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Chapter 1

Introduction

But certainly for the present age, which prefers the sign to the thing signified, the
copy to the original, representation to reality, the appearance to the essence... illusion
only is sacred, truth profane. Nay, sacredness is held to be enhanced in proportion
as truth decreases and illusion increases, so that the highest degree of illusion comes
to be the highest degree of sacredness. –Feuerbach, Prefaceto the second edition of
The Essence of Christianity

1.1 Overview of this thesis

This thesis concerns a remarkable new scientific development that advances the state of the art
in the field of data mining, or searching for previously unknown but meaningful patterns in fully
or semi-automatic ways. A substantial amount of mathematical theory is presented as well as
very many (though not yet enough) experiments. The results serve to test, verify, and demon-
strate the power of this new technology. The core ideas of this thesis relate substantially to data
compression programs. For more than 30 years, data compression software has been developed
and significantly improved with better models for almost every type of file. Until recently, the
main driving interests in such technology were to economizeon disk storage or network data
transmission costs. A new way of looking at data compressorsand machine learning allows us
to use compression programs for a wide variety of problems.

In this thesis a few themes are important. The first is the use of data compressors in new
ways. The second is a new tree visualization technique. And the third is an information-theoretic
connection of a web search engine to the data mining system. Let us examine each of these in
turn.

1.1.1 Data Compression as Learning

The first theme concerns the statistical significance of compressed file sizes. Most computer
users realize that there are freely available programs thatcan compress text files to about one
quarter their original size. The less well known aspect of data compression is that combining
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Figure 1.1: The evolutionary tree built from complete mammalian mtDNA sequences of 24
species, using the NCD matrix of Figure4.14on page70 where it was used to illustrate a point
of hierarchical clustering versus flat clustering. We have redrawn the tree from our output to
agree better with the customary phylogeny tree format. The tree agrees exceptionally well with
the NCD distance matrix:S(T) = 0.996.

two or more files together to create a larger single conglomeratearchive fileprior to compression
often yields better compression in aggregate. This has beenused to great advantage in widely
popular programs liketar or pkzip, combining archival and compression functionality. Only in
recent years have scientists begun to appreciate the fact that compression ratios signify a great
deal of important statistical information. All of the experiments in this thesis make use of a
group of compressible objects. In each case, the individualcompressed sizes of each object are
calculated. Then, some or all possible pairs of objects are combined and compressed to yield
pairwise compressed sizes. It is the tiny variations in the pairwise compressed sizes that yields
the surprisingly powerful results of the following experiments. The key concept to realize is that
if two files are very similar in their contents, then they willcompress much better when combined
together prior to compression, as compared to the sum of the size of each separately compressed
file. If two files have little or nothing in common, then combining them together would not yield
any benefit over compressing each file separately.

Although the principle is intuitive to grasp, it has surprising breadth of applicability. By using
even the simplest string-matching type compression made inthe 1970’s it is possible to construct
evolutionary trees for animals fully automatically using files containing their mitochondrial gene
sequence. One example is shown in Figure4.12. We first construct a matrix of pairwise distances
between objects (files) that indicate how similar they are. These distances are based on compar-
ing compressed file sizes as described above. We can apply this to files of widely different types,
such as music pieces or genetic codes as well as many other specialized domains. In Figure4.12,
we see a tree constructed from the similarity distance matrix based on the mitochondrial DNA of
several species. The tree is constructed so that species with “similar” DNA are “close by” in the
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tree. In this way we may lend support to certain evolutionarytheories.
Although simple compressors work, it is also easy to use the most advanced modern com-

pressors with the theory presented in this thesis; these results can often be more accurate than
simpler compressors in a variety of particular circumstances or domains. The main advantage of
this approach is its robustness in the face of strange or erroneous data. Another key advantage is
the simplicity and ease of use. This comes from the generality of the method: it works in a va-
riety of different application domains and when using general-purpose compressors it becomes
a general-purpose inference engine. Throughout this thesis there is a focus on coding theory
and data compression, both as a theoretical construct as well as practical approximations thereof
through actual data compression programs in current use. There is a connection between a partic-
ular code and a probability distribution and this simple theoretical foundation allows one to use
data compression programs of all types as statistical inference engines of remarkable robustness
and generality. In Chapter 3, we describe theNormalized Compression Distance(NCD), which
formalizes the ideas we have just described. We report on a plethora of experiments in Chapter 6
showing applications in a variety of interesting problems in data mining using gene sequences,
music, text corpora, and other inputs.

