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Abstract:  We construct a new measure of voting power that is a reasonable 
measure of influence even if the votes are not cast independently. The crucial 
building blocks of our measure are probabilities of counterfactuals, such as the 
probability that the outcome of the vote would have been yes, had a voter voted 
yes rather than no as she did in the real world. The probabilities of such 
counterfactuals are calculated on the base of causal information, following the 
approach by Balke and Pearl. Opinion leaders who have causal influence on other 
people's votes can have significantly more voting power under our measure than 
the latter. We provide several examples in which our measure yields intuitively 
plausible results and show that the measure reduces to Banzhaf voting power in 
the limiting case of independent and equiprobable votes.  

 
 

1. Introduction 
 
The Banzhaf measure of voting power quantifies the degree to which political agents can influence 
the outcome of a vote (Felsenthal and Machover 1998, p. 36). It equals the chance of pivotality in a 
binary vote under the assumptions that (i) the voters cast their votes independently and (ii) each 
voter is equally likely to vote yes or no. These probabilistic assumptions define the so-called 
Bernoulli model (Felsenthal and Machover 1998, Def. 3.1.1, p. 37). However, one might argue, if 
sufficient empirical data on past voting patterns are available, then one should base the 
measurement of influence on a probability model that fits the data, and of course the Bernoulli 
model will seldom be a fitting model (see Gelman et al. 2002 and Gelman et al. 2004 for a related 
discussion). A simple suggestion to generalize Banzhaf voting power for such cases would be to 
calculate the probability of being pivotal under the appropriate probability model—whatever it is 
like. This suggestion has been put forward by e.g. Morriss (1987/2002), p. 169. But unfortunately 
this suggestion does not work if the independence assumption does not hold. It leads to 
counterintuitive assessments of political influence. The following example is a simplification of 
what has come to be known as Wilmers’ example in Machover (2007). Five voters take decisions 
under simple majority vote. The 5-0 split and the 0-5 split have a probability of one half each. The 
other voting profiles have probability zero. Clearly, the probability of being pivotal is zero for each 
voter. Accordingly, under the simple suggestion, no voter would have political influence in the 
voting process. But, intuitively, it seems odd to say that no voter has any influence on the outcome 
of the vote (ibid., p. 3). A different measure of voting power is needed.    
 
How can we construct such a measure? In the example above, the obvious question to ask is: How 
did the probability distribution arise? Suppose, first, that voter A is an opinion leader, i.e. if A votes 
yes (or no), then all other voters simply copy her vote. What one would say intuitively is that A has 
more voting power than the other voters—if A had voted differently, then the others would have 
followed suit and the outcome would have been different. But we cannot say the same for the other 
voters. However, if, second, a different voter B is an opinion leader, clearly B should have more 
voting power than the other voters. Or, third, if the voting pattern comes about only due to political 
views shared by the voters, then we expect equal voting power in the example. Thus, in order to 
provide an assessment of voting power, one should take into account the causal relations between 
the votes that bring about the distribution over profiles.   
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We will go beyond the simple suggestion and develop a measure of voting power that does not 
clash with our intuitions because it is sensitive to causal information. The measure relies on causal 
models and counterfactual probability distributions. We define the measure in section 2. In section 
3, we develop a simple example to show how the measure deals with opinion leaders, shared 
political views and dictatorial voting procedures. In section 4, we relate the measure to other 
measures; we show that the measure reduces to Banzhaf voting power under the Bernoulli model. 
Section 5 provides an analysis of Wilmers' example (Machover 2007). Section 6 concludes, and 
technical details are provided in the appendix.   

 

Since we work with causal models and probabilities, one may distinguish between causal 
dependence and stochastic dependence. If not stated differently, “(in)dependence” means stochastic 
(in)dependence. If two random variables are stochastically independent, there can not be a causal 
dependence, either.  

Recently, Laruelle and Valenciano (2005) have suggested a general framework in which various 
voting power measures – the Banzhaf measure as well as other measures – can be embedded. The 
framework has two layers: first, a voting rule that is modelled as a simple voting game (p. 174); 
second, a probability model over profiles (pp. 175–6). Various measures of voting power turn out to 
be unconditional or conditional probabilities of either success or decisiveness in this framework. In 
Laruelle and Valenciano’s terms, we are interested in decisiveness (or, in our terms, pivotality) 
rather than success. But the measure that we propose cannot be fitted into their framework. In the 
general case, it is neither an unconditional nor a conditional probability. Rather, our measure is a 
weighted sum of differences between certain probabilities. Roughly, what we are interested in is the 
extent to which probabilities of acceptance (respectively rejection) change, if a voter were to switch 
her vote from no to yes (respectively from yes to no). These changes are traced on the basis of a 
causal model. We will discuss the connection between our work and Laruelle and Valenciano 
(2005) in section 4. 

 
2. Generalized Voting Power 

 
The voting power of a voter i is the extent to which she is able to make a difference as to whether a 
bill passes or not (Felsenthal and Machover 1998, p. 36). How can that extent be measured? One 
way to measure it is to calculate the probability that that voter's vote is pivotal (cf. ibid.). But this 
proposal runs into the problem plain from Wilmers' example. So an alternative is required.  
 
Suppose that with person i voting no on a proposal in the actual world, the chance of acceptance is 
quite low.  But if i were to vote yes instead, then the chance of acceptance would be much greater.  
Similarly, suppose, with i voting yes on a proposal in the actual world, the chance of rejection is 
quite low.  But if i were to vote no instead, then the chance of rejection would be much greater. 
Under these assumptions, intuitively, i has more influence than a person j for whom these respective 
effects would be notably smaller. The idea is thus to take differences of chances in order to measure 
voting power. Let us make this idea precise by constructing a measure.    
 
