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Abstract. How can we explain why we should ascribe some logical prop-
erties to an agent’s preferences, and why we should not ascribe others
to them? Although this problem is very important, little attention has
been given to it. We break this problem down into the three:

Problem 1. When we attempt to ascribe some logical properties to the
preferences of an agent, how can we explain this ascription?

Problem 2. What logical properties must we ascribe to his preferences if
and only if our solution to Problem 1 can be adopted?

Problem 3. What logical properties should we ascribe to his preferences
and what logical properties should not we ascribe to them?

The aim of this paper is to propose a new version of sound and com-
plete preference logic (PL) that can furnish a solution to each of these
problems. We solve all of them by providing PL with a Domotor-type
semantics that is a kind of measurement-theoretic and decision-theoretic
one.
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1 Introduction

The notion of preference plays an important role in many disciplines, including
philosophy and economics.! Some of notable recent developments in ethics make
substantial use of preference logic.? In computer science, preference logic has
become an indispensable device. The founder of preference logic is the found-
ing father of logic itself, Aristotle. Book III of the Topics can be regarded as
the first treatment of the subject. From the 1950s to the 1960s, the study of

! [8] gives a comprehensive survey of preference in general.
2 [7] gives a comprehensive survey of preference logic.



preference logic flourished in Scandinavia—particularly by Halldén ([6]) and von
Wright ([26]) and in the U.S.A.—particularly by Martin ([17]) and Chisholm and
Sosa ([4]). Recently with the help of Boutilier’s idea ([3]), van Benthem, Otterloo
and Roy reduced preference logic to multi-modal logic ([25]). Some logical prop-
erties are provable in one preference logic, but they are not provable in another
preference logic. For example, the status of such logical properties as (transi-
tivity), (contraposition), (conjunctive expansion), (disjunctive distribution) and
(conjunctive distribution) is as follows:

Ezample 1.
von Wright Martin = Chisholm and Sosa
Transitivity + + +
Contraposition — + —
Conjunctive Expansion + — —
Disjunctive Distribution — — -
Conjunctive Distribution + - —
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‘4’ denotes the property in question being provable in the logic in question. ‘—
denotes the property in question not being provable in the logic in question.
(Conjunctive expansion) says that an agent does not prefer @1 to ¢ iff he does
not prefer p1 A =2 to o A —p1. (Disjunctive distribution) says that if he does
not prefer 1 V @2 to @3, then he does not prefer 1 to @3 or does not prefer o
to 3. (Conjunctive distribution) says that if he does not prefer ¢; to ¢o and
does not prefer @3 to a3, then he does not prefer 1 V 3 to ¢s.

Then how we can explain why we should ascribe some logical properties to
an agent’s preferences, and why we should not ascribe others to them? Although
this problem is very important, little attention has been given to it. We break
this problem down into the three:

Problem 1. When we attempt to ascribe some logical properties to
the preferences of an agent, how can we explain this ascription?

Problem 2. What logical properties must we ascribe to his preferences
if and only if our solution to Problem 1 can be adopted?

Problem 3. What logical properties should we ascribe to his prefer-
ences and what logical properties should not we ascribe to them?

The aim of this paper is to propose a new version of sound and complete
preference logic (PL) that can furnish a solution to each of these problems. We
solve all of them by providing PL with a Domotor-type semantics that is a kind
of measurement-theoretic and decision-theoretic one.

Measurement theory is one that provides measurement with its mathematical
foundation.? The mathematical foundation of measurement had not been studied
before Hélder developed his axiomatisation for the measurement of mass ([9]).
[14], [24] and [16] are seen as milestones in the history of measurement theory.
In measurement theory, at least four kinds of measurement have been objects of
study:

3 [21] gives a comprehensive survey of measurement theory.



. ordinal measurement,

. extensive measurement,
. difference measurement,
. conjoint measurement.
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On the other hand, there are at least two kinds of decision theory:

1. evidential decision theory,?
2. causal decision theory.?

