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Abstract

Public announcement logic (PAL) is a paradigm case of dynamic epis-
temic logic, which models how agents’ epistemic states change when pieces
of information are communicated publicly. PAL extends epistemic logic
with the operator [A], where the intended reading of [A]¢ is “After a pub-
lic announcement that A, ¢ holds.” This logic has recently received two
improvements. One improvement, studied in [1], is to extend PAL with a
generalized public announcement operator that allows quantification over
public announcements. The other, studied in [5, 6], is a semantic setting
to model “announcement protocols” to restrict the announcable sequences
of formulas, while whatever is true is assumed to be announcable in PAL
itself. The purpose of the present paper is to merge these two kinds of im-
provements. We consider the extension of public announcement logic with
the generalized public announcement operator in the semantic setting of
restricted announcement protocols.

1 Introduction

Dynamic epistemic logic models agents’ epistemic shifts through informational
updates. One paradigm is public announcement logic (PAL) (see e.g. [16, 12,
8]), which extends epistemic logic with the operator [A] (for every formula A),
where the intended reading of [A]¢ is “After the public announcement that A, ¢
holds.” The semantics of the operator is given, in a usual framework of epistemic
logic, by:

M, w = [A]¢ iff M,w = A implies M|a,w = ¢,

where M| 4 is the model obtained by restricting M to the set of points at which
A is true. As such, the PAL-operator [A] can capture the informational events
beyond public announcements that eliminate the epistemic possibility of non-A,
and can model a variety of notions such as “after learning A,” “after observing
A" etc. Thus, the logical setting of PAL finds a wide range of applications and
highlights various aspects of knowledge and communication.

Upon the original framework of PAL, two improvements have been recently
given. One concerns the quantification over public announcements or whatever



events PAL captures. There seems to be various epistemic concepts that, im-
plicitly or explicitly, involves such quantification, and it is very useful to have
an operator that does the quantification to model those concepts. A prime ex-
ample is the notion of knowability, about which the well-known Fitch’s paradox
([10])—i.e. if there is an unknown truth that p, then it is unknowable that p is an
unknown truth—has drawn a wide attention in the field of epistemology. When
we introduce the operator ¢ in the PAL-setting, where the intended reading of
and Q¢ is “There is some public announcement after which ¢ holds,” the formula
OK¢ would mean “¢ is knowable.” The extension of PAL with this general-
ized PAL-operator is called aribitrary public announcement logic (APAL) and
studied in [1].

However, the original PAL-setting is still very much limited to model such
interesting concepts in more realistic situations. For example, let us observe
the following modelling problem concerning APAL. Take a case of the Muddy
Children puzzle (MC) (see e.g. [9]) with three children 1, 2, 3. Let all 1, 2, and
3 be dirty. Let us put d; as “i is dirty” for i = 1,2, 3. First, it is a routine task to
encode into an epistemic model all the epistemic situations of the children at the
start (i.e. every child knows whether every other child is dirty, but not whether
he himself is.). The children’s answers at each round of father’s question (“Does
anybody know if he is dirty?”) as well as the father’s initial announcement
(“At least one of you is dirty”) are also interpretable by the PAL-operators as
the events that eliminate certain epistemic possibilities. Then, consider, say,
the question whether the dirty child 1 can know in the first question round
that he is dirty. One might first try to capture this question by approximating
it by <\/?:1 d;)0K1dy in the APAL-setting (The first announcement operator
corresponds to the father’s initial announcement.). However, this sentence does
not reflect the correct solution of MC. For we know by the solution that, until
the second round finishes, 1 cannot know that he is dirty, while the APAL-
formula will be true given that we would have, for instance, (dy)K;d; true. This
problem is due to the fact that, whereas whatever is true is announcable in the
original PAL-setting, saying publicly that d; is not allowed in the conversational
constraints of MC.

Here, the other recent improvement on the original PA L-setting would give
us a hand. The improvement challenges the above assumption of PAL (or the
assumption of dynamic epistemic logic in general) that an informational event
can take place whenever its precondition is satisfied. This assumption is evi-
dent in the above truth definition for the PAL-operator, since the only factor
concerning A’s announcability is its truth in the model. However, this seems
too idealistic, since there are often various constraints, beyond the truth of pre-
conditions, concerning whether a given informational event can happen, as we
observed in the above MC example. These considerations motivate a semantic
setting that models “PAL-protocols” to restrict the announcable sequences of
formulas. This can be done by merging the PAL-setting with epistemic tempo-
ral logic (e.g. [9, 15]). In [5, 6], the logic of the PAL-operators with the kind
of semantic setting, called TPAL, has been studied.

Having the development of TPAL, we seek the system that extends TPAL



with the generalized PAL-operator. For the problem about the lack of con-
straints on the availability of informational events beyond truth is much more
evident when the system is with the generalized PAL-operator, as we observed
in the above MC example, than when we restrict ourselves only to the spe-
cific announcements by the usual PAL-operators. (In the latter case, we are
supposed to have specific announcements of interest in our subject of study,
about which we would like to analyze what the effects are, and it is enough
if we carefully do not put the statements that are not available in the situa-
tion.) Therefore, the purpose of the present paper is to consider the generalized
PAL-operator in the TPAL setting.

We proceed as follows. In Section 2, we will start out by reviewing PAL
and TPAL as in [6]. In Section 3, we will introduce the two generalized PAL-
operators ¢ and ¢* to make a distinction between single announcements and
sequences of announcements, which is necessary in the 7T'P A L-setting. We then
see their semantic properties. In Section 4, we axiomatize the logics with ¢
and ¢*. The soundness and completeness proofs will be given in a Henkin-style
argument. In Section 5, we present on a wider perspective given by product
update with event models to conclude the paper.