We introduce the following notation. We assume that there are N voters. The i th vote is modeled as 
a random variable Vi . We set  Vi = 1, if i votes yes, and Vi = 0, if she votes no. The outcome of the 
vote is described by the random variable V.  V = 1 means that the proposal is accepted.  V = 0 means 
that the proposal is rejected.  
 
We assume that we have a full probability model for the votes. The model provides us with 
probabilities for each possible voting profile (i.e. the joint probabilities of the Vi s). We assume for 
now that all conditional probabilities such as P(Vj  = 0| Vi = 1) are defined. (In Section 5, we will 
consider a case in which this assumption is violated.) Once we know the decision rule, we can 
calculate conditional probabilities for acceptance given some single vote or given a combination of 
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votes, such as P(V = 1| Vi = 1) or P(V = 1| Vi = 1, Vj  = 0). It is not our concern in this paper how to 
obtain a realistic probability model from empirical data.  
 
We will also assume that we have causal information about the votes. In our models a person’s 
votes can be influenced by other people’s votes and by her political views.  This is not inconsistent 
with taking voting to be an instance of free agency.  How the related causal information can be 
obtained is not our concern in this paper.  
 
For calculating our measure of influence, we first assess the chance that a proposal is accepted 
given that i voted no, i.e. P(V = 1| Vi = 0) and the chance that a proposal is rejected given that i 
voted yes, i.e. P(V = 0| Vi = 1).  Subsequently, we construct probability distributions over certain 
counterfactuals.  We ask what the chance is that a proposal would have been accepted, had i voted 
yes (rather than no, as i did in the actual world), call it Qi

0(V = 1| Vi = 1).  And we ask what the 
chance is that a proposal would have been rejected, had i voted no (rather than yes, as i did in the 
actual world), i.e. Qi

1(V = 0| Vi = 0).  
 
These chances are calculated following the approach by Balke and Pearl (1994). The basic idea is 
very simple. For calculating Qi

0(V = 1| Vi = 1), e.g., we first assume that i votes no, as she does in 
the actual world. We infer the probabilities of the other votes being one way or another. Then i’s 
vote is switched to yes. We trace the causal effects of i’s voting yes and recalculate the probabilities 
that the votes that are causally affected by i’s vote are one way or another. Finally, the probability 
of acceptance is calculated on this base. A general algorithm for calculating the probabilities for 
counterfactuals is given in the Appendix.  
 
Let Di

0 be the difference between the chance that the proposal would have been accepted had i 
voted yes and the chance that the proposal is accepted conditional on i having voted no: 
 
(1)                                         Di

0  = Qi
0(V = 1| Vi = 1) – P(V = 1| Vi = 0) . 

 
Let Di

1 be the difference between the chance that the proposal would have been rejected had i voted 
no and the chance that the proposal is rejected conditional on i having voted yes:   
 
(2)                                         Di

1 = Qi
1(V = 0|Vi = 0) – P(V = 0| Vi = 1) . 

 
Because Qi

1(V = 0|Vi = 0) = 1 – Qi
1(V = 1|Vi = 0) and P(V = 0| Vi = 1) = 1 – P(V = 1| Vi = 1), Di

1 can 
also be written as follows:  
 
(2')                                        Di

1 = P(V = 1| Vi = 1) –  Qi
1(V = 1|Vi = 0) . 

 
We can now construct the measure:   
 
(3)                                               Di = Di

0 P(Vi = 0) + Di
1 P(Vi = 1) . 

 
It can be shown that the D is always in the interval [0,1].  
 
D is a measure of the impact of a person's vote that takes into account the causal relationships 
between the various people casting their votes.  This measure is analogous to the measure of the 
average treatment effect in epidemiology and causal analysis more generally. Suppose that there is 
a particular treatment for a particular disease. We want to quantify the potential impact of that 
treatment on survival in the subpopulation of people with that disease. As a matter of fact, some 
people chose to take the treatment, whereas others did not. It is no use comparing the survival rates 
between people who chose the treatment and people who did not, since choosing the treatment may 
be connected with social strata membership, which, in turn, may influence the chances of 
recovering from the disease.  Rather, we can quantify the impact of the treatment on survival in the 
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subpopulation as follows.  First, we try to assess how the chance of survival among people who did 
not undergo the treatment would have increased had they undergone the treatment.  To do so, we 
subtract the probability that a person in the non-treatment group survived from the probability of the 
counterfactual that she would have survived had she undergone the treatment. We expect that, 
typically, the result is positive. Second, we try to assess how the chance of survival among people 
who underwent the treatment increased compared to the counterfactual case in which they had not 
undergone the treatment. To do so, we subtract the probability of the counterfactual that a person in 
the treatment group would have survived had she not undergone the treatment from the probability 
that she did survive.  Again, we expect a positive difference in the typical case. The impact of the 
treatment in the subpopulation is measured by the sum of these differences, weighted respectively 
by the proportion of people who underwent the treatment and the proportion of people who did not 
undergo the treatment.  This measurement is discussed by Winship and Morgan (1999: 665, Eq. 4) 
and Morgan and Winship (2007: 45,  Eq. 2.8).   
 
Consider now voting again. We want to measure the influence of a person's vote on the outcome 
given a particular voting procedure within a particular society. As a person might survive or not as 
an outcome, the proposal to be voted on might be accepted or rejected as an outcome. And just as a 
person might have undergone the treatment or not, a person might vote yes or vote no. Let us use 
this analogy in order to understand our D-measure more closely.  