The former is designed for decision makings that have statistical or evidential
connections between actions and outcomes. The latter is designed for decision
makings that have causal connections between actions and outcomes. Both theo-
ries take the form of subjective expected utility theory. Jeffrey ([11]) is a typical
example of the former. Ramsey ([19]) is a typical example of the latter. Ramsey
regarded desire as attitude toward outcomes but belief as one toward propo-
sitions. Moreover, he regarded preference as attitude toward an ordered pair
of gambles, that is, hybrid entities composed of outcomes and propositions. In
1965 Jeffrey ([11]) developed an alternative to Ramsey’s theory. He regarded
both desire and belief as attitudes toward propositions. Moreover, he regarded
preference as attitude toward an ordered pair of propositions. In this sense we
call Jeffrey’s a mono-set theory. Its initial axiomatisation was provided in terms
of measurement theory by Bolker ([2]) on the mathematics developed in [1]. Jef-
frey ([10]) modified Bolker’s axioms to accommodate null propositions. Domotor
([5]) also axiomatised a version of mono-set theory. Mono-set theories are more
suitable for the semantics of logic than Ramsey’s, for regarding propositions as
the semantic values of sentences is simpler than regarding gambles as those when
we wish to provide logic with its semantics. Especially, Domotor’s theory is the
most suitable for the semantics of logic of these three mono-set theories, for
constructing the syntactic analogues of the axioms of Domotor’s theory is easier
than of the other two theories.

Like Bolker’s and Jeffrey’s, Domotor’s theory has a conjoint structure.
In them, preferences are decomposable into beliefs and desires. From a
measurement-theoretic viewpoint of decision theory, there is a tradition to spec-
ify or explain an agent’s beliefs and desires in terms of his preferences [and vice
versa]. This specification takes the form of a representation theorem:

If [and only if] an agent’s preferences satisfy such-and-such conditions,
there exist a probability function and a utility function such that he
should act as an expected utility maximiser (existence). [In addition,
the pair of such probability function and utility function is unique up to
a kind of transformation (uniqueness).]

Domotor’s representation theorem is the only known one that can furnish con-
ditions of an agent’s preferences necessary and sufficient for there existing a
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[11] gives a comprehensive survey of evidential decision theory.
[13] gives a comprehensive survey of causal decision theory.



probability function and a utility function such that he should act as an ex-
pected utility maximiser. All other representation theorems, such as [2] and [10],
can furnish only sufficient conditions for it. So if an agent’s belief state can be
represented by a probability function and his desire state can be represented
by a utility function, then only by virtue of Domotor’s representation theorem,
we can explain ascribing some logical properties to his preferences in terms of
his beliefs and desires via expected utility maximisation, which can furnish a
solution to Problem 1. But by virtue of all other representation theorems, we
cannot do so. By virtue of Domotor’s representation theorem, we should ascribe
(connectedness) and (projectivity) to an agent’s preferences if and only if our
solution to Problem 1 can be adopted, which can furnish a solution to Problem
2. Generally, conjoint measurement requires the cancellation axiom as a neces-
sary one. (Projectivity) can be regarded as a generalisation of the cancellation
axiom. Domotor’s representation theorem follows from Scott’s separation the-
orem ([22]). The latter is based on the general mathematical criterion for the
solvability of a finite set of homogeneous linear inequalities.

The structure of this paper is as follows. In Section 2, we prepare the
projective-geometric concepts for the measurement-theoretic settings: character-
istic function, exterior product, symmetric product and four-fold exterior prod-
uct, and define preference space and preference assignment, and state necessary
and sufficient conditions for representation: (connectedness) and (projectivity),
and prove a representation theorem. In Section 3, we define the language Lp|
of PL, and define a Domotor-type structured Kripke model M for preference,
and provide PL with a truth definition, and provide PL with a proof system, and
prove the soundness of PL in the usual way, and prove the completeness of PL
by constructing the canonical model, and prove that (reflexivity), (transitivity),
(connectedness) and (impartiality) are all provable in PL, and that neither (con-
traposition), (conjunctive expansion), (disjunctive distribution) nor (conjunctive
distribution) is provable in PL, but that (restricted contraposition), (restricted
conjunctive expansion), (restricted disjunctive distribution) and (restricted con-
junctive distribution) are all provable in PL, which can furnish a solution to
Problem 3.

