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Abstract: We construct a new measure of voting power tha iseasonable
measure of influence even if the votes are not ma#pendently. The crucial
building blocks of our measure are probabilitiescotinterfactuals, such as the
probability that the outcome of the vote would h&een yes, had a voter voted
yes rather than no as she did in the real worlde Phobabilities of such
counterfactuals are calculated on the base of tawnfsamation, following the
approach by Balke and Pearl. Opinion leaders wive lsausal influence on other
people's votes can have significantly more votiog/gr under our measure than
the latter. We provide several examples in which measure yields intuitively
plausible results and show that the measure redocBanzhaf voting power in
the limiting case of independent and equiprobabtex

1. Introduction

The Banzhaf measure of voting power quantifiesdiagree to which political agents can influence
the outcome of a vote (Felsenthal and Machover 189986). It equals the chance of pivotality in a
binary vote under the assumptions that (i) the rgotast their votes independently and (ii) each
voter is equally likely to vote yes or no. Thesehabilistic assumptions define the so-called
Bernoulli model (Felsenthal and Machover 1998, 3ef.1, p. 37). However, one might argue, if
sufficient empirical data on past voting patterng available, then one should base the
measurement of influence on a probability modet fita the data, and of course the Bernoulli
model will seldom be a fitting model (see Gelmamle2002 and Gelman et al. 2004 for a related
discussion). A simple suggestion to generalize Bahxoting power for such cases would be to
calculate the probability of being pivotal undee thppropriate probability model—whatever it is
like. This suggestion has been put forward by Elgrriss (1987/2002), p. 169. But unfortunately
this suggestion does not work if the independenssuraption does not hold. It leads to
counterintuitive assessments of political influentbe following example is a simplification of
what has come to be known as Wilmers’ example ichidaer (2007). Five voters take decisions
under simple majority vote. The 5-0 split and thg §plit have a probability of one half each. The
other voting profiles have probability zero. Clgathe probability of being pivotal is zero for éac
voter. Accordingly, under the simple suggestion,water would have political influence in the
voting process. But, intuitively, it seems odd &y shat no voter has any influence on the outcome
of the vote ipid., p. 3). A different measure of voting power is theg.

How can we construct such a measure? In the exaahpolee, the obvious question to ask is: How
did the probability distribution arise? Supposkestfithat voter A is an opinion leader, i.e. if Ates
yes (or no), then all other voters simply copy Watie. What one would say intuitively is that A has
more voting power than the other voters—if A hadedodifferently, then the others would have
followed suit and the outcome would have been diffie But we cannot say the same for the other
voters. However, if, second, a different voter Bais opinion leader, clearly B should have more
voting power than the other voters. Or, third hié tvoting pattern comes about only due to political
views shared by the voters, then we expect equaigy@ower in the example. Thus, in order to
provide an assessment of voting power, one shaildel into account theausal relationdbetween
the votes that bring about the distribution ovefipes.



We will go beyond the simple suggestion and develapeasure of voting power that does not
clash with our intuitions because it is sensitwecausal information. The measure relies on causal
models and counterfactual probability distributioiée define the measure in section 2. In section
3, we develop a simple example to show how the ureadeals with opinion leaders, shared
political views and dictatorial voting procedurds. section 4, we relate the measure to other
measures; we show that the measure reduces to &amating power under the Bernoulli model.
Section 5 provides an analysis of Wilmers' exanfMachover 2007). Section 6 concludes, and
technical details are provided in the appendix.

Since we work with causal models and probabilitiese may distinguish between causal
dependence and stochastic dependence. If not stdtexcbntly, “(in)dependence” means stochastic
(in)dependence. If two random variables are stdwdaly independent, there can not be a causal
dependence, either.

Recently, Laruelle and Valenciano (2005) have ssiggea general framework in which various
voting power measures — the Banzhaf measure asawelther measures — can be embedded. The
framework has two layers: first, a voting rule tiemodelled as a simple voting game (p. 174);
second, a probability model over profiles (pp. 1&)5Yarious measures of voting power turn out to
be unconditional or conditional probabilities ofheir success or decisiveness in this framework. In
Laruelle and Valenciano’s terms, we are interestedecisiveness (or, in our terms, pivotality)
rather than success. But the measure that we prag@siot be fitted into their framework. In the
general case, it is neither an unconditional noomditional probability. Rather, our measure is a
weighted sum of differences between certain prdib@aisi Roughly, what we are interested in is the
extent to which probabilities of acceptance (respely rejection) change, if a voter were to switch
her vote from no to yes (respectively from yes &). These changes are traced on the basis of a
causal model. We will discuss the connection betweer work and Laruelle and Valenciano
(2005) in section 4.

2. Generalized Voting Power

The voting power of a voteris the extent to which she is able to make a diffee as to whether a
bill passes or not (Felsenthal and Machover 19986 How can that extent be measured? One
way to measure it is to calculate the probabiltgttthat voter's vote is pivotal (cf. ibid.). Bhbig
proposal runs into the problem plain from Wilmessample. So an alternative is required.

