; how to change a deductively closed set of formulas K into another
deductively closed set of formulas. Overview publications for this area are [1] and [18]. A
theory typically consists of objective, i.e. non-epistemic, ‘beliefs’ that are changed relative
to expansion, contraction, or revision, and also typically from the point of view of a single
agent. Note that ‘belief’ means nothing but ‘formula’ here: there is no explicit representation
of the status of such a formula as ‘believed by the agent’, as in epistemic logic. In the case
of an ezpansion, new information described by a formula ¢ is incorporated into a theory X
by somehow ‘adding’ ¢ to the theory. For the result we write K @ . In case the negation
was already in I, the result will be the inconsistent theory K| that consists of all formulas.
The result of a contraction should be that the formula with which the theory K is contracted
is longer be believed, for which we write ¢ € K © . Contraction with a validity cannot be
successful, as all validities are in all theories. Contraction with a validity therefore leaves
a theory unchanged. In the case of a revision, the negation —¢ of the revision formula ¢
is typically in the theory I but for the revision to ‘succeed’ the revised (consistent) theory
should (also) be consistent. A process of mere expansion therefore does not work, and one
first has to contract the theory in a way that removes —¢ from it and all its dependencies.
This can then be followed by an expansion with ¢. For the result of the revision of theory C
with formula ¢ we write L ® . The Levi-identity states that L® ¢ = K© o ® ¢: a revision
can be seen as a contraction followed by an expansion. The ‘theories’ K that we are changing
can have any shape, such as first-order theories. Here, we restrict ourselves to propositional
theories, and we investigate possibilities to extend this to theories of propositional modal
formulas.

Yet another issue in traditional belief revision comes under the name of ‘update’. An
update—unfortunately a clash cannot be avoided with the more general meaning of that term
in dynamic epistemic logic, where it incorporates belief revision as well—is a factual change,
as opposed to a belief change in the three previously distinguished notions. The latter merely
express a different agent stance towards a non-changing world, but in an ‘update’ the world
itself changes. The standard reference for that is [30]. We will pay only minor attention to
such updates in this section.

Belief change with dynamic non-epistemic logic The different ‘theory change opera-
tors’ @, ©, and ® can be reinterpreted as dynamic modal operators. A straightforward way to
implement that, is some logic in which [®p]i expresses that after revision with ¢, ¥ holds—
where 1) actually means, as in [1], ‘¢ is believed by the agent’. This approach was suggested
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by van Benthem in [56]? and further developed by de Rijke in [12]. They propose a semantical
counterpart of a total order on theories, in the form of an ‘updating’ and ‘downdating’ relation
between states or worlds, standing for theories, and interpret the modal operator as a transi-
tion in such a structure according to these relations. ‘Updating’ models expansion: it relates
the current state to states that result from expansion. ‘Downdating’ models contraction. It
relates states that result from contraction to the current state. Revision is indeed downdating
followed by updating. In this overview we focus on approaches that extend epistemic logics,
therefore we do not give more details on this non-epistemic approach.

Belief change with dynamic epistemic logic  In the approach by Segerberg and col-
laborators [36, 52, 51, 37| beliefs are represented explicitly. We now identify a theory K
with the believed formulas (or some subset of the believed formulas) in an epistemic state:
K={¢ | M,s = By}. As in [12] they express belief change with dynamic modal operators
[D¢], [©¢], and [®¢]. In a typical revision where we have that ~p € K, ¢ € K ® ¢, and
- & K ® ¢, we now get

e M,s = B-yp
* M,s = [@¢]By
o M,s = [®p]-B-p

For contraction, we want that in case M, s |= By, after contraction ¢ is no longer believed,
i.e., M, s = [©p]-~By. Similarly, for expansion we aim to achieve M, s = [®p]Bp.

This approach is known as dynamic dozastic logic or DDL. Similar to [12] it presumes a
transition relation between states representing theories, but this is now differently realized,
namely using what is known as a Segerberg-style semantics wherein factual and epistemic
information—under the terms of world component and doxastic component—are strictly sep-
arated. A dynamic operator is interpreted as a transition along the ‘lines’ of minimal theory
change set out by this given structure, with the additional restriction that the transitions
describe epistemic (doxastic) change only, and not factual change. This restriction is en-
forced by not allowing the ‘world component’ to change in the transition relation but only
the ‘doxastic component’ [36, p.18].