2 Measurement-Theoretic Settings

2.1 Projective-Geometric Concepts

We define the preliminaries to the measurement-theoretic setting.

Definition 1 (Preliminaries). W is a nonempty set of possible worlds. Let F
denote a Boolean field of subsets of W. We call A € F a proposition.

Because it is impossible to characterise multiplication of probabilities and utili-
ties in terms of union, intersection and preferences, we need a Cartesian product
x. A characteristic function is definable also on a Cartesian product of proposi-
tions. We define a characteristic function as follows:



Definition 2 (Characteristic Function). A characteristic functionA: F —
{0,1}W is one where for any A € F we have A : W — {0,1} such that

AA(w):—{1 ifweA,

0 otherwise,

for any w € W. A Cartesian product of characteristic functions ® is defined as
follows: A ® B := (A x B).

By means of ® we define an exterior product o as follows:

Definition 3 (Exterlor Product)
AoB:=A@B-B®A= (A><B) (B x A).

By means of o we define a symmetric product ® as follows:

Definition 4 (Symmetric Product).

(ABCD) R

::(A ) (Co ) (COD) (AOB) R
(A><B><C><D) (B><A><D><C) (C’><D><A><B) (DxCxBxA)
—(A><B><D><C)A—(B><A><C><D)—(C><D><B><A)—(D><C><A><B)A.

By means of ® we define a four-fold exterior product A as follows:

Definition 5 (Four-Fold Exterior Product).

A(A,B,C,D):=

<A 2 ADA>+ (4,C.D.B) +©(A,D.B,C) =
(AXxBxCxD)+(BxAxDxC)+(CxDxAxB)+(DxCxBxA)
(A><B><D>< )A (BxAxCxD)A (C><D><B><A)A (D><C><A><B)A
+(AxCxDxB )A+(C’><A><B><D)A+(D><B><A><C)A+(B><D><C’><A)A
—(AxCxBxD )A (C><A><D><B)A (D><B><C><A)A (B><D><A><C)A
+(A><D><BxC)A+(D><A><C><B)A+(B><C><A><D)A+(C><B><D><A)A
(A><D><C’><B)A (D><A><B><C)A (B><C><D><A)A (C><B><A><D)A

2.2 Preference Space and Preference Assignment
We define preference space and preference assignment as follows:

Definition 6 (Preference Space and Preference Assignment). <, is a
weak preference relation on F?. A <, B is interpreted to mean that the agent
does not prefer A to B at a time in w. ~,, and <, are defined as follows:

e A~, B:=A=<, B and B=<, A,
e A<,B:=A=<, Band A %, B

For any w € W, (W, F,=<,) is called a preference space. Let PS denote the set
of all preference spaces. p: W — PS 1is called a preference assignment.



2.3 Conditions for Representation
We can state necessary and sufficient conditions for representation as follows:

1. A<, Bor B=,, A (Connectedness),
2. If (A; <y B; and C; =, D; for any i < n),
then (if A,, <, v Bn, then Dy, <, Cy, ),
where Z@ Az Bl CZ DZ) A(A B C D n) (Projectivity).

i<n

2.4 Explanation for Projectivity

Under Domotor’s representation theorem, (projectivity) essentially says that if

and if Uy (4;) < Uy (B;) fori=1,...,nand U, (C;) < Uy(D;) fori=1,...,n—
1, then Uy(Dn) < Uyw(Cr). Zero on the right hand side comes from the fact that

o~

the measure of A(A,,, B, C’ D, ,.) happens to be equal to zero:

Py (An) Py (B )P (Cn) Py (D) (U (Br) = U (An))(Uw(D ) = Uw(Cr))
+(Uw(Cn) = Uw(An))(Uw(Bn) = Uw(Dn)) + (Uw(Dn) = U (An))(Un(Cr) = U (Br))) = 0.