Suppose that with persorvoting no on a proposal in the actual world, tharnce of acceptance is
quite low. But ifi were to vote yes instead, then the chance of tatep would be much greater.
Similarly, suppose, with voting yes on a proposal in the actual world, ¢hance of rejection is
quite low. But ifi were to vote no instead, then the chance of rejeatiould be much greater.
Under these assumptions, intuitivaljaas more influence than a pergdar whom these respective
effects would be notably smaller. The idea is ttautake differences of chances in order to measure
voting power. Let us make this idea precise by tan8ng a measure.

We introduce the following notation. We assume thate are N voters. Thé" vote is modeled as
a random variabl®;. We setV; = 1, ifi votes yes, anll; = 0, if she votes no. The outcome of the
vote is described by the random varia¥sleV = 1 means that the proposal is accepdée. 0 means
that the proposal is rejected.

We assume that we have a full probability model tfee votes. The model provides us with
probabilities for each possible voting profile (itke joint probabilities of th¥; s). We assume for
now that all conditional probabilities such8/; = 0|V, = 1) are defined. (In Section 5, we will
consider a case in which this assumption is vidlat®©nce we know the decision rule, we can
calculate conditional probabilities for acceptagogeen some single vote or given a combination of



votes, such aB(V = 1|V; = 1) orP(V = 1]V, = 1,V; =0). Itis not our concern in this paper how to
obtain a realistic probability model from empirickita.

We will also assume that we have causal informasibaut the votes. In our models a person’s
votes can be influenced by other people’s votestgnider political views. This is not inconsistent
with taking voting to be an instance of free agent¢yow the related causal information can be
obtained is not our concern in this paper.

For calculating our measure of influence, we faissess the chance that a proposal is accepted
given thati voted no, i.eP(V = 1|V; = 0) and the chance that a proposal is rejecteengihati
voted yes, i.eP(V = 0|V, = 1). Subsequently, we construct probability rdbsttions over certain
counterfactuals. We ask what the chance is tipbposal would have been accepted, ihaoted

yes (rather than no, agid in the actual world), call ®°(V = 1|V; = 1). And we ask what the
chance is that a proposal would have been rejehtati, voted no (rather than yes, iadid in the
actual world), i.eQ*(V = 0|V, = 0).

These chances are calculated following the approgdhalke and Pearl (1994). The basic idea is
very simple. For calculatin@’(V = 1|V, = 1), e.g., we first assume tHatotes no, as she does in
the actual world. We infer the probabilities of théher votes being one way or another. Thgn
vote is switched to yes. We trace the causal effefits voting yes and recalculate the probabilities
that the votes that are causally affected’dywote are one way or another. Finally, the praiigb

of acceptance is calculated on this base. A gerdgakithm for calculating the probabilities for
counterfactuals is given in the Appendix.

Let Di° be the difference between the chance that theopebpvould have been accepted had
voted yes and the chance that the proposal is tettepnditional om having voted no:

1) D% =Q%V=1|Vi=1)-P(V=1|V,=0).

Let D;* be the difference between the chance that theopedpvould have been rejected hiated
no and the chance that the proposal is rejecteditbmmal oni having voted yes:

2 Di*=Q!(V=0M=0)-P(V=0]Vi=1).

Becaus&)'(V=0M =0) =1 -Q*V=1M =0)andP(V=0|V, = 1) = 1 -P(V = 1]V; = 1),D;i* can
also be written as follows:

2) D'=P(V=1|Vi=1) - QYV=1V = 0).
We can now construct the measure:

(3) i DD P(V; = 0) +Di*P(V, = 1) .

It can be shown that tH2is always in the interval [0,1].

D is a measure of the impact of a person's vote tdkas into account the causal relationships
between the various people casting their votesis fiteasure is analogous to the measure of the
average treatment effett epidemiology and causal analysis more gener8ilppose that there is

a particular treatment for a particular disease. Wémt to quantify the potential impact of that
treatment on survival in the subpopulation of peoplth that disease. As a matter of fact, some
people chose to take the treatment, whereas adiebrsot. It is no use comparing the survival rates
between people who chose the treatment and peduedw not, since choosing the treatment may
be connected with social strata membership, whinhturn, may influence the chances of
recovering from the disease. Rather, we can dyahe impact of the treatment on survival in the



subpopulation as follows. First, we try to asdess the chance of survival among people who did
not undergo the treatment would have increasedtteyd undergone the treatment. To do so, we
subtract the probability that a person in the neatment group survived from the probability of the
counterfactual that she would have survived had wsidergone the treatment. We expect that,
typically, the result is positive. Second, we wyassess how the chance of survival among people
who underwent the treatment increased comparedetedunterfactual case in which they had not
undergone the treatment. To do so, we subtraquribigability of the counterfactual that a person in
the treatment group would have survived had sheindérgone the treatment from the probability
that she did survive. Again, we expect a positifeerence in the typical case. The impact of the
treatment in the subpopulation is measured by tine af these differences, weighted respectively
by the proportion of people who underwent the tremit and the proportion of people who did not
undergo the treatment. This measurement is disdusg Winship and Morgan (1999: 665, Eqg. 4)
and Morgan and Winship (2007: 45, Eq. 2.8).

Consider now voting again. We want to measure rifiaance of a person's vote on the outcome
given a particular voting procedure within a parae society. As a person might survive or not as
an outcome, the proposal to be voted on might bepded or rejected as an outcome. And just as a
person might have undergone the treatment or npérson might vote yes or vote no. Let us use
this analogy in order to understand @imeasure more closely.

