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This article uses data from two experimental studies of two-person prisoner’s dilemma games [11 2]
and compares the data with the theoretic predictions calculated with the use of a quantum game
theoretical method. The experimental findings of the cooperation percentage indicate a strong
connectivity with the properties of a novel function, which depends on the payoff parameters of

the game and on the value of entanglement of the players’ strategies.

A classification scheme

depending on four quantum cooperation indicators is developed to describe cooperation in real two-
person games. The quantum indicators lead to results, which are more precise than the cooperation

predictions derived from classical game theory.

PACS numbers: 01.20.4x, 01.50.Pa, 02.50.Le, 03.67., 89.20.-a, 89.65.-s, 89.70.4-c, 89.75.Fb

INTRODUCTION

Quantum game theory (QGT)[32] has its origin in el-
ementary particle physics and quantum information the-
ory. In 1999 the first formulations of quantum game the-
ory where presented by D. A. Meyer [3] and J. Eisert
et al. [4]. Unknowing Meyers’ results on the “Penny
Flip” game, Eisert and colleagues focused on the pris-
oner’s dilemma game. Within their quantum representa-
tion they where able to demonstrate that prisoners could
escape from the dilemma, if the entanglement of the two-
person quantum wave function lies above a certain value.
In 2001 J. Du et al. [5] realized the first simulation of
a quantum game on their nuclear magnetic resonance
quantum computer. Later, in 2007 A. Zeilinger et al.
accomplished a quantum game on a one-way quantum
computer [6]. The application of quantum game the-
ory to an existing social system, namely the publication
network of scientists, was presented in M. Hanauske et
al. [7]. The authors showed, that quantum game theory
could give a possible explanation of the differing pub-
lishing methods of scientific communities. A validation
of quantum game theoretical concepts by using experi-
mental data of real two-person games was addressed in
K.-Y. Chen and T. Hogg [8] (see also [9]). In contrast to
the experimental data used in the present article, the au-
thors of [8] used an experimental design, which includes
a quantum version of the game. Our understanding of an
inclusion of quantum strategies in the players’ decisions
is different, insofar as we interpret the whole process of
a real game as a quantum game.

In this paper, on the one hand, we develop cooperation
indicators derived from a quantum game theoretical ap-
proach, and on the other hand we address the following

research question: Compared to cooperation indicators
based on classical game theory, how precise do "quan-
tum” indicators predict the outcome of real person game
experiments.

Based on Eisert’s two-player quantum protocol [4] and
the concept of quantum Nash equilibria, four quantum
cooperation indicators are defined. By using these indi-
cators to predict the cooperation rates of real two-person
games it will be shown that the quantum indicators lead
to results, which are at least as good as the cooperation
predictions derived from classical game theory.

The present article is structured as follows: After pre-
senting the main mathematical formulations used within
the quantum game theoretical approach the ”quantum”
cooperation indicators are defined, visualized and com-
pared with the classical indicators. Afterwards we ad-
dress our research question and present the experimen-
tal validation of the cooperation predictions derived from
quantum game theory. The paper ends with a short sum-
mary of the main findings.

MATHEMATICS OF QGT

The normal-form representation of a two-player game
T, where each player (Player 1 = A, Player 2 = B) can
choose between two strategies (S4 = {s{',s5'}, SP =
{sP,s8}) is the classical grounding of the two-player
quantum game focused on in this article. In our case
the two strategies represent the players’ choice between
cooperating (not confess, C) or defecting (confess, D) in
a prisoner’s dilemma game. The whole strategy space
S is composed with use of a Cartesian product of the
individual strategies of the two players:



S=8"x8" = {(070)7 (CvD)a (D7C)ﬂ (DvD)} . (1)

The payoff structure of a prisoner’s dilemma game can
be described by the following matrix:

A\Bl ¢ D
C|(c,c) (a,b)
D|(b,a) (d,d)

TABLE I: General prisoner’s dilemma payoff matrix.

