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Abstract. A much discussed topic in the theory of choice is how a preference
order among options can be derived from the assumption that the notion of ‘choice’
is primitive. Assuming a choice function that selects elements from each finite set
of options, Arrow (1959) already showed how we can generate a weak ordering by
putting constraints on the behavior of such a function such that it behaves as a utility
maximizer. Arrow proposed that rational agents can be modeled by such choice
functions. Arrow’s standard model of rationality has been criticized in economics
and gave rise to approaches of bounded rationality. Two standard assumptions of
rationality will be given up in this paper. First, the idea that agents are utility
optimizers (Simon). Second, the idea that the relation of ‘indifference’ gives rise
to an equivalence relation. To account for the latter, Luce (1956) introduced semi-
orders. Extending some ideas of Van Benthem (1982), we will show how to derive
semi-orders (and so-called interval orders) based on the idea that agents are utility
satisficers rather than utility optimizers.
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1. Deriving weak orderings

A much discussed topic in the theory of choice is how a preference
order among options can be derived on the assumption that the notion
of choice is primitive. Assuming a choice function that selects elements
from each finite set of options, Arrow (1959) already showed how we can
generate a weak ordering by putting constraints on how this function
should behave on different sets of options. Let us define a choice struc-
ture to be a triple 〈A,O,C〉, where A is a non-empty set of actions, the
set O consists of all finite subsets of A, and the choice function C assigns
to each finite set of options o ∈ O a subset of o, C(o). Arrow (1959)
stated the following principle of choice (C), and the constraints (A1)
and (A2) to assure that the choice function behaves in a ‘consistent’
way:

(C) ∀o ∈ O : C(o) 6= ∅.
(A1) If o ⊆ o′, then o ∩ C(o′) ⊆ C(o).
(A2) If o ⊆ o′ and o ∩ C(o′) 6= ∅, then C(o) ⊆ C(o′).

If we say that x > y, iffdef x ∈ C({x, y})∧y 6∈ C({x, y}), one can easily
show that the ordering as defined above gives rise to a weak order. A
structure 〈I,R〉, with R a binary relation on I, is a weak order just
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in case R is irrreflexive (IR), transitive (TR), and almost connected
(AC).1

DEFINITION 1. A weak order is a structure 〈I, R〉, with R a binary
relation on I that satisfies the following conditions:
(IR) ∀x : ¬R(x, x).
(TR) ∀x, y, z : (R(x, y) ∧R(y, z)) → R(x, z).
(AC) ∀x, y, z : R(x, y) → (R(x, z) ∨R(z, y)).

If we now define the indifference relation, ‘∼’, as follows: x ∼ y
iffdef neither x > y nor y > x, it is clear that ‘∼’ is predicted to be
an equivalence relation. It is well-known that in case ‘>’ gives rise to a
weak order, it can be represented numerically by a real valued function
u such that for all x, y ∈ I: x > y iff u(x) > u(y), and x ∼ y iff
u(x) = u(y).

Within the standard model of economics, an agent is taken to be a
‘rational man’ if his behavior can be abstractly described in terms of a
choice function that satisfies conditions (C), (A1), and (A2).

This standard model has been criticized in economics and gave rise
to approaches of bounded rationality. Two standard assumptions of ra-
tionality will be given up in this paper. First, the idea that agents are
utility optimizers. Second, the idea that the relation of ‘indifference’
gives rise to an equivalence relation. As for the first, the notion of
‘rational man’ came under attack in the writings of Herbert Simon
in the 1950s. He claimed that individuals do not necessarily look for
the best alternative(s) in a feasible set, but rather that they accept
alternatives which they consider satisfactory, i.e., they have a satisfic-
ing rather than an optimizing behavior. Tyson (2003) argues that to
account for Simon’s satisficing behavior, we have to give up on axiom
(A1). His argument is that (A1) implements the cognitive assumption
that the decision maker fully perceives his preferences among available
alternatives. Another way of thinking of Simon’s criticism is that we
should not seek to derive the meaning of ‘better than’ in terms of
the meaning of ‘best’ – as is assumed if agents are taken to be utility
maximizers –, but rather to derive the meaning of ‘better than’ in
terms of the context-dependent meaning of ‘good’.2 What is crucial for
the interpretation of the results of our paper is that although ‘good’
seems to obey axiom (A2), axiom (A1) seems much too strong: (A1)

1 In the economic literature, the property of being almost connected is normally
called negative transitivity and stated as follows: ∀x, y, z : (¬R(x, z) ∧ ¬R(z, y)) →
¬R(x, y). Obviously, this is just equivalent with (AC).