First, typically, for people who did not undergo the treatment, their chance of survival would have 
increased had they undergone the treatment.  Similarly, given that a person votes no, typically, the 
chance of acceptance would increase were she to vote yes. The extent to which it increases, is the 
difference in probabilities, Qi

0(V = 1| Vi = 1) – P(V = 1| Vi = 0), which equals Di
0. Second, typically, 

for people who underwent the treatment, their chance of survival is greater than in the 
counterfactual case in which they had not undergone treatment.  Similarly, given that a person votes 
yes, the chance of acceptance is greater than in the counterfactual case in which she were to vote no. 
The extent to which it is greater, is P(V = 1| Vi = 1) –  Qi

1(V = 1|Vi = 0) or Di
1 (according to Eq. 2'). 

The impact of the treatment on survival of people in the subpopulation who have the disease is 
measured by the weighted sum of these differences. Similarly, the influence of a person's vote in a 
particular society on acceptance is measured by the sum of these differences weighted by the 
chance of her voting no and the chance of her voting yes, respectively – which precisely yields our 
D-measure.  So one can think of the D-measure as the average treatment effect of a vote on the 
outcome of the vote.  We will show that this measure can handle Wilmers’ example and reduces to 
the Banzhaf measure under suitable assumptions.   

The definition of the D-measure need not only be motivated by this analogy. There is also an ex 
post justification for quantifying influence in terms of D: D yields intuitively plausible results if 
applied to a range of examples. We now turn to such examples.  

 
3. A simple example 

 
We start with a simple three-person example featuring a Supreme Court with Scalia, Thomas and 
Ginsburg as justices.1 This example will illustrate how the D-values are calculated. We will first 
assume that proposals are decided on by a simple majority vote. Rather than using the terminology 
that is fitting for the Supreme Court, we will conduct our presentation in terms of voters and 
proposals. 
 
We consider different models for the votes. Under every model, each voter votes yes with a 
probability of .5.  
 
                                                
1 These names are just mnemonic aids.  For actual correlation coefficients between Supreme Courts votes, see 

Kaniovski and Leech (2007), Table 3.   
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3.a  Opinion leader 
 
Ginsburg's vote is stochastically independent from the other votes, and there are no causal relations 
between her and the others' votes.  Thomas, however, keeps a close eye on Scalia and there is .9 
chance that he will vote yes, given that Scalia votes yes, and there is a .9 chance that he will vote 
no, given that Scalia votes no. One can thus say that Thomas's vote causally depends on Scalia's 
vote. The causal influences in the model are represented in Fig. 1. Let us now assess the influence 
of each voter by calculating her D-value.   
 
 
 

 
 

Figure 1. The causal network for the opinion leader model 
 
 
We start with the D-value of Thomas. We consider the first addend, viz. DT

0 × P(VT = 0). Clearly, 
P(VT = 0) = .5.  
 
For calculating DT

0 we have to assume that Thomas votes no in the real world. We first turn to P(V 
= 1| VT = 0). If Thomas votes no, then the conditional chance that Scalia voted no is .9.  Given that 
Thomas votes no, we only get acceptance in the real world, if both Scalia and Ginsburg vote yes. 
And so the conditional chance that the proposal is accepted is P(V = 1| VT = 0) = .1 × .5 = .05.  We 
now turn to QT

0(V = 1| VT = 1) = 1 – QT
0(V = 0| VT = 1).  If Thomas were to vote for the proposal, 

this would not affect the chance that Scalia voted yes—that chance is still .9—since the causal link 
does not go from Thomas to Scalia.  The only profile under which the proposal would be rejected, if 
Thomas voted yes, is a profile with Scalia and Ginsburg voting no.  That chance is .9 × .5 = .45.  So 
QT

0(V = 1| VT = 1) = 1 - .45 = .55.  Hence, DT
0 = .55 - .05 = .50.  The argument for DT

1 runs parallel 
and so DT = .50.  
 
Let us now calculate the D-value for Scalia. We first consider QS

0. If Scalia votes no, then the 
chance that Thomas votes no is .9.  Given that Scalia votes no, we only get acceptance in the real 
world, if both Thomas and Ginsburg vote yes. And so the conditional chance that the proposal is 
accepted is P(V = 1| VS = 0) = .1 × .5 = .05.  We now turn to QS

0(V = 1| VS = 1) = 1 – QS
0(V = 0| VS = 

1).  If Scalia were to vote yes, this would affect the chance that Thomas votes no—that chance is 
now .1—since the causal link goes from Scalia to Thomas.  The only profile under which the 
proposal would be rejected is a profile with Thomas and Ginsburg voting no. The chance is .1 × .5 
= .05.  So QS

0(V = 1| VT = 1) = .95 and DS
0 = .9.  The argument for DS

1 runs parallel and so DS = .9.  
 
Finally, we assess the influence of Ginsburg.  If Ginsburg votes no, then this does not affect the 
chance that Thomas or Scalia vote no.  Given that Ginsburg votes no, the chance that both Thomas 
and Scalia vote yes is .9 × .5 = .45.  So P(V = 1| VG = 0) = .45.  Suppose that Ginsburg asks herself 
what the chance would be that the motion had been accepted had she voted yes.  The chance that 
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both Thomas and Scalia would have voted no is .9 × .5 = .45.  So QG
0(V = 1| VG = 1) =  .55.  Hence, 

DG
0 = .1.  The argument for DG

1 runs parallel and so DG = .1.   
 
This is not unreasonable. Scalia does have more influence than Thomas, because he takes Thomas 
along with him as he changes votes, but not vice versa.  Ginsburg has very little influence because 
she faces a quasi-block vote of the two other voters.   
 