There are now two options: either we restrict ourselves to beliefs in objective (boolean,
non-epistemic) formulas, and we get what is known as basic DDL, as in [36, 52]. Or we allow
higher-order beliefs, as in the dynamic epistemics described in previous sections. We thus get
‘full’ or ‘unlimited’ DDL, also discussed in [36] but mainly in [37]. Without the restriction
to belief of objective formulas, a number of problems come to the fore related to higher order
belief, knowledge growth, ‘success’ of revision, and multi-agent belief. We address these issues
in the dynamic epistemic setting in this chapter, that provides a ‘third way’ given the two
views on belief revision with dynamic logic presented so far. In dynamic epistemics, unlike the
two approaches to dynamic belief revision already presented, the transition that interprets the
dynamic operators is induced by the current information state and the revision formula, and
does not assume such a transition relation. We demonstrate the various possible transitions
by a simple example.

%It is only one of many topics covered in that publication, namely Section 6, pages 714-715, ‘Cognitive
procedures over information patterns’. Note this work is similar to a 1991 technical report.
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Removing access and/or worlds: for belief expansion

O O
®—p

Adding access and/or worlds: for belief contraction

0o— 1 —_— 0— 1
Sp

Changing access or domain: for belief revision

0o— 1 CQ
®—p

Changing valuations: for update instead of revision

0o— 1 _ 0— 00

Figure 10: Possible changes of belief mirrored in Kripke structure transitions

Examples of belief change with dynamic epistemic logic = Consider expressing and
changing uncertainty about the truth of a single fact p, and assume an information state where
the agent (whose beliefs are interpreted by the unlabeled accessibility relation depicted) may
be uncertain about p and where p is actually false (indicated by ‘designating’ the actual state
by underlining it). Figure 10 lists all conceivable sorts of belief change.

In the top structure, uncertainty about the fact p (i.e., absence of belief in p and absence
of belief in —p) is changed into belief in —p. On the left, =Bp is true, and on the right B—p. In
the second from above, belief in p is weakened to uncertainty about p, and in the third from
above we change from Bp to B—p. Note that also in this semantic setting of Kripke-structure
transformation, belief revision can again be seen as a contraction followed by an expansion, so
we may in principle consider semantic alternatives for the Levi-identity. The last information
state transition in Figure 10 depicts factual change. The state with changed valuation has
suggestively been renamed from 1 to 00, although formally, of course, it is only the valuation
of a named state that changes. The ‘assignment’ or substitution p := 1 indicates that the
valuation of atom p is revised into the valuation of the assigned formula. As this is L, the
new valuation of p (seen as a subset of the domain) is now the empty set of states.

Public announcement as belief expansion The public announcement logic already
discussed in detail can be seen as an implementation of a belief expansion operator for higher-
order belief (i.e., both fully introspective beliefs of a single agent but also beliefs of agents
in a group about the beliefs of other agents in that group), where the next information
state is computed from ‘merely’ the current information state and the expansion formula.
This computation is straightforward for expansion, as restricting the domain or accessibility
relation can easily be seen as structurally related to the existing model. The semantics of the
public announcements already presented operates just like that: it restricts a model M to the
submodel M |p consisting of the worlds where the announcement is true. From here on, for
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[p]1p we write [By], and we focus on knowledge K.

Knowledge growth In such a higher-order setting we cannot maintain the expansion
postulates. First, we have to revise our ideas about ‘minimal change’. In particular, it can
no longer be maintained that expanded theories contain their predecessors:

Identify a theory K as before with the set of known formulas in an information state:
{p | M,s = K¢}. Let M,s = ¢. Suppose K C K & ¢, then there must be at least one
formula 1) such that ¢ € K@ ¢ but ¢ € K. From ¢ € K & ¢ follows by positive introspection
that K¢ € K @ p. From ¢ ¢ K follows by negative introspection that -Kvy € K. From
-Kiyp e KCK®yand K9 € K& ¢ follows a contradiction.

Therefore, strict knowledge growth is contradictory for introspective agents (we did not
use the truth axiom K¢ — ¢, so the results hold for introspective belief as well), as observed
by many authors: one does not care to preserve ignorance of the expansion formula, when
expanding a theory. Therefore, one cannot adhere closely to the expansion postulate which
states that I C IC @ ¢ (also known as postulate I @ 3). Fortunately, knowledge change in a
way that reflects the ideas behind expansion is still possible. And also, knowledge growth is
possible for fragments of the public announcement language; for an example, see [67].