2 TPAL with Relativized PAL-Protocols
2.1 PAL

Let us start out by reviewing the system of PAL. Fix N as a finite set of agents
and P, as a countable set of propositional letters.

Definition 2.1 (Language). The language Lpar of PAL is inductively defined
as follows:

¢ =p|T[=¢[oN¢]|Kig|[]d

where p € P and i € N. Also the language L.; of multi-agent epistemic logic is
the fragment of Lp 4 without [¢]¢.

The intended readings of K;¢ and [1)]¢ are respectively “an agent i knows
that ¢” and “after the public announcement that ¢, ¢.” The duals of K, and
[¢] are denoted by (i) and (¢), where the intended readings of (i)¢ and ()¢ are
“an agent ¢ considers ¢ possible” and “the public announcement that ) can be
made after which ¢.” The other boolean connectives are defined in a familiar
way.

Definition 2.2 (Truth). Let M be an epistemic model (W, (~;);en, V), where
W is a nonempty set, ~;, an equivalence relation on W, and V : P — p(W),
a valuation function on P. Let w € W. The truth of ¢ € Lpay at w in M is
inductively defined as follows:



M,wkE=p ifft weV(p) (withpeP)

Mw | —¢ it M,w ¢

MuwkEoAyY it MiwE¢and M,wE
MwEKq¢ iff VweW:iw~w =>Muw EoQ

where M|y = (W4, (~i |¢)ien, V) is defined as:

Wi = {v|MvE e}
~ile = o~ NWe x Wy
Vig(p) = Vi(p)nWl.

Definition 2.3 (Axiomatization). The axiomatization of PAL extends that of
multi-agent epistemic logic with the necessitation rule for PAL-operators [A],
and the following reduction axioms:

(A)p —~ AAp (withpe P)
W6 o An-(A)
AGVE) o (AgV (AW
(AYK ;¢ — ANK;(A— (A)9)

It is easy to check the soundness of these axioms and the rule. Also, notice
that, with the reduction axioms, every formula of Lp 45, reduce to an equivalent
formula of L.;. Thus, given the completeness of epistemic logic, we have the
following:

Theorem 2.4 (In e.g. [4] ). The axiomatization of PAL is complete.

2.2 TPAL

Now as we mentioned in the introduction, PAL presupposes that whatever is
true is announcable. This is already evident in the truth definition for the
PAL-operator. The statement "The public announcement A can be made after
which ¢” is true iff A is true and ¢ is true in the model without non-A-worlds.
Thus, the condition for the announcability is only the truth of what is to be
announced. We can also see this assumption at work in the right hand side of
the reduction axioms (except for disjunction). There, we see the occurrences of
A’s as one of the conjuncts.

To overcome this unrealistic feature of the system, we model constraints on
the set of “permissible” sequences of announcements by incorporating into the
DFEL-setting of PAL the framework of epistemic temporal logic (ETL), which
is another trend of modelling agents’ epistemic states over informational updates
that has been developed (see e.g. |9, 15]). Here we present the semantic setting
in [6].

Definition 2.5 (Language). The language Lrpar of TPAL extends L.; with
the operator (A) where A € L,;. Let P be the set of propositional letters. The



formulas are defined by:

¢ =T[p[-¢[oN¢|Kig|(A)o

where p € P and A € L. The dual operator [A] is defined by —(A)-. The
other booleans and duals are defined in the usual way.

For the semantic setting of TP AL, we first give some preliminary definitions.
Given a set X*, we define ¥* as the set of (possibly empty) finite sequences
of the elements in ¥. We denote the empty sequence by A. For a sequence
o= P1¢p2...05 € B* (when n = 0, o is empty), we define the length len(c) of o
to be n, and o, by oy, = A (empty sequence) if m = 0; o, = ¢1...¢0,, Otherwise.
For a pair of sequences o, 7, we put o < 7 if ¢ is an initial segment of 7. Also
we write o7 for the concatenation of the two sequences. For an S C ¥*, we
define FinPre;_y(S) ={h|3h € S:h < h" and h # A}.

Let Ptcl((Lea)*) = {€]€ = FinPre;_y(A) for some A C (L¢)*}. Given an
epistemic model M, a PAL-protocol on M is a function that maps every point
in M to some element in Ptcl((Le)*). Given a point w, f(w) represents the
sequences of permissble announcements at w.

Definition 2.6. Let M = (W, ~;,V) be an epistemic model and f, a PAL-
protocol on M. Given a sequence ¢ = ¢1...¢, (n > 1), a model M?f =
(Wt ~of Vo) is defined by:

o WOl =W,

o Womttf .= Lo, 1|lw € W AMT™F wo, E ¢mit Aomir € flw)}

Om+1,f

e For each wo,,11,v0m+1 € W"’"“’f, WOmy1 ~; VOmt1 & W~y V.

e For each prop. letter p, Vom+t:f (p) = {wo, 1 € WO+l |w € V(p)}.

Now for the semantic setting of T'PAL-formulas, we generate ET L-models
from epistemic models and PAL-protocols in the following way.

Definition 2.7 (DEL-Generated ETL-Models). Given an epistemic model M
and a PAL-protocol f on M, the ETL-model Forest(M, ) = (H,=;,U) is
generated as follows:

o H: {h|h € W for some o € J, ey f(w)}.

o ~;: forall h,h/ € H, h~; & h NZ’f h', where h = wo and b/ = vo for
some 0 € Ly -

e U: for every prop. letter p, h € U(p) & h € V¥ (p), where h = wo for
some 0 € L 45,

We call histories the elements in H. We define Forest(PAL) as the set of all
ET L-models generated from epistemic models and PAL-protocols.