The parameters a, b, ¢, and d should satisfy the fol-

lowing inequations [1I, [10]
b>c>d>a, 2c>a+0b . (2)

In quantum game theory, the measurable classical
strategies (C and D) correspond to the orthonormal unit
basis vectors |C) and | D) of the two dimensional complex
space C2, the so called Hilbert space H; of the player 4
(i = A, B). A quantum strategy of a player i is rep-
resented as a general unit vector |+), in his strategic
Hilbert space H;. The whole quantum strategy space
‘H is constructed with the use of the direct tensor prod-
uct of the individual Hilbert spaces: H := Ha®Hp. The
main difference between classical and quantum game the-
ory is that in the Hilbert space H correlations between
the players’ individual quantum strategies are allowed,
if the two quantum strategies |¢) , and |¢) 5 are entan-
gled. The overall state of the system we are looking at
is described as a two-player quantum state |¥) € H.
We define the four basis vectors of the Hilbert space
H as the classical game outcomes (|CC) := (1,0,0,0),
|CD) := (0,-1,0,0), |DC) := (0,0,—1,0) and |DD) :=
(0,0,0,1)).

The setup of the quantum game begins with the choice
of the initial state |¥(). We assume that both players are
in the state |C). The initial state of the two players is
given by

cos (%)

W) = J|CC) = : (3)

7 sin (%)

where the unitary operator J (see equation [8)) is respon-
sible for the possible entanglement of the two-player sys-
tem. The players’ quantum decision (quantum strategy)
is formulated with the use of a two parameter set of uni-

tary 2 X 2 matrices:

g) sin(g)
) e ¥ cos(%) > @
vV 0€[0,7] A pel0,%]

By arranging the parameters § and ¢, a player chooses
his quantum strategy. The classical strategy C is selected
by appointing § =0 and ¢ =0 :

5:2](0,0)2((1)?) , (5)

whereas the strategy D is selected by choosing § = 7 and
p=0:

ﬁ:amm:<ié>. (6)

In addition, the quantum strategy Qis given by

Q= U(0,7/2) = (é _Oz> : (7)

After the two players have chosen their individual
quantum strategies (Z]A = L?(HA,gpA) and Up =
U(05,¢5)) the disentangling operator J' is acting to
prepare the measurement of the players’ state. The en-
tangling and disentangling operator (7, J'; with J =
J ) is depending on one additional single parameter -y
which measures the strength of the entanglement of the

system:

I (8)

o

The entangling operator 7 in the used representation has
the following explicit structure:

cos (%) 0 0 isin ()
R 0 coS (%) —isin (%) 0
J = 9)
0 —isin (%) cOS (%) 0
isin (%) 0 0 cos (%)

Finally, the state prior to detection can therefore be
formulated as follows:

wy) =1 U etis) T CC) (10)

The expected payoff within a quantum version of a gen-
eral two-player game, depends on the payoff matrix (see
Table|l)) and on the joint probability to observe the four



observable outcomes Poc, Pop, Ppc and Ppp of the
game:

$4 =cPoc+aPcp+bPpc+dPpp

$p = CPCC erPCD JraPDC +dPDD
with: Pyy = [ (00’ |Uf) >, 0,00 = {C,D}

(11)

It should be pointed out here, that an entangled two-
player quantum state does not mean at all that the per-
sons themselves (or even the players’ brains) are entan-
gled. The process of quantum decoherence, with its quan-
tum to classical transition, forbid such macroscopic en-
tangled systems established from microscopic quantum
particles [I1), 12]. However, peoples’ cogitations, repre-
sented as quantum strategies, could be associated within
an abstract space. Although no measurable accord is
present between the players’ strategy choices, the imag-
inary parts of their strategy wave functions might inter-
act, if their individual states are entangled. This quan-
tum phenomenon might possibly be interpreted as the
ability of a player to empathize into the other players
thinking lanes, which may be originated from similar his-
torical or cultural background. Players with strongly en-
tangled strategies appear to act more like a collective
state.