Voter  Scalia Thomas Ginsburg 

D-value 0.9 0.5 0.1 

 
 

Table 1. Results under the opinion leader model 
 
3.b   Common causes 
 
Let us now change our assumptions in the following way:  
 
1. We introduce a parameter ε which permits us to vary the extent to which the votes of Scalia and 
Thomas are correlated (correlations always imply stochastic dependency).  The parameter ranges 
from –1 for full negative correlations over 0 for independence to +1 for full positive correlation: 
 

P(VT = 1 | VS = 1) = P(VT = 0 | VS = 0) = .5*(1+ ε) . 
 
Hence,  
 

P(VT = 1 | VS = 0) = P(VT = 1 | VS = 0) = .5*(1 – ε) . 
  
2. Correlations do not arise due to a direct causal influence from Scalia to Thomas or vice versa as 
in Subsection 3.a.  Rather, they are due to a common cause (see Figure 2).  Positive correlations are 
due to shared political views.  Negative correlations are due to diverging political views.  We can 
model this in the following way.  We introduce a random variable which captures the nature of the 
proposal (cf. Balke and Pearl 1994). If C = 0, then the proposal is such that both Scalia and Thomas 
vote no; if C = 1, then the proposal is such that Scalia votes no and Thomas votes yes; if C = 2, then 
the proposal is such that Scalia votes yes and Thomas votes no; if C = 3, then the proposal is such 
that both vote yes.  C models, in Dretske’s terms (Dretske 1988, pp. 42–4), a triggering cause for 
the voting behaviour of Thomas and Scalia.  The features of the proposal trigger votes that match 
the political views of Thomas and Scalia.  By specifying the probability values in Table 2 we can 
fix the degree to which Thomas and Scalia’s votes are correlated or anti-correlated.   
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Figure 2. The causal network for the common cause model 
 
 
 

C = i P(VS = 1| C = j) P(VT = 1| C = j) P(C = i) 

C = 0 P(VS = 1 | C = 0 ) = 0 P(VT = 1 | C = 0) = 0 .25*(1+ ε) 

C = 1 P( VS = 1 | C = 1) = 0 P(VT = 1 | C = 1) = 1 .25*(1 – ε) 

C = 2 P(VS = 1 | C = 2) = 1 P(VT = 1 | C = 2) = 0 .25*(1 – ε) 

C = 3 P(VS = 1 | C = 3) = 1 P(VT = 1 | C = 3) = 1 .25*(1+ ε) 

 
 
Table 2. The probability model for the common cause model. The variable VG is not included – it is 

independent from the other variables Vi and takes values of 0 and 1 with a probability of .5 each 
  
 
In the following, we will omit the details of our calculations. A general algorithm for calculating the 
Qi

0s and Qi
1s is provided in Appendix A.  

 
Applying this algorithm, we obtain the following results:  
 
 

Voter  Scalia Thomas Ginsburg 

D-value 0.5 0.5 .5 * (1 – ε) 

 
 

Table 3. Results under the common cause model 
 
Thus, under the common cause model, the D-values for Scalia and Thomas do not depend on the 
strength of the correlations. On our model, the influence of a voter is the same regardless whether 
there is a shared political view with another voter or not.  However, the influence of Ginsburg 
depends on whether and how the votes of the other voters are correlated. If Scalia and Thomas 
always vote the same, then Ginsburg has no influence. If, on the other hand, Scalia and Thomas 
always cast opposing votes, then Ginsburg has maximal influence. Clearly, if the votes of Scalia 
and Thomas are independent, then every voter has a D-value of .5. Note that this D-value for 
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independent votes coincides with the Banzhaf measure for this simple voting game. As we will 
show in Section 4, this is due to a more general connection between Banzhaf voting power and the 
D-value. 
 
But one might object that, intuitively, the influence of Scalia (and Thomas) is greater in a court in 
which their votes are correlated than in a court in which they vote independently. This is indeed not 
an unreasonable interpretation of influence. Let us call this the block interpretation. It is not the 
interpretation that is captured by the D-measure, though.  On the D-measure, Scalia’s influence is 
the same with correlated or independent votes, because if he had voted differently, then this would 
have had no effect on Thomas’s vote in either case, and so the chance of rejection or acceptance 
would have been equally affected.2 But we can also construct a measure D* which is in line with 
the block interpretation of influence.  Let D* be the normalized measure of D, i.e. every D-value is 
divided by the sum of the D-values for all voters.  Then D* is monotonically increasing in ε and so 
according to this measure the influence of Scalia and Thomas increases as we move from anti-
correlated votes over independence to correlated votes.  D* stands to D in the same way as the 
Banzhaf index β stands to the non-normalized Banzhaf measure β’  (cf. Felsenthal and Machover 
1998, Def. 3.2.2, p. 39).     
 
3.c   Causal influence on multiple votes 
 
Let us now change our assumptions once more. Start with the opinion leader model  from Section 
3.a and suppose that Scalia's causal influence extends to Ginsburg's vote as well. This leads to a 
causal model as depicted in Fig.3. We define a family of probability models parameterized by ε. As 
in Section 3.b, ε can take values in the interval [0,1]. For  ε = 1, there are full positive correlations 
between Thomas's (or Ginsburg's) and Scalia's votes. In this case, Scalia is a very influential 
opinion leader and his vote will be copied by any other voter in the court. For ε = –1, there are full 
negative correlations between Thomas's (or Ginsburg's) and Scalia's votes. For instance, both 
Thomas and Ginsburg might dislike Scalia and try to outvote him on every issue.  
 