Definition 2.8 (Truth). Given an ET L-model H = (H, ~;, V') generated from
some epistemic model and PAL-protocol, and a history h € H, the truth at h
of a T'PAL-formula is inductively defined as follows:

H,hl=p ifft heV(p) (withpe P)
Hhl=—¢  iff H,h

H.hE oAy iff H,hl=¢and H,h o
Hhl= Ky iff YW eH:h~h' = H,h = ¢
H,h = (W)yp iff hyp € H and H,hy) = ¢

Consistency, satisfiability, validity etc. are defined in a familiar way.

Example 2.9. To see how the semantics of TP AL works, let us see one simple
example. Let M consists of two worlds, w, v, indistinguishable and the valuation
that makes p,r true at both worlds but that makes ¢ true only at w. Also let
a PAL-protocol f be such that f(w) = {p,pqg,r} and f(v) = {p,pq}. The
generated ETL-model Forest(M, f) will be visualized as follows:

wpq

f

wp ——up
T e T
w — v
p,q,T p,—q,T
{p,pq,r} {p, pq}

where the horizontal lines represent the indistinguishability relation and the ar-
rows represent the available announcements at each histories. In this model
H = Forest(M,f), we, for instance, have H,w = (r)Kp, since we have
H,wr = p and thus H, wr = Kp.

Example 2.10. We can encode into a PAL-protocol the conversational con-
straints in the above MC case in the following way. In MC, the father first
utters the initial announcement and then the children answers at every round
whether they know they are dirty. There must not be other conversational
events in MC. Define (¢)* and ¢~ respectively as ¢ and —¢. Let S be the set
of triples where each element is either + or —. Given an s = (s1,s2,53) € S,
put Ag := /\‘;’ZO(Kl-di)si. Then define a PAL-protocol fyc as

3
f(w) = FinPre(_x;({(\/ di)As,...Aqs, |07 € S for all i})
=1

for every w in the epistemic model. \/f’:1 d; represents the father’s initial an-
nouncement and the following statements A,,, the children’s answers.

Next we see some semantic features of TPAL to refer to later when we
introduce the generalized PAL-operators. First, TP AL-formulas only describe
the “future” states in the tree models up to its depth.



Definition 2.11 (¢-depth). The t-depth d(¢) of a TAPAL formula ¢ is defined
as follows:

[ ]
=
=
&

|
&
&

o d((4)6) =1+ d(6)

Given a protocol f on M and a sequence o € (L;)*, we define a protocol
fZ< on M/ so that ff<(wo) = {rlor € f(w) and len(r) < k} for all wo
in M?7f. This represents which sequences of formulas with length % or less
are announcable after o. Also, we define f7<(wco) = {7|oT € f(w)} when not
stating the upper bound on the length.

Propositoin 2.12 (In [6]. ). For all w in M and o € (L)%,
Forest(M, f),wo = ¢ iff Forest(M®f, f;’@))7wa Eo.

Also,
Forest(M, f),wo |= ¢ iff Forest(M?7, f7<) wo = ¢.

Second, we see that the truth of TP AL-formulas depends only on the se-
quences of announcements that are relevant to them. Let sub®(¢) be the set of
subformulas of ¢ that are in L. Given a value f(w), define (f(w))supa(p) Dy
the set

{o € f(w)|For every element 6 in o, 0 € sub®(¢)}.

This set represents permissible sequences of announcements at w that only con-
sist of subformulas of ¢.

Propositoin 2.13 (In [6] ). Let (f(v))suba(s) = (9(v))suba(p) for all v in M.
For all w in M,

Forest(M, f),w = ¢ iff Forest(M,g),w = ¢.

Now we present the axiomatization of TPAL.

Definition 2.14 (Axiomatization). The axiomatization of T PAL adds to multi-
agent epistemic logic the following axioms and the necessitation rule for [A]:

R1 (A)p — (AT Ap

R2 (A)=¢ — (A)T A =(A)¢

R3 (A) (@A) = (A)p A (A)y

R4 (A)Kip = (AT AKi((A)T — (A)9)



AL [Al(¢ — ¢) — ([Al¢ — [A]Y)
A2 (A)T — A

Readers are invited to check the soundness of these axioms and the rule.

Note that, with the semantics of TPAL, (A) T means that A is announcable.
More precisely, it means that concatenating A to the current history A results in
the set of permissible sequences of announcements. Thus, the axioms represents
that the truth of A does not imply that A is announcable in TPAL. Because of
this feature, the reduction axioms R1-4 does not reduce the formulas of TPAL
to the equivalent formulas of epistemic logic unlike in the case of PAL.

Since the standard completeness proof via reduction (for the proof via re-
duction in PAL, see e.g. in [one lonely|) does not work in TPAL, we need to
give a proof independently for the completeness TPAL. This can be done as is
in [6]. (We will see similar construction in the next section.)

Theorem 2.15 (In [6]). TPAL is complete with the class Forest(PAL).

3 Generalized PAL-Operators ¢ and {*

3.1 Distinguishing two generalized operators

Now we would like to consider the generalized P A L-operator that quantifies over
public announcements. This is done in the originial P AL-setting by introducing
the operator ¢, where (¢ reads as “There is some announcement after which
¢.” Given an epistemic model M, the semantics of this operator is given by:

M, w = Q¢ iff there is some 1) € L such that M, w = (¢)¢.

The extension of PAL with this operator is called APAL and studied in [1].

Now, to consider such a generalized operator in the T'PAL-setting, we have
to be cautious about the following fact. In PAL, sequences of announcements
are identified with some single announcements by

(9 ()0 = {(9)1)0.

However, in TPAL, this is not the case. TPAL invalidates the schema, since
the corresponding single announcements may not be available even if sequences
of announcements are available. Thus, we have to distinguish single announce-
ments and sequences of announcements in the T'PAL-setting.