2.5 Domotor’s Representation Theorem
We can prove Domotor’s representation theorem as follows:

Theorem 1 (Representation). For any w € W, (W, F, =<, A7 X) satisfies
(connectedness) and (projectivity) iff there are Py, : F — R and U, : F\0 — R
such that the following conditions hold for any A, B € F\D:

o (W, F,P,) is a finitely additive probability space,
« A=y B iff Up(A) < Uy(B),
o Uuy(A) = Y Puy({wa})Us, ({w2}),

wo €A
o When A€ F, if P,(A) =0, then A= 0.

Proof. Except that the proof is relative to world, it is similar to that of [[5]:184—
194].

2.6 Significance of Domotor’s Representation Theorem

Theorem 1 (Domotor’s representation theorem) is the only known one that can
furnish conditions of an agent’s preferences necessary and sufficient for there
existing a probability function and a utility function such that he should act as
an expected utility maximiser. All other representation theorems, such as [2] and



[10], can furnish only sufficient conditions for it. So if an agent’s belief state can
be represented by a probability function and his desire state can be represented
by a utility function, then only by virtue of Theorem 1, we can explain ascribing
some logical properties to his preferences in terms of his beliefs and desires via
expected utility maximisation, which can furnish a solution to Problem 1. But
by virtue of all other representation theorems, we cannot do so. What has to be
noticed is that we never insist that expected utility maximisation should be the
best way to make rational decisions. By virtue of Theorem 1, we should ascribe
(connectedness) and (projectivity) to an agent’s preferences if and only if our
solution to Problem 1 can be adopted, which can furnish a solution to Problem
2. In Theorem 1, we do not obtain the uniqueness result. But it does not matter
when we provide PL with its semantics.

2.7 Scott’s Separation Theorem

Generally, conjoint measurement requires the cancellation axiom as a necessary
one. (Projectivity) can be regarded as a generalisation of the cancellation axiom.
Domotor’s representation theorem follows from Scott’s separation theorem.

Theorem 2 (Separation, Scott [22]). Let I be a finite-dimensional real linear
vector space and let 0 # G C H C I, where H = —H = {—v : v € H} is finite
and all its elements have rational coordinates with respect to a given basis. Then
there exists a linear functional F : I — IR such that for any v € H

Fv)>0iffveG
iff for any v,v; € H (1 <i < n) we have both
(1) veGor—veG

and
(2) Ifv; € G for any i < n, then —v € G, where Zvi =0.

i<n

(1) corresponds to (connectedness) and (2) corresponds to (projectivity). Scott’s
separation theorem is based on the general mathematical criterion for the solv-
ability of a finite set of homogeneous linear inequalities.

3 Preference Logic PL

3.1 Language
The language Lp of PL is defined as follows:

Definition 7 (Language). Let S denote a set of sentential variables, WPR a
weak preference relation symbol, and FCP a four-fold Cartesian product symbol.
Lpr is given by the following rule:

pu=s|T |20 |prAps | WPR(p1,02) | FCP(01, 2,3, 04),



where s € S. 1,V,— and < are introduced by the standard definitions. IND
and SPR. are defined as follows:

e IND(y1, p2) := WPR(p1, p2) A WPR(2,01),
e SPR(¢1,p2) := WPR(1, p2) A 7IND (1, 2).

The set of all well-formed formulae of LpL will be denoted by P, .

3.2 Semantics

Model By developing the idea of Naumov ([18]), we define a Domotor-type
structured Kripke model M for preference as follows:

Definition 8 (Model). M is a quintuple (W,R,L,V,p), where W is a
nonempty set of possible worlds, R is a relation on W2, (W, R) is a directed
acyclic graph, L : R — {m, 7o, w3, T4} s a function that assigns labels to the
edges of the graph, any two edges leaving the same vertex have different labels,
any vertex either has my -, wo-, m3- and m4-labeled outgoing edges or none of them,
V is a truth assignment to each s € S for each w € W, and p is a preference
assignment that assigns to each w € W (W, F,=<,,) that satisfies (connected-
ness) and (projectivity). For any wy € W, by m;(w1) (i =1,2,3,4) we mean the
unique we € W such that R(wy,ws2) and L(wy,we) = m; if such world exists.