In mathematical terms, the model looks as follows: There is still equiprobability for yes and no 
votes in the marginal probabilities of the different voters. Given Scalia's votes, Thomas's and 
Ginsburg's votes are independent. Furthermore,  
 

P( VT = 1 | VS = 1) = P( VG = 1 | VS = 1) = .5*(1+ ε) 
 
and  
 

P( VT = 0 | VS = 0) = P( VG = 0 | VS = 0) = .5*(1+ ε) . 
 
This fixes the probability model.  
 

                                                
2Following Lewis (1979), we take it to be the case that truth-value assignments to counterfactuals under a default 
interpretation do not permit backtracking. 
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Figure 3. The causal network with causal influence on multiple votes 
 
 
Results can be calculated following the method from Section 3.a. They are shown in Table 4. For ε 
= 0, the votes of the voters are independent and each voter’s D-measure is .5. For full positive 
correlations (ε = 1), Scalia has a D-measure of 1, whereas the other have a zero D-measure. This is 
a plausible thing to say, since, in this case, Thomas and Ginsburg lack the ability to affect the 
outcome of the vote by unilaterally casting a different vote.  
 
 

Voter  Scalia Thomas Ginsburg 

D-value 1 – .5 * (1 – ε)2 .5 * (1 – ε) .5 * (1 – ε) 

 
 

Table 4. Results for a model in which Scalia's vote causally influences both other votes. 
 
For full negative correlations (ε = –1), we obtain: DS = –1, DT = 1, DG = 1. The question thus arises 
what negative D-values mean.   
 
Negative values of the D-measure mean that a voter is able to affect the outcome of a vote, but in an 
unexpected way. If she were to switch her vote from yes to no (from no to yes), this would make a 
difference, but it is not the probability of rejection (acceptance) that is increased, as one might 
expect, but rather the probability of acceptance (rejection).3 We take it to be a strength of our 
measure that it captures the direction of the influence. If one is only interested in whether a voter is 
able to affect the outcome in any way, one can look at the absolute value of the D-measure. Thus, in 
our example, Scalia has in some way influence according to our D-measure, and this is as it should 
be. 
 
Of course, this unexpected way of influencing the outcome of a vote invites strategic voting. If a 
person were to know that she has negative influence, then she could vote strategically and vote 
against her actual preferences. Suppose that her strategy is successful. One might then want to say 
that she has positive influence – she is able to get what she wants. One can turn this into an 
objection against our D-measure, since the D-measure is maximally negative. However, this 
objection does not work. For measuring influence, what a voter wants is not relevant. Our measure 
is not about the probability that a voter is able to get what she wants. Rather, the question is to what 
extent a voter is able to influence the outcome of a vote by switching her vote.  
 
Let us now turn to the D-measure of Thomas and Ginsburg – which is 1. At first sight, this seems 
strange. The votes of Thomas and Ginsburg are fully causally determined by the vote of Scalia, but 

                                                
3 Since the D-measure is the sum of two addends, it is sufficient for a voter’s D-measure to be negative that both 

possible switches change the probability of acceptance in an unexpected way, and it is necessary that one of the 
switches changes this probability in an unexpected way. 
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still have a maximal D-value. But on second reflection this is as it should be. For our measure is 
about what voters could do, not about what they do as a matter of fact. As a matter of fact, Thomas 
and Ginsburg will always vote differently from Scalia. But what matters for our measure is that 
each of them could always switch the outcome single-handedly, if he or she were to vote 
differently. We conclude that our measure deals with the example appropriately.  
 
 
3.d  Dictator  
 
So far we have assumed simple majority voting with equal weights. Let us now change the weights 
as follows: Scalia has a block vote of three votes, whereas Thomas and Ginsburg have only one 
vote each. The Supreme Court issues a yes (no) vote if and only if there are at least three yes (no) 
votes. Thus, Scalia is a dictator, whereas Thomas and Ginsburg are dummies (cf. Def. 2.3.4 on p. 24 
in Felsenthal and Machover 1998).  
 
Whether we calculate these results under the model under which Scalia is an opinion leader 
(Section 3.a) or under the common cause model with any value of ε (Section 3.b) or under the 
model under which Scalia has influence on multiple votes with any value of ε (Section 3.c), we 
obtain the following results:   
 
 

Voter  Scalia Thomas Ginsburg 

D-value 1 0 0 

 
 

Table 5. Results for a voting rule in which Scalia is a dictator. 
 
 
These results are very plausible. Only the dictator has influence, whereas the dummies do not have 
influence.  This gives rise to the following observations:   
 
1. The D-value significantly depends on the voting rule. As we change the voting rule and keep the 

model for the voting profile fixed, the value of D changes. This is important, since, in voting 
theory, we are particularly interested in how different voting rules affect the influences of the 
voters. 

 
2. The results also show that the D-value does not suffer from a problem that affects other 

generalizations of Banzhaf voting power for probability models different from the Bernoulli 
model. One way of generalizing Banzhaf voting power starts from the observation that standard 
voting power is a linear transform of the probability of your vote coinciding with the outcome of 
the vote. One can then quantify influence as the probability of the coincidence of your vote and 
the outcome of the vote under the probability model that is adopted. As Machover (2007) argues, 
this will not work, because, in the dictator model, every dummy vote that is perfectly correlated 
with the vote of the dictator will obtain the same value of the measure as the dictator.  Our D-
value does not have this problem.  Even if Thomas blindly follows Scalia as an opinion leader or 
even if Scalia and Thomas’s political views completely overlap (model from Section 3.b with ε = 
1), D assigns non-identical values to the dictator Scalia and the dummy Thomas. Thomas will 
only have the same D-value as Scalia, if Scalia's vote is fully causally determined by Thomas's 
vote – and this again is a very plausible assignment of power.  
 

