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The story of this paper is inspired by the existence of two schools of thought in modeling
and reasoning about information flow in interactive multi-agent systems where agents aquire
new information after communicating with each other. One of these schools is the interpreted
systems of, e.g. [6, 8] and the other is the dynamic epistemic logic (DEL) approach of,
e.g. [1, 2, 3, 5, 7]. The former is more algorithmic and inclined towards applications to
distibuted computing and artificial intelligence, whereas the latter is more logical and focuses
on formalizing concepts such as rational agents. One key difference between the two schools
is the semantic models used to represent a situtation of interest, about which we may
want to reason. Fagin et al use a very concrete semantics based on sequences of local
states, representing the possible executions of the system under consideration, which can
be obtained from an algorithmic description of the system in question, while DEL uses a
more abstract semantics in terms of Kripke structures.

The aim of this paper, which is very much work in progress, is to bring together these two
schools by developing an interpreted systems semantics for DEL. A full development would
involve devising a model for public and private announcements, which can be both honest
and dishonest. For the time being, however, we only present a system for logics of honest
public and private announcements, leaving the dishonest announcements for future work.
Our development consists of (1) a set of axioms describing runs of a system modeling public
and private announcements, (2) an LTL-style logic enriched with epistemic modalities, and
(3) a translation from dynamic epistemic logic to our logic showing that we can interpret
the existing logics of announcements in our setting. It is not hard to see that our logic is
sound and complete with respect to the particular class of interpreted systems we consider,
and that our translation is sound, that is, its image indeed forms a DEL.

We believe that our semantics, because of its more concrete nature, provides new in-
sights into the nature of dynamic epistemic logic, and will allow us to study announcements
in real systems, as well as more easily accomodate extensions (such as fact-changing actions
and parallel announcements), explore design space for informative belief in the context of
cheating and lying, and calculate the complexity of logics of public and private announce-
ments. Our semantics in general, and the calculation of its complexity in particular, should
go along recent interesting results of [4]. Studying these connections is also left to future
work. One nice feature of our approach is that we use standard primitives, such as time and
knowledge, with an S5 interpretation for knowledge that comes from a completely natural
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accessibility relation for every agent, namely indistinguishability of the agent’s local state.
Using these relations, we define a new modality, a form of belief, that seems to be required
to capture the state of uncertainty of agents as a result of private announcements. This new
modality helps explain the effect of private announcements on the knowledge of agents.

Finally, note that the relationship between our logic and DEL is similar to the rela-
tionship between temporal logic and dynamic logic: endogenous versus exogenous logics;
difference in complexity; often interested in reasoning about a particular protocol, rather
than all protocols. They indeed follow same ideas, but have different points of view.

1 Honest Public and Private Announcements

We start by defining a class of structures that correspond somewhat closely to execution of
protocols or programs. Here, we use the runs and systems framework of Fagin et al, which
roughly takes as models sets of traces of execution.

An interpreted system is a pair (R, π), where R is a set of runs, each run representing a
possible execution of the system, and π is an interpretation for the primitive positions (or
atoms). A run is a map from time to global states, where r(m) is the global state in run
r at time m. (For simplicity, we take time to range over the natural numbers.) We call a
pair (r,m) a point of r. Thus, each point corresponds to a global state of the system.

A global state is of the form (se, s1, . . . , sn), where se is the state of the environment,
and s1, . . . , sn are local states for each agent. If r(m) = (se, s1, . . . , sn), we write re(m)
for se and ri(m) for si. Intuitively, the local state for an agent records the observations
that the agent has made. Here, we consider observations to be announcements, public or
private, honest or dishonest, that the agent has received. We also record in the local state
possible initial observations made by the agent. For instance, in the muddy children puzzle,
initial observations for an agent include which other children are dirty. The local state of
the environment records information which is not available to the agents. For example, in a
coin tossing scenario, the result of the coin toss and also the sequence of all announcements
that have been made can be stored in the environment state. The announcements that an
agent has received will be a subsequence of this sequence of announcements.