Truth Definition We can provide PL with the following truth definition:

Definition 9 (Truth). The notion of ¢ € ., being true at w € W in M, in
symbols (M, w) [=pL ¢ is inductively defined as follows:

,w) EpL s iff V(w)(s) = true,
yw)EpL T iff  for allw, V(w)(T) = true,
sw) L1 Az iff  (Miw) ey and (M, w) e @2,
sw) Lo iff  (M,w) Fe o,
)

LXK

(
(
(
(
(

nd (M, m3(w)) f=pL @3 and (M, ma(w)) FpL @4,
o (M,w) Fp. WPR(p1,902) iff [p1] 2w [w2],

where [¢] = {w € W : (M,w) EpL ¢}. If (M,w) EpL ¢ for allw € W, we
write M [=pL ¢ and say that ¢ is valid in M. If ¢ is valid in all Domotor-type
structured model for preference, we write |=pL ¢ and say that ¢ is valid.

IS

<=

3.3 Syntax

Preliminaries We devise a syntactic analogue of (projectivity). By developing
the idea of Segerberg ([23]), we define I; as follows:

yw) EpL FCP (g1, 02,03, 04)  iff (M, mi(w)) EpL 1 and (M, m2(w)) FpL #2



Definition 10 (Disjunction of Conjunctions). For any i (1 <1i < 4n +4),
I; is defined as the disjunction of all the following conjunctions:

n—1

N\ & FCP (0,15, x5, 7))

j=1

/\anCP(SOny Xns d)nv Tn)

/\dn+1FCP(90memen)
2n

A /\ d;FCP(Yj—n—1,0j—n—1,Tj—n—1, Xj—n—1)
j=n+2
/\d2n+1FCP(Xna Pns Tn, wn)

/\d2n+2FCP(Tn; Pny wvu Xn)
3n+1

A /\ d;FCP(Xj—2n-2,Tj—2n-2, Pj—2n—2, Vj—2n—2)
j=2n+3
/\d3n+2FCP(Tn; U, Xns Son)

/\d3n+3FCP(¢7za Xns Tn, ‘Pn)
4n+2

A /\ d;FCP(Tj_3n-3, Xj—3n—3,Vj—3n—3, Yj—3n—3)
j=3n+4
/\d4n+3FCP(wna Tny Pns Xn)
/\d4n+4FCP(Xna wn7 Pn, Tn)
n—1
j=1
Nen FCP (9n, Xns Tns ¥n)
/\€n+1FCP(SDn> Tn, ’(/}nv Xn)
2n

A /\ ejFCP(wj—n—h Pj—n—15 Xj—n—1, Tj—n—l)
j=n-+2
Ae?n-‘rlFCP(XTM Pns ’l/}na Tn)

/\e2n+2FCP(Tn7 Pny Xn, 1/’n)
3n+1

A /\ e;FCP (Xj—2n—2, Tj—2n—2,Vj—2n—2, Pj—2n—2)
Jj=2n+43
/\63n+2FCP(Tn, 7//7“ Pn, XTL)

/\e?m—&-SFCP(wm Xnyr Pns Tn)
4n+2

A /\ e; FCP(Tj_3n—-3, Xj—3n—3; ©j—3n—3,Vj—3n—3)
j=3n44

/\e4n+3FCP(wna Tny Xns (pn)

/\e4n+4FCP(Xn7 Uy Tn,s (pn)

such that exactly i of the d;’s and i of the e;’s are the negation symbols, the rest
of them being the empty string of symbols.

By means of I';, we define DDC as follows:



Definition 11 (Disjunction of Disjunctions of Conjunctions).