First, typically, for people who did not underge ttieatment, their chance of survival would have
increased had they undergone the treatment. Siyiven that a person votes no, typically, the
chance of acceptance would increase were she éoyest The extent to which it increases, is the
difference in probabilitiesQ,°(V = 1|V; = 1) —=P(V = 1|V, = 0), which equal®®. Second, typically,

for people who underwent the treatment, their chawof survival is greater than in the
counterfactual case in which they had not underg@mament. Similarly, given that a person votes
yes, the chance of acceptance is greater tham icainterfactual case in which she were to vote no.
The extent to which it is greater,R§V = 1|V; = 1) — Q*(V = 1)V, = 0) orD;* (according to Eq. 2').
The impact of the treatment on survival of peopleéhe subpopulation who have the disease is
measured by the weighted sum of these differeriieslarly, the influence of a person's vote in a
particular society on acceptance is measured bystime of these differences weighted by the
chance of her voting no and the chance of her gotes, respectively — which precisely yields our
D-measure. So one can think of themeasure as the average treatment effect of a votheo
outcome of the vote. We will show that this meastan handle Wilmers’ example and reduces to
the Banzhaf measure under suitable assumptions.

The definition of theD-measure need not only be motivated by this anal®ggre is also an ex
post justification for quantifying influence in tas of D: D yields intuitively plausible results if
applied to a range of examples. We now turn to sxetmples.

3. A simple example

We start with a simple three-person example feagua Supreme Court with Scalia, Thomas and
Ginsburg as justicésThis example will illustrate how thB-values are calculated. We will first
assume that proposals are decided on by a simpteitpavote. Rather than using the terminology
that is fitting for the Supreme Court, we will camtl our presentation in terms wbters and
proposals

We consider different models for the votes. Undeerg model, each voter votes yes with a
probability of .5.

! These names are just mnemonic aids. For actuaklaton coefficients between Supreme Courts voses
Kaniovski and Leech (2007), Table 3.



3.a Opinion leader

Ginsburg's vote is stochastically independent ftbenother votes, and there are no causal relations
between her and the others' votes. Thomas, howkeeps a close eye on Scalia and there is .9
chance that he will vote yes, given that Scalieesotes, and there is a .9 chance that he will vote
no, given that Scalia votes no. One can thus satyTthomas's vote causally depends on Scalia's
vote. The causal influences in the model are reptesl in Fig. 1. Let us now assess the influence
of each voter by calculating hBrvalue.

(%)
B ®

Figure 1. The causal network for the opinion leadedel

We start with theéD-value of Thomas. We consider the first addend, DiZ x P(Vr = 0). Clearly,
P(Vr=0) = .5.

For calculatingd® we have to assume that Thomas votes no in thewad. We first turn tP(V

= 1|V = 0). If Thomas votes no, then the conditionalndgathat Scalia voted no is .9. Given that
Thomas votes no, we only get acceptance in thewedd, if both Scalia and Ginsburg vote yes.
And so the conditional chance that the proposatcepted i#(V = 1|Vy=0) =.1 x .5 =.05. We
now turn toQ:°(V = 1|Vy = 1) = 1 —-Q:%V = 0|V = 1). If Thomas were to vote for the proposal,
this would not affect the chance that Scalia votes—that chance is still .9—since the causal link
does not go from Thomas to Scalia. The only peafihder which the proposal would be rejected, if
Thomas voted yes, is a profile with Scalia and @umg voting no. That chance is .9 x .5 =.45. So
Q%V=1|Vr=1)=1- .45 = .55. HencB;°=.55-.05 = .50. The argument @¢" runs parallel
and sdDt = .50.

Let us now calculate thB-value for Scalia. We first consid€)s’. If Scalia votes no, then the
chance that Thomas votes no is .9. Given thaté&eates no, we only get acceptance in the real
world, if both Thomas and Ginsburg vote yes. Andrs® conditional chance that the proposal is
accepted i®(V =1|Vs=0)=.1 x .5 =.05. We now turn@(V = 1|Vs=1) = 1 -Q(V = 0|Vs =

1). If Scalia were to vote yes, this would affdwé chance that Thomas votes no—that chance is
now .1—since the causal link goes from Scalia t@ras. The only profile under which the
proposal would be rejected is a profile with Thoraad Ginsburg voting no. The chance is .1 x .5
=.05. SV = 1|Vr=1) = .95 and< = .9. The argument fds" runs parallel and sbs = .9.

Finally, we assess the influence of Ginsburg. iigBurg votes no, then this does not affect the
chance that Thomas or Scalia vote no. Given tlglisirg votes no, the chance that both Thomas
and Scalia vote yes is .9 x .5 = .45. R¥ = 1|V = 0) = .45. Suppose that Ginsburg asks herself
what the chance would be that the motion had beeapted had she voted yes. The chance that



both Thomas and Scalia would have voted no is.®=.45. S®Q(V = 1|Vs = 1) = .55. Hence,
Dc’ =.1. The argument fd@¢* runs parallel and sBg = .1.