We will want to interpret knowledge over such systems, and to do so, we define, for
each agent i, a relation over points of the system capturing which points agent i cannot
distinguish. Intuitively, two points will be indistinguishable to agent i if i has the same
local state in both points.1 We define (r,m) ∼i (r′,m′) if ri(m) = r′i(m). Note that this
makes ∼i an equivalence relation. In this section, we consider only honest public and private
announcements, meaning that the sequence of announcements seen by each agent differs

1One subtlety here is that we may not want to distinguish announcements that are logically equivalent.
For instance, the announcement (p ∧ q)!β can be thought of as the same announcement as (q ∧ p)!β . In
DEL, announcements are taken to be sets of states, therefore there is no distinction between announcing
p ∧ q and announcing q ∧ p. But it is easy to imagine scenarios where the fact that an announcement is
“presented” differently can be relevant; for instance, an announcement can be represented as a bit-string
sent over a network link, and an agent may be able to distinguish two different bit-strings corresponding to
two different presentations of the same announcement. For this paper, we consider announcements to be
the same when they are structurally equal, with the understanding that much of our development could be
done with an arbitrary equivalence relation over announcements.
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from each other and also from that of the environment: the insiders observe it and the
outsiders don’t. But in any case what is announced is truthful.

We need a syntax for announcements. We write announcements in an epistemic propo-
sitional language. (In fact, this is a sublanguage of the logic we introduce immediately
after.) Start with a set Φ0 of primitive propositions, representing the basic facts that we
care about, and form the language LK

n of announcements by closing Φ0 under ∧, ¬, and the
modal operator Ki. (As usual, we define ∨ and ⇒ as abbreviations.) We use θ to range
over formulas in LK

n . An announcement is written θ!β and for θ a formula in LK
n and β a

subset of agents β ⊆ {1, . . . , n}, it is interpreted as the announcement of θ to all agents in
group β. An announcement is public if it is of the form θ!{1,...,n}, otherwise, it is private.

We define a simple logic LK,A
n for reasoning about announcements in that setting. The

logic has essentially only epistemic and temporal operators. Again, we start with the set
Φ0 of primitive propositions, and add propositions of the form ann(θ, β) that reads as “an
announcement of θ has just happened to agents in β”. Formulas of LK,A

n include ϕ1 ∧ ϕ2,
¬ϕ, Kiϕ (read “agent i knows ϕ”), and ©ϕ (read “ϕ is true at the next round”).

ϕ ::= p | ann(θ, β) | ϕ1 ∧ ϕ2 | ¬ϕ | Kiϕ | ©ϕ

Note that LK
n is a sublanguage of LK,A

n , so that θ is really a formula of LK,A
n .

We interpret LK,A
n with respect to systems. We say formula ϕ is true at a point (r,m)

of system A, written (A, r,m) |= ϕ, defined inductively as

(A, r,m) |= p iff π(r,m)(p) = true

(A, r,m) |= ann(θ, β) iff last(re(m+ 1)) = θ!β

(A, r,m) |= ϕ1 ∧ ϕ2 iff (A, r,m) |= ϕ1 and (A, r,m) |= ϕ2

(A, r,m) |= ¬ϕ iff (A, r,m) 6|= ϕ

(A, r,m) |= Kiϕ iff for all (r′,m′) ∼i (r,m), (A, r′,m′) |= ϕ

(A, r,m) |= ©ϕ iff (A, r,m+ 1) |= ϕ.

Consider the following possible constraints on the runs of a system.

A1. There is at most one announcement made at each round. Thus, a run r satisfies: for
all m ≥ 0, if r(m) = (se, s1, . . . , sn) and r(m+ 1) = (s′e, s

′
1, . . . , s

′
n), then s′e is just se

with either a new announcement θ!β or
√

, a marker indicating no announcement has
been made, and similarly for each s′i.

A2. Facts do not change during a run. Thus, for all primitive propositions p and all times
m,m′ ≥ 0, π(r,m)(p) = true if and only if π(r,m′)(p) = true.

A3. Every announcement θ!β is put in the local state of the agents in β only, as well as
in the local state of the environment. For all r, m, and i, if the announcements in
ri(m) are 〈a1, . . . , ak〉 and the announcements in re(m) are 〈b1, . . . , bk〉, then if bj is
θ!β, then aj is θ!β if i ∈ β, and

√
if i 6∈ β.
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A4. For all r,m, θ, if (A, r,m) |= ann(θ, β), then (A, r,m) |= θ.

Definition 1.1 A private announcement system is a system satisfying A1–3. A private
announcement system is honest if it also satisfies A4. A private announcement system
in which the announcements in the local state of all agents are the same as in the state
of the environment is called a public announcement system. It is honest if the private
announcement system is.