1.1.2 Visualization

Custom open source software has been written to provide powerful new visualization capabilities.
TheCompLearnsoftware system (Chapter10) implements our theory and with it experiments of
two types may be carried out: classification or clustering. Classification refers to the application
of discrete labels to a set of objects based on a set of examples from a human expert. Clustering
refers to arrangement of objects into groups without prior training or influence by a human expert.
In this thesis we deal primarily with hierarchical or nestedclustering in which a group of objects
is arranged into a sort of binary tree. This clustering method is called thequartet methodand
will be discussed in detail later.

In a nutshell, the quartet method is a way to determine a best matching tree given some data
that is to be understood in a hierarchical cluster. It is called the quartet method because it is based
on the smallest unrooted binary tree, which happens to be twopairs of two nodes for a total of
four nodes comprising the quartet. It adds up many such smallbinary trees together to evaluate
a big tree and then adjusts the tree according to the results of the evaluation. After a time, a
best fitting tree is declared and the interpretation of the experimental results is possible. The
compression-based algorithms output a matrix of pairwise distances between objects. Because
such a matrix is hard to interpret, we try to extract some of its essential features using the quartet
method. This results in a tree optimized so that similar objects with small distances are placed
nearby each other. The trees given in Figures 1.1, 1.2, and 1.3 (discussed below) have all been
constructed using the quartet method.

The quartet tree search is non-deterministic. There are compelling theoretical reasons to
suppose that the general quartet tree search problem is intractable to solve exactly for every case.
But the method used here tries instead to approximate a solution in a reasonable amount of time,
sacrificing accuracy for speed. It also makes extensive use of random numbers, and so there is
sometimes variation in the results that the tree search produces. We describe the quartet tree
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Figure 1.2: Several people’s names, political parties, regions, and other Chinese names.
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method in detail in Chapter 4. In Chapter 6 we show numerous trees based on applying the
quartet method and the NCD to a broad spectrum of input files ina wide array of domains.

1.1.3 Learning From the Web

It is possible to use coding theory to connect the compression approach to the web with the
help of a search engine index database. By using a simple formula based on logarithms we
can find “compressed sizes” of search terms. This was used in the Chinese tree in Figure 1.2.
The tree of Nobel prize winning authors in Figure 1.3 was alsomade this way. As in the last
example, a distance matrix is made, but this time with Googleproviding page count statistics
that are converted to codelengths for use in the distance matrix calculations. We can see English
and American writers clearly separated in the tree, as well as many other defensible placements.
Another example using prime numbers with Google is in Chapter 7, page128.

Throughout this thesis the reader will find ample experiments demonstrating the machine
learning technology. There are objective experiments based on pure statistics using true data
compressors and subjective experiments using statistics from web pages as well. There are ex-
amples taken from genetics, linguistics, literature, radio astronomy, optical character recognition,
music, and many more diverse areas. Most of the experiments can be found in Chapters 4, 6, and
7.

1.1.4 Clustering and Classification

The examples given above all dealt with clustering. It is also interesting to consider how we
can use NCD to solve classification problems. Classificationis the task of assigning labels to
unknown test objects given a set of labeled training objectsfrom a human expert. The goal is to
try to learn the underlying patterns that the human expert isdisplaying in the choice of labellings
shown in the training objects, and then to apply this understanding to the task of making predic-
tions for unknown objects that are in some sense consistent with the given examples. Usually
the problem is reduced to a combination of binary classification problems, where all target la-
bels along a given dimension are either 0 or 1. In Chapter 5 we discuss this problem in greater
detail, we give some information about a popular classification engine called the Support Vector
Machine (SVM), and we connect the SVM to the NCD to create robust binary classifiers.

