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Abstract

The aim of this paper is to pursue the line of research initiated by
Prashant Parikh which gives content and rigour to the intuitive idea
that speaking a language is a rational activity. He employs the most
promising tool to that end, namely game theory. I consider one of his
examples as a sample case, and the model I build is a slight modifi-
cation of that developed by him. I argue that my account has some
advantage, yet many of the key ideas employed are left unchanged. I
analyse this model in detail, describing some of its formal features. I
conclude raising a problem that has not been analysed yet, sketching
a plausible solution.

1 Introduction

The case I want to analyse concerns sentences like

(1) Every ten minutes a man gets mugged in New York.

This sentence has two readings, one is that there is a certain man in New
York, either very unlucky, or reckless, or masochist, that is mugged every ten
minutes. The other reading is that every ten minutes, some man or other,
not necessarily the same, gets mugged in New York. Imagine an actual
conversation where (1) is uttered, the problem is: How can the hearer guess
the reading originally intended by the speaker? As for (1), we can hardly
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imagine a situation where the reading intended by the speaker is the first one
– namely the unlucky, reckless, masochist interpretation – and where this is
the reading selected by the hearer. An interesting feature of (1) is that one
of the two possible readings entails the other, in this case the second reading
is a logical consequence of the first. We can think of sentences sharing this
same feature with (1), but such that they can be employed in a conversation
where the intended reading is the logically stronger one. Consider

All of my graduate students love a Finnish student in my(2)

Game-Theory class.

Suppose that (2) is uttered by a professor in Amsterdam. I do not know
how many Finnish students studying game theory there are in Amsterdam.
Assume there are very few of them. My intuition is that in most situations
the hearer would infer that there is a unique Finnish student in the speaker’s
class that all graduate students love.

I will address the question how a speaker and a hearer can successfully
communicate employing ambiguous sentences. I will use (1) and (2) as sample
cases, because the logical feature they share – namely the fact that one of the
two readings is a logical consequence of the other – imposes some constraints
on the game-theoretic model that will be built that will greatly simplify the
analysis. Yet, we can expect that the solution concepts proposed for these
cases will at least provide hints for models covering a wider class of cases.

My starting point will be the account proposed by Prashant Parikh in
several works (1992; 2001; 2006). The extensive form of his model can be
represented by Figure 1. In his theory the speaker is player 1 and the hearer
is player 2. As is customary in game theory, I will imagine that player 1
is male, and player 2 female. Player 2 has two options, she has to choose
among two moves, namely the alternative interpretations A and B of some
ambiguous sentence φ, and she does not know whether she is in the situation
where player 1 means A or in the situation where he means B. Speaking
technically, her information set contains two nodes labelled ‘2.c’ and it is
marked by an ellipsis. The root of the tree represents a chance event where
‘Nature’, determines whether 1 means A – let this be situation a – or means
B – situation b. The prior probabilities of these alternatives are p and 1− p,
respectively, where 1 > p > 0. If player 1 is in situation a, he can utter
either φ or µa, and these two moves are labelled ‘I’ and ‘E’, respectively,
where ‘E’ is short for ‘explicit’ and ‘I’ for ‘implicit’. If he is in situation b, he
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can choose between φ and µb, and here the alternative moves are ‘i’ and ‘e’.
Since player 2 has a chance to move only if the game is in one of the states
2.c, when 1 chooses an unambiguous sentence, the game ends, otherwise 2
must choose among A and B, an then the game ends.

Figure 1: Disambiguation game: the extensive form

I am actually deviating from Parikh’s original presentation. In Parikh’s
diagram there is a pair of trees, like in Figure 2, instead of a single tree,
because he argues that player 2 ‘cannot construct anything’ before 1’s utter-
ance (2001, p. 83), this is why he proposes the notion of a game of partial
information. I prefer to stick to more traditional methods, since this new
notion does not alter the relevant mathematical features of a game, it seems
to be an unnecessary – but harmless – deviation from well-established stan-
dards. I observe that if Parikh is right in his claim that these disambiguation
games should not be treated as ordinary games of imperfect information, the
same would hold, for example, for Spence’s ‘model of education’ (Spence,
1975), or the famous ‘Beer or Quiche’ (Cho and Kreps, 1987).

Parikh takes this to be a game of pure coordination (2001, pp. 29, 40n)
where, at every terminal node, player 1’s payoff is the same as player 2’s.
They get the lowest payoffs when the speaker chooses the ambiguous sen-
tence and the hearer selects the wrong interpretation. The highest ones
when he chooses the ambiguous sentence and she picks out the correct inter-
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Figure 2: Parikh’s game of partial information

pretation. The remaining payoffs are intermediate because they also amount
to a successful communication but a less convenient one since the explicit
sentence is longer than the ambiguous one. The normal representation of
this game is the set G = {N,C1, C2, u}, where N = {1, 2} is the set of
players, C1 = {Ei,Ee, Ii, Ie} and C2 = {A,B} are the sets of their pure
strategies, and u is their payoff function, hence a function from C1 × C2 to
the real line R. It satisfies the pattern shown in Table 1. There are two
Nash equilibria in pure strategies in the normal representation of the game,
namely (Ie], [A]) and ([Ei], [B]). None of the usual refinements can rule out
any of these. Parikh’s theory predicts that the players will tend to converge
on the most efficient one. There are also infinitely many less efficient mixed
equilibria.