This consideration motivates us to introduce the following two generalized
operators. Let H = Forest(M, f) be an ETL-model generated from an epis-
temic model M and a PAL-protocol f. First, we define the generalized operator
for single announcements:

H,h = Op < There is a formula ) such that hy in H and H, hy) = ¢.

Thus Q¢ reads as “Some single public announcement can be made after which
¢ holds”. We denote the dual of ¢ by O, where ¢ reads as “after every single



public announcement, ¢.” Next, we define the generalized operator for sequences
of announcements:

H,h |E 0*¢ < There is a sequence o such that ho in H and H, ho = ¢.

We allow o to be possibly empty. ¢*¢ reads as “Some sequence of announce-
ments can be made after which ¢ holds.” We denote the dual of ¢* by [J*,
where [(0*¢ reads as “after every sequences of public announcements, ¢”. We
call TAPAL the system that extends TPAL with ¢, and TASPAL, the system
with both ¢ and {*.

Definition 3.1 (Languages). The language L1 aspar extends Lrpar with the
operator ¢. The formulas are defined by:

¢ u=p|T|=0|oNnd|Kig|(A)d] 0] 07

where p € P and A € L. The dual operators [J and [0* are defined by =¢—
and —{*— respectively. The other booleans and duals are defined in the usual
way.

The language Lrapar is the fragment of Lraspar without the operator

0.

Example 3.2. It is a straighforward task to verify the formulas, <\/?:O pi)OK;d;
is now false in the MC case mentioned in Example 2.10. It is also straightforward
to verify that other true statements about the MC case also correspond to
the solution of MC, e.g. (\/?:0 pi)OOK1dy (1 knows that he is dirty after two
question rounds), <\/f’:0 pi)=0" (Vi (—Kid; AN K;dj) (Each child comes to know
that he is dirty at the same time.), etc.

3.2 Semantic Results

Now we will see how these operators work semantically. First, we will observe
that the operators, ¢ in APAL, { in TAPAL, and {*, behave in different ways.
Consider the following semantic properties:

1 EOp— ¢
2. = 0¢ — O0¢
3. |= 00¢ — 00¢
4. | 006 — 00¢

Propositoin 3.3. (Semantic Difference)

(A) All of the properties 1-4 hold in APAL.

(B) None of the properties 1-4 holds in TAPAL.



(C) The properties 1-2 hold, but 3 and 4 don’t, in TASPAL. (when ¢ and O
are replaced with {* and [0* respectively)

Proof. (A) The proofs of the properties in APAL are in [1].
(B) We give the counterexamples as follows:

1. Let w be in M and f(w) = 0. Then, clearly, Forest(M, f),w E O L,
but Forest(M, f),w L .

2. Let w be in M and f(w) ={T,TT}. Put H = Forest(M, f). Then, we
have H,wT E (T)T, but H,wTT & (T)T. Therefore, we have H,w
O(T)T but H,w p=OO(T)T.

3. Let M,w = p. Define f(w) = {T,TT,Tp, TpT}. The model H =
Forest(M, f) can be represented by the figure below. Here we have
H,wTp = (T)T, but H,wTT [ (T)T. Therefore, we have H,w =
O0(T)T, but H,w = 0O0—~(T)T, i.e. H,w = OO(T)T.

/ wlp —————wTpT

W ————wT

wT T

4. In the above model, H,wTp | OT, which yields H,wT | OOT, but
H,wTT B OT, which yields H,wT £ OOT.

(C) We prove 1 and 2, and give counterexamples for 3 and 4.

1. Assume that H, h | O%¢. By the semantics, H, ho |= ¢ for all ho in H.
Take the empty sequence for o. Then, H, h = ¢.

2. We prove the contraposition. Assume that H,h = 0*0*¢. Then there is
some sequences o, 7 such that H, hot |= ¢. Since o7 is also a sequence, it
follows that H,h &= O*¢.

3. Let M, w [= p. Define f(w) ={T,Tp, TpT, TpTp,...}. Let H be Forest(M, f).
We claim that, for every h in H, there exists 0,0’ € f(w) such that
H,ho = (T)T and H,ho' = (T)T. To see this, note that every h ends
with either T or p. If h ends with T, then put ¢ = p and ¢’ = {J; if h ends
with p, then put 0 = 0 and ¢’ = T. This fact implies H,w = O0(T)T
and H,w = OO—(T)T. Thus, this model is a counterexample against 3.

4. The model for B4 similarly works.
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Now we will see the results concerning expressivity of TAPAL and TASPAL.
First, since the operators ¢ and ¢* implicitly refers to (sequences of) announce-
ments in ET L-models by quantification, we do not have results similar to Propo-
sition 2.13 for TAPAL or TASPAL. This feature of the operators add expres-
sivity to the system as in the following result.

Propositoin 3.4. Both TAPAL and TASPAL are strictly more expressive
than TPAL. That is, TPAL C TAPAL and TPAL C TASPAL.

Proof. Since TAPAL C T ASPAL by definition, it suffices to show that TPAL C
TAPAL. For this, consider the formula Qp. Assume toward contradiction that
this formula is equivalent to some T'PAL-formula 1. Since TP AL-formulas are
finite, there are only a finite number of propositional letters, ¢1, g2, ..., ¢, used
in 9. Let g,+1 be a propositional letter that is distinct from all ¢1, qo, ..., ¢, and
M, an epistemic model with only a state w at which p, g,,+1 are both true. Then
define f, g be f(w) =0 and g(w) = {gn+1}. Now consider Hf = Forest(M, f)
and HY = Forest(M,g).

Wqn+1

H H?

