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Abstract. Recently, the general approach of Game Theory, which is to find the
set of outcomes (the equilibria) of a solution concept in a game, has been modeled
by means of Game Logics, in which a game and a solution concept are related to
models and formulas of a Game Logic. Thus, the general problem can be stated as
a model-checking problem. Moreover, the set of solutions can be found automati-
cally by using model-checkers of the respective Game Logic. The implementation
problem in Game Theory focus on the inverse problem, i.e., finding a game that
yields a given set of outcomes as equilibria of a solution concept. In this work, we
relate the implementation problem to a model checking problem of an adequate
Game Logic. Specifically, we illustrate the relationship between the implementa-
tion problem of extensive games with perfect information and the model checking
problem of GAL (Game Analysis Logic). As a consequence, we can benefit of the
use of model-checkers in order to solve the implementation problem as well. It is
worth mentioning that the approach used in this article seems to be adequate for
other Game Logics as well.

1 Introduction

The general approach of Game Theory [7] is to find the set of outcomes (the equilibria)
of a solution concept in a game. On the other hand, Implementation Theory focus on the
inverse problem, i.e., a planner looks for a game that yields a given set of outcomes as
equilibria of a solution concept. The planner can design the structure of the game, but
he or she cannot control the players’ preferences and actions. Typical examples of this
approach come from mechanism design and auctions in which a planner has to set the
rules of the game, and the players take them literally.

The general approach of Game Theory has been modeled by means of Game Logics
[9,2,1,5,6,10,11,8,3], in which games and solution concepts are related to as models
and formulas of the Game Logics (see Figure 1). So, the general problem is related to
a model-checking problem of the Game Logics. Since most of the general approach of
Game Theory have been stated as model-checking problems, we can drawn the following
conjecture.

Congecture 1. Let S be a solution concept of a game G.
s is in the solution set of S of the game G iff T'g  as(s),

where I'c and as(s) are, respectively, a model for the game G and a formula for the
solution concept S within the solution s, expressed in an adequate Game Logic.
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Fig. 1. Relationship between Game Theory and Game Logics.

In [11], we use GAL (Game Analysis Logic) to express the standard games and solution
concepts of Game Theory. GAL is a first-order modal logic which is based on the standard
logic CTL [4]. The standard models of Game Theory (strategic games, extensive games
and coalition games) and their solution concepts (Nash equilibrium, subgame perfect
equilibrium and core), respectively, are express as models of GAL and formulas of GAL.
Moreover, a GAL model-checker is used to find these solution concepts automatically.

In this work we show a correspondence between the implementation problem and the
model-checking problem. We restrict attention to the implement problems of extensive
games; however, a general approach seems to follow the same baseline.

This work is divided into 4 sections: Section 2 introduces GAL briefly; The correspon-
dence of the general approach and GAL is presented in Section 3; Section 4 states the
correspondence between the implementation problem and the model-checking problem:;
and, Section 5 concludes this work.

2 Game Analysis Logic (GAL)

GAL is a many-sorted modal first-order logic language that is a logic based on the stan-
dard Computation Tree Logic (CTL) [4]. A game is a model of GAL, called game analysis
logic structure, and an analysis is a formula of GAL.

The games that we model are represented by a set of states SE and a set of actions
CA.

A state is defined by both a first-order interpretation and a set of players, where: 1-
The first-order interpretation is used to represent the choices and the consequences of the
players’ decisions. For example, we can use a list to represent the history of the players’
choices until certain state; 2- The set of players represents the players that have to decide
simultaneously at a state. This set must be a subset of the players’ set of the game. The
other players cannot make a choice at this state. For instance, we can model games such
as auction games, where all players are in all states, or even games as Chess or turn-based
synchronous game structure, where only a single player has to make a choice at each
state. Notice that we may even have some states where none of the players can make a
decision that can be seen as states of the nature.