2 Chance Events in Disambiguation Games

I argue that this model is wanting in one respect, namely the nature of the
chance events, or, equivalently, of the private information possessed by the
speaker. The speaker’s intended meaning m is the speaker’s intention to
communicate that m, as such it is not much different from an intention to
perform some other action whatsoever. In any case, we act upon our beliefs
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A B
Ei p× g′a + (1− p)×ma p× g′a + (1− p)× gb
Ee p× g′a + (1− p)× g′b p× g′a + (1− p)× g′b
Ii p× ga + (1− p)ma p×mb + (1− p)× gb
Ie p× ga + (1− p)× g′b p×mb + (1− p)× g′b

Table 1: Disambiguation game: the strategic form

and goals. Game theory models those situations where we must act upon our
beliefs over other people’s intentions. Once we know what the other players
are going to do, picking out the best choice only requires a strategic decision,
a simple mathematical calculation. The problem is that the intentions of
one player depend on his or her knowledge about the intentions of the other
players, and these in turn depend on what they know about the intentions
of the former, in a way that is characteristically circular. One of the aims
of the notion of equilibrium and of its refinements is to explain how the
players can restrict the range of possible intentions, on the assumption that
their competitors are rational. One player can frame hypotheses on the
other players’ intentions grounded on the primitives of a model, this is why
intentions themselves cannot be among these primitives.

In other terms, if the task of player 2 is to guess what the intended
meaning is, and if she already knows which alternative is the most likely
one, then there is not much to be done anymore, she only needs to multiply
the subjective probability of each alternative by the payoffs that the moves
available to her would yield in each of these alternatives. Suppose that p is
the prior probability that player 2 assigns to the belief that player 1 wants
to convey the meaning corresponding to A; and that 1− p is the probability
of the belief that he wants to convey the meaning B. Let ga be the gain
for player 2 if she selects the interpretation A when player 1 really wants to
convey A, and let ma be her gain if she selects A when 1’s intended meaning is
B. Similarly, let gb be her gain if she correctly selectsB, andmb her gain when
she wrongly selects B. If we describe the situation in this way, her task is very
simple, she must select A whenever p×ga+(1−p)×ma > p×mb+(1−p)×gb
and B whenever p× ga + (1−p)×ma < p×mb + (1−p)× gb. Once we know
that she is able to assign a probability value to the belief that 1’s intended
meaning is A – no matter how she could accomplish this – there is nothing
more to be explained, and hence no more need to appeal to game theory to
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give an account of her behaviour. But, presumably, we need game theory to
explain how she could assess this probability.

This is why I claim that the content of player 1’s private information has
to be something more basic, and therefore that player 2’s prior probabili-
ties have to concern what player 1 actually knows. With this modelling of
the game, the speaker’s intention to convey a given message can be derived
from facts with a minor degree of intentionality, namely his knowledge. To
paraphrase Willard Van Quine (1976), it reduces the grade of intentional
involvement. Just consider the questions ‘What does player 1 know?’ and
‘What does player 1 want to say?’. We are not always able to provide definite
answers to the questions of the first kind, but, at least, we can assess the
probability of the answers, just considering what we know about the player’s
sources of information. Of course, we can also assess the probability of the
answers to the questions of the second kind, but the data to be considered
include all those relevant for the first kind, and something else, at least this
person’s goals. In other words, any reasoning behind an answer to a ques-
tion of the first kind is conceptually simpler than that required by the second
kind.

This reform imposes some restrictions on the structure of the model. If
A and B are the only legitimate interpretations of an ambiguous utterance
φ, then either he believes that A or he believes that B. But in the case we
are examining, one of the two readings is a logical consequence of the other,
for example we can assume that B logically entails A. If this is true, then
if 1 believes that B, he necessarily believes that A. Then, as far as player 2
knows, there are two possibilities:

alternative a: 1 knows that A and it is not the case that he knows that
B (either because he knows that not B, or because he does not know
whether B);

alternative b: he knows that A and B.