QUANTUM COOPERATION INDICATORS

Dominant quantum strategies and quantum Nash
equilibria are formulated as follows:

(0%, ¢%; 0%, v%) is a dominant quantum strategy, if
A Z:{\A AN Z:l\B
A Z;[\A A\ Z:[\B

(Z:{\Aaz:{\B)
(uAauB)

Sa(UA.Up)

> (12)
$p(Ua,Up) >

$4
$p
(0%, ©%; 0%, ¢F) is a quantum Nash equilibrium, if
Y Ua
v Up

(Ua,Up)

$A(Z/AIZ,LA{§) $4
$p(Us,Us)

$5 (UL, UL)

> (13)
>

We define the novel function A4 of player A in a two-
player quantum game by

Na(v) = (14)
T % . R
|7 Na(@y @pibaea ) dbadon -
04=0 Jp4=0
T % =N =N
/ NA(DLDE@ANPA»’Y) doA dQOA 5
04=0Jpa=0
where the functions Na(Q%,Q%,04,04,7) and
Na(D3,Dp,04,04,7) are given by
NaU5, U, 04, 04,7) = (15)

Na@U, U, U, ) = $aUs, Uk, y) — $ala, Ug, )

A rather lengthy calculation gives the following analytic
result for the function N'(y) := Na(y) = Np(7) of a two-
player quantum game with a prisoner’s dilemma payoff
matrix:

7T2

16 [(143cos(2y))(a—b) +
(5 —cos(2v)) (¢ — d)]

For a separable game equation [L6|reduces to N'(y = 0) =

o

N(y) =
(16)

Tg(a —b+c—d). Restricting to games with a prisoner’s
dilemma game structure (see conditions [2) leads always
to a negative value of N'(y = 0), which means that the
classical limit of a quantum prisoner’s dilemma game al-
ways yield to the classical Nash equilibrium of defection
(strategy D). In the next but one section we will show
the functions N () for all games used in [I] (Fig. [3) and
2] (Fig. [4).

An integration of N'(7) from 7 =0 to v = 5 leads to a
function AV, that depends solely on the payoff parameters
(a, b, ¢, d).

./\/::/E N('y)d’y:ﬁ[aberE\(cfd)} (17)

—0 32

In the following, N will be used as the main coopera-

tion indicator.[33] It is easy to show that the null of N'(v)

is given by a specific threshold value 7, of the entangle-
ment:

1= {rel0. 5] M) =0}
O g - %arccos (g(af;)r)s_(cc+dc)l> .(18)

In addition to A and -, two other cooperation in-
dicators are defined: = is defined as the entanglement
barrier, for which the classical Nash equilibrium |DD)
dissolves, and 75 is defined as the barrier where the new
quantum Nash equilibrium |QQ) appears (for a detailed
discussion of vy, and v see [4, [7]).

To visualize the quantum game theoretical foun-
dations of our Ansatz and to illustrate the function
N4 (see equation the two integration components
Na(9Q%,Q%,04,p4,7) and Na(D*,D%,04,04,7) are
displayed in Fig. [I] for six different y-values. The grey
surface depicts Na(D%,Dj,04,¢4,7) as a function of
the decision angles 04 and ¢4, whereas the wired white
surface specifies N (Q%, 9%, 04, ¢4,7). In all of the pre-
sented illustrations the payoff structure of game 1 of [I]
was used (a = 70, b = 100, ¢ = 90 and d = 80). The left
picture at the top of Fig. [1|illustrates the separable situ-
ation, where no entanglement is present (v = 0). For all
possible decision angles the grey surface lies above zero,
which means that the strategy D is a quantum Nash equi-
librium (see equation [15] and definition [I3). The white
surface lies in contrast always below the zero value, which
reveals the futileness of the quantum strategy Q within
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FIG. 1: Visualization of the surfaces /\/A(@},7 @g,@m VA7)
(wired white) and /\/A(ﬁ;,, D%, 04, ©4,7) (grey) as a function
of the decision angles 04 and @4 for six different values of
entanglement (vy-values). The figures were calculated using
the payoff parameters of game 1 of [I] (a=70, b=100, ¢=90
and d=80).