WP, dn+1 W :P,gdn+1
Since (f(w))suba(p) = (9(W))supe(y), it follows from Proposition 2.13 that

1 has the same value at H/, w and H9,w. However, clearly H/, w K Op and
HY,w = Op. This is a contradiction. Thus TPAL C TAPAL. O

On the other hand, since ¢ and {* are future-looking in the sense that the
truth value of the formulas does not depend on the nodes below a point of
evaluation, we can obtain a result similar to Proposition 2.12 also for TAPAL.

Define the t-depth d(¢) of T AP AL-formulas in the same as in Definition 2.11
except that we now add

d(0d) =1+ d(¢)

as the extra item.

Propositoin 3.5. Let win M, 0 € (Lg)*, and ¢ € Lrapar. Then,
Forest(M, f),wo |= ¢ iff Forest(M7, fg(;)),wa = ¢.

Also,
Forest(M, f),wo = ¢ iff Forest(M®7, f7<) wo = ¢.

Proof. By induction on ¢. O

For TASPAL-formulas, we cannot place the explicit upper bound by the
t-depth. This is because the operator {* quantifies over all finite sequences.
Thus, we only have:

11



Propositoin 3.6. Let win M, 0 € (Ly)*, and ¢ € Lraspar,. Then,
Forest(M, f),wo |= ¢ iff Forest(M®7, f7<) wo = ¢.
Proof. By induction on ¢. O

The difference of TPAL and TASPAL in the above two propositions feature
contributes to the following expressivity result.

Propositoin 3.7. TASPAL is strictly more expressive than TAPAL. That
is, TAPAL C TASPAL.

Proof. Consider O*(T)T. Assume toward contradiction that this formula is
equivalent to some T'APAL-formula 1. Let M be an epistemic model with
only a state w. Let us denote as T* the sequence of k T’s. Define f,g be
such thatf(w) = {T0 < i < d(¢)} and g(w) = {T¢|i € N}. Now consider
H/ = Forest(M, f) and H9 = Forest(M, g).

HY w > wT > - .- w T4

Y

Hf : w > wT > wTd(w) > o .

Y

Since H/ = Forest(M, g(’l\@)) with A the empty sequence, it follows from
Proposition 3.5 that ¢ has the same value at H/, w and H9, w. On the other
hand, Hf,wT4%) £ (T)T, which implies H/,w £ O*(T)T, whereas clearly
HI,w = (T)T. O

Corollary 3.8. TPAL C TAPAL C TASPAL.
The expressive power of {§ and {* also render the systems noncompact.
Propositoin 3.9. Neither TAPAL nor TASPAL are compact.

Proof. Consider the set I' = {=(8)p|0 € L} U{Op}. T is clearly unsatisfiable
by the semantic definition of (. For p must be true in the epistemic model
that generates an ETL-model to make ¢p true, but, then, to make {—(6)p|d €
Lrapar} satisfied, we have to make the PAL-protocol empty. However, any
finite subset I of T" is satisfiable. If Op & I”, let the protocol be empty. If
Op € IV, then take a propositional letter ¢ that does not occur in I'V and define
a model so that, at a given point, p and ¢ are true and the protocol allows the
announcement q. O

Note that the non-compactness still plagues even when we restrict language
to O* (without ¢). This is easy to verify when we consider the set J;oT'; U
{0*p}, where I'; = {=(0y)...(0:)p|0; € Lo (0 < j < i)}

12



4 Axiomatizations: TAPAL and TASPAL

Now we present the complete axiomatizations for TAPAL (and TASPAL in
the next subsection). We denote by Py the set of propositional letters used in a
formula ¢. We also denote the set of propositional letters used in sequences of
formulas, sets of formulas, in the same way by putting the sequences, sets etc.
as the subscripts. Also, given a sequence o = ¢;...¢,, of formulas, we denote by
(o) the sequence (¢1)...(¢y). Particularly, when n = 0, (o) is just empty. We
use a similar notation for the dual operators: [o] is [¢1]...[dn]-

4.1 TAPAL

Definition 4.1. The axiomatization of TAP AL adds the following axiom Gen
and the inference rule R(O) to that of TPAL.

Gen (x)¢ — O¢ for any x € L
R(O) If + ¢ — [o][p] with o € (Le)*, then - ¢ A [o]0.
where p & Py U Py U F;.

The role of Gen is clear by the truth definition. On the other hand, to see
what R(O) does, an analogy may be helpful between R(CJ) and the first-order
rule:

If F ¢ — v with no occurrence of x in ¢, then infer F ¢ — V.

In fact, as we will see below in the completeness proof, the use of R(0) is very
similar to the use of this first-order rule in the completeness proof. See below.

For the proof of the soundness of R(O), we need the following. First, we
denote as ¢p[ag — o, a1 — 1, ...] the result of the uniform substitutions «; — 5;
of B; for @; in a formula ¢ (0 < 7). We use this notation applied also to sets and
sequences of formulas to mean the result of performing the substitutions in all
the formulas in the sets and sequences.

Let @ = {pn|n € N} be a countable subset of the set of propositional letters,
and let 6 be a sentence in the epistemic language L., with Py N Q = 0. Take
a TAPAL-model H = Forest(M, f) generated by an epistemic model M =
(F,V) and a PAL-protocol f. Fix a hitory hg € H and put hg = wog. Then
construct a TAPAL-model H' = Forest((F, V'), f') in the following way:

o V(o) = {v € WIH, v = (00)0}.
° Vl(pi—i-l) = V(pi) for all i € N.
o f'(w)={7'|r € f(w)} where we define 7/ for every 7 € f(w) by

— 7" = 0o[(pi = pit1)ien]pov[(pi = pit1)ien] if T = gpbv.