If a is the real situation, then, if 2 selects A when 1 utters φ, she will acquire
some new and reliable true knowledge, whose value is ga. But, if in the
same situation she chooses B, instead, she gets a false or at least unreliable
new belief, and the result is mb, and we can reasonably assume that ga >
mb. If b is the real situation, then the choice of B will yield some new
knowledge, let be gb the value she puts on it. Yet, in this case, even if in
she chooses A, she acquires some new knowledge. Let ma be her payoff in
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this case, but since B contains more information than A, it is quite natural
to assume gb > ma. We can retain Parikh’s assumption that this is a game
of pure coordination where, in any possible ending of the game, the payoff
earned by player 1 is he same as that of player 2. We also know that,
both in situation a and in situation b, player 1 can choose an unambiguous
sentence to convey the same message, we can call these sentences µa and
µb, respectively. In these cases, player 2 has no possibility to move. The
corresponding payoffs will be g′a and g′b. We can assume that ga is equal to the
net value of the information carried by A when it is true and reliable minus
some ‘cost’ c involved by the length of φ. gb will have a similar composition
vb − c. We can conceive of cases where an unambiguous sentence is so much
longer than the corresponding ambiguous one, that a cheap misunderstanding
can be preferable to an unambiguous but demanding speech act. We can
also imagine situations where the speakers choose ambiguous and potentially
misleading messages because they do not want other people to acquire some
confidential information. Just think of two spies involved in a telephone
conversation, both knowing that their line has been tapped. Sometimes a
leak can do more harm than a misunderstanding. I will assume that this is
not the case in the conversation we are considering, and that in this case the
cost of an utterance is relatively small when compared to the net value of
information. This simplifying assumption entails that g′a > mb. I will also
imagine that, in the conversations we are analysing, people prize transfer
of information more than shunning of costs, and this entails that g′b > ma,
g′a −mb > gb − g′b and g′b −ma > ga − g′a. For the same reason, we can also
safely assume that g′b > g′a.

The rationale behind the choice of a game of pure coordination where
the players have the same payoff function is that when honest and rational
agents communicate, they just aim at successful communication. We have
to imagine that he is sincere and honest, that she believes what he says, and
that this is common knowledge. For simplicity, imagine also that both of
them are interested exclusively in the pure flow of information and have no
further aims. This is unrealistic, of course, but it is just an idealization not
more problematic than the physicist’s speculations on frictionless planes. Of
course there are commonly cases where this is not true, most notably when
people lie. But we can legitimately focus attention on those benign cases,
especially because the very possibility of lying presupposes the existence of
honest communication.

Maybe the set of moves available to player 1 is incomplete. Perhaps we
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should also consider the possibility of uttering µa in situation b, and µb in
situation a. Of course if player 1 uttered µb knowing that B is false, he
would be lying, and, under the assumption that we are trying to analyse a
case of patently honest communication, this move would yield a bad outcome
for both. But the other case cannot be dismissed so easily, remember that
A is true in situation b. The payoff would actually be g′a. The fact is that
whatever the choice of 2, the gain would be higher if player 1 chose µb, because
g′b > g′a. This means that, according to the model presented here, it is never
rational for player 1 to choose to utter µa in situation b. In technical terms,
any strategy where the speaker utters µa in situation b or µb in situation a
is strongly dominated, and can be eliminated from the game. The model
simply predicts the existence of a scalar implicature, to the effect that if 1
utters µa, then 2 infers that it is not the case that 1 knows that B. Simply
because the ordering among payoffs that was depicted above presupposes
that if 1 knew that B, then he would not conceal this information to the
hearer. In situations not covered by this analysis, the speaker could utter µa
knowing that B, if he did not want 2 to know.

Similarly, we could include a pair of ‘don’t say anything’ moves for player
1. Of course, when he chooses one of these, she has no possibility to move,
and the payoff should be equal to 0 for both players. I will assume that both
g′a and g′b are strictly positive. If this is the case, then, again, any strategy
involving one of these additional moves is strongly dominated, hence I will
ignore this possible variant of the game. Yet, this shows that I have not
mentioned a fact which is implicitly presupposed by our model, namely the
fact that, for example, at node a, player 1 knows that A and also wants to
convey this information. If Parikh meant this while saying that the chance
nodes ‘represent [player 1’s] intention to convey’ A or B (Parikh, 2001, p.
27), then the objections I raised in Section 1 miss the mark. But, this does
not seem to be the case. The fact that there are only two alternative states
in 2’s information set follows from the characteristic features of the examples
considered, namely the fact that one of the two readings is entailed by the
other. It is not even necessary that this be a logical entailment – like it is
in our example – but the entailment has to be common knowledge. If the
two alternative readings were logically and conceptually unrelated, player 2
would have an information set containing three elements. And of course we
can conceive of cases where an ambiguous sentence admits of more than two
readings. In (2006, p. 351) Parikh analyses a case of disambiguation where
the alternative readings are unrelated, building a model with only two chance
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events. According to the line pursued here, these cases require models with
three chance events.

We can retain the diagram of Figure 1 as the extensive form of a disam-
biguation game for sentences like (1) and (2), we only need to change the
interpretation of the chance nodes and of 1’s private information.

Still, one could ask: Why a game? In other words, why should not 2’s
choice be just a strategic decision drawn upon her prior probabilities of the
chance events a and b? First of all, the decision-theoretic problem that has
been depicted manifests the characteristic circularity that imposes a game-
theoretic analysis. What is the best choice for 1, when he is in a? It is I,
if 2 will choose A, and E otherwise. So the question is, what shall she do?
Or, equivalently, what is the best choice for her? When it is up to her to
make a move, she knows that 1 has chosen to use the ambiguous sentence
φ. The best choice for her is A, if 1 has planned to choose I when in a, and
e when in b, for example. So, his best choice depends on her best choice,
and vice versa. Second, even if the plan to act strategically upon the prior
probabilities p and 1− p is not outright irrational on the part of 2, after all
it is an equilibrium strategy, it is not the best our two players can achieve
from the point of view of efficiency. Since there is no guarantee that the
corresponding equilibrium is the most efficient one.