This is not unreasonable. Scalia does have molgeimie than Thomas, because he takes Thomas
along with him as he changes votes, but not viesave Ginsburg has very little influence because
she faces a quasi-block vote of the two other goter

Voter Scalia Thomas Ginsburg

D-value 0.9 0.5 0.1

Table 1. Results under the opinion leader model
3.b Common causes
Let us now change our assumptions in the followvag:

1. We introduce a parametewhich permits us to vary the extent to which tlséeg of Scalia and
Thomas are correlated (correlations always impbglststic dependency). The parameter ranges
from —1 for full negative correlations over 0 fadependence to +1 for full positive correlation:

P(Vr=1|Vs=1) =P(Vr =0 [Vs=0) = .55(1+¢) .
Hence,
P(Vr=1|Vs=0) =P(Vr=1|Vs=0) = .5%(1 ) .

2. Correlations do not arise due to a direct cawdlalence from Scalia to Thomas or vice versa as
in Subsection 3.a. Rather, they are due to a canvaose (see Figure 2). Positive correlations are
due to shared political views. Negative correlagi@re due to diverging political views. We can
model this in the following way. We introduce adam variable which captures the nature of the
proposal ¢f. Balke and Pearl 1994). @ = 0, then the proposal is such that both ScalkikTdromas
vote no; ifC = 1, then the proposal is such that Scalia votesnd Thomas votes yesGf= 2, then
the proposal is such that Scalia votes yes and &bamtes no; iC = 3, then the proposal is such
that both vote yesC models, in Dretske’s terms (Dretske 1988, pp. #2a4riggering cause for
the voting behaviour of Thomas and Scalia. Théufea of the proposal trigger votes that match
the political views of Thomas and Scalia. By sfya@ag the probability values in Tablee can

fix the degree to which Thomas and Scalia’s votescarrelated or anti-correlated.
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Figure 2. The causal network for the common causaem

C=i P(Vs=1|C =) P(Vr = 1|C =)) P(C =i)
C=0 P(Vs=1|C=0)=0 P(V;=1|C=0)=0 25*(1+c)
c=1 P(Vs=1|C=1)=0 P(=1|C=1)=1 25%(1 -¢)
c=2 P(Vs=1|C=2)=1 P(r=1|C=2)=0 25*(1 )
C=3 P(Vs=1|C=3)=1 P(\=1|C=3)=1 25*(1+c)

Table 2. The probability model for the common camselel. The variabl® is not included — it is
independent from the other variabMsand takes values of 0 and 1 with a probabilitybagach

In the following, we will omit the details of oualculations. A general algorithm for calculating th
QP andQ’s is provided in Appendix A.

Applying this algorithm, we obtain the followingsts:

Voter Scalia Thomas Ginsburg

D-value 0.5 0.5 S5*(1e)

Table 3. Results under the common cause model

Thus, under the common cause model,Dkealues for Scalia and Thomas do not depend on the
strength of the correlations. On our model, théuarice of a voter is the same regardless whether
there is a shared political view with another vaternot. However, the influence of Ginsburg
depends on whether and how the votes of the otbrss are correlated. If Scalia and Thomas
always vote the same, then Ginsburg has no infeieticon the other hand, Scalia and Thomas
always cast opposing votes, then Ginsburg has nainfluence. Clearly, if the votes of Scalia
and Thomas are independent, then every voter Hasvaue of .5. Note that thi®-value for



independent votes coincides with the Banzhaf meaBur this simple voting game. As we will
show in Section 4, this is due to a more generahection between Banzhaf voting power and the
D-value.

But one might object that, intuitively, the influsmnof Scalia (and Thomas) is greater in a court in
which their votes are correlated than in a couwimch they vote independently. This is indeed not
an unreasonable interpretation of influence. Letai$ this the block interpretation. It is not the
interpretation that is captured by tBemeasure, though. On tliemeasure, Scalia’s influence is
the same with correlated or independent votes,Usecd he had voted differently, then this would
have had no effect on Thomas’s vote in either casd,so the chance of rejection or acceptance
would have been equally affecte@ut we can also construct a measDrewhich is in line with

the block interpretation of influence. LBt be the normalized measure Of i.e. everyD-value is
divided by the sum of thB-values for all voters. Thed* is monotonically increasing inand so
according to this measure the influence of Scalid @&homas increases as we move from anti-
correlated votes over independence to correlatégsyvd* stands toD in the same way as the
Banzhaf indexs stands to the non-normalized Banzhaf meaguref. Felsenthal and Machover
1998, Def. 3.2.2, p. 39).

3.c Causal influence on multiple votes

Let us now change our assumptions once more. Bidrtthe opinion leader model from Section
3.a and suppose that Scalia's causal influencendxt® Ginsburg's vote as well. This leads to a
causal model as depicted in Fig.3. We define alfaofiprobability models parameterized hyAs

in Section 3.bg can take values in the interval [0,1]. Fer= 1, there are full positive correlations
between Thomas's (or Ginsburg's) and Scalia's viteshis case, Scalia is a very influential
opinion leader and his vote will be copied by atiyeo voter in the court. Far= -1, there are full
negative correlations between Thomas's (or Ginshumnd Scalia's votes. For instance, both
Thomas and Ginsburg might dislike Scalia and trgutvote him on every issue.