DDC (@i, i, Xi, i) = Vit T4 T

Proof System We provide PL with the following proof system.
Definition 12 (Proof System).

e Axioms of PL

(A1) All tautologies of classical sentential logic,
(A2) WPR(p1,02) V WPR(p2,01) (Syntactic Analogue of Connectedness),

DDCZL:I(SO'H wiu Xiy Ti) -
(A3) (N (WPR(pi, i) AWPR(xi, 7)) = (WPR(¢n, ¥n) = WPR(7,, Xn)))
(Syntactic Analogue of Projectivity),

(44) FCP(T,T,T,T) (Tautology and Four-Fold Cartesian Product),

(45) FCP (1 A 2,91 A b2, x1 A X2, Ti AT2) — (FCP (91,91, x1,71) A FCP (2,12, X2, T2))
(Conjunction and Four-Fold Cartesian Product 1),

(A6) (FCP (1, p1,,§) NFCP (2, p1,1,§)) — FCP (o1 A 2, 1, 1, €)
(Congunction and Four-Fold Cartesian Product 2),

(A7) (FCP()‘v ,(/)17 v, g) A FCP(Aa wQa v, f)) - FCP(Aa wl A ,(/J27 v, 5)
(Conjunction and Four-Fold Cartesian Product 3),

(Ag) (FCP()U My X1, g) A FCP()U My X2, 5)) - FCP()‘a My X1 A\ X2, 5)
(Congunction and Four-Fold Cartesian Product 4),

(FCP(\, v, 11) ANFCP(\ i, v,72)) = FCP(A, p, v, 71 A T2)
(Conjunction and Four-Fold Cartesian Product 5),

~FCP(p,¥,x,7)
(A]O) — (FCP(ﬁ(Pv 1/1» X5 7-) \ FCP(()D> ﬁlﬁ’ X T) \ FCP(@; ?ﬁ, X, T) \ FCP(SOv ¢a X ﬁT))
(Negation and Four-Fold Cartesian Product).
e Inference Rules of PL
(RI) Y1 P1— P2

(Modus Ponens),
P2

(R2) N (Weak Preference Necessitation),
WPR(¢2,¢1)
PCAYAXNT

B 5GP (v

(Four-Fold Cartesian Product Necessitation).

10



A proof of ¢ € Pp is a finite sequence of LpL-formulae having ¢ as the last
formula such that either each formula is an instance of an axiom, or it can
be obtained from formulae that appear earlier in the sequence by applying an
inference rule. If there is a proof of v, we write Fp| .

3.4 Soundness and Completeness

We can prove the soundness of PL in the usual way.
Theorem 3 (Soundness). For every ¢ € $p, if FpL ¢, then EpL .
We can prove the completeness of PL by constructing the canonical model.

Theorem 4 (Completeness). For every ¢ € $p, if =pL @, then FpL .

3.5 Logical Properties of Preference

(Reflexivity), (transitivity), (connectedness) and (impartiality) are all provable
in PL.

Proposition 1 (Reflexivity, Transitivity, Connectedness and Impar-
tiality).

e Fpp WPR(p,p) (Reflexivity),
e oL WPR((1,92) A WPR(g2, 03)) — WPR(p1,¢5) (Transitivity).
o FpL WPR(¢1,p2) V WPR(¢p2,p1) (Connectedness),

o FpL ((SPR(p2,3) A SPR(p2,04)) V (SPR(ps, p1) A SPR(p4,¢1)))
— (IND(p1,92) A ((p1 A p3) < (92 Aps) < (P1 A pa) < (P2 Aps) <= 1))
— (WPR(p1 V 3,02 V p3) & WPR(p1 V4,02V q))) (Impartiality 1),

e FpL ((SPR(ps, ¢2) A SPR(p2,04)) V (SPR(p4, p2) A SPR(p2,93)))
— ((IND(e1,02) A ((01 A @3) < (02 A @s) < (2 Apa) < (91 Apa) = L))
— (WPR(p1 V @3,02 V p3) & WPR(p2 V @4,01 V ¢4))) (Impartiality 2),

o pL (-IND(p2,p3) A “IND(p2, 04))

— ((IND(p1, 02) A (1 A 93) <= (92 A 93) = (91 A pa) < (92 A pa) = L))
— (IND(¢1 V 3,02 V p3) < IND(p1 V 04,92 V ¢4)))  (Impartiality 3).