 
4. The relation to measures of (conditional) success and decisiveness and to Banzhaf 

Voting Power 
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Let us now discuss the connection between the D-measure and the framework that Laruelle and 
Valenciano (2005) have set up for measuring decisiveness and success.  
 
For calculating the D-measure for voter i, we need to know the chances of the counterfactuals Qi

0(V 
= 1| Vi = 1) and Qi

1(V = 0| Vi = 0). These quantities are not present in the framework of Laruelle and 
Valenciano.  Hence, in the general case, our D-measure does not fit this framework. However, if 
there are no causal connection between the votes, then the chances of the counterfactuals coincide 
with conditional probabilities, i.e. 
 
(4)    Qi

0(V = 1 | Vi = 1) = P (V = 1 | Vi = 1) and Qi
1(V = 0 | Vi = 0) = P (V = 0 | Vi = 0)  for all i 

 
and we can place the D-measure in the Laruelle and Valenciano framework. Furthermore, there are 
also cases in which there are causal connections between the voters in which Eq. (4) holds, e.g. in 
case all causal influence between the voters is fully mutual.4 Finally, the D-measure for a single 
voter i can be cast in the terms of Laruelle and Valenciano in case the equalities in Eq. (4) hold for 
that voter only. This is so in case voter i is an opinion leader who is not influenced by other 
people’s votes.  
 
Let us now take Eq. (4) for granted and consider the D-measure. We obtain 
 
(5)      Di =  (P(V = 1 | Vi = 1) – P(V = 1 | Vi = 0)) P (Vi = 0)  
              + (P(V = 0 |Vi = 0) – P(V = 0 | Vi = 1)) P(Vi = 1) . 
 
Following Laruelle and Valenciano (2005), p. 175, we will say that voter i is successful, if her vote 
coincides with the outcome of the collective vote – if either  (V = 1 and Vi = 1) or  (V = 0 and Vi = 
0).  So P(V = 1 | Vi = 1) is the conditional probability that i is successful given that she votes yes 
(for the only way that she can be successful given that she votes yes is if the collective vote is 
acceptance). Following Laruelle and Valenciano, we denote this conditional probability by  Ω i i+ 
(ibid., p. 178). Likewise, P(V = 0 |Vi = 0) is the conditional probability that i is successful, given 
that she votes no. We abbreviate this by  Ω i i– . Consider now the ”mixed” conditional probability 
P(V = 1 | Vi = 0).  This equals 1 –  P(V = 0 | Vi = 0) = 1 – Ω i i– . Likewise, P(V = 0 | Vi = 1) = 1 – Ω i 
i+ . Putting this all together, we obtain:  
 
 (6)                Di =  (Ω i i+ +  Ω i i–  – 1 ) ( P (Vi = 0) + P(Vi = 1) ) =  Ω i i+ +  Ω i i–  – 1  . 
 
Thus, in case Qi

0 and Qi
1 equal P the D-measure can be expressed in terms of quantities from the 

framework in Laruelle and Valenciano (2005).   
 
Let us now additionally assume that all votes are stochastically independent and that, for each voter 
i, the probability of her voting yes is .5. That is, we adopt the Bernoulli model. Given equiprobility, 
Ω i i+ +  Ω i i–  can further be simplified:  
 
(7)   Ω i i+ +  Ω i i–   = 2 (.5 Ω i i+ + .5  Ω i i–  ) = 2 (P (V = 1) Ω i i+ + P (V = 0 )  Ω i i–  ) = 

                         =  2 (P (V = 1 and Vi = 1) + P (V = 0 and Vi = 0) ) =  
                              =  2 P( i successful ) .  
 
Thus,  

                                                
4To set up a model of full mutual influence requires some background in Bayesian Networks.  To represent full mutual 
influence in Bayesian Networks we can insert v-structures between the nodes with converging arrows into child nodes 
with dummy variables that are instantiated.  Since there are no incoming arrows into the nodes representing the votes, 
there are no arrows to be erased in the construction of the counterfactual probability model and hence the probability 
model remains unaffected (cf. the Appendix for the terminology).   
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(8)                                                   Di =  2 P( i successful )  –  1.  
 

Hence, in the terminology of Laruelle and Valenciano,  Di equals twice  Ω i  (the probability of 
success) minus 1 – it is a linear transform of that quantity.  
 
But, under the full Bernoulli model, the r.h.s. of this equation equals Banzhaf voting power of voter 
i (see Felsenthal and Machover 1998, Theorem 3.2.16, p. 45). Hence, Di coincides with Banzhaf 
voting power in the special case of equiprobability and independence. This result is very pleasing; it 
tells us that our measure coincides with a standard measure of voting power in case suitable 
assumptions are made.   
  

5. Wilmers’ Example 
 
Let us now turn to a more complex example.  Suppose that we have a five person Supreme Court 
with simple majority voting and equal weights for each voter.  The 12 profiles in which at least four 
voters cast the same vote each occur with probability 1/12 – ε for 0 ≤ ε ≤ 1/12.  The 20 remaining 
profiles each occur with probability .6ε. At ε = 0, we reproduce Wilmers’ example, as specified by 
Machover et al. (2007, p. 3): All 12 profiles with 4 or 5 voters casting the same vote are 
equiprobable and all other 20 profiles occur with probability zero. Probability models with a finite ε 
correspond to generalizations of Wilmers' example. 
 