3 Equilibria

I will now establish a few properties of the model.

Theorem 3.1 Ii is strongly dominated in G.

Proof. Ii is strongly dominated if and only if ∃σ1 ∈ ∆(C1) such that

u(Ii, A) < σ1(Ei)u(Ei,A)+

σ1(Ee)u(Ee,A) + σ1(Ie)u(Ie, A)+(3)

(1− σ1(Ei)− σ1(Ee)− σ1(Ie))u(Ii, A)

and

u(Ii, B) < σ1(Ei)u(Ei,B)+

σ1(Ee)u(Ee,B) + σ1(Ie)u(Ie, B)+(4)

(1− σ1(Ei)− σ1(Ee)− σ1(Ie))u(Ii, B)
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Inequalities (3) and (4) are equivalent to

(5)
σ1(Ei) + σ1(Ee)

σ1(Ie) + σ1(Ee)
<

(1− p)(g′b −ma)

p(ga − g′a)

and

(6)
σ1(Ei) + σ1(Ee)

σ1(Ie) + σ1(Ee)
>

(1− p)(gb − g′b)
p(g′a −mb)

respectively. Given the ordering among payoffs stated in Section 2,

g′b −ma

ga − g′a
> 1 >

gb − g′b
g′a −mb

and hence
(1− p)(g′b −ma)

p(ga − g′a)
>

(1− p)(gb − g′b)
p(g′a −mb)

At this point it is an easy task to find values for σ1(Ei), σ1(Ie), and σ1(Ee)
that satisfy inequalities (5) and (6). qed

Observe that Theorem 3.1 entails that no strategy profile τ where τ1(Ii) > 0
is a Nash equilibrium.

Theorem 3.2 There is no equilibrium in G where both Ei and Ie have
strictly positive probability.

Proof. Assume that σ is such an equilibrium. Then the following inequalities
have to be true: ∑

c2∈C2

σ2(c2)u(Ei, c2) ≥
∑
c2∈C2

σ2(c2)u(Ee, c2)∑
c2∈C2

σ2(c2)u(Ie, c2) ≥
∑
c2∈C2

σ2(c2)u(Ee, c2)

They are equivalent to

σ2(A) ≤ gb − g′b
gb −ma

σ2(A) ≥ g′a −mb

ga −mb
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respectively. But this cannot be. In fact, given the ordering among payoffs
of Section 2,

(g′a −mb)(g
′
b −ma) > (gb − g′b)(ga − g′a),

(g′a −mb)(gb − g′b) + (g′a−mb)(g
′
b −ma) >

> (gb − g′b)(ga−g′a) + (g′a −mb)(gb − g′b),
(g′a −mb)(gb −ma) > (gb − g′b)(ga −mb)

Hence

(7)
g′a −mb

ga −mb

>
gb − g′b
gb −ma

qed

Theorem 3.3 There is no equilibrium G where both Ie and Ee have strictly
positive probability.

Proof. Assume that σ is such an equilibrium. Then the following equation
has to be true ∑

c2∈C2

σ2(c2)u(Ie, c2) =
∑
c2∈C2

σ2(c2)u(Ee, c2)

which amounts to

σ2(A) =
g′a −mb

ga −mb

This means that 1 > σ2(A) > 0, hence in this equilibrium player 2 is indif-
ferent between strategies A and B, and this means

(8)
∑
c1∈C1

σ1(c1)u(c1, A) =
∑
c1∈C1

σ1(c1)u(c1, B)

Since σ1(Ei) = 0 and σ1(Ii) = 0 because of Theorems 3.1 and 3.2, (8)
becomes ga = mb, which is impossible. qed

Theorem 3.4 There is no equilibrium where both Ei and Ee have strictly
positive probability.

Proof. Analogous to the preceding one. qed
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How many equilibria are there? Of course there are two equilibria in
pure strategies, namely η = ([Ie], [A]) and θ = ([Ei], [B]), but there is also
an infinite set of mixed equilibria.

Theorem 3.5 If

(9) π1(Ee) = 1

and

(10)
g′a −mb

ga −mb

≥ π2(A) ≥ gb − g′b
gb −ma

then π is a Nash equilibrium.

Proof. Consider a modified game G∗ = {N,C∗1 , C2, u
∗} where

C∗1 = {Ei, Ie, Ee}

and u∗ is just u after its domain has been restricted accordingly. Since Ii is
strongly dominated because of Theorem 3.1, every equilibrium of G∗ is an
equilibrium of G, and vice versa. Suppose that π is a strategy profile that
satisfies conditions (9) and (10). Define ω as p(g′a − g′b) + g′b, which is the
expected payoff of both players under π. Since player 2 is clearly indifferent
between A and B when player 1’s strategy is [Ee], in order to show that π
is an equilibrium, we only need to prove the following statements:

ω ≥
∑
c2∈C2

π2(c2)u(Ei, c2)(11)

ω ≥
∑
c2∈C2

π2(c2)u(Ie, c2)(12)

But the conjunction of conditions (11) and (12) is equivalent to (10). Hence
π is a Nash equilibrium of G∗ and therefore of G as well. qed

Theorems 3.1, 3.2, 3.3, and 3.4 entail that there are no other equilibria.
Are they trembling hand perfect? All the strategies [Ei], [Ie], [A], and
[B] are visibly undominated, and this entails that both pure equilibria are
perfect (Osborne and Rubinstein, 1994, prop. 248.2). [Ee] is not weakly
dominated either, hence the mixed equilibria are perfect as well, but this
might not be perceived at first sight.
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Theorem 3.6 [Ee] is not weakly dominated.