Example 1.2 The announcement system for the muddy children puzzle. Suppose
there are n children and k of them are dirty. Propositions (for the announcements) are
D1, . . . , Dn (interpreted as “agent i is dirty”). The system has 2n runs, one per subset of
{1, . . . , n} indicating which children are dirty. Local state of each agent records which other
agent is dirty. Initially, there are no announcements. At the first step, if at least one child
is dirty, the announcement (by the father) is

( n∨
i=1

Di

)
!

This is followed by k − 1 announcements (where k is the number of dirty children)

( n∧
i=1

¬KiDi ∧ ¬Ki¬Di

)
!

Note that the run where there are no dirty children has no announcement. (We will see
later why we want to do things that way—we want to make sure that we do not announce
false things.)

We say ϕ is valid in A if (A, r,m) |= ϕ for all r and m. A formula ϕ is valid with respect
to an honest private announcement systems if A |= ϕ for all honest private announcement
systems A.

Proposition 1.3 LK,A
n is sound and complete with respect to honest announcement sys-

tems.

2 Translation to the Honest Fragment of DEL

We interpret DEL formulas in our system. The basic DEL formula is [α]ϕ, which says “after
announcing α (a complex announcement), ϕ is true”. In DEL, complex announcements
are sequences and nondeterministic choices of more primitive announcements: α1;α2, and
α1∨α2. Primitive honest announcements are of the form θ!β. Intuitively, we interpret [θ!β]ϕ
as ann(θ, β) ⇒ ©ϕ. More complex announcements can be obtained similarly; for instance,
[θ1!β1; θ2!β2]ϕ corresponds to ann(θ1, β1) ∧©ann(θ2, β2) ⇒ ©©ϕ, and so on.

There is a slight discrepancy in the interpretation, in the sense that [α]ϕ in DEL talks
about the possibility of doing α, while in our setting ann(θ, β) talks about θ being just
announced. This is a consequence of our choice of using linear time models - using branching
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time models would allow us to express an interpretation for [α]ϕ which is slightly closer to
DEL at the cost of more complex semantic models.

We denote the translation of a DEL formula ϕ as (ϕ)T .

(p)T = p

(ϕ ∧ ψ)T = (ϕ)T ∧ (ψ)T

(¬ϕ)T = ¬(ϕ)T

(2iϕ)T = Ki(ϕ)T

([α]ϕ)T = after(α, ϕ)

where after(α, ϕ) is inductively defined:

after(ψ!β, ϕ) = ann(ψ, β) ⇒ ©ϕ
after(α1 ∨ α2, ϕ) = after(α1, ϕ) ∨ after(α2, ϕ)
after(α1;α2, ϕ) = after(α1, after(α2, ϕ))

This allows us to interpret DEL formulas as formulas in our logic. In order to prove that
the interpretation of DEL formulas in our logic are sound, we need the following result:

Proposition 2.1 An honest public announcement system satisfies the following property:

(r′,m′ + 1) ∼i (r,m+ 1) ⇒ (r,m) ∼i (r′,m′)

Proposition 2.2 Our translation is faithful to DEL with respect to honest public an-
nouncement systems.

Proof. We need to show that DEL’s axioms (other than the usual modal logic ones) are
valid in our system. These are

D1. [θ!β]p⇔ (θ ⇒ p).

D2. [θ!β]¬ϕ⇔ (θ ⇒ ¬[θ!β]ϕ)

D3. [θ!β]2iψ ⇔ (θ ⇒ 2i[θ!β ]ψ).

D1 represents preservation of facts – that epistemic actions do not affect the truth value of
primitive propositions. This is true in our setting via the validity

p⇔ ©p.

D2 represents partial functionality, it can be expressed in our setting as follows

(ann(θ, β) ⇒ ©¬ϕ) ⇔ (θ ⇒ ¬(ann(θ, β) ⇒ ©ϕ))

and follows from the standard semantics of our temporal modality.
D3 represents the action-knowledge axiom – that agents know the consequences of actions:
they know a fact after an action exactly when they know that performing that action yields
that fact. This can be expressed in our setting as follows:

Ki(ann(ϕ, β) ⇒ ©ψ) ⇔ ann(ϕ, β) ⇒ ©Kiψ.

and follows from proposition 2.1. 2
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3 Private Announcements and Belief

Consider a system of three agents where agent 1 tosses a coin, witnessed by no one. He
then announces privately to himself and to agent 2 the result of the toss. Consider primitive
propositionsH and T , true at states whereH is the result of the coin toss, and T is the result
of the coin toss. The corresponding system has two runs, the initial state of the environment
in the first run records that the coin landed heads, while the second run records that the
coin landed tails. After time 0, agent 1 announces the result of the coin toss, which is
recorded in the state of the agents at time 1. In the system corresponding to this scenario,
the runs are rT , rH , the states of the environment is rT

e (1) = (T, 〈T !{1,2}〉), and the local
states of agents are rT

1 (1) = rT
2 (1) = 〈T !{1,2}〉, but rT

3 (1) = 〈
√
〉, and similarly for rH .