Neither (contraposition), (conjunctive expansion), (disjunctive distribution) nor
(conjunctive distribution) is provable in PL.

11



Proposition 2 (Contraposition, Conjunctive Expansion, Disjunctive
Distribution and Conjunctive Distribution).

o /o WPR(p1,92) & WPR(—p2,—¢1) (Contraposition),
o o WPR(p1,92) & WPR(p1 A =92, 02 A np1)  (Congunctive Expansion),

o 7pL WPR(p1 V 932,03) = (WPR(p1, 03) V WPR (2, ¢3))
(Disjunctive Distribution of Left Disjunction),

o 7L WPR(p1, 02V 3) = (WPR(¢p1,02) V WPR (1, ¢3))
(Disjunctive Distribution of Right Disjunction),

o 7oL (WPR(¢1,2) AN WPR(p3,02)) » WPR(p1 V 03, 92)
(Congunctive Distribution of Left Disjunction),

o 7oL (WPR(¢1,92) NWPR(p1,93)) = WPR(p1, 02 V ¢3)
(Conjunctive Distribution of Right Disjunction).

(Restricted contraposition), (restricted conjunctive expansion), (restricted dis-
junctive distribution) and (restricted conjunctive distribution) are all provable
in PL.

Proposition 3 (Restricted Contraposition, Restricted Conjunctive
Expansion, Restricted Disjunctive Distribution and Restricted Con-
junctive Distribution).

o FpL((p1 A p2) = L) = (WPR(p1,2) & WPR(—p2, 1))
(Restricted Contraposition),

o b ((p1 A w2) = L) — (WPR(p1, p2) > WPR(p1 A =2, 02 A 1))
(Restricted Conjunctive Expansion),

e bFpL ((p1 A p2) & (w2 Aps) < (p3 Apr) < L)
— (WPR(p1 V 2, 03) = (WPR(p1,3) V WPR(p2,93)))

(Restricted Disjunctive Distribution of Left Disjunction),

o FpL ((p1 Apa) < (P2 Aps) < (p3 A1) < L)
— (WPR(p1, 02 V ¢3) = (WPR(p1,902) V WPR(p1, ¢3)))

(Restricted Disjunctive Distribution of Right Disjunction),

o Fpu (o1 Ap2) < (P2 Aps) < (3 A1) < 1)
— ((WPR(¢p1,92) A WPR(p3, 02)) — WPR(p1 V 3, 02))
(Restricted Conjunctive Distribution of Left Disjunction),

o FpL ((p1 Ap2) < (2 Aps) < (p3 A1) < L)
— ((WPR(p1,p2) A WPR(p1, ¢3)) = WPR(p1, 2 V ¢3))
(Restricted Conjunctive Distribution of Right Disjunction).

12



Proposition 1, together with Proposition 2 and Proposition 3, can furnish a
solution to Problem 3.

4 Conclusions

We have defined the language Lp| of PL, and defined a Domotor-type structured
Kripke model M for preference that can furnish a solution to both Problem 1
and Problem 2, and provided PL with a truth definition, and provided PL with
a proof system, and proved the soundness of PL in the usual way, and proved
the completeness of PL by constructing the canonical model, and proved that
(reflexivity), (transitivity), (connectedness) and (impartiality) are all provable in
PL, and that neither (contraposition), (conjunctive expansion), (disjunctive dis-
tribution) nor (conjunctive distribution) is provable in PL, but that (restricted
contraposition), (restricted conjunctive expansion), (restricted disjunctive dis-
tribution) and (restricted conjunctive distribution) are all provable in PL, which
can furnish a solution to Problem 3.
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