An action is a relation between two states e; and ez, where all players in the state e;
have committed themselves to move to the state e5. Note that this is an extensional view
of how the players committed themselves to take a joint action.

We refer to (Ax)rex as a sequence of Ag’s with the index k € K. Sometimes we will
use more than one index as in the example (A 1 )k1ck x - We can also use (Ax, B))kek icL
to denote the sequence of (Ag)rex followed by the sequence (By);cr,. Throughout of this
article, when the sets of indexes are clear in the context, we will omit them.



A path w(e) is a sequence of states (finite or infinite) that could be reached through
the set of actions from a given state e that has the following properties: 1- The first
element of the sequence is e; 2- If the sequence is infinite 7(e) = (ex)ren, then Vk > 0
we have (eg, exy1) € CA; 3- If the sequence is finite 7(e) = (eq, . .., €;), then Vk such that
0 < k <l we have (ey,er11) € CA and there is no ¢’ such that (e;,e’) € CA. The game
behavior is characterized by its paths that can be finite or infinite. Finite paths end in a
state where the game is over, while infinite ones represent a game that will never end.

Below we present the formal syntax and semantics of GAL. As usual, we call the sets
of sorts S, predicate symbols P, function symbols F' and players N as a non-logic lan-
guage in contrast to the logic language that contains the quantifiers and the connectives.
We define a term of a sort in a standard way. We denote a term t of sort s as ts;. The

modalities can be read as follows.
e [EX]« - ‘exists a path « in the next state’ @ [AX]a - ‘for all paths « in the next state’

e [EF]a - ‘exists a path « in the future’ e [AF)a - “for all paths « in the future’

e [EG]a - ‘exists a path a globally’ e [AG]a - “for all paths « globally’

e E(aldp) - ‘exists a path o until 5’ o A(aldp) - ‘for all paths o until 5’
Definition 1 (Syntax of GAL). Let (S, F, P, N) be a non-logic language, and til, ety
be terms, and t; be a term, and P : s1...s, be a predicate symbol, and i be a player, and
s be a variable of sort s. The logic language of GAL is generated by the following
BNF definition:

Bu=T 0| P(t],.. )| (8, =€) | ()| (& — &) | Te.® | [AX]E | E(@U B) | A(BU D)

It is well-known that the operators A,V, L, [EX], [AF],[EF],[AG], [EG] and Vz can be
given by the following usual abbreviations.

s aNf <= ~(a—f) eaVf<= (~a—[) o | &= T

o [EX]a <= —[AX]~a e [AFla <= A(TU a) e[EFja<= E(TU )

¢ [AGla <= —E(T U —a) e [EG]a < -A(T U —a) e Vaa(x) < —Jz—a(x)

Definition 2 (Structure of GAL). Let (S, F, P, N) be a non-logic language of GAL. A
Game Analysis Logic Structure for this non-logic language is a tuple G = (SE,SE,,CA, (D),
(Fre), (Ppe)s (Ne)) such that:

e SFE is a non-empty set, called the set of states.

e SE, is a set of initial states, where SE, C SE.

e For each state e € SE, N, is a subset of N.

e CAC SE x SE, called the set of actions of the game>, in which if there is at least one
player in the state ey, then exists a state es such that {e1,es) € CA.

e For each sort s € S, D, is a non-empty set, called the domain of sort s*.

e For each function symbol f : s1 X ... X s, — s of F' and each state e € SE, Fr. is a
function such that Fre:Ds, x ... x Dy, — Ds.

o For each predicate symbol p : s1 X ... X s, of P and state e € SE, Pp . is a relation
such that P, C Dy, X ... X Dy .

A function or predicate is rigidly interpreted if its interpretation is the same for
every state. A GAL-structure is finite if the set of states SE and each set of domains

3 This relation is not required to be total as in the CTL case. The idea is because we have finite
games.
4 In algebraic terminology D; is a carrier for the sort s.



Dy are finite. Otherwise, it is infinite. Note that even when a GAL-structure is finite we
might have infinite paths.