Proof. If [Ee] is weakly dominated, then, for some σ1 ∈ ∆(C1),

∀π2 ∈ ∆(C2), u([Ee], π2) ≤ u(σ1, π2)

i.e.

∀π2 ∈ ∆(C2),

u([Ee], π2) ≤
∑
c1∈C1

σ1(c1)[π2(A)u(c1, A) + (1− π2(A))u(c1, B))]

If we instantiate with

π2(A) =
g′a −mb

ga −mb

this becomes
g′a −mb

ga −mb

≤ gb − g′b
gb −ma

which contradicts (7) qed

4 Perfect Equilibria in Extensive Form

One might hope to select a unique equilibrium arguing that in our analysis
player 2 does not exploit all the evidence she has at her disposal, since in
order to make a rational choice she must consider not the prior probability
of a and b, but the conditional probability of those events, given that player
1 decided to utter φ. This suggests that we search for perfect equilibria in
the extensive form of the game. In this section I show that this is of no help,
because all of the Nash equilibria of the normal representation correspond to
perfect equilibria of the extensive form.

The multiagent representation (Myerson, 1991) – also called agent-normal
form (Selten, 1975), and agent strategic (Osborne and Rubinstein, 1994) –
is a way of representing games in extensive form as games in strategic form,
alternative to the normal representation. In the multiagent representation
of some extensive-form game Γe, there is a player, called (temporary) agent,
for every information set of every player of Γe. Hence, as far as our game
is concerned, player 1 is represented by two agents in the multiagent rep-
resentation, say a and b. While there is only one agent for player 2, say c.
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e
A B

E p× g′a + (1− p)× g′b p× g′a + (1− p)× g′b
I p× ga + (1− p)× g′b p×mb + (1− p)× g′b

i
A B

E p× g′a + (1− p)×ma p× g′a + (1− p)× gb
I p× ga + (1− p)×ma p×mb + (1− p)× gb

Table 2: Disambiguation game: the multiagent representation

The multiagent representation of our disambiguation game is represented in
Table 2.

A behavioural strategy profile of a game in extensive form is a mixed
strategy profile of its multiagent representation. Let ‘Ge’ be the name of
the extensive form of the disambiguation game. A generic behavioural strat-
egy profile of Ge is (σa, σb, σc), and it specifies a probability distribution for
every agent of every player. The behavioural strategy profile ([I], [e], [A])
corresponds to our Nash equilibrium η in an intuitive way, so that it can be
called its behavioural representation (Myerson, 1991). Since there should
not be any danger of misunderstanding, until the end of this section, I
will use the names of the strategy profiles of (the normal representation)
G to refer to their behavioural representations in Ge. Hence, I will set
η = (ηa, ηb, ηc) = ([I], [e], [A]), and similarly for the other equilibria.

Definition 4.1 A trembling hand perfect equilibrium of a game in extensive
form is a trembling hand perfect equilibrium of its multiagent representa-
tion (Myerson, 1991; Osborne and Rubinstein, 1994). /

Theorem 4.2 η is a trembling hand perfect equilibrium of Ge

Proof. Recall that η is a perfect equilibrium iff there exists a sequence
(ηk)∞k=1 such that each ηk is a perturbed behavioural strategy profile where
every move gets positive probability, and, moreover

(i)
lim
k→∞

ηks (ds) = ηs(ds) ∀s ∈ S ∀ds ∈ Ds
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(ii)

ηs ∈ argmaxτs∈∆(Ds)∑
d∈D

( ∏
r∈N−s

ηkr (dr)

)
τs(ds)u(d)

∀s ∈ S

where S = (a, b, c) is the set of all information states of all players, and, for
each s ∈ S, Ds is the set of moves available to the relevant player in state
s, and D = ×s∈SDs. It is not difficult to find a sequence satisfying these
criteria. Set

ξ =
(1− p)(gb −ma)

p(ga −mb)

Then ∀k ∈ (1, 2, 3, ...), if ξ ≥ 1,

ηka(I) =
2k − 1

2k
ηkb (i) =

1

2kξ
ηkc (A) = 1− ga − g′a

k(ga −mb)

If ξ < 1, instead, set

ηkb (i) =
1

2k

and the rest as before. You can see at a glance that these sequences satisfy
condition (i). Consider now the expected payoff of player 1 when he is in
state a and is planning to make move τa ∈ ∆(Da), and all other agents
behave according to scenario ηk. It is equal to

∑
d−a∈D−a

( ∏
r∈N−a

ηkr (dr)

)
×(13)

[τa(I)u(d−a, I) + (1− τa(I))u(d−a, E)]