If ε is set at zero, the probability of pivotality is zero for every voter.  This shows that we cannot 
measure influence by means of the probability of pivotality, because, as Machover (2007, p. 3) 
writes, “it would be absurd to claim that every voter here is powerless, in the sense of having no 
influence over the outcome of divisions.”  So let us examine whether our D-measure yields more 
fitting values.  
 
For 0 < ε ≤ 1/12, we specify a causal interpretation that is consistent with the probability model.  
We first calculate the conditional probabilities P(VA = 1), P(VB = 1| VA = 1), P(VB = 1| VA = 0), ..., 
P(VE = 1| VA = 0, VB = 0, VC = 0, VD = 0, VE = 0).  We then impose the following causal model.  A is 
not influenced by any other voter.  B’s vote is influenced by and only by A’s vote.  B votes yes with 
probability P(VB = 1| VA = 1) if A votes yes, and with probability P(VB = 1| VA = 0) if A votes no.  C 
is influenced by both A and B’s vote and so on.  So A's vote has a causal bearing on B through E's 
votes, B's vote has a causal bearing on C through E's votes,  … and E's vote has no causal bearing.  
This is illustrated in Figure 4.  
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Figure 4. The causal relations that we assume for the generalization of Wilmers' example 
 
 
Of course there are many other causal models that are consistent with the probability model.  E.g. a 
permutation of A,…, E would also yield a causal model compatible with the probabilities.   
Furthermore, many more common cause models could be spelled out that are consistent with the 
probability model.  But we will assume that our particular causal model appropriately represents the 
influences in the real world.  
 
We calculate the D-values for this causal model following our methodology.  As an example, we 
obtain DA = 2/3 – 9.2ε.  Subsequently we calculate the limits as ε goes to 0 for all voters.  In Table 
6, we see that the D-values cascade downwards as we move from voters A to E.  This squares very 
nicely with the fact that A is an opinion leader to more voters than B, B is an opinion leader to more 
voters than C etc.   
 
 

i Limε→0Qi
0(V = 1| Vi  = 1)   

Limε→0Qi
1(V = 0| Vi = 0) 

Limε→0P(V = 0| Vi = 1) 
 Limε→0P(V = 1| Vi = 0) 

Limε→0Di 

A 5/6 1/6 4/6 
B 2/3 1/6 3/6 
C ½ 1/6 2/6 
D 5/12 1/6 3/12 
E 1/6 1/6 0 

 
Table 6. Results for the extension of Wilmers' example 

 
 
What happens when we set ε at 0 – as is the case of Wilmers' example (2007, p. 3)?  When ε = 0 we 
face a problem in calculating the D-value of voter D.  Suppose that VD = 0 in the real world.  We 
ask what the chance of acceptance would be, if D were to have voted yes, i.e. QD

0(V = 1| VD = 1).  If 
we follow the algorithm from Appendix A, we need the probability P(VE = 1| VA = 1, VB = 0, VC = 
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0, VD = 1). But this probability is undefined since P(VA = 1, VB = 0, VC = 0, VD = 1) = 0.  Hence we 
cannot calculate the QD

0(V = 1| VD = 1) for a probability model with extreme values.  For this 
reason, we stipulated a non-extreme ε-model and calculated the limiting value of the D-measure.   
 
But one might object that there are other families of models that approach Wilmers’ example in 
some limit.  For example, we could set the probability of one profile with three yes-votes and two 
no-votes at .4ε and set the probability of another such profile at .8ε. Again, we will recover 
Wilmers’ example, as we set ε at zero. However, if we take the limit ε → 0, we might obtain a 
slightly different limit for the D-measure for D. But it can be shown that for all such families of 
models, the D-values for A, B, C and E are unaffected in the limit ε → 0 and the D-value for D 
ranges from 0 to 1/3, i.e. it takes the D-values of C and E as its bounds.  
 
 
 

6. Discussion 
 
Our assessment of a voter's influence is based upon a causal model. But how do we know whether 
correlations in the votes are due to opinion leaders or to shared political views, e.g.? And if they are 
due to opinion leaders, how do we know whether Scalia is an opinion leader for Thomas or vice 
versa? The standard line in Causal Learning is that a probability model yields conditional 
independence structures that define a class of causal models. For this class, it may be possible to 
obtain bounds on the D-values of the voters.  But if we want to identify a unique causal model we 
need additional information. One may look at the temporal structure: If Thomas always casts his 
vote after Scalia, then the causal direction is clear.  Or one may appeal to experiment:  For instance, 
one could toggle Scalia’s vote and see whether Thomas follows suit.  Once a unique causal model is 
specified, we can assess the D-value of each voter.  But how this is done and whether this can be 
done is not the subject of our inquiry.   
 
 
In this paper we have only dealt with very simple causal models. It is sometimes appropriate to 
switch to models under which the causal pattern of votes depends on the issue under consideration. 
Suppose for instance that Scalia has very positive influence on the other voters for economic issues 
– the other voters are very likely to copy Scalia's vote (model from Section 3.c with ε > 0). But at 
the same time, Scalia has a negative influence on the other voters for issues of social morality – the 
other voters are very likely to vote differently from Scalia (model from Section 3.c with ε < 0). In 
such a case, it is appropriate to construct two causal models and to calculate a D-measure for each 
type of issue that one wishes to consider. 
 