In order to provide the semantics of GAL, we define a valuation function as a mapping
o5 that assigns to each free variable x4 of sort s some member o4(x;) of domain D;. As we
use terms, we extend every function o, to a function 74 from state and term to element
of sort s that is done in a standard way. When the valuation functions are not necessary,
we will omit them.

Definition 3 (Semantics of GAL). Let G = (SE,SE,,CA, (Ds), (Fr.e), Pp.e), (Ne))
be a GAL-structure, and (o) be valuation functions, and « be a GAL-formula, where
se S, feF,peP ande € SE. We write G, (0s) Fe @ to indicate that the state
e satisfies the formula « in the structure G with valuation functions (os). The
formal definition of satisfaction |= proceeds as follows:

e G (05) e T.

0s) Eet<=1i€ N,

03) e DL s 2) 4 (G (611, )y s B (0, 82)) € P

s) e (til ~,) = 551(677%1) =05, (e, t5,)

s) Fe a0 <= NOT G, (0s) E. @

i (05) Fe (a = B) <= IF G, (05) Fe a« THEN G, (05) e 8

G,(0s) Ee [AX]a < Ve’ € SE such that {e,e’) € CA we have G,(0s) Eeo a (see
Figure 2.a).

e G,(0s) EFe E(a U B) < euists a finite (or infinite) path m(e) = (epeiea...€;), such
that exists a k where k > 0, and G, (0s) f=e, B, and for all j where 0 < j < k we have
G,(0s) e, a (see Figure 2.0).

0 G, (05) Ee AlaU B) < for all finite (and infinite) paths such that w(e) = (egerea...€;),
exists a k where k > 0, and G, (0s) e, B, and for all j where 0 < j < k we have
G,(0s) e, a (see Figure 2.c).

e G, (05,05,) Ee Jas,a < exists d € Dy, such that G, (05,05, (s,]d)) Fe «, where
05, (X, |d) is the function which is exactly like os, except for one thing: At the variable
Zs, 1t assumes the value d. This can be expressed by the equation:
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Fig. 2. Modal Connectives of GAL.



3 Game Theory in Game Analysis Logic

In the sequel we write down the definitions of Game Theory (for more details see [7]).
Definition 4. An extensive game is a tuple (N, H, P, g,(>;)), where

— N is a finite set, called the set of players.
— H is a set of sequences of actions (finite or infinite), called the set of histories, that
satisfies the following properties

e the empty sequence is a history, i.e. ) € H

o if (ax)rex € H where K C N and for all | < |K]|, then (ax)k=0,...1 € H

o if (ag...ar) € H for all k € N, then the infinite sequence (apa; ...) € H.
A history h is terminal if it is infinite or it has no action a such that (h,a) € H.
We refer to a set of terminals as T.
P : H\T — N is a player function that assigns a player for each nonterminal
history.
—g: T — O is an outcome function that assigns a consequence for each terminal

history.

— For each player i € N, a preference relation =; on T. We denote == (=;) as a

preference profile.

We refer to a tuple (N, H, P, g), which components satisfy the first four conditions in the
definition above, as a game form.

Ezample 1. An example of a two-player extensive game (N, H, P, g, (>;)), where:

- N ={1,2}
H = {@, (A)’ (B)v (A’ L)v (A,R)},
— P(0) =1 and P((A4)) = 2;
9((B)) = o1, g((A, L)) = 02, g((A, R)) = os.
— 09 >1 03 =1 01 and 03 =2 03 =2 01.