2 Interestingly enough, this is exactly analogue to what Klein (1980) intended to
do in linguistics: the meaning of ‘taller than’ (or ‘better than’) should be defined in
terms of the meaning of ‘tall’ (or ‘good’), not that of ‘tallest’ (or ‘best’).

SemiordersNEWERLES.tex; 15/05/2008; 13:35; p.2



Revealed preference and satisficing behavior 3

demands that if both x and y are considered to be good in the context
of {x, y, z}, both should considered to be good in the context {x, y} as
well. But that is exactly what we don’t want for a context dependent
notion of ‘good’:3 in the latter context, we want it to be possible that
only x, or only y, is considered to be good. We should conclude that if
we want to characterize the behavior of ‘good’, we should give up on
(A1). Unfortunately, by just constraints (C) and (A2) we cannot guar-
antee that the comparative relation ‘better than’ behaves as desired.
In particular, we cannot guarantee that it behaves almost connected.

To assure that the comparative behaves as desired, we add to (C)
and (A2) the Upward Difference-constraint (UD), proposed by Van
Benthem (1982). To state this constraint, we define the notion of a
difference pair: 〈x, y〉 ∈ D(o) iffdef x ∈ C(o) and y ∈ (o − C(o)). Now
we can define the constraint:

(UD) o ⊆ o′ and D(o′) = ∅, then D(o) = ∅.

In fact, van Benthem (1982) states the following constraints: No Re-
versal (NR), Upward Difference (UD), and Downward Difference (DD)
(where o2 abbreviates o× o, and D−1(o) =def {〈y, x〉 : 〈x, y〉 ∈ D(o)}):

(NR) ∀o, o′ ∈ O : D(o) ∩D−1(o′) = ∅.
(UD) o ⊆ o′ and D(o′) = ∅, then D(o) = ∅.
(DD) o ⊆ o′ and D(o) = ∅, then D(o′) ∩ o2 = ∅.

Van Benthem (1982) shows that if constraints (NR), (UD) and (UD)
are satisfied, the relations ‘∼’ and ‘>’ as defined before still have the
same properties as before: ‘∼’ is still predicted to be an equivalence
relation, while the relation ‘>’ is still predicted to be (i) irreflexive, (ii)
transitive, and (iii) almost connected. It is almost immediate that in
case C picks an element of each o ∈ O, instead of a subset, the resulting
ordering will also be connected (satisfy for each x, y ∈ I : x > y, y > x,
or x = y) and thus be a linear order.

2. Semi orders and Interval orders

The ‘indifference’-relation induced by the preference order derived in
the previous section is predicted to be transitive, just like the indiffer-
ence relation induced by preference orders on which the standard theory

3 You might interpret ‘satisficing behavior’ in another way: x is good, if it
meets some fixed, context independent criteria of acceptability. I find this context
independent notion of ‘good’ rather boring, however.
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of choice is based. Already in the 1930s, economists like Armstrong
claimed that a basic assumption of the classic utility model, namely, the
transitivity of the indifference relation, is highly arguable. A well-known
version of this examle is due to Luce (1956):

A person may be indifferent between 100 and 101 grains of sugar
in his coffee, indifferent between 101 and 102, ..., and indifferent
between 4999 and 5000. If indifference were transitive he would be
indifferent between 100 and 5000 grains, and this is probably false.

It is clear that the non-transitivity of indifference results from the
inability of human beings to discriminate close quantities. In fact, prob-
lems of such kind were already discussed by philosophers in ancient
Greece in the so-called ‘paradox of the heap’, the famous problem
induced by vague expressions.

Luce (1956) accounted for the intransitivity of indifference or indis-
crimination relations according to which the individual has an (ordinal)
real-valued function u defined on the set of alternatives and there exists
a given non-negative quantity ε called the treshold. When the individual
has to choose from a subset c of feasible alternatives, he chooses the
alternative y such there does not exist an x with u(x) > u(y) = ε.
This model is called a treshold utility model. As above, there exists
an equivalent model based on a preference relation. This preference
relation is not a weak order, but rather what Luce (1956) calls a semi-
order. A structure 〈I, R〉, with R a binary relation on I, is a semi-order
just in case R is irrreflexive (IR), semitransitive (STr), and satisfies the
interval-order (IO) condition. A structure that satisfies (IR) and (IO)
is called an Interval order. A (strict) partial order is, of course, an order
that is irreflexive and transitive.