In mathematical terms, the model looks as folloWsere is still equiprobability for yes and no
votes in the marginal probabilities of the differeroters. Given Scalia's votes, Thomas's and
Ginsburg's votes are independent. Furthermore,

P(Vr=1|Vs=1) =P(Vg =1 |Vs=1) = .5%(1+¢)
and

P(Vr=0|Vs=0) =P(Vg =0 [Vs= 0) = .55(1+s) .

This fixes the probability model.

Following Lewis (1979), we take it to be the cahatttruth-value assignments to counterfactuals uaddefault
interpretation do not permit backtracking.



Figure 3. The causal network with causal influemgenultiple votes

Results can be calculated following the method f@eation 3.a. They are shown in Table 4. &or
= 0, the votes of the voters are independent act eater'sD-measure is .5. For full positive
correlations £ = 1), Scalia has B-measure of 1, whereas the other have a Remeeasure. This is
a plausible thing to say, since, in this case, Tdwmand Ginsburg lack the ability to affect the
outcome of the vote by unilaterally casting a d#fe vote.

Voter Scalia Thomas Ginsburg

D-value 1-.5%(1+)? 5*(1—¢) 5* (1 —¢)

Table 4. Results for a model in which Scalia's \aatesally influences both other votes.

For full negative correlationg £ —1), we obtainDs=-1,Dt= 1,Dg = 1. The question thus arises
what negativd-values mean.

Negative values of thB-measure mean that a voter is able to affect theome of a vote, but in an
unexpected way. If she were to switch her vote fy@® to no (from no to yes), this would make a
difference, but it is not the probability of rejest (acceptance) that is increased, as one might
expect, but rather the probability of acceptanege@tion)® We take it to be a strength of our
measure that it captures the direction of the erfze. If one is only interested in whether a vater
able to affect the outcome in any way, one can lake absolute value of tBemeasure. Thus, in
our example, Scalia has in some way influence aoegrto ourD-measure, and this is as it should
be.

Of course, this unexpected way of influencing thicome of a vote invites strategic voting. If a

person were to know that she has negative inflyetihem she could vote strategically and vote
against her actual preferences. Suppose that ta¢egy is successful. One might then want to say
that she has positive influence — she is able towget she wants. One can turn this into an
objection against oubD-measure, since th®-measure is maximally negative. However, this
objection does not work. For measuring influenckeata voter wants is not relevant. Our measure
is not about the probability that a voter is ablgét what she wants. Rather, the question is &t wh

extent a voter is able to influence the outcoma wbte by switching her vote.

Let us now turn to th®-measure of Thomas and Ginsburg — which is 1. rat 8ight, this seems
strange. The votes of Thomas and Ginsburg are ¢allisally determined by the vote of Scalia, but

% Since theD-measure is the sum of two addends, it is sufficfen a voter'sD-measure to be negative that both
possible switches change the probability of aceegan an unexpected way, and it is necessaryathmatof the
switches changes this probability in an unexpeuotayl



still have a maximal D-value. But on second reftactthis is as it should be. For our measure is
about what votersould do, not about what they do as a matter of factaAsatter of fact, Thomas
and Ginsburg will always vote differently from SealBut what matters for our measure is that
each of themcould always switch the outcome single-handedly, if hesbe were to vote
differently. We conclude that our measure deal wie example appropriately.

3.d Dictator

So far we have assumed simple majority voting wdhbal weights. Let us now change the weights
as follows: Scalia has a block vote of three vowdsereas Thomas and Ginsburg have only one
vote each. The Supreme Court issues a yes (no)ifvabel only if there are at least three yes (no)
votes. Thus, Scalia is a dictator, whereas ThomdsGnsburg are dummiesf(Def. 2.3.4 on p. 24

in Felsenthal and Machover 1998).

Whether we calculate these results under the moddéer which Scalia is an opinion leader
(Section 3.a) or under the common cause model anth value ofe (Section 3.b) or under the
model under which Scalia has influence on multypbées with any value of (Section 3.c), we
obtain the following results:

Voter Scalia Thomas Ginsburg

D-value 1 0 0

Table 5. Results for a voting rule in which Scadia dictator.

These results are very plausible. Only the dictats influence, whereas the dummies do not have
influence. This gives rise to the following obsaions:

1. TheD-value significantly depends on the voting rule.wes change the voting rule and keep the
model for the voting profile fixed, the value DBf changes. This is important, since, in voting
theory, we are particularly interested in how d#f@ voting rules affect the influences of the
voters.

2. The results also show that thi&value does not suffer from a problem that affeatiser
generalizations of Banzhaf voting power for probgbimodels different from the Bernoulli
model. One way of generalizing Banzhaf voting postarts from the observation that standard
voting power is a linear transform of the probapibf your vote coinciding with the outcome of
the vote. One can then quantify influence as tlobatility of the coincidence of your vote and
the outcome of the vote under the probability mdbdat is adopted. As Machover (2007) argues,
this will not work, because, in the dictator modsiery dummy vote that is perfectly correlated
with the vote of the dictator will obtain the sanvaue of the measure as the dictator. Owur
value does not have this problem. Even if Thoniaslly follows Scalia as an opinion leader or
even if Scalia and Thomas'’s political views comgligbverlap (model from Section 3.b withs
1), D assigns non-identical values to the dictator &catid the dummy Thomas. Thomas will
only have the samB-value as Scalia, if Scalia's vote is fully caugaktermined by Thomas's
vote — and this again is a very plausible assigtmiepower.