1.2 Gestalt Historical Context

Each of the three key ideas (compression as learning, quartet tree visualization, and learning
from the web) have a common thread: all of them serve to increase the generality and practical
robustness of the machine intelligence compared to more traditional alternatives. This goal is
not new and has already been widely recognized as fundamental. In this section a brief and
subjective overview of the recent history of artificial intelligence is given to provide a broader
context for this thesis.
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Figure 1.3: 102 Nobel prize winning writers using CompLearnand NGD; S(T)=0.905630 (part
3).
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In the beginning, there was the idea of artificial intelligence. As circuit miniaturization took
off in the 1970’s, people’s imaginations soared with ideas of a new sort of machine with virtually
unlimited potential: a (usually humanoid) metal automatonwith the capacity to perform intelli-
gent work and yet ask not one question out of the ordinary. A sort of ultra-servant, made able to
reason as well as man in most respects, yet somehow reasoningin a sort of rarefied form whereby
the more unpredictable sides of human nature are factored out. One of the first big hurdles came
as people tried to define just what intelligence was, or how one might codify knowledge in the
most general sense into digital form. As Levesque and Brachman famously observed [73], rea-
soning and representation are hopelessly intertwined, andjust what intelligence is depends very
much on just who is doing the talking.

Immediately upon settling on the question of intelligence one almost automatically must
grapple with the concept of language. Consciousness and intelligence is experienced only in-
ternally, yet the objects to which it applies are most often external to the self. Thus there is
at once the question of communication and experience and this straight-away ends any hope of
perfect answers. Most theories on language are not theoriesin the formal sense [14]. A notable
early exception is Quine’s famous observation that language translation is necessarily a dicey
subject: for although you might collect very many pieces of evidence suggesting that a word
means “X” or “Y”, you can never collect a piece of evidence that ultimately confirms that your
understanding of the word is “correct” in any absolute sense. In a logical sense, we can never be
sure that the meaning of a word is as it was meant, for to explain any word we must use other
words, and these words themselves have only other words to describe them, in an interminable
web of ontological disarray. Kantian empiricism leads us topragmatically admit we have only
the basis of our own internal experience to ground our understanding at the most basic level, and
the mysterious results of the reasoning mind, whatever thatmight be.

It is without a doubt the case that humans throughout the world develop verbal and usually
written language quite naturally. Recent theories by Smale[38] have provided some theoretical
support for empirical models of language evolution despitethe formal impossibility of absolute
certainty. Just the same it leaves us with a very difficult question: how do we make bits think?

Some twenty years later, progress has been bursty. We have managed to create some amaz-
ingly elegant search and optimization techniques including simplex optimization, tree search,
curve-fitting, and modern variants such as neural networks or support vector machines. We have
built computers that can beat any human in chess, but we cannot yet find a computer smart
enough to walk to the grocery store to buy a loaf of bread. There is clearly a problem of overspe-
cialization in the types of successes we have so far enjoyed in artificial intelligence. This thesis
explores my experience in charting this new landscape of concepts via a combination of prag-
matic and principled techniques. It is only with the recent explosion in internet use and internet
writing that we can now begin to seriously tackle these problems so fundamental to the original
dream of artificial intelligence.

In recent years, we have begun to make headway in defining and implementing universal pre-
diction, arguably the most important part of artificial intelligence. Most notable is Solomonoff
prediction [105], and the more practical analogs by Ryabko and Astola [98] using data compres-
sion.

In classical statistical settings, we typically make some observations of a natural (or at the
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very least, measurable) phenomenon. Next, we use our intuition to “guess” which mathematical
model might best apply. This process works well for those cases where the guesser has a good
model for the phenomenon under consideration. This allows for at least two distinct modes of
freedom: both in the choice of models, and also in the choice of criteria supporting “goodness”.

In the past the uneasy compromise has been to focus attentionfirstly on those problems
which are most amenable to exact solution, to advance the foundation of exact and fundamental
science. The next stage of growth was the advent of machine-assisted exact sciences, such as the
now-famous four-color proof that required input (by hand!)of 1476 different graphs for com-
puter verification (by a complicated program) that all were colorable before deductive extension
to the most general case in the plane [2]. After that came the beginning of modern machine
learning, based on earlier ideas of curve fitting and least-squares regression. Neural networks,
and later support vector machines, gave us convenient learning frameworks in the context of con-
tinuous functions. Given enough training examples, the theory assured us, the neural network
would eventually find the right combination of weightings and multiplicative factors that would
miraculously, and perhaps a bit circularly, reflect the underlying meaning that the examples were
meant to teach. Just like spectral analysis that came before, each of these areas yielded a whole
new broad class of solutions, but were essentially hit or miss in their effectiveness in each do-
main for reasons that remain poorly understood. The focus ofmy research has been on the use
of data compression programs for generalized inference. Itturns out that this modus operandi
is surprisingly general in its useful application and yields oftentimes the most expedient results
as compared to other more predetermined methods. It is often“one size fits all well enough”
and this yields unexpected fruits. From the outset, it must be understood that the approach here
is decidedly different than more classical ones, in that we avoid in most ways an exact state-
ment of the problem at hand, instead deferring this until very near the end of the discussion, so
that we might better appreciate what can be understood aboutall problems with a minimum of
assumptions.