— 7" = 7[(p; = Pit1)ien] otherwise.
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Lemma 4.2. For every formula ¢ € Lrapar and h € H, H' = Forest((F,V'), PAL’)
satisfies the following:

L. H,h = ¢lpo = 0, (i1 = pi)ien] & H, B = ¢.
2. H,h = ¢ H B | @[(pi = pit1)ien]-
where b/ = w7’ for all h = wr € H.
Proof. By induction on ¢. U

Propositoin 4.3 (Soundness of R(00)). If ¢ A (0)O¢ is satisfiable where o is a
sequence of formulas and p & Py U Py, U Py, then ¢ A (o) (p)¢ is satisfiable.

Proof. Assume that Forest((F,V),PAL),h |= ¢ A (0)0¢. Set Q := P\(Py U
PyUP,) and 0 := T in the above lemma. Then, we obtain Forest((F,V'), f'), ) |=
YA (o)Op with V' f/ b/ as constructed in the proof of the lemma. This implies
by truth definitions that Forest((F, V'), f'),h’ =1 A {o){(n)é for some formula
1. Here we can replace the occurrences in 7 of p with T, since the valuation
V'(p) = V(0) = T. Thus, we assume that 7 does not contain the occurrences of
p. Then set Q := P\(Py U P, UP,UP,), po =p and 6 := n again in the above
lemma to obtain the model such that Forest((F, V"), f"),h" EvA{o)(p)¢. O

Now we prove the (weak) completeness. For this, we construct the canonical
model by following the construction in [6] for the completeness of TPAL. The
difference, though, for TAP AL is that the construction is not from the set of all
the maximal constent set, but from the set of the maximal consistent sets I" with
the following property: for every sentence of the form (c)0¢ with o a sequence
of formulas, if (0)0¢ € I, then there is some formula 6 such that (o)(0)y € T.

The reason for the construction is to make sure that there is a formula that
witnesses ¢ in every formula in a given maximally consistent set. Here the above
analogy between R(OJ) and the first-order rule comes back again. In the proof
below, when we construct a maximal consistent set from a consistent formula,
we add witnessing formulas for the formulas of the above form. The consistency
of the resulting set with witnessing formulas will be guaranteed by the rule
R(0O), and this is very similar to the way that the first-order rule in question
(or its equivalent) is used in the completeness proof of first-order logic.

Definition 4.4 (saturation wrt ¢). ) A set ¥ of formula is saturated with respect
to O, if, for every sentence of the form (o)0¢ with o a sequence of formulas,
(0)0¢ € ¥ implies that there is some formula 6 such that (o)(6)¢ € X.

Lemma 4.5. (Lindenbaum) Every consistent TAPAL-formula ¢ can be ex-
panded to a maximal consistent set saturated with respect to ¢.

Proof. Let a1, .as... be an enumeration of the TAPAL-formulas such that «y =
¢. We construct a sequence Xg, X1, ... of sets as follows:

.20:@
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o If ¥, U{w,} is inconsistent, X, 11 = X,.

o If 3, U {ay} is consistent and «, is not of the form (o)0vy, X411 =
Yo U{an}

o If ¥, U{«,} is consistent and «,, is of the form(c)Ov, ¥, = X, U
{{o)0, (o) (p))} for a propositional letter p ¢ Py, U P, U Ps,. Such a
propositional letter exists since X, is finite and we have a countable set
of propositional letters.

We show by induction that 3, is consistent for n > 1. The base case is given
by the assumption that ¢ is consistent. Assume that X, is consistent for an
arbitrary n. If ¥,, U {«,} is inconsistent, %, is consistent since X, 1 = 3.
Thus, assume that X,, U{a,, } is consistent. By the construction, %, is clearly
consistent if «, is not of the form (o). We claim that X,,11 is also consistent,
if avp, is of the form. For suppose otherwise. Then, there must be some formulas

1,02, ..., € Ly U {{0)O1} such that
(1A Ath) = ~(o)(p)y.

However, this implies

E (1A A ) = [o][p] .
Since p is chosen so that p & Py U P, U Ps, , we can apply R(0O) to obtain

[ (wl A ... /\’(/Jl) — [O‘}Dﬁlﬁ

This gives us ¥, b [0]0-% and ¥, - =(c)0w. However this contradicts the
assumption that ¥, U {ay,} is consistent.

Now take X' = [J:2,¥;. The maximality and saturation with respect to ¢
is clear by the construction. The consistency is shown in the standard way by
the consistency of X, for n > 1. Finally, it is clear by the construction that X’
is saturated with respect to ¢. O

Definition 4.6. Let W, be the set of the maximal consistent sets saturated
with respect to ¢. We define A, and H,, (0 <n < d(X)) as follows:

e Define Hy = Wy and for each w € Hy, \o(w) = w.

o Let H, 1 = {hAlh € H, and (A)T € \,(h)}. For every h =h'A € Hy 41,
define A\, 11(h) = {P|(A)p € A, (R)}.

We define a function A in such a way that A(c) = A,,(0) for each n.

Propositoin 4.7 (Correctness). For each n > 0, for each h € H,, A\, (h) is a
maximally consistent set saturated with respect to ¢.

Proof. The proof of the maximal consistency of A(h) works in the same as in
TPAL (in [6]). Saturation with respect to ¢ of A(h) is guaranteed by the
construction, A(hA) = {¢|(4)¢ € A(g)} and the definition of saturation. O
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From W), we construct the canonical model in the same way as in [6].