4. The relation to measures of (conditional) successid decisiveness and to Banzhaf
Voting Power

10



Let us now discuss the connection betweenDbmeasure and the framework that Laruelle and
Valenciano (2005) have set up for measuring demigss and success.

For calculating th®-measure for voter we need to know the chances of the counterfa@V

= 1|V; = 1) andQ}(V = 0|V, = 0). These quantities are not present in thedraonk of Laruelle and
Valenciano. Hence, in the general case,@uneasure does not fit this framework. However, if
there are no causal connection between the vdtes,the chances of the counterfactuals coincide
with conditional probabilities, i.e.

4 QUAV=1|Vi=1)=P(V=1|V,=1)andQ'(V=0|V,=0)=P (V=0 |V, =0) foralli

and we can place tH2-measure in the Laruelle and Valenciano framewbBtkthermore, there are
also cases in which there are causal connectiamgebgr the voters in which Eg. (4) holds, e.g. in
case all causal influence between the voters Iy fautual? Finally, theD-measure for a single
voteri can be cast in the terms of Laruelle and Valenciarease the equalities in Eq. (4) hold for
that voter only. This is so in case voieis an opinion leader who is not influenced by other
people’s votes.

Let us now take Eg. (4) for granted and consideDimeasure. We obtain

5) Di= PNV=1|Vi=1)-P(V=1|V;=0) P =0)
+P(V=0M=0)-P(V=0|V=1)P¥i=1).

Following Laruelle and Valenciano (2005), p. 17% will say that voter is successful, if her vote
coincides with the outcome of the collective voti either ¢ =1 andV; = 1) or ¥ =0 andV; =

0). SoP(V =1 |V; = 1) is the conditional probability thats successful given that she votes yes
(for the only way that she can be successful give she votes yes is if the collective vote is
acceptance). Following Laruelle and Valenciano,dsaote this conditional probability by2; "
(ibid., p. 178). LikewiseP(V = 0 V; = Q) is the conditional probability thats successful, given
that she votes no. We abbreviate this 8y . Consider now the "mixed” conditional probability
P(V=1|V,=0). Thisequals 1 P(V=0|Vi=0)=1-Q;". Likewise,P(V=0|V,=1)=1-Q;

" Putting this all together, we obtain:

(6) D= (@"+ Q" -1)(PWM=0)+P¥i=1))=0Q;"+ 2" -1 .

Thus, in cas€;’ andQ* equalP the D-measure can be expressed in terms of quantities tihe
framework in Laruelle and Valenciano (2005).

Let us now additionally assume that all votes &oelestically independent and that, for each voter
i, the probability of her voting yes is .5. Thatwss adopt the Bernoulli model. Given equiprobility,

Q"+ Q" can further be simplified:

(7) Qi+ 0" =2(.5_Qii++,5 -Qii_)=2(P(V:1).Qii++P(V=O)_Qii‘):
P((V=1andvi=1)+P(V=0andv;=0)) =
R(isuccessful) .

Thus,

“To set up a model of full mutual influence requisesne background in Bayesian Networks. To repteésémutual

influence in Bayesian Networks we can insert vettites between the nodes with converging arrovesdhtld nodes
with dummy variables that are instantiated. Sithege are no incoming arrows into the nodes repteggethe votes,
there are no arrows to be erased in the construcfigcghe counterfactual probability model and hetiez probability
model remains unaffectédf. the Appendix for the terminology
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(8) i B 2P(isuccessful ) — 1.

Hence, in the terminology of Laruelle and ValenoiarD; equals twice 2, (the probability of
success) minus 1 — it is a linear transform of thuantity.

But, under the full Bernoulli model, the r.h.s.tbis equation equals Banzhaf voting power of voter
i (see Felsenthal and Machover 1998, Theorem 3.p.185). HenceD; coincides with Banzhaf
voting power in the special case of equiprobabdityl independence. This result is very pleasing; it
tells us that our measure coincides with a standaedsure of voting power in case suitable
assumptions are made.

5. Wilmers’ Example

Let us now turn to a more complex example. Supplozewe have a five person Supreme Court
with simple majority voting and equal weights f@ch voter. The 12 profiles in which at least four
voters cast the same vote each occur with probaili2 —¢ for 0< ¢ < 1/12. The 20 remaining
profiles each occur with probabilitys.6At ¢ = 0, we reproduce Wilmers’ example, as specifigd b
Machover et al. (2007, p. 3): All 12 profiles with or 5 voters casting the same vote are
equiprobable and all other 20 profiles occur witbgability zero. Probability models with a finite
correspond to generalizations of Wilmers' example.

If ¢ is set at zero, the probability of pivotality isra for every voter. This shows that we cannot
measure influence by means of the probability ebfality, because, as Machover (2007, p. 3)
writes, “it would be absurd to claim that everyemhere is powerless, in the sense of having no
influence over the outcome of divisions.” So Istakamine whether old-measure yields more
fitting values.