the separable game. To calculate Na(7), the whole in-
tegration area of the grey surface is subtracted from the
integration area of the white surface, which is anyway
negative. For v = 0, N4 becomes therefore highly neg-
ative (Ma(y = 0) = —50). The right picture at the top
of Fig. [1] shows the resulting surfaces, in the case where
the value of entanglement is low (v = 3% ~ 0.471). Due
to the increase of entanglement both surfaces have con-
verged, but from a qualitative viewpoint the resulting
situation has not changed. The grey surface is still above
the white surface and in addition, always above zero,
which means that defection is still the only Nash equi-
librium of the game. The left and right picture in the
middle region of Fig. [1| shows the resulting surfaces for
a further increase of entanglement (left: v = £ ~ 0.628

and right: v = Z ~ 0.785). For v = T the white sur-

jus
4 5

face lies always above zero, whereas the grey one is for
a part of the surface somewhat below zero, which means
that the old Nash equilibrium D has disappeared and
the new Nash equilibrium Q has become present. The
used y-value (y =~ 0.628) lies above the cooperation in-
dicators 1 and 9, which are for this game both equal
(1 = 72 = 0.615). The integral Na(y = %) is still
sparsely negative, whereas the integral Ny (y = 7) is pos-
itive. The left and right pictures in the lower region of
Fig. [1) depict the situation where a strong entanglement
is present. For the completely entangled game (right pic-
ture) the white surface lies always above the grey one
and the integral Ns(y = %) reaches the largest value.

Figure [I| on the one hand visualizes the structure of
game 1 of [I] within a quantum extension of the game and
on the other hand it illustrates the integration procedure
introduced in equation The shape and the location
of the surfaces is important for understanding the prop-
erties of a given game and we will present and discuss
the other games of [I, 2] in a detailed report [13]. The
introduced way of integration when defining the function
Na(7) is only one possibility of constructing a coopera-
tion indicator for games with a symmetric payoff matrix.
The definition of a more general function A4(y), which
could in addition be used to describe asymmetric games
is remaining in employment [I3]. Beside the concern of
the present article to describe the extent of cooperation in
real two-person games the authors think, that the quan-
tum game theoretical method is by all means a valuable
tool and new way of understanding the structure of a
specific game.

CLASSICAL VS. QUANTUM COOPERATION
INDICATORS

The mathematical description of quantum game the-
ory presented in the previous section is merely a simple
one shot quantum game. In contrast, the experiments in
[1, 2] are repeated versions of a prisoner’s dilemma game.
Within such repeated, extensive games the whole strat-
egy sets should be used to describe the game’s structure.
Within this, primarily examination we neglect such dif-
ferences by using only the period averaged value of the
cooperation percentage C, of the experiments [I}, 2]. The
mathematical formulations of a time dependent quantum
game theory describing the dynamics of a population of
players is to be working on. In the limit of a separa-
ble game such time dependent equations should fade to
evolutionary game theoretical concepts and replicator dy-
namics [14, 15, 16, 17, [I8].

The evolution of cooperation in repeated games de-
pends on the payoff parameters of the game and the con-
tinuation probability §.[34] Even though the theory of
infinitely repeated games has been used to explain coop-
eration in a variety of environments it does not provide



sharp predictions since there may be a multiplicity of
equilibria [2].

In the classical theory of infinitely repeated games the
standard lower bound on discount factors () below which
no player can ever cooperate on an equilibrium path of
I'(6) depends simply on the payoff parameters b, c and d
10, 19]:

b—c
8:= b—d

Cooperation can be achieved by some equilibrium if
and only if the continuation probability § is above or
equal to the lower bound § (6 > ). On the other hand,
it is possible to show, that cooperation can be achieved
7easily” by a "tit-for-tat” strategy if and only if § > Z:fl
[10].

Blonski et al. have defined a new bound on the dis-
count factors (6*), which includes the ”sucker’s payoff”
(parameter "a” of the payoff matrix (see Table [I))

b—a—c+d
b—a
The authors of [I] show in their article, that this indi-

cator is able to predict the cooperation percentage much
better than the standard indicator §.

(19)

0 = (20)

FIG. 2: 6" (dashed line, see [I]) and ~. (solid curve) as a
function of the payoff parameter c.