Let us finally deal with an objection against the proposed measurement of voting power. One might 
object that voting theorists are interested in voting power, i.e. the power that a voter has in virtue of 
her vote. Measures of this power are supposed to be specifically about a voting rule. The objection 
is that we mix in different kinds of influence, e.g. the influence that a person has as an opinion 
leader. This objection motivates an alternative treatment of Wilmers' example: One can say that our 
intuitions regarding the example are confused, because no distinction is drawn between the extent to 
which a person can influence the outcome of the vote in virtue of her vote, and in virtue of other 
things. In virtue of her vote, nobody has voting power, and this is exactly what is captured by the 
simple suggestion to generalize the Banzhaf measure.  
 
In order to deal with this objection, we want first to point out an ambiguity. "In virtue of her vote" 
can mean (i) in virtue of her casting a vote - i.e. the real life event of casting a vote - or (ii) in virtue 
of her vote cast - i.e. the vote as it is registered in the voting profile.  Let us then deal with the 
objection under both readings.  
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On reading (i), really no objection is left. For it is perfectly conceivable that the event of my voting 
yes causally bears on how other voters vote and this causal influence should then be incorporated 
into voting power.   But our opponent could then come back and object that opinion leaders 
typically do not exercise influence through actually casting a vote, since this is in many settings 
done privately.  But nonetheless, we respond, opinion leaders express in more or less uncertain 
terms what votes they will cast and other people follow their lead.  One could have a measure of 
power that takes into account this type of influence as well.  One would not just measure the 
influence of casting a vote in this case, but rather the influence of having an intention to vote in one 
way or another. The idea is that this intention has an influence on the outcome of the vote by 
shaping one's own vote as well as by influencing the votes of others.  

On reading (ii), we could indeed say that none of the actual votes cast in Wilmers' example have 
any influence.  But it is odd to say that none of the voters have any influence.  The default 
interpretation of the influence of a voter due to her vote seems to involve some complex interaction 
of the social processes that brings about the votes as well as the actual voting rule and these two 
components cannot just be isolated. Our D-value measures the influence that a voter has in virtue of 
a decision rule and her influence on others, and this measure is a worthwhile thing to have precisely 
because it matches a very natural interpretation of political influence.     
 
 
Appendix A. The algorithm for calculating the Qi

0/1-values 
  
We will follow Balke and Pearl (1994), though our notation diverges.  Let us take Qi

0( V = 1 |Vi = 1) 
as an example. This is the probability of the counterfactual that the proposal would have been 
accepted, had i voted yes, though i votes no in the actual world.  i’ s vote is an event that is 
embedded in a causal structure.  It is caused by certain events and it causes certain effects.  Isolate 
all the non-effects of i’s vote.  If we learn that i votes no in the actual world, then this teaches us 
something about some of these non-effects of i’ s vote.  We determine a joint probability model for 
the non-effects of i’ s vote, conditional on i voting no.  Subsequently we set i’s vote at yes, as if this 
came about, in Lewis’s terms, by a miracle, that is, as if some exogenous force interfered in the 
course of nature and changed the event from voting no to voting yes (Lewis 1979). We evaluate 
how the effects of i’s vote would be affected by the probability model over the non-effects of i’s 
vote conjoint with i voting yes.         
 
Formally, for evaluating Qi

0( V = 1 | Vi = 1) we consider the actual world in which Vi = 0. Let the 
random variables C1, .., Cn be the non-effects of Vi.  The Cjs may include other votes and variables 
representing common causes. We calculate the joint probabilities P(C1 = c1, ..., Cn = cn | Vi = 0) 
where the cj s range over the possible values for Cj for each j.  For each combination of the C1 = c1, 
..., Cn = cn , we then multiply P(C1 = c1, ..., Cn = cn | Vi = 0) with P( V = 1 | C1 = c1, ..., Cn = cn , Vi = 
1). That is, we ask: What is the probability of acceptance, if  Vi = 1, but if the non-effects of Vi  are 
as they are in the actual world. By summing the products  
 
 P(C1 = c1, ..., Cn = cn | Vi = 0) × P( V  = 1  | C1 = c1, ..., Cn = cn , Vi = 1) 
 
for every possible combination C1 = c1, ..., Cn = cn, we obtain Qi

0( V  = 1  | Vi = 1). To calculate P( 
V  = 1  | C1 = c1, ..., Cn = cn , Vi = 1), we average over all the effect variables of Vi , call them E1 , ..., 
Em : 
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1...1

1

1

1

1
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In terms of Bayesian Networks, we can characterize the algorithm as follows: 
 
1. Construct a Bayesian Network with variables (1) for the votes of each voter, (2) for the common 
causes and (3) for the outcome of the vote. Insert arrows for opinion leaders as in Figure 1, for 
common cause political views as in Figure 2, and arrows from each voter into the outcome of the 
vote modelling the decision rule.  
 
2. Read off the prior probabilities P(Vi =1) and P(Vi = 0) from this network.  
 
3. Set the value of the variable for voter i at no and read off the probability of acceptance, i.e. P(V = 
1| Vi = 0). 
 
4. Determine the joint probability distribution over the non-effect variables of Vi conditional on Vi = 
0. 
 
5. Construct a node for the combination of all non-effect variables C1,..., Cn and insert this joint 
probability distribution as a new prior. 
 
6. Erase the nodes for the individual non-effect variables along with their incoming and outgoing 
arrows.   
 
7. Insert the requisite arrows from the combined non-effect variable to the effect variables of Vi, 
including the node for the outcome of the vote, and put in the concomitant conditional probability 
distributions.  Note that Vi is a root node in this new network.     
 
8. Set the value of the variable for voter i at yes in this new network.  Read off the probability of 
acceptance.  This is Qi

0(V = 1| Vi = 1). 
 
9. A similar procedure yields P(V = 0| Vi = 1) and Qi

1(V = 0|Vi = 0).    
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