Definition 4.8 (Canonical Model). The canonical model of TAPAL is Heqn =
(Hean, ~cans Vean ), where each element is defined as follows:

[ ] Hcan = U;)ZO Hz
o ~o: A— Hy x Hy : for w,v € Hy, ~ean (8)(w,v) iff {¢|K;¢ € a} Cb.

o ~can: A — Hegn X Hegy @ for g,h € Heyy where ¢ = wo and h = v,
~ean (2)(g, h) iff ~g (i)(w,v) and o, 7 are syntactically identical.

e For every p € P, Vo(p) = {w € Hylp € AM(w)}.
e For every p € P and wo € Heop with w € Hy, wo € Vep(p) iff w € Vi(p).

Lemma 4.9. (Truth Lemma) For every formula ¢ € Lrapar,
peAh) it Hean,h = 0.

Proof. : The proof is by induction on ¢. For the cases other than ¢, the
argument is similar to [6]. Assume that ¢ is of the form ¢v. First assume that
Oy € A(h). Since A(h) is saturated with respect to ¢, we have (8)y) € A(h) for
some propositional letter . By the construction of Hcqy, we have ¢ € A(h6).
By IH, we obtain Heqn, h0 = 1. Therefore, we have Hean, h = Ot by truth
definition. For the other direction, assume that H.qn, h = 0. By definition,
there is some 6 such that h0 € H.u, and Hean, h8 = . By IH, we have
¥ € A(hB), which, by the construction of Hcqyn, implies (#)¢ € A(h). This
implies by Gen that ¢¢ € A(h). O

Theorem 4.10 (Completeness). TAPAL is weakly complete with respect to
Forest(PAL).

Proof. We can show that H.q, is generated from M. q,, = (Wo, ~p, Vo) in Defi-
nition 4.6 and 4.8, and feqy defined by fean(w) = {olwo € Heay } for allw € Wy
in a similar way to [**]. The rest of the argument is standard. O

4.2 TASPAL

Next, we give the complete axiomatization of TASPAL. Let us denote by "
and Q" the sequence of n [I’s and lozenge’s respectively. Particularly, when
n = 0, they denote the empty sequence.

Definition 4.11 (Axiomatization). The axiomatization of TASPAL adds to
TASPAL the following axioms and inference rule:

Fix 0*¢p < ¢V O0* ¢

R(O) If F ¢ — [o]0™ for all n > 0 with o a sequence of formula, then
F¢ — [o]0",
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The role of Fix can be understood by the analogy with the fixed point axiom
in PDL (see e.g. [7]). That is,

(T5)¢ = ¢V (m)(n")o.

In the light of this, it would have been more natural if we had an axiom corre-
sponding directly to the Induction Axiom:

Ind ¢ A [7*](¢p — [7]¢) — [1*]¢
Such a TASPAL axiom would be of the form:

Indrapar, ¢ A D*((j) — DQZS) — %o

Thus, one might wonder where R([J*) comes from instead of ASInd. In fact,
R(0*) finds a counterpart in an alternative complete axiomatization of PDL
(see [14, 17]). That is the axiomatization of PDL with usual axioms except Ind
and the following rule:

R([r*]) If - ¢ — [n][x]" for all n > 0, then - ¢ — [7][1*]|2.
Theorem 4.12 (Soundness). The axiomatization of TASPAL is sound.

Proof. The soundness of Fix is straighfoward. For R((J*), assume that H,h =
& A (6)0*1). Then, we have H, hot = 1) for some 7. Thus, H, ho = O™,
Therefore, H,h = ¢ A <g><)l€n(7)1/,. 0

Also we can give a completeness proof in the way similar to TAPAL. The
idea is to construct the canonical model by taking maximally consistent set
saturated not only with respect to { but also with respect to ¢* in the following
sense.

Definition 4.13 (Saturation wrt 0*). A set ¥ of formulas is saturated with
respect to O*, if, for every formula of the form (0)0*¢ with o a sequence of
formulas, (0)0*¢ € ¥ implies that there is some n such that (o)0"¢ € X.

We need the corresponding Lindenbaum’s lemma with the two notions of
saturation.

Lemma 4.14 (Lindenbaum). Every consistent formula ¢ in TASPAL can be
expanded to a maximally consistent set containing ¢ that is saturated with
respect to ¢ and O*.

Proof. Let ay,.cs... be an enumeration of the TASPAL-formulas such that a; =
¢. We construct a sequence g, X1, ... of sets as follows:

.20:@

o If ¥, U{w,} is inconsistent, X, 11 = ;.
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o If ¥, U{w,} is consistent and «, is neither of the form (o){1) nor of the
form (o)0*¢, X1 = X, U{an

o If ¥, U{a,} is consistent and «,, is of the form (o)0v¢, X1 = X, U
{{o)0, (o) (p)y} for a propositional letter p ¢ Py U P, U Py, . Such a
propositional letter exists since 3, is finite and we have a countable set
of propositional letters.

o If ¥, U{ay,} is consistent and v, is of the form (o)Q*1, take k such that
Y,U{(a) 0%, (0)OFep} is consistent, and put X, 41 = X,U{{a)0*, (o) OFep}.

We first show that if 3, U {«a,} is consistent and ., is of the form (o)O*e,
there is always some m such that X, U {a,, (6)0™} is consistent. Suppose
toward contradiction that there is no such m. Then, for all m > 0, we have:

A — =(0)0™y.

where A X, is a conjunction of the formulas in %,,_;. This implies that, for all
m7

= /\ XU {O‘n} - [U}(Dm_‘w)
and, by R((0*)
F A\ S U{an} = [0]07-0).

Therefore, we have 3, U{ay,} F [¢]0*—) and thus ¥,, U{a, } F —=(c)0*1. This
contradicts our assumption that 3, U {(o)0*¢} is consistent.

Given this, by following the argument given in the proof of Lemma 4.5, we
can show the consistency of X,, for all n.