It is remarkable, that -, and §* are for a wide range of
possible payoff parameters quite similar. Figure [2] illus-
trates the similarities of the functions ~y, (solid curve) and
d* (dashed line) by varying the parameter ¢ while keeping
the other payoff parameters fixed as in the experimental
settings of Dal Bé et. al. [2] (a =12,b = 50,d = 25).

EXPERIMENTAL VALIDATION

Different variations on the prisoner’s dilemma game
have been the subject of an enormous experimental in-

terest since the 1950 experiment of Dresher and Flood
[10} 20]. Most of the studies have focused on the finitely
repeated prisoner’s dilemma game [10]. In order to ver-
ify the theoretical predictions coming from a quantum
game theoretical description it is useful to have data of
three or more different payoff parameter settings in one
experiment. Unfortunately [21, 22] 23] have only used
less than three different payoffs in their studies. An-
other basic condition is the postulation that an entangle-
ment of strategic choices consists only, if two persons play
the game. The outstanding experiments accomplished
by Roth and Murnighan [19, 24] had used an experi-
mental setting where a player played against a computer
program. [35] Other newer experimental studies have used
additional game rules [25] or have analyzed all kinds of
asymmetric games in their studies [26].

The experimental designs adopted in the studies [IJ, 2]
are quite similar. Both experiments have used more than
two payoff settings and were played by two real persons.
Figure [3| shows the function AN(v) for the six different
games used within the experiment [I]. For game 3 and
4 the functions N () are not distinguishable from each
other, because N () depends only on the difference of
the payoff parameters a and b (see equation .

In the following we will briefly describe the design used
in [I]. In each session a group of 20 undergraduate stu-
dents have participated in the experiment, where they
where able to win between 15 to 25 Euro. Ten couples
where randomly matched at the beginning of a so called
”stage game”, whereupon the players could not meet the

Game 6
300 = Game 5
. Game 3
N(Y) 200 e and 4
¢ e __— Game?2

4 2 Game 1

-100

FIG. 3: N (v) for the six different games used in the experi-
ment [I]. The quantum cooperation indicator v, is the null
of the respective functions, whereas N is calculated through
the integral from v =0 to v = 7.
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FIG. 4: N () for the three different games used in the exper-
iment [2].

other one since their decisions where anonymously trans-
mitted by computers. A stage game consisted of a given
payoff matrix and a continuation probability 4. Six dif-
ferent payoff matrices (see Table and three different
continuation probabilities (6 = 0.5,0.75,0.875) had been
specified. During a stage game the continuation proba-
bility § and the corresponding opponent did not change.
Before every new round the computer picked randomly
a probability ¢ from a uniform distribution (8" € [0, 1])
and the game was only continued if § <. Every round
consisted of a finite decision phase and an information
phase that informed the players about the decision of
their opponent and about the achieved payoff. The whole
experiment lasted two to three hours.

The design of experiment [2] has only some minor mod-
ifications. For instance, the size of the groups of under-

graduate students varied between 12 to 20 subjects, there
were only two continuation probabilities (§ = 0.5,0.75)
and three different payoff matrices (see Table taken
and the achieved payoffs varied between 16 to 43 Dollars.
Figure [4| shows the function A () for the three different
games used within the experiment [2].

Quantum theoretical results of the games used in [I 2]
and their experimental data is summarized in Table [[]
and partly visualized in Figure[5] The experimental data
is based on the percentage of cooperating persons in all
rounds. [36] In the sixth column of Table [lI| the experi-
mental findings of the percentage of cooperating persons
(Cp) of Blonski et al. [I] and Dal Bé. et al. [2] are
denoted, whereas in the seventh column the cooperation
rank of the games is quoted. The last rank in experi-
ment [I] for example was found for game 2 (C}, = 2.8%),
whereas the lowest cooperation rank was achieved in
game 6 (C), = 37.6%). The next two subsequent columns
in Table [[T] present the lower bounds on the discount fac-
tors coming from standard (4) and extended (§*) clas-
sical game theory. The last four columns sum up the
specified cooperation indicators calculated with the use
of quantum game theory. A is considered as the most
important indicator. Only if N is equal for two games,
the indicator v, should be used to classify the coopera-
tion rank. In the games 3 and 4 of [1] neither A nor ~,
provide distinguishable values. In such a case one can
use 71 and 7. to classify the cooperation rank, where
1 is expected to be more important than . because
in real two-person games decisions depend firstly on the
real strategy choices and only secondly on their imag-
inary parts. In game 3 the classical Nash equilibrium
|DD) disappears at 3 = 0.685, whereas in game 4 it
vanishes at 7; = 0.991, which means that one expects to
have more cooperating persons within game 3.