At this point a quote from Goldstein and Gigerenzer [43] is appropriate:

What are heuristics? The Gestalt psychologists Karl Duncker and Wolfgang Koehler
preserved the original Greek definition of “serving to find out or discover” when
they used the term to describe strategies such as “looking around” and “inspecting
the problem” (e.g., Duncker, 1935/1945).

For Duncker, Koehler, and a handful of later thinkers, including Herbert Simon (e.g.,
1955), heuristics are strategies that guide information search and modify problem
representations to facilitate solutions. From its introduction into English in the early
1800s up until about 1970, the term heuristics has been used to refer to useful and in-
dispensable cognitive processes for solving problems thatcannot be handled by logic
and probability theory (e.g., Polya, 1954; Groner, Groner,& Bischof, 1983). In the
past 30 years, however, the definition of heuristics has changed almost to the point of
inversion. In research on reasoning, judgment, and decision making, heuristics have
come to denote strategies that prevent one from finding out ordiscovering correct
answers to problems that are assumed to be in the domain of probability theory. In
this view, heuristics are poor substitutes for computations that are too demanding for
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ordinary minds to carry out. Heuristics have even become associated with inevitable
cognitive illusions and irrationality.

This author sides with Goldstein and Gigerenzer in the view that sometimes “less is more”;
the very fact that things are unknown to the naive observer can sometimes work to his advantage.
The recognition heuristic is an important, reliable, and conservative general strategy for inductive
inference. In a similar vein, the NCD based techniques shownin this thesis provide a general
framework for inductive inference that is robust against a wide variety of circumstances.

1.3 Contents of this Thesis

In this chapter a summary is provided for the remainder of thethesis as well as some historical
context. In Chapter 2, an introduction to the technical details and terminology surrounding the
methods is given. In chapter 3 we introduce the Normalized Compression Distance (NCD), the
core mathematical formula that makes all of these experiments possible, and we establish con-
nections between NCD and other well-known mathematical formulas. In Chapter 4 a tree search
system is explained based on groups of four objects at a time,the so-calledquartet method. In
Chapter 5 we combine NCD with other machine learning techniques such as Support Vector
Machines. In Chapter 6, we provide a wealth of examples of this technology in action. All
experiments in this thesis were done using the CompLearn Toolkit, an open-source general pur-
pose data mining toolkit available for download from thehttp://complearn.org/ website. In
Chapter 7, we show how to connect the internet to NCD using theGoogle search engine, thus
providing the advanced sort of subjective analysis as shownin Figure 1.2. In Chapter 8 we use
these techniques and others to trace the evolution of the legend of Saint Henry. In Chapter 9 we
compare CompLearn against another older tree search software system called PHYLIP. Chap-
ter 10 gives a snapshot of the online documentation for the CompLearn system. After this, a
Dutch language summary is provided as well as a bibliography, index, and list of papers by
R. Cilibrasi.
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Chapter 2

Technical Introduction

The spectacle is the existing order’s uninterrupted discourse about itself, its lauda-
tory monologue. It is the self-portrait of power in the epochof its totalitarian man-
agement of the conditions of existence. The fetishistic, purely objective appear-
ance of spectacular relations conceals the fact that they are relations among men and
classes: a second nature with its fatal laws seems to dominate our environment. But
the spectacle is not the necessary product of technical development seen as a natural
development. The society of the spectacle is on the contrarythe form which chooses
its own technical content. –Guy Debord,Society of the Spectacle

This chapter will give an informal introduction to relevantbackground material, familiarizing
the reader with notation and basic concepts but omitting proofs. We discuss strings, languages,
codes, Turing Machines and Kolmogorov complexity. This material will be extensively used in
the chapters to come. For a more thorough and detailed treatment of all the material including a
tremendous number of innovative proofs see [79]. It is assumed that the reader has a basic famil-
iarity with algebra and probability theory as well as some rudimentary knowledge of classical
information theory. We first introduce the notions offinite, infinite andstring of characters. We
go on to discuss basic coding theory. Next we introduce the idea of Turing Machines. Finally, in
the last part of the chapter, we introduce Kolmogorov Complexity.