We can consider (13) as a function of τa(I), and if we calculate the derivative
of this function we get

p[ηkc (A)(ga −mb) +mb − g′a]
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As you can easily verify, this value is either null or positive for all k, and this
means that, since ηa(I) = 1

ηa ∈ argmaxτa∈∆(Da)∑
d∈D

( ∏
r∈N−a

ηkr (dr)

)
τa(da)u(d)

Similarly, if you consider the corresponding expected payoff for player 1 when
he is in state b, i.e. ∑

d−b∈D−b

( ∏
r∈N−b

ηkr (dr)

)
×

[τb(i)u(d−b, i) + (1− τb(i))u(d−b, e)]

regard it as a function of τb(i), and calculate its derivative, you get

(1− p)[ηkc (A)(ma − gb) + gb − g′b]

which is either null or negative for all k, because of inequality (7), and this
means that, since ηb(i) = 0,

ηb ∈ argmaxτb∈∆(Db)∑
d∈D

( ∏
r∈N−b

ηkr (dr)

)
τb(db)u(d)

Finally, if you calculate the expected payoff for player 2, you have∑
d−c∈D−c

( ∏
r∈N−c

ηkr (dr)

)
×

[τc(A)u(d−c, A) + (1− τc(A))u(d−c, B)]

whose derivative is

ηka(I)p(ga −mb) + ηkb (i)(1− p)(ma − gb)

which is either null or positive for all k, and this entails

ηc ∈ argmaxτc∈∆(Dc)∑
d∈D

( ∏
r∈N−c

ηkr (dr)

)
τc(dc)u(d)

qed
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The case of θ is completely analogous.

Theorem 4.3 θ is a trembling hand perfect equilibrium of Ge

Proof. A suitable sequence is

θka(I) =
1

2k
θkb (i) =

2k − 1

2k
θkc (A) =

gb − g′b
k(gb −ma)

if ξ ≥ 1, and

θka(I) =
ξ

2k
θkb (i) =

2k − 1

2k
θkc (A) =

gb − g′b
k(gb −ma)

if ξ < 1. qed

As for the mixed equilibria the case is simpler.

Theorem 4.4 The mixed equilibria π are trembling hand perfect in the ex-
tensive form of the game

Proof. Since 1 > πc(A) > 0, we can set πkc (A) = πc(A), and

ηka(I) =
1

2k
ηkb (i) =

1

2kξ

whenever ξ ≥ 1, and

ηka(I) =
ξ

2k
ηkb (i) =

1

2k

otherwise. qed

5 Efficiency

Summing up, in the strategic form of the game, there are two equilibria in
pure strategies, namely η and θ, and many mixed equilibria π, and all are
trembling hand perfect. All the mixed equilibria are somehow equivalent,
since they yield the same expected payoff, and they all amount to the fact
that player 1 goes for the costly but unambiguous option, and player 2 has
no opportunity to move. These mixed equilibria are the least efficient ones.
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As for the equilibria in pure strategies, η is the unique Pareto efficient equi-
librium iff

(14) p >
gb − g′b

gb − g′b + ga − g′a

and θ is the unique Pareto efficient equilibrium iff

(15) p <
gb − g′b

gb − g′b + ga − g′a

If we assume that µa and µb have analogous length, then the actual critical
value

gb − g′b
gb − g′b + ga − g′a

will be approximately equal to 1/2. Parikh’s account predicts that the play-
ers will tend to converge on the most efficient equilibrium, and I will accept
this view, which seems to be empirically adequate, at least at first sight.
But Robert Van Rooij rejects this solution concept, claiming that it is ‘un-
usual’ (2004, p. 506). This claim is quite odd. First, there is some agreement
among some scholars on the view that we should expect rational players to
converge on efficient equilibria in many kinds of games (Harsanyi and Selten,
1988; Myerson, 1991). Second, we should subscribe this remark of Robert
Aumann (2000, p. 5).

My main thesis is that a solution concept should be judged more
by what it does than by what it is; more by its success in estab-
lishing relationships and providing insights into the workings of
the social processes to which it is applied than by considerations
of a priori plausibility based on its definition alone.

Yet, the doctrine is incomplete, as it does not explain what should happen
in the limit case where

(16) p =
gb − g′b

gb − g′b + ga − g′a

that makes both η and θ (weakly) Pareto efficient. I will now provide an
answer to this question. We can reasonably expect that, in these cases,
1 will choose strategy [Ee], inefficient but safe, and since 2 can anticipate
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this, she will be indifferent between her two options A and B. Even in this
case, I will just assume that this claim is empirically adequate. I will first
put forward a philosophical justification of the doctrine, and then provide a
formal definition.

I will start with a philosophical parable. Let us admit that the speakers
will converge on the unique Pareto dominant equilirium, whenever there is
one. This kind of coordination is very profitable for both, we could suspect
that this is not possible without a previous agreement, a kind of social con-
tract. Pursuing this fantasy a little further, we can even speculate over the
behaviour the speakers had before they entered such an imaginary contract.
We can fairly assume that it would have been in line with an equilibrium, a
strategy not in equilibrium is not rational. The only equilibria when there is
no coordination are the mixed ones, costly but safe. Given the opportunity
to make an agreement, they would have decided to converge on the most
efficient equilibrium, whenever possible. If we agree on the upshot of this
hypothetical bargain, it does not have to be real in order to have visible
effects. Both players are able to deduce what would have happened in such
a counterfactual situation, because this can be inferred from the structure of
the game, it is a feature of the game, which is common knowledge.