A strategy of player i is a function that assigns an action for each non-terminal
history for each P(h) = i. For the purpose of this article, we represent a strategy as a
tuple. In order to avoid confusing when we refer to the strategies or the histories, we use
‘(" and ‘)’ to the strategies and ‘(" and ‘)’ to the histories. In Example 1, Player 1 has to
make a decision only after the initial state and he or she has two strategies (A) and (B).
Player 2 has to make a decision after the history (A) and he or she has two strategies (L)
and (R). We denote S; as the set of player i’s strategies. We denote s = (s;) as a strategy
profile. We refer to O(sy,...,Sn) as an outcome that is the terminal history when each
player follows his or her strategy s;. In Example 1, ((B), (L)) is a strategy profile in which
Player 1 chooses B after the initial state and Player 2 chooses L after the history (A),
and O((B), (L)) is the outcome (B). In a similar way, we refer to On(h,s1,...,s,) as the
outcome when each player follows his or her strategy s; from history h. In Example 1,
On((A), (B), (L)) is the outcome (4, ) and g(On((A), (B), (L)) = g((A, L)) = or.

We can model an extensive game G = (N, H, P, g,(=;)) as a GAL-structure in the
following way. Each history h € H (from the extensive game) is represented by a state,
in which a 0-ary symbol h designates a history of G' (the one that the state is coming
from), so h is a non-rigid designator. The set of the actions of the GAL-structure is
determined by the set of actions of each history, i.e., given a history h € H and an



action a such that (h,a) € H, then the states namely h and (h,a) are in the set of
actions of the GAL-structure, i.e. (h,(h,a)) € CA. Function P determines the player
that has to make a choice at every state, i.e. Nj, = {P(h)}. The preference profiles and
the outcome function g are rigidly defined as in the extensive game. The initial state is
the state represented by the initial history of the extensive game, i.e. H, = {0}. Sorts
H and T are interpreted as the histories and terminal histories of the extensive game,
respectively, i.e., Dy = H and Dy = T. Sort O represents the possible outcomes of
the extensive game®, and, for each outcome o € O (of the game G), we add a symbol
o :— O, which is rigidly interpreted as the outcome o. In order to define the solution
concepts of extensive games that we will define below, we add to this structure the sets
of players’ strategies (Dg,), functions O and Oy, and a predicate (of type €: H x H)
that states if a history h precedes a history (h,a). To summarize, a GAL-structure
for an extensive game with perfect information G = (N, P, H, g, (>;)) is the tuple
(H,H,,CA,(Dy,Dr,Ds,, Do), (0k, g, b, O,0p), (=i, €) , (Ny)) with non-logic language
((H,T,5;,0) ,(0p :— O0,g: T —-0O,h:—HO:S—>T,0,: HxS —=T), (=;: Ox0O,¢€:
HxH),N),wherei € {1,...,n} (nis the number of players), h € H,and k € {1,..., K}
(K is the number of outcomes). The example below is the GAL-structure (see Figure 3.b)
of Example 1 (see Figure 3.a).

Ezample 2. The GAL-structure of Example 1 is (H, H,,CA, (Dy, Dr,Ds,,Ds,, Do),
(01,02,03,hp,9,0,0), (=1,72,€) ,(Ny)) with non-logic language ((H,T,S1,S2,0),
(01 :— 0,09 :— 0,03 : > O, h:— H,g: T — 0,0:8 xS —T,0,: HxS; xSy —
T),(=1: Ox O, =5: O x O,€: Hx H),{1,2}) where

e H= {@, (A)a (B)v (AvL)a (AvR)} and H, = {@}

o CA={(0, (4)), (0.(B)), ((A),(A,L)), ((4), (A, R))}.

e Ds, = {(4),(B)}, Ds, = {(L), (R)} and Do = {01, 02,03}.

e Dy = {@, (A)a (B)v (A’ L)’ (AvR)} and Dy = {(3)7 (A’L)v (A
e hg =0, hiay = (A), hpy = (B), hia,ry = (A, L), hary = (A, R).
e Ny = {1}, Nay = {2}, Ny = Na,z) = Na,r) = {}-

e Functions O, Oy, and g are rigidly defined as in the extensive game.

e c(A),0e (B),(A) e (AL) and (A) € (4,R).