DEFINITION 2. A semi order is a structure 〈I,R〉, with R a binary
relation on I that satisfies the following conditions:
(IR) ∀x : ¬R(x, x).
(IO) ∀x, y, v, w : (R(x, y) ∧R(v, w)) → (R(x,w) ∨R(v, y)).
(STr) ∀x, y, z, v : (R(x, y) ∧R(y, z)) → (R(x, v) ∨R(v, z)).

DEFINITION 3. An Interval order is a structure 〈I, R〉, with R a
binary relation on I that satisfies the following conditions:
(IR) ∀x : ¬R(x, x).
(IO) ∀x, y, v, w : (R(x, y) ∧R(v, w)) → (R(x,w) ∨R(v, y)).

It is easy to see that if 〈I, R〉 is an interval order, 〈I, R〉 is a (strict)
partial order as well. But this means that weak order are stronger than
semi-order, which are stronger than interval orders, which in turn are
stronger than strict partial orders. Semi-orders are obviously relevant
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for economics, psychology, but also for linguistics and philosophy as
it deals with the analysis of vagueness. The same is true for Interval
orders, which are argued also to be relevant for the representation of
events (e.g. Wiener, 1914; Thomason, 1984). Just like Arrow (1959) and
van Benthem (1982) did for weak orders, it would be nice if we could
characterize semi-orders and interval orders in terms of the behavior of
optimal (Arrow) or satisficing (van Benthem) choice functions among
sets of options. Fishburn (1975) already showed how to solve the former
problem. It is still an open issue, however, how to derive semi-orders
(and interval orders) in terms of satisficing rather than optimizing
behavior. The main aim of this paper is to solve this open issue.

3. Deriving the orders

Our derivation/characterization of several preference orders makes use
of two choice functions, that intuitively pick the good and the bad ele-
ments. Let us say that C(o) selects the elements of o that are (clearly)
good, while C(o) selects the elements that are (clearly) bad. Let us
define the pairs of elements of o of which the first elements is good and
the second element bad by DCC(o) =def {〈x, y〉 : x ∈ C(o)∧y ∈ C(o)},
and similarly for DCC(o). We also define DCN (o) to be the set of or-
dered pairs of which the first elements is good and the second element is
neither good nor bad: DCN (o) =def {〈x, y〉 : x ∈ C(o)∧ y 6∈ C(o)∧ y 6∈
C(o)}, and similarly for DNC(o), DNC(o), and DCN (o). In terms of
these notions, we can define the set of upward and downward difference
pairs:

D↑(o) =def DCC(o) ∪DCN (o) ∪DNC(o).
D↓(o) =def DCC(o) ∪DNC(o) ∪DCN (o).

Now we can give the following four constraints:

(C∗) ∀o ∈ O : C(o) ∩ C(o) = ∅.
(NR∗) ∀o, o′ : D↑(o) ∩D↓(o′) = ∅.
(UD∗) If o ⊆ o′ and DCC(o′) = ∅, then DCC(o) = ∅.
(DD∗) If o ⊆ o′ and DCC(o) = ∅, then DCC(o′) ∩ o2 = ∅.

Constraints (UD∗) and (DD∗) are very similar to the earlier Upward
and Downward Difference constraints of van Benthem (1982), while
(C∗) assures that C and C behave as contraries. The crucial difference
with van Benthem’s characterization of weak orders is due to the No
Reversal constraint (NR∗), which is much weaker now, due to our use
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of two, instead of one choice function. We define the preference relation
as follows: x > y iffdef x ∈ C({x, y}) and y ∈ C({x, y}). Then we can
prove that the preference relation behaves irreflexive and transitive,4

but it need not satisfy almost connectedness: If x > y, it is possible
that neither x > z nor z > y, because (DD∗) doesn’t require either of
them to hold if C({x, y, z}) = {x} and C({x, y, z}) = {y}.

Now we can prove the following theorem:

THEOREM 1. Any choice structure 〈A,O,C, C〉 with A and O as
defined above such that C and C obey axioms (C∗), (NR∗), (UD∗),
and (DD∗), gives rise to a semi order 〈A,>〉, if we define x > y as
x ∈ C({x, y}) and y ∈ C({x, y}).

In order to show that the above constraints guarantee that the in-
duced ordering is a semi-order, we have to show that (IO) and (STr)
hold.