Now we claim that ¥’ = (J;2,%; is the maximal consistent set saturated
with respect to ¢ and ¢*. The maximality and saturation with respect to ¢
and O* are clear by construction. Thus, it remains to show that X/ is consistent.
For this, it suffices to show that the formula in each node of the proof for X' - 6
is in X/. The proof is by induction on the depth of deductions. (Note that
the proof in TASPAL is finite in depth, but not in width.) Base cases are
trivial. For inductive step, assume that premises of a given inference are added
at some point of the construction of /. First assume that the conclusions are
given by one of the two finitary inference, modus ponens and R((J). Then,
assume toward contradiction that the conclusion is not in ¥’. In this case, by
the maximality of ¥/, the negation of the conclusion is in Y. However, this
implies that there is some 7 such that ¥; contains the negation of the conclusion
and the premise of the inference. This contradicts the consistency of ;. Now
for the infinitary case R(0J*) case, assume that the conclusion ¢ — [o]0*¢) is
not in ¥'. Then, by maximality, ¢ A (o)0*) is in ¥'. However, then there is
some @ such that (0)0*—) is in ¥;. Thus, by the construction, there is some &
such that (c)0F—] is in ¥;. Since all the premises of the inferences are in ¥’
by IH, it follows that there is some n such that ¥,, contains ¢ — [¢]*%) and
& A (o)Olp, which contradicts the consistency of ¥;. O
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For the Truth Lemma, we construct a canonical model which only consists of
maximally consistent sets saturated with respect to ¢ and ¢*. The construction
of the canonical model is otherwise the same as in Definition 4.6 and 4.8.

Lemma 4.15 (Correctness). For each n > 0, for each ¢ € H,, Ay(h) is a
maximally consistent set and saturated with respect to ¢ and O*.

Proof. : Similar to the proof of Lemma 4.7. O
We also need the following proposition.

Propositoin 4.16. Let o € (L;)* and len(o) = n. Then,
1. F{o)p — O"¢.
2. F O"p — 0%,

Proof. First, we prove that - O(¢ — ¢) — (¢ — Ov). By (the contraposition
of) Gen and propositional logic, we have F O(¢ — ¢) AO¢ — [p](¢ — ) A [p]o
for any p ¢ P, U Py. Now by Al, we have - [pl(¢ — ¢) A [pl¢ — [p]¥.
Thus, F O(¢ — ) AO¢ — [ply. Since p ¢ Py U Py, we obtain by R(O) and
propositional logic, - O(¢ — ¥) — (O¢ — Ov).

Given this, both items are proven by induction on n. For the first claim,
the base case is clear. For inductive step, assume the claim holds for n. Then,
F (o)(0)p — O™(0)¢. Also by Gen and repeated applications of necessitation
for [p;], we can get - [p1]... [pn](O-¢ — [0]—¢) with p1,...,p, is a sequence
of distinct variable that are not in Py U Py. By repeated applications of R(O),
we obtain - O0"*(O-¢ — [#]—¢) (Note propositionally - x iff - T — x). By
the above distributive law, this implies = ("(8)¢ — O"*1¢. Thus, we have
= (a)(0)¢ — O"H1g.

For the second claim, the base case is given by Fix. Then, for inductive step,
assume we have (0*¢ — [0"¢. By necessitation for [p] and R(J) as above, we
obtain F O(0*¢ — 0"¢). By standard modal reasoning, we have - OO0*¢ —
0O0"¢. From Fix, we have F O0*¢ — O0*¢. We have - O0*¢ — O 1. O

Lemma 4.17 (Truth Lemma). For every formula ¢ € L,
peXh) i Hean, h =0

Proof. By induction on ¢. We only do the * case, but the other cases are
similar to the proof of Lemma 4.9. Assume that ¢*¢ € A(h). Since A(h) is a
maximally consistent set saturated with respect to ¢*, there is some k > 0 such
that OF1 € A\(h) Now, since A(h) is also satuarated with respect to ¢, we have
(01) ... (0k)p € A(h). Thus, by the construction of canonical model, we have
¥ € A(hOy ...0k), which implies by TH that Heap, k8 ... 0, = . This gives us
Hcana a ': <>*7/]

Assume that Hean,h | O*. By definition, this is equivalent to saying
that there is some o such that ho € Hean and Hean, ho | . By IH, we
have ¢ € A(ho), which, by the construction of A, implies (o)1) € A(h). By
Proposition 4.16, we have that ¢*¢ € A(h). O
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Theorem 4.18 (Completeness). TASPAL is weakly complete with respect to
Forest(PAL).

Proof. Similar to the proof of Theorem 4.10. O

5 Wider Perspective

Thus, we introduced in the T'PAL-setting the two generalized operators ) and
O™ to reflect the fact that TPAL distinguishes single announcements and se-
quences of announcements. We saw that the operators behave in a semantically
different way, and that each operator add expressive power to TPAL. Also we
showed that the extensions of TPAL with the operators find complete axioma-
tization.

Now the T'PAL-setting merges ETL and PAL, which is a specific type of
DEL that deals only with a particular type of informational events, i.e. the
events that eliminates the epistemic possibilities of a given formula. However,
DEL can describe a wider range of informational events by event models (see
e.g. [2, 11, 4]), and TPAL is a part of the story to merge ETL and DEL
with full event models, as is presented in [6]. Thus, the logic of general event
protocol is a topic of further research. Also, the generalized operators for event
models in the standard DFE L-setting has been proposed in several places ([1,
13]). Thus to consider such a generalized operator in the merged system is
also a topic of interest. Particularly, quantification over informational events
with a richer description is useful to model various kinds of epistemic concepts,
such as evidence, justification, tracking, etc., since those concepts, implicitly or
explicitly, involve the type of quantification.
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