This kind of argument hinges on what is called ‘preplay communica-
tion’ (Myerson, 1991, pp. 109-113), and, according to Parikh it is untenable,
for two reasons. First, if you explain successful communication in terms
of preplay communication you fall into an infinite regress. Second, ‘even if
such an infinite regress were avoidable, the solution would certainly require a
great deal of effort suggesting that languages aren’t quite so efficient as they
in fact are’ (Parikh, 2001, p. 39n). I argue that both of these tenets can be
rejected. The model presented here is an account of disambiguation, which
is a particular phenomenon occurring in communication. I claimed that our
two players could converge on a unique equilibrium, if they considered what
would have happened if they had had the opportunity to reach an agreement
over a coordinated plan. If this imaginary preplay communication is con-
ceived as involving only unambiguous sentences, there seems to be no danger
of an infinite regress, yet the response is the same: they would have agreed
to converge on the unique Pareto efficient equilibrium. The second point is
less clear to me, since the kind of reasoning that we attribute to our players
does not seem to involve a great deal of computational effort, compared to
the construction of the model itself.

19



Let us now go back to the social contract fantasy, to the point where
speaker and hearer play a disambiguation game before the making of the
contract. Let us imagine that ([Ie], [A]) is strongly Pareto dominant in this
game. Assume that 2 predicts that 1 will opt for [Ee]. Given this belief,
she is indifferent between A and B, yet she at least has a reason to choose
A instead of B. She can think: ‘If my expectation concerning 1’s behaviour
is actually wrong, i.e. if he is going to deviate toward one of the strategies
of the pure equilibria, quite likely it will be [Ie], because it is dominant, not
[Ei].’ But 1 himself can suspect that 2 will act upon this reasoning, and this
would really lead him to deviate toward the dominant equilibrium. This kind
of attraction on the part of dominant equilibria is an instance of the so-called
focal-point effect (Myerson, 1991, pp. 108-114). But if in this kind of game
this effect is triggered by the reasoning outlined above, the effect will actually
occur only when there is a unique Pareto dominant equilibrium, otherwise
the players will be stuck in the imaginary primeval condition antedating the
social contract.

Here ends the parable and begins the formal definition. My speculation
hinged on the action undertaken by 2, if 1, unexpectedly, deviates from
his equilibrium strategy [Ee]. Her actions depend on her beliefs, therefore
the question becomes: How shall she revise her beliefs if 1 deviates from
his equilibrium strategy? This is tantamount to the question: What is the
probability of a conditioned on the evidence that 1 chose I or i? The problem
is of course that this conditional probability is left undefined by traditional
Bayesian probability theory, because the condition has null prior probability,
under this equilibrium. This kind of question is actually central in past
and current debates in game theory, since it motivates most equilibrium
refinements, but we have seen that these are of no help here.

We should divert attention toward the class of signaling games. In a
signaling game we have two players, a sender and a receiver. The sender
knows his type which is drawn from a set of possible types, according to
some prior probability which is common knowledge. The sender must send
a message to the receiver. The receiver does not observe the sender’s type,
but she sees his message. Finally, the receiver must chose her action, and
the game ends. The payoff of both players depend on the sender’s type, the
message chosen by the sender, and the action performed by the receiver. In
our disambiguation game, player 1 is the sender, a and b are his possible
types, his messages are his moves – E and I or e and i, depending on type
– A and B are the actions available to 2.
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None of the most common solution concepts that have been developed for
signaling games can rule out the undesired equilibria in our disambiguation
game, all of them leave the situation unchanged. I will therefore sketch a
new solution concept, that subsumes various existing solutions, most notably
the ‘Intuitive Criterion’ (Cho and Kreps, 1987), and ‘Divinity’ (Banks and
Sobel, 1987), and provides a non-arbitrary way of calculating conditional
probabilities in off-the-path information states. This solution concept is new,
to my knowledge, yet it was inspired by the papers on signaling games cited
in this section.

If 1 is in situation a, his equilibrium strategy under a mixed equilibrium
π will give him a payoff equal to g′a. Let D(a) be the set of mixed strategies
of player 2 that would make a deviation from the equilibrium at least as good
as his equilibrium strategy, i.e.