Success The success postulate, which states that ¢ € K @ ¢ (also known as postulate
K @ 2), cannot be maintained either. The most basic example illustrating that, is an an-
nouncement of the Moore-sentence p A =Kp. This sentence cannot be believed, or known,
after its announcement [27, 43] (see also the introductory Section 1). Now this is first of all
for the obvious reason that it is a Moore sentence, and by definition that is a sentence that
cannot be believed, but it should be pointed out that as an announcement it can very well be
true and therefore executed: after it, p is (publicly) known, which in fact entails the negation
of p A =Kp. But this means that expansion with p A =Kp cannot be successful: yet another
barrier to satisfy the AGM postulates for higher-order belief expansion. Gerbrandy [19] calls
this phenomenon an unsuccessful update; [20] is similar to [19]. The matter is also taken up
in [65].

For truthful public announcements, the formulas ¢ that always become known after their
announcement can be properly said to be the successful formulas and characterized by the
validity of [®p]e. This entails the validity of ¢ — [®¢|C4¢ (in this setting where common
knowledge of a formula entails its truth). The latter says that if ¢ is true, announcing ¢
makes it common knowledge, which more properly grasps what ‘success’ means in a higher-
order setting. An intriguing question is: Which formulas are successful? An answer to that
question would address knowledge expansion satisfactorily in this higher-order setting. But
the answer is as yet unclear. Obvious inductive definitions fail. Even when both ¢ and 1 are
successful, —¢ may be unsuccessful (for ¢ = p A =Kp), ¢ A1) may be unsuccessful (for ¢ =p
and ¢ = = Kp), and as well [®¢]y and ¢ — 1 may be unsuccessful.

There are relevant successful fragments of the language. For example, public knowledge
formulas are successful: [@C4¢|Cagp is valid. This follows from bisimulation invariance under
point-generated submodel constructions. Another successful fragment form the preserved
formulas (introduced for the language without announcements by van Benthem in [58]) that
are inductively defined as ¢ :=p | =p | p A | oV | Koo | Cpp | [®—p]tp (where B C A).
From ¢ — [®v]¢ for arbitrary 1, follows ¢ — [®¢]p which is equivalent to [®¢]p; therefore
preserved formulas are successful formulas. The inductive case [®—p]y in the ‘preserved
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Figure 11: Belief revision related to degrees of belief

formulas’ may possibly puzzle the reader. Its proof [65] is quite elementary (and proceeds by
induction on formula structure) and shows that the puzzling negation in the announcement
clause is directly related to the truth of the announcement as a condition:

Let M,s E [®—¢]y, and M’ C M such that s € M’. Assume M’ s |= —p. Then
M, s |E= — by contraposition of the inductive hypothesis for p. From that and M, s = [®-¢]y
follows M |-y, s = 1. From the inductive hypothesis for ¢ follows M'|—-¢p, s = 1. Therefore
M', s = [®—¢]y by definition.

Dynamic doxastic logic as belief revision =~ We now present a (different from DDL)
dynamic doxastic semantics that can be seen as the implementation of a belief revision oper-
ator. Assuming that the new information state (pointed Kripke model) is constructed from
the current information state and the revision formula (and does not assume an underly-
ing transition structure), it seems harder to provide a mechanism that explains adding or
changing access than one for merely deleting access—for the same reason that contraction
or revision needs an entrenchment relation or something similar. A transition as in Figure
10 is hard to justify by the structure of the belief state before the revision. And another
problem is that the dynamic epistemic logics presented so far do not provide a way to model
‘forgetting’ knowledge or beliefs, as, from an agent’s point of view, belief and knowledge are
indistinguishable in these logics (and ‘belief’ always means ‘conviction’).

In a setting where degrees of belief and possibly knowledge too are represented, one can
provide such a structural justification. For a simple example, we add another degree of belief
to the ‘revision’ example in Figure 10: in Figure 11 the dotted line interprets a stronger
degree of belief. It contains (entails) the weaker, or most normal, belief that is represented
as before with the solid line. There is a one-to-one correspondence between such accessibility
relations satisfying inclusion, and preferences between worlds or a ‘system of spheres’ as in
[35] and also propagated in [24, 53].