For 0 <¢ < 1/12, we specify a causal interpretation thatasststent with the probability model.
We first calculate the conditional probabilitiBévVa = 1), P(Vg = 1|Va = 1),P(Vg= 1|VA = 0), ...,
P(Ve=1|Va=0,Vg=0,Vc =0,Vp =0,Ve = 0). We then impose the following causal modklis

not influenced by any other voter. B’s vote iduehced by and only by A’s vote. B votes yes with
probabilityP(Vs = 1|Va = 1) if A votes yes, and with probabiliB(Vg = 1|Va = 0) if A votes no. C

is influenced by both A and B’s vote and so on. A3ovote has a causal bearing on B through E's
votes, B's vote has a causal bearing on C throtgjhdies, ... and E's vote has no causal bearing.
This is illustrated in Figure 4.
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Figure 4. The causal relations that we assuméntgéneralization of Wilmers' example

Of course there are many other causal models thatamsistent with the probability model. E.g. a
permutation of A,..., E would also yield a causal mlodompatible with the probabilities.
Furthermore, many more common cause models coukpéled out that are consistent with the

probability model. But we will assume that ourtpadar causal model appropriately represents the
influences in the real world.

We calculate thé-values for this causal model following our methiody. As an example, we
obtainDa = 2/3 — 9.2. Subsequently we calculate the limitssapes to O for all voters. In Table
6, we see that thB-values cascade downwards as we move from voteesEA This squares very

nicely with the fact that A is an opinion leademtore voters than B, B is an opinion leader to more
voters than C etc.

i Lim_oQ°(V=1]V,=1) Lim_oP(V=0|Vi=1) | Lim, oD
Lim,oQ'(V=0|Vi=0)  Lim,oP(V=1]V;=0)
A 5/6 1/6 4l6
B 23 1/6 3/6
C % 1/6 2/6
D 5/12 1/6 3/12
E 1/6 1/6 0

Table 6. Results for the extension of Wilmers' egkem

What happens when we gedit O — as is the case of Wilmers' example (2003)D When: = 0 we
face a problem in calculating tfivalue of voterD. Suppose tha¥p = 0 in the real world. We
ask what the chance of acceptance would h2 yiere to have voted yes, i@°(V = 1|Vp = 1). If
we follow the algorithm from Appendix A, we neectprobabilityP(Ve = 1|Va =1,V = 0,Vc =
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0, Vp = 1). But this probability is undefined sinB/a=1,Vg =0,Vc=0,Vp = 1) = 0. Hence we
cannot calculate th€@y°(V = 1| Vp = 1) for a probability model with extreme value&or this
reason, we stipulated a non-extresraodel and calculated the limiting value of thaneasure.

But one might object that there are other famibésnodels that approach Wilmers’ example in
some limit. For example, we could set the proligbif one profile with three yes-votes and two
no-votes at 4 and set the probability of another such profile.&t Again, we will recover
Wilmers’ example, as we setat zero. However, if we take the limit— 0, we might obtain a
slightly different limit for theD-measure for D. But it can be shown that for attrstamilies of
models, theD-values for A, B, C and E are unaffected in theitlin— O and theD-value for D
ranges from 0O to 1/3, i.e. it takes thevalues of C and E as its bounds.

6. Discussion

Our assessment of a voter's influence is based apausal model. But how do we know whether
correlations in the votes are due to opinion leaderto shared political views, e.g.? And if theg a
due to opinion leaders, how do we know whetheri&aalan opinion leader for Thomas or vice
versa? The standard line in Causal Learning is thgtrobability model yields conditional
independence structures that define a class ofatausdels. For this class, it may be possible to
obtain bounds on thB-values of the voters. But if we want to identayunique causal model we
need additional information. One may look at th@peral structure: If Thomas always casts his
vote after Scalia, then the causal direction iarcléOr one may appeal to experiment: For instance
one could toggle Scalia’s vote and see whether Hsdwilows suit. Once a unique causal model is
specified, we can assess fhevalue of each voter. But how this is done and tiwethis can be
done is not the subject of our inquiry.

In this paper we have only dealt with very simpéigal models. It is sometimes appropriate to
switch to models under which the causal pattermotés depends on the issue under consideration.
Suppose for instance that Scalia has very positikgence on the other voters for economic issues
— the other voters are very likely to copy Scahaite (model from Section 3.c with> 0). But at

the same time, Scalia has a negative influencé@mther voters for issues of social morality — the
other voters are very likely to vote differentlyifn Scalia (model from Section 3.c withk 0). In
such a case, it is appropriate to construct tweaamodels and to calculateDameasure for each
type of issue that one wishes to consider.

Let us finally deal with an objection against thegosed measurement of voting power. One might
object that voting theorists are interested inngtower, i.e. the power that a voter has in vidgtie
her vote. Measures of this power are supposed &péeifically about a voting rule. The objection
is that we mix in different kinds of influence, etje influence that a person has as an opinion
leader. This objection motivates an alternativattreent of Wilmers' example: One can say that our
intuitions regarding the example are confused, biseao distinction is drawn between the extent to
which a person can influence the outcome of the wotvirtue of her vote, and in virtue of other
things. In virtue of her vote, nobody has votingveo, and this is exactly what is captured by the
simple suggestion to generalize the Banzhaf measure

In order to deal with this objection, we want fitstpoint out an ambiguity. "In virtue of her vote"
can mean (i) in virtue of her casting a vote -the. real life event of casting a vote - or (iivintue

of her vote cast - i.e. the vote as it is registarethe voting profile. Let us then deal with the
objection under both readings.