D(a) = {ϕ2 : g′a ≤ ϕ2(A)ga + (1− ϕ2(A))mb}

Analogously

D(b) = {ϕ2 : g′b ≤ ϕ2(A)ma + (1− ϕ2(A))gb}

Clearly

D(a) =
{
ϕ2 :

g′a −mb

ga −mb

≤ ϕ2(A)
}

D(b) =
{
ϕ2 :

gb − g′b
gb −ma

≥ ϕ2(A)
}

Consider now the Lebesgue measures of these two sets, namely

λ(D(a)) = 1− g′a −mb

ga −mb

=
ga − g′a
ga −mb

and

λ(D(b)) =
gb − g′b
gb −ma

I claim that λ(D(a)) is relevant to the probability that 1 will choose move
I when he is in a, in the following way. Speaking figuratively, my hypothe-
sis is that the value λ(D(a)) is proportional to the infinitesimal probability
that 1 will deviate from his equilibrium strategy, when he is in situation a.
Similarly, that λ(D(b)) is proportional to the infinitesimal probability that
1 will deviate from his equilibrium strategy, when he is in situation b. We
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know that, under π, the probability that 1 will choose I or i is equal to 0.
Hence, making this metaphor more formal, I imagine that the probability
that the path of the game will go through one of the nodes in 2’s informa-
tion set, conditioned on the event that 1 is in a, is, under the equilibrium
π, equal to ελ(D(a), where ε is some infinitesimal coefficient. Similarly for
situation b. None of this has any effect on on-the-path probabilities, in fact
limε→0ελ(D(a)) = 0. But it gives a non-arbitrary way of defining off-the-
path conditional probabilities, since we can exploit a form of Bayes’ Theorem
to define the conditional probability of the event that 1 is in a, on the con-
dition that he has chosen I or i. More formally, let ι be the event that 1 has
chosen to use the ambiguous sentence φ. When x and y are two events, let
us use the expression ‘Px(y)’ to denote the probability of y conditioned on
x. If

Pa(ι) = ελ(D(a))

Pb(ι) = ελ(D(b))

then, since p and 1− p are the prior probabilities of events a and b,

Pι(a) =
pελ(D(a))

pελ(D(a)) + (1− p)ελ(D(b))

Pι(a) =
pλ(D(a))

pλ(D(a)) + (1− p)λ(D(b))

Similarly,

Pι(b) =
(1− p)λ(D(b))

pλ(D(a)) + (1− p)λ(D(b))

The reader can check that, given these beliefs, player 2 strictly prefers A over
B iff (14) holds, she srtictly prefers B iff (15) holds, and she is indifferent
iff (16) holds. This entails that the criterion newly introduced breaks all the
mixed equilibria whenever one of the pure ones is strictly Pareto dominant,
and leaves them intact otherwise. The idea of a link between Lebesgue
measures of sets like D(a) and D(b) in signaling games and the probability
of a deviation from equilibrium is due to Gonzalo Olcina (1997), only the
hypothesis that they are to be proportional to these probabilities, and that
they should be used to calculate off-the-path conditional probabilities is new.

Summing up, this solution suggests that players will always try to conform
to a strategy of some mixed equilibrium in a disambiguation game, and that
they will fail whenever this equilibrium does not satisfy the above criterion,

22



i.e. almost always, in which case they will end up converging toward the
unique dominant equilibrium.

In order for this new solution concept to be viable, it has to be proved that
given any game, or any game belonging to some suitable class, this solution
will always pick out a non-empty set of plausible equilibria, for example that
it will always select at least one sequential equilibrium. I leave this as an open
question. Let me just observe that this solution is not patently ad hoc, since
it can be applied to a class of games much wider than that of disambiguation
games.

6 Conclusion

Summing up, the substance of this work is a new game-theoretic analysis of
the capacity humans have to communicate using ambiguous expressions. The
background hypothesis is that these tasks are accomplished because humans
are rational creatures, and, when two people are involved in a conversation,
they crucially capitalize on this fact, assuming that it is common knowledge.
I built on ideas first developed by Prashant Parikh, raising some objections
that led me to modify his models.

I built a game of imperfect information in extensive form, where a hearer
and a speaker are the two players, the speaker has some private information,
and his task is to convey this piece of information to the hearer. Here lies
the main difference between my analysis and Parikh’s, since, in his model,
the relevant private information of the speaker is the intended meaning of
his speech act, while in mine the private information is just some piece of
knowledge that he wants to share with the hearer. I argued that my reform
renders the theory more natural and conceptually simpler.

The examples I chose as sample cases were simpler to analyse than more
general cases, because of the structural features of the resulting model. In
the end I retain Parikh’s conclusion that speakers tend to focus on efficient
equilibria, but I also proposed a solution to a problem that had been left
open, namely, the strategy adopted by the speakers when there is not a
unique efficient equilibrium. I argued that, in this case, the speaker goes for
the ambiguous expression, which is costly, but safe. The intuitive argument
I used to back both of these tenets hinges on the idea that the players are
able to guess the joint strategy they would agree on, were they allowed some
preplay communication before the beginning of the game. This kind of argu-
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ment is not new. It is crucial that the players do not really need to entertain
this kind of communication in order to know what would ensue from it. The
formalisation of this intuitive argument hinges on a solution concept that
defines conditional probabilities in information states that have null prior
probability. This solution concept can be applied to a variety of games much
wider than the limited set of disambiguation games, most notably classic
signaling games like ‘Beer or Quiche’.

Now there are two directions where this research can be pushed forward.
First, one has to apply the methods and ideas presented here to a wider class
of conversational games, starting from other disambiguation games. Second,
the range of games where the new solution concept proposed here can be
applied has to be clearly delineated.1
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