Proof of (IO): Assume x > y and v > w. Because x > y, the fol-
lowing constellations are possible for 〈x, y, w〉 (with (NR∗) and (UD∗)):
CCC, CCC, CNC, CCC,NCC,CCC, and CCN . From the first three
options, we immediately conclude with (DD∗) that x > w. From the
fourth, fifth, and sixth options, we conclude that w > y, from which
we can easily derive with v > w and transitivity that v > y. Thus, the
only possible constellation that doesn’t satisfy the consequent is CCN .
By parallel reasoning, the only possible constellation for 〈v, w, y〉 that
doesn’t satisfy the consequent of (IO) is CCN (because v > w). Thus,
the only constellation that doesn’t satisfy (IO) at all is where both
〈x, y, w〉 and 〈v, w, y〉 behave as CCN . But now 〈y, w〉 ∈ D↑({v, w, y})
and 〈y, w〉 ∈ D↓({x, y, w}), which is ruled out by (NR∗).

The above reasoning shows that the induced ordering gives rise to
an interval-order. On top of that, the ordering will also be a semi-
order if it also satisfies semi-transitivity, (STr). We prove this as follows:
Asume x > y and y > z. Because x > y, the following constellations are
possible for 〈x, y, v〉 (with (NR∗) and (UD∗)): CCC, CCC, CNC, CCC,
NCC,CCC, and CCN . From the first three options we immediately
conclude with (DD∗) that x > v. From the fourth, fifth, and sixth
options, we conclude with y > z and transitivity that v > y, from
which we can easily derive that v > z. Thus, the only possible con-
stellation that doesn’t satisfy the consequent of (STr) is CCN . By

4 Irreflexivity follows immediately from the definition of the comparative together
with constraint (C∗). Transitivity can be proved as follows: Suppose x > y and
y > z, now look at 〈x, y, z〉. Then we have the following possibilities not ruled out
by (UD∗): CCC, CCN, CCC, CNC, NCC, and NCC, which are all in contradiction
with (NR∗), and CCC, CCC, and CNC, from which we can derive via (DD∗) that
x > z. It follows that x > z, which means that > is transitive.
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parallel reasoning, the only constellation for 〈y, z, v〉 is CCN (because
y > z). But now 〈y, v〉 ∈ D↓({x, y, v}) and 〈y, v〉 ∈ D↑({y, z, v}), which
is ruled out by (NR∗). Conclusion: the comparative generated by our
four constraints gives rise to a semi-order.

It is also possible to show something stronger than theorem 1, i.e.,
that our constraints in fact characterize semi-orders. To do that, we
have to show that from each semi-order we can define a choice structure
〈A,O,C, C〉 that satisfies the above constraints. Let 〈I,R〉 be a semi-
order. We define 〈A,O,C, C〉 as follows: A is the old set and O is the
totality of its finite subsets. For the definitions of C and C, we look for
each o ∈ O at the top- and bottommost pairs of objects in o that stand
in the ‘>’-relation. Choice function C picks the topmost object(s) in o,
while C picks the bottommost objects in o. In case each pair of objects
in o are all mutually ∼-related, C(o) = o (or C(o) = o.) It is easy to
see that the generated structure satisfied the constraints.

In terms of two instead of one choice functions, we can also de-
rive/characterize other ordering relations. In order to do so, we define
the following new constraints (C∗∗), (NR∗∗), and (UD∗∗):

(C∗∗) ∀o ∈ O : C(o) ∩ C(o) = ∅ and C(o) ∪ C(o) = o.
(NR∗∗) ∀o, o′ ∈ C : a, b ∈ {C,C, N} : a 6= b → Dab(o) ∩Dba(o′) = ∅.
(UD∗∗) If o ⊆ o′ and 〈x, y〉 ∈ DCC(o), then DCC(o′) 6= ∅ and

〈x, y〉 6∈ D↓(o).

Notice that (C∗∗) and (UD∗∗) strengthen (C∗) and (UD)/(UD∗) respec-
tively, while (NR∗∗) is stronger than (NR), but weaker than (NR∗). No-
tice also that in the context of (NR∗), (UD∗∗) reduces to (UD)/(UD∗).
Now we can state the following theorems:

THEOREM 2. Any choice structure 〈A,O,C, C〉 with A and O as
defined above such that C and C obey axioms (C∗), (NR), (DD) and
(UD∗∗), gives rise to a (strict) partial order 〈A,>〉, if we define x > y
as x ∈ C({x, y}) and y ∈ C({x, y}).