The most used solution concepts for extensive games are Nash equilibrium (NE) and
subgame perfect equilibrium (SPE). The solution concept of NE requires that each player’s
strategy be optimal, given the other players’ strategies. And, the solution concept of SPE
requires that the action prescribed by each player’s strategy be optimal, given the other
players’ strategies, after every history. In SPE concept, the structure of the extensive
game is taken into account explicitly, while, in the solution concept of NE, the structure
is taken into account only implicity in the definition of the strategies. Below we present
the SPE definition in a standard way. The NE definition below regards to the structure
of an extensive game, yet is an equivalent one to the standard.

)}

Definition 5. A subgame perfect equilibrium (SPE) of an extensive game with per-

*

fect information (N, H, P, g, (>;)) is a strategy profile s* = (s}, ..., s}) such that for every

ren

player i € N and every history h € H for which P(h) =i we have
g(On(hysyy...ys0)) =i g(Op(hy s, ... SiyeoyS))s
for every strategy s; € S;.

5 Note that this set is finite if the game is finite.
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(a) - Extensive form representation (b) - A GAL representation

Fig. 3. Mapping an extensive game into a GAL model.

Definition 6. A Nash equilibrium (NE) of an extensive game with perfect informa-
tion (N,H,P,g,(>;)) is a strategy profile s* = (si,...,s5) such that for every player

i € N and every history on the path of the strategy profile s* (i.e. h € O(s*)) for which
P(h) =i we have

g(On(h,sT,...,80)) =i g(Op(hy sy, ..oy SiyenySi)),
for every strategy s; € S;.

We invite the reader to verify that the strategy profiles ((A), (R)) and ((B), (L)) are
the Nash equilibria in Example 1. Game theorists can argue that the solution ((B), (L))
is not reasonable when the players regard to the sequence of the actions. To see that the
reader must observe that after the history (A) there is no way for Player 2 commit himself
or herself to choose L instead of R since he or she will be better off choosing R (he or she
prefers o instead of 01). Thus, Player 2 has an incentive to deviate from the equilibrium,
so this solution is not a subgame perfect equilibrium. On the other hand, we invite the
reader to verify that the solution ((A), (R)) is the only subgame perfect equilibrium.

Consider Formulas 1 and 2 as expressing subgame perfect equilibrium definition 5 and
Nash equilibrium definition 6, respectively. A strategy profile s* = (s7,...,s}) is a SPE

(or NE) if and only if Formula 1 (or Formula 2) holds at the initial state (), where each
USz (’U.;k,,) = S;}(’

[AG] ( N\ i — Yoy, (g(Oh(hm;, vy ) =i G(OR(hy vy, Vg ey v;‘n))))
iEN
heOw:,....,v5 ) A
[EG] , X X % ¥
N\ i — Vg, (g(Oh(h, vi ., vh ) =i g(On(h, (V5 Uy ,vsn))))

ieN

<

In order to guarantee the correctness of the representation of both subgame perfect
equilibrium and Nash equilibrium, we state the theorem below. For the proof of theorem



below, see [11,12]. Thus, the general problem of finding the equilibria of an extensive
game according to NE and SPE can be stated as a model-checking problem of GAL.
Moreover, the set of equilibria of a finite extensive game can be automatically found by
using a model-checker such as the GALV model-checker.

Theorem 1. Let G be an extensive game, and I'g be a GAL-structure for I', and « be a
subgame perfect equilibrium formula as defined in Equation 1, and B be a Nash equilibrium
formula as defined in Equation 2, and (sf) be a strategy profile, and (og,) be valuations
functions for sorts (S;).

?

— A strategy profile (s7) is a NE of G <= I, (0s,) g B, where each os,(v},) = s;

?

— A strategy profile (sy) is a SPE of G <= Ig, (0s,) g o, where each os,(v},) = s}

4 Implementation Theory in Game Analysis Logic

In the sequel we write down the definitions of Implementation Theory (for more details,
see [7]), provide an example and state the correspondence of the implementation problem
and the model-checking problem in GAL.