Figure 5] depicts the percentage of cooperating per-
sons in both experiments as a function of N. The dia-
gram clearly shows, that an increase of cooperation comes
along with an increase of NV.

TABLE II: Quantum theoretical results and experimental data of Blon-

ski et.al. [I] and Dal Bé et al. [2].

Experimental data of Blonski et. al. [I] and quantum theoretical results
Game No.[a |[b [c [d Cp |Rank|d o* Yo " Y N

1 70 [100{90 |80 [21.4 %| 3 [0.5 [0.667{0.615 |0.615 |0.685 |19.38

2 0 [100{90 |80 [2.8 % | 6 [0.5 [0.9 0.322 {1.107 |0.866 |-48.45

3 30 [130(90 |70 [15.4 %| 4 [0.667|0.8 0.685 |0.685 |0.785 |0

4 0 [100(90 |70 [13.4 %| 5 [0.333]0.8 0.3220.991 |0.785 |0

5 0 [120{90 |50 [37.0 %| 2 [0.429|0.667 ||0.524 |0.702 |0.685 |77.52

6 0 [140(90 |30 [37.6 %| 1 [0.625]0.786 (0.641 |0.481 |0.615 |155.03

Experimental data of Dal B6 et. al. [2] and quantum theoretical result
Game No.[a [b [c [d C, |Rank|é &* Yo v Vi N

1 12 |50 [32 [25 | 7.6 % | 3 [0.72 [0.816 [[0.759 [0.625 [0.798 |{-2.91

2 12 |50 {40 (25 [22.1 %| 2 [0.4 ]0.605 |[0.539 {0.625 [0.640 |35.85

3 12 |50 |48 (25 |28.7 %| 1 [0.08 [0.395 [[0.231 [0.625 [0.487 |74.61
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FIG. 5: Percentage of cooperating players (Cp) in experiment
[ (circles) and [2] (boxes) as a function of N.

It should be mentioned that the comparison of two dif-
ferent experiments is difficult, because besides the fixed
payoff parameters and the abruption rate ¢ other exper-
imental details could influence the persons’ cooperation
behavior. For instance the distribution of the persons
strategic entanglement may depend on cultural charac-
teristics or maybe influenced by the experimental design.
The information communicated by the experimenter him-
self could subliminally or even consciously influence the
entanglement distribution of the whole group. Fig.
indicates a small difference between the mean of the per-
sons’ entanglement in both experiments, because the co-
operation percentage in [I] is always somewhat above ex-
periment [2].

An increase (decrease) of ¢ influences the distribution
of the players’ entanglement, which results in an increase
(decrease) of C). The strong correlation between A and
C,, for the specific games remains [13].

Our work does not contradict the results of [8], but we
presume, that by implementing a specific quantum ver-
sion of the prisoner’s dilemma game, the experimenters
have increased the strength of entanglement of the play-
ers’ strategic decisions (and as a result the cooperation
percentage C,).

SUMMARY

This article shows that a quantum extension of classi-
cal game theory is able to describe the experimental find-
ings of two-person prisoner’s dilemma games. A classifi-
cation scheme was introduced to evaluate the cooperation
hierarchy of prisoner’s dilemma games. Four cooperation
indicators where defined to predict the cooperation be-
havior. This quantum game theoretical approach was
compared with predictions based on classical game the-

ory and tested for two experimental settings. To answer
our research question, we conclude that compared to co-
operation indicators based on classical game theory the
defined ” quantum” indicators predict the outcome of real
person game experiments very good.
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