THEOREM 3. Any choice structure 〈A,O,C, C〉 with A and O as
defined above such that C and C obey axioms (C∗), (UD∗), (DD∗) and
(NR∗∗), gives rise to an interval order 〈A,>〉, if we define x > y as
x ∈ C({x, y}) and y ∈ C({x, y}).

THEOREM 4. Any choice structure 〈A,O,C, C〉 with A and O as
defined above such that C and C obey axioms (C∗∗), (NR∗), (UD∗),
and (DD∗), and where gives rise to a weak order 〈A,>〉, if we define
x > y as x ∈ C({x, y}) and y ∈ C({x, y}).
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The proofs of these theorems are relatively simple. To prove theorem
4, for instance, it is enough to observe that in case (C∗∗) holds, the
constraints (NR∗), (UD∗), and (DD∗) reduce to (NR), (UD), and (DD),
and we are back to van Benthem’s characterization of weak orders.

In order to prove theorem 2, we have to show that > is irreflexive
and transitive. The former is true by definition, and to prove the latter,
assume x > y and y > z. Given the constraints (C∗), (NR), (DD) and
(UD∗∗), this means that the following constellations are possible for
〈x, y, z〉: CCC, CCC, CNC.5 From all three and (DD∗) we conclude
that x > z. Notice that the constraints do not guarantee that the
interval order condition (IO), semi transitivity (STr), and almost con-
nectedness (AC) are obeyed. (IO): if x > y and v > w it is possible
for constellation 〈x, y, w〉 to be CCN and for constellation 〈v, w, y〉 to
be CCN without deriving a contradiction. (STr): if x > y and y > z,
it is possible for constellations 〈x, y, v〉 and 〈yzv〉 to be CCN without
deriving a contradiction. (AC): if x > y it is possible for constellation
〈x, y, v〉 to be CCN without deriving a contradiction.

To prove theorem 3, we have to prove that (IO) holds. So suppose
x > y and v > w. Because x > y, the following constellations are
possible for 〈x, y, w〉 (with (NR∗∗) and (UD∗)): CCC, CCC, CNC,
CCC,NCC,CCC, and CCN . From the first three options, we im-
mediately conclude with (DD∗) that x > w. From the fourth, fifth,
and sixth options, we conclude that w > y, from which we can easily
derive with v > w and transitivity that v > y. Thus, the only possible
constellation that doesn’t satisfy the consequent is CCN . By parallel
reasoning, the only possible constellation for 〈v, w, y〉 that doesn’t sat-
isfy the consequent of (IO) is CCN (because v > w). Thus, the only
constellation that doesn’t satisfy (IO) at all is where both 〈x, y, w〉
and 〈v, w, y〉 behave as CCN . But now 〈y, w〉 ∈ DCN ({v, w, y}) and
〈y, w〉 ∈ DNC({x, y, w}), which is ruled out by (NR∗∗). Notice that the
constraints do not guarantee that semi transitivity (STr) and almost
connectedness (AC) are obeyed. (STr): if x > y and y > z, it is possible
for constellations 〈x, y, v〉 and 〈y, z, v〉 to be CCN without deriving a
contradiction. (AC): if x > y it is possible for constellation 〈x, y, v〉 to
be CCN without deriving a contradiction.

4. Conclusion and outlook

In this paper I have given a derivation of the meaning of ‘better than’
from a plausible analysis of the meaning of ‘good’, instead of the mean-

5 Notice that constellations CCN and NCC are ruled out by (UD∗∗).
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ing of ‘best’. I have argued that the interpretation of these technical
results is relevant for the modeling of bounded rational agents. Semi-
orders and interval orders are relevant in this respect because they were
introduced by Luce (1956) to model the fact that behavior is invariant
on just noticeable differences in preference. The axioms that constrain
the behavior of the choice functions that models the meaning of ‘good’
(and ‘bad’) is argued to be an interpretation of Simon’s satisficing,
rather than utility maximizing agents. On the basis of this interpreta-
tion, this paper gives a characterizations of several preference relations
in terms of constraints on the behavior of satisficing agents.

In this paper I interpreted the relations ‘>’ and ‘∼’ as preference
and indifference, respectively. But there is nothing in the formal anal-
ysis that requires us to interpret the relations in that way. Two other
equally natural interpretations are ‘taller than’ and ‘equally tall as’,
and ‘earlier/later than’ and ‘simultaneous with’. In fact, the original
motivation of this work came from the latter two interpretations (see
Van Rooij, to appear). I believe that the results of this paper are
significant as well for the analysis of natural language comparatives,
temporal relations, and more generally, for the analysis of vagueness.
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