Definition 7. An environment is a tuple (N, O, P,G), where

— N is a finite set of players;

— O is a set of feasible outcomes;

— P is a set of preference profiles;

— G is a set of extensive game forms with outcomes in O.

Definition 8. A choice rule f : P — 2° is a function that assigns a subset of O to
each preference profile =€ P.

Definition 9 (The Implementation Problem). A planner has to provide a game
form G € G for an environment £ = (N, O, P,G) and a choice rule f such that, for every
preference profile =€ P, the outcomes of a solution concept S of game (G, =) is the set
f(=). In this case the game form G is said to S-implement the choice rule f for the
environment €. The choice rule f is said S-implementable in £.

Ezample 3. A simple example of an environment is a tuple (N, O, P, G), where

- N ={1,2}.

- 0= {01,02,03}.

— P ={x}, where 0g =1 03 >1 01 and 03 =2 03 > 01.

— G = {G1,G2}, where G; and G5 are depicted in Figure 4.a and Figure 4.b, respec-
tively.

In the above example, since outcome oy is the only outcome of subgame perfect
equilibrium (SPE) of game (G, =), game G; is said to SPE-implement the choice rule
f'(>) = {02} for this environment. Thus, this choice rule is SPE-implementable in this
environment. On the other hand, game G5 does not SPE-implement this choice rule in
this environment. As another example, games G; and G5 are said to NE-implement the
choice rule (=) = {02,03}.



(a) - Extensive form G (b) - Extensive form G2

Fig. 4. Extensive Forms.

Theorem 2. Let £ = (N,0,P,G) be an environment, G be a game form in G, [ be
a choice rule, and S be Nash (or subgame perfect) equilibrium solution concept. The
following assertions are equivalent each other.

1. A game form G is said to S-implement the choice rule f for the environment £.
2. For every =€ P and for every outcome o € O we have

0€ f(=) = Igy» Fo 0k, ..., (as ANO®E,,...,vi )=o),

» Ysn

where I'ig »y is the GAL-model for the game (G, =), and as is the GAL-formula for
the solution concept S.

Proof. A game form G is said to S-implement the choice rule f for the environment .
= gey For every preference profile =€ P,

the outcomes of a solution concept S of game (G, >) is the set f(>).

<= For every preference profile =€ P,
0 € f(¥) < o is an outcome of the solution concept S of game (G, ).

<= For every preference profile =€ P,
o € f(>=) & a strategy profile (s},...,sk) is a S of game (G,>) and 0o = O(sy,...,sk).

By Theorem 1 and since the function O and the outcome o are rigidly interpreted in
I'ia -y as in the game (G, =), we have
<= For every preference profile =€ P,

o€ f(=) & Layry, (0s,) Fo as, and L' »y, (0s,) Fg O}, ..., v ) = o, where each

s17 Sn
*
K3

0s,; (’U;) =8
<= For every preference profile =€ P,

o€ f(=) e INayy, (0s,) Fpas NOWS,,...,v5 ) = o,
where each og,(v3,) = s}.

<= For every preference profile =€ P,

o€ f(x) & Lgyy o, (as NO@E,, ..., v5 ) = o).

7 U 8n



5 Conclusion

In this work, we have illustrated that the general approach of Game Theory can be
rephrased as as model-checking problem of an adequate Game Logic. Specifically, we
have stated the problem of finding the solution concepts of Nash equilibrium and subgame
perfect equilibrium of extensive games as a model-checking problem of Game Analysis
Logic. Moreover, we can also find these solutions automatically via a model-checker (e.g.
the GALV model-checker). Nevertheless, the main contribution of this article is to relate
the implementation problem with the model-checking problem. We have shown that the
problem for extensive games can be stated as a model-checking problem of GAL as well.
As a consequence, we can benefit of the use of model-checkers in order to solve the
implementation problem as well. It is worth mentioning that the approach used in this
article seems to be adequate for other Game Logics as well.
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