The basic idea in [35] is that, given a domain of worlds, from the perspective of a given
world in that domain, some worlds may be preferable over others. The worlds for which a
preference exists are the plausible worlds, and the preference is typically a partial order (plus
additional constraints). In the left model in Figure 11, we have that, given world 0, the set
of plausible worlds is {0,1}, and that world 1 is preferred over world 0, for which we write
1 <% 0; relation <° is the preference relation associated with world 0. The set of plausible
worlds given world 1 is empty; <'= (). The belief revision resulting in the model on the right
now consists of changing preferences between the plausible worlds: in the resulting model
world 0 is preferred over world 1: 0 <® 1. The relation between preferences and accessibility
is fairly simple. In general, given a partial order with degrees of belief z we can define R*(s, s)
if and only if the degree of world s’ in the preference order <* is at most z. In Figure 11 we
have two degrees of belief, and therefore two accessibility relations; the ‘at most’ is to ensure
an inclusion relation. To accessibility relations R” are associated ‘degree of belief” modalities
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Figure 12: This depicts Spohn-like belief revision in a multimodal setting.

B? in the obvious way.

Such a modal setting for reasoning about preferences also applies to a multi-agent situ-
ation, one can also restrict oneself to introspective belief or knowledge, and further demand
additional (frame characterizable) restrictions expressing that agents are knowledgable about
their own preferences. Concerning the static picture, such ideas have emerged under the name
of ‘dynamic interactive epistemology’ in the game theoretical and philosophical community
[54, 3, 11]—the word ‘dynamic’ refers to the conditional modal operators in those approaches
that are used to model belief revision, not to the dynamic modal approach intended here.?
The ideas have also surfaced as dynamic doxastic logic(s) in [4, 64]. We close this section
with an example of the latter.

Example of introspective belief revision A proposal by Aucher [4] can be seen as
an implementation of one of Spohn’s proposals in [53]*. An illustration is depicted in Figure
12. On the left in that figure, the agent believes atomic propositions p and ¢ — the name 11
stands for the world where p and ¢ are both true. In particular, Bp is true. Note that in this
case there are three degrees of belief, let us say 0, 1, and 2. Degree of belief 0 stands for most
normal belief and R° therefore corresponds to B. Apart from that, we have B! and B?>—in
this case B2 is equal to knowledge K. For example, B (pV q) is valid on the model: the agent
has a somewhat stronger belief in the (weaker proposition than p A ¢ namely that) p V gq.

On the right the agent believes —p (and ¢). In other words, B—p is true. On the left,
it is therefore true that after revision with —p, the agent believes —p: [®—-p|B-p is true.
The belief revision is therefore successful. This revision is computationally achieved by the
following recipe: determine the minimal world where the revision formula —p is true. This
is 01. Now deduct the degree of that world from the degree of any —p-world. We thus get a
degree 0 for world 01, and a degree 1 for world 00. For worlds where the revision formula is
false, i.e., where p is true, do the same, but ensure that the most normal p-world is slightly
less preferable than the most normal —p. In this particular example we ensure this by ‘adding
1 to the current degree’. This results in a degree 1 for world 11 and a degree 2 for world 10.
This completes the computation.

3The relation between conditional modal operators and dynamic modal operators, and how appropriate it is
to model belief revision in the former setting compared to the latter, seems to us only incompletely understood
and merits further investigation. See [64], appendix A, and see [59] for the encompassing notion of ‘relativized
common knowledge’—a proposal to generalize conditional (individual) knowledge.

“Namely the revision also known as ‘minimal Spohn’: when revising with ¢, make the minimal @-worlds
the ‘most normal’ worlds, such that they are believed after the revision; for details, see Definition 6 on page
117 in [53]. In Spohn’s terms the revision in the example below would be called {00,01}-1 conditionalization
of the current ordinal conditional function, where {00,01} is the denotation of the revision formula —p in the
current epistemic state, and ‘1’ is the decreased ‘firmness o’ with which the p worlds are updated.
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The above presents only one example of one dynamic belief revision operator that can be
seen as an implementation of the AGM postulates. This particular operator is successful
on propositional formulas, and for those can also be considered as effecting minimal change.
Other examples are given in [64], the list of over twenty different theory change operators in
[50] seems also particularly suitable for implementation in this setting.

A final word on ‘update’. As mentioned, belief update as opposed to belief revision is also
investigated in dynamic epistemics under the name of ‘factual change’. This is investigated
in, for example, [9, 68, 59, 31]. These ideas also deserve to be properly applied to the belief
revision arena.

For the further discussion of belief revision we refer to the main contribution on that topic
in this encyclopedia.
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