14



On reading (i), really no objection is left. Foistperfectly conceivable that the event of my ngti
yes causally bears on how other voters vote arsdctiisal influence should then be incorporated
into voting power. But our opponent could thermeoback and object that opinion leaders
typically do not exercise influence through actyaldsting a vote, since this is in many settings
done privately. But nonetheless, we respond, opitéaders express in more or less uncertain
terms what votes they will cast and other peoplievotheir lead. One could have a measure of
power that takes into account this type of inflleeras well. One would not just measure the
influence of casting a vote in this case, but nathe influence of having an intention to vote imeo
way or another. The idea is that this intention hasinfluence on the outcome of the vote by
shaping one's own vote as well as by influencimgvibtes of others.

On reading (ii), we could indeed say that nonehef actual votes cast in Wilmers' example have
any influence. But it is odd to say that none lé tvoters have any influence. The default
interpretation of the influence of a voter due & faiote seems to involve some complex interaction
of the social processes that brings about the \edesell as the actual voting rule and these two
components cannot just be isolated. Ouwralue measures the influence that a voter hagtuevof

a decision rule and her influence on others, arsdntieasure is a worthwhile thing to have precisely
because it matches a very natural interpretatiqrobfical influence.

“Lyalues

Appendix A. The algorithm for calculating the Q;
We will follow Balke and Pearl (1994), though owtation diverges. Let us takg’(V=1 M = 1)

as an example. This is the probability of the cerfattual that the proposal would have been
accepted, had voted yes, though votes no in the actual worldi’s vote is an event that is
embedded in a causal structure. It is caused tgicesvents and it causes certain effects. lsolat
all the non-effects offs vote. If we learn thait votes no in the actual world, then this teaches us
something about some of these non-effectssofote. We determine a joint probability model for
the non-effects of s vote, conditional onvoting no. Subsequently we s&t vote at yes, as if this
came about, in Lewis’s terms, by a miracle, thatass if some exogenous force interfered in the
course of nature and changed the event from vatogp voting yes (Lewis 1979). We evaluate
how the effects of's vote would be affected by the probability modeker the non-effects afs
vote conjoint withi voting yes.

Formally, for evaluatindd®( V = 1 |Vi = 1) we consider the actual world in whigh= 0. Let the
random variable€;, .., C, be the non-effects &fi. TheCjs may include other votes and variables
representing common causes. We calculate the pootiabilitiesP(C; = ¢y, ...,C, =¢y | Vi = 0)
where theg; s range over the possible values@for eachj. For each combination of th& = c,,

...y Gy = Cpn, we then multipyP(Cy =cy, ...,Ch=Cq| Vi = 0) withP(V=1 |Cy=cCy, ..., G=¢Cn, Vi =

1). That is, we ask: What is the probability of gtance, ifV; = 1, but if the non-effects &f; are

as they are in the actual world. By summing thelpots

P(Ci=cy, ...,.Ch=C|Vi=0)xP(V =1 |C;=cCy, ..., G=¢C, Vi= 1)
for every possible combinatid®; = ¢y, ..., G, = ¢, we obtainQ®(V =1 |V, = 1). To calculaté(

V=1 |C=¢cy, ..., G=cn, Vi=1), we average over all the effect variable¥;ofcall them g, ...,
En:

P(v=1/C,=¢,,..C,=c,V,=1)=
=>.>pPV=1C=c,.C,=C,V,=1E=¢,.E,=¢,)
& &

><|3(Ei =e,..E,=¢e,|C,=¢,..C,=¢C, V.= 1)_
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In terms of Bayesian Networks, we can characteheelgorithm as follows:

1. Construct a Bayesian Network with variablesf¢t)the votes of each voter, (2) for the common
causes and (3) for the outcome of the vote. Inmedws for opinion leaders as in Figure 1, for
common cause political views as in Figure 2, amdves from each voter into the outcome of the
vote modelling the decision rule.

2. Read off the prior probabilitid¥V; =1) andP(V; = 0) from this network.

3. Set the value of the variable for votextt no and read off the probability of acceptaneeP(V =
1|Vi = 0).

4. Determine the joint probability distribution ow@e non-effect variables & conditional onv; =
0.

5. Construct a node for the combination of all mfiect variable<Cs,..., G, and insert this joint
probability distribution as a new prior.

6. Erase the nodes for the individual non-effectaldes along with their incoming and outgoing
arrows.

7. Insert the requisite arrows from the combined-effect variable to the effect variables \gf
including the node for the outcome of the vote, patlin the concomitant conditional probability
distributions. Note tha¥, is a root node in this new network.

8. Set the value of the variable for voteat yes in this new network. Read off the probgbdf
acceptance. This %V = 1|V, = 1).

9. A similar procedure yieldd(V = 0|V; = 1) andQ(V = OV, = 0).
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