What is true in this system?

(rH , 0) |= ¬K1(H) ∧ ¬K1(T )

(rH , 1) |= K1(H) ∧K2(H) ∧ ¬K3(H) ∧ ¬K3(T )

(rH , 1) |= ¬K3K2H.

In DEL, the knowledge operator seems to capture something sligtly different. In par-
ticular, they establish that at time 1 on run rH , 23¬22(H). However, this says that agent
3 knows something false. Since knowledge is generally taken to satisfy axiom T, that is
Kϕ ⇒ ϕ, the DEL modality 2i could be more appropriately interpreted as some sort of
belief.

How do we capture the notion of 2i in our setting? Clearly, our Ki operator does not
let us know false formulas. We therefore introduce a new operator, Biϕ, and appropriate
semantic machinery to interpret it.

What is going on in the example above, is that agent 3 believes that agent 2 does not
know H because, having not seen the private announcement, he assumes that there was no
announcement whatsoever.2 This is the source of the wrong belief. In order to model this,
we need to define operator Bi in such a way that agent i considers possible other states
where other agents have in fact not received the purported private announcement. Doing
this requires adding runs to the system to capture these non-real executions.

Accordingly, we define an honest belief-based private announcement system to be an
honest private announcement system augmented with the following runs:

A5. For every real run r, and time m, there exists another run r′ such that if re(m) has
announcements 〈b1, . . . , bk〉, then r′i(m) has last announcement

√
(instead of possibly

bk) for all i, and for each m′ ≥ m, the local state of each agent has
√

as the k-th
announcement, instead of possibly bk (in other words, the replacement of bk by

√
is

done consistently across the run.)3.
2But if he suspects that there was such an announcement, then he cannot get that belief, and in fact does

not get any information out of the announcement that he does not witness, whereas if he does not suspect
it, he gets some (possibly wrong) information out of something he does not even know happened.

3Note that we potentially change the meaning of Ki for future propositions. (For instance, K1©K2p for
some p.)
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Equipped with all these runs, we can interpret belief as follows:

(A, r,m) |= Biϕ iff either

– last(ri(m)) = θ!β and for all (r′,m′) ∼i (r,m), (r′,m′) |= ϕ, or

– last(ri(m)) =
√

and for all (r′,m′) ∼i (r,m) such that last(r′j(m
′)) =

√
for all

j, (r′,m′) |= ϕ.

Definition 3.1 An honest belief-based private announcement system is an honest private
announcement system which moreover satisfies A5.

Example 3.2 We can check that for the coin-toss problem, we have the following which is
clearly an instance of false belief:

(rH , 1) |= B3¬K2(H) ∧K2(H),

This new modality makes our translation sound with regard to honest belief-based private
announcement systems, but first we need a similar result on equivalence classes:

Proposition 3.3 An honest belief-based private announcement system satisfies the follow-
ing property:

(r′,m′ + 1) ∼i (r,m+ 1) ⇒ (r,m) ∼i (r′,m′)

Proposition 3.4 In our previous translation if we change (2iϕ)T = Ki(ϕ)T to (2iϕ)T =
Bi(ϕ)T , then the translation would become faithful to DEL with respect to honest belief-
based private announcement systems.

Proof. The only difference with honest public announcement systems is the translation of
axiom D3, which is now expressed as follows

Bi(ann(ϕ, β) ⇒ ©ψ) ⇔ ann(ϕ, β) ⇒ ©Biψ.

and follows from the interpretation of Bi and proposition 3.3. 2

If we assign an announcer agent to each announcement, as a map from the set of all
announcements to the set of all agents, then we can show the following

Proposition 3.5 For all r,m, θ, if (A, r,m) |= ann(θ, β), then (A, r,m) |= Biθ where i is
the announcer agent of the θ!β announcement.

4 Future Work

We will define systems with dishonest announcements, we believe this is easily achieved
similar to private announcements, that is by augmenting the runs and add new clauses to
the definition of Bi. We also plan to prove that soundness of our translation will extend
to these models. Also in this case, we believe that this is easily done by similar unification
results on the equivalence classes (propositions 2.1 and 3.3).
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