2.1 Finite and Infinite

In the domain of mathematical objects discussed in this thesis, there are two broad categories:
finite and infinite.Finite objects are those whose extent is bounded.Infiniteobjects are those that
are “larger” than any given precise bound. For example, if weperform 100 flips of a fair coin in
sequence and retain the results in order, the full record will be easily written upon a single sheet
of A4 size paper, or even a business card. Thus, the sequence is finite. But if we instead talk
about the list of all prime numbers greater than 5, then the sequence written literally is infinite
in extent. There are far too many to write on any given size of paper no matter how big. It is
possible, however, to write acomputer programthat could, in principle, generate every prime
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number, no matter how large, eventually, given unlimited time and memory. It is important to
realize that some objects are infinite in their totality, butcan be finite in a potential effective
sense by the fact that every finite but a priori unbounded partof them can be obtained from a
finite computer program. There will be more to say on these matters later in Section2.5.

2.2 Strings and Languages

A bit, or binary digit, is just a single piece of information representing a choice between one of
two alternatives, either 0 or 1.

A character is a symbol representing an atomic unit of written language that cannot be mean-
ingfully subdivided into smaller parts. An alphabet is a setof symbols used in writing a given
language. A language (in the formal sense) is a set of permissiblestringsmade from a given
alphabet. Astring is an ordered list (normally written sequentially) of 0 or more symbols drawn
from a common alphabet. For a given alphabet, different languages deem different strings per-
missible. In English, 26 letters are used, but also the spaceand some punctuation should be
included for convenience, thus increasing the size of the alphabet. In computer files, the under-
lying base is 256 because there are 256 different states possible in each indivisible atomic unit
of storage space, thebyte. A byte is equivalent to 8 bits, so the 256-symbol alphabet iscentral to
real computers. For theoretical purposes however, we can dispense with the complexities of large
alphabets by realizing that we can encode large alphabets into small ones; indeed, this is how a
byte can be encoded as 8 bits. A bit is a symbol from a 2-symbol,or binary, alphabet. In this
thesis, there is not usually any need for an alphabet of more than two characters, so the notational
convention is to restrict attention to the binary alphabet in the absence of countervailing remarks.
Usually we encode numbers as a sequence of characters in a fixed radix format at the most basic
level, and the space required to encode a number in this format can be calculated with the help
of the logarithm function. The logarithm function is alwaysused to determine a coding length
for a given number to be encoded, given a probability or integer range. Similarly, it is safe for
the reader to assume that all log’s are taken base 2 so that we may interpret the results in bits.

We write Σ to represent the alphabet used. We usually work with the binary alphabet, so
in that caseΣ = {0,1}. We writeΣ∗ to represent the space of all possible strings including the
empty string. This notation may be a bit unfamiliar at first, but is very convenient and is related
to the well-known concept ofregular expressions. Regular expressions are a concise way of
representing formal languages as sets of strings over an alphabet. The curly braces represent a
set(to be used as the alphabet in this case) and the∗ symbol refers to theclosureof the set; By
closurewe mean that the symbol may be repeated 0, 1, 2, 3, 5, or any number of times. By
definition,{0,1}∗ =

S

n≥0{0,1}n. It is important to realize that successive symbols need notbe
the same, but could be. Here we can see that the number of possible binary strings is infinite, yet
any individual string in this class must itself be finite. Fora stringx, we write|x| to represent the
length, measured in symbols, of that string.
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2.3 The Many Facets of Strings

Earlier we said that a string is a sequence of symbols from an alphabet. It is assumed that the
symbols inΣ have a natural or at least conventional ordering. From this we may inductively
create a rule that allows us to impose an ordering on all strings that are possible inΣ∗ in the con-
ventional way: use length first to bring the shorter strings as early as possible in the ordering, and
then use the leftmost different character in any two stringsto determine their relative ordering.
This is just a generalized restatement of the familiar alphabetical or lexicographic ordering. It
is included here because it allows us to associate a positiveinteger ordering number with each
possible string. The empty string,ε, is the first string in this list. The next is the string 0, and the
next 1. After that comes 00, then 01, then 10, then 11, then 000, and so onad nauseaum. Next to
each of these strings we might list their lengths as well as their ordering-number position in this
list as follows:

x |x| ORD(x)
ε 0 1
0 1 2
1 1 3
00 2 4
01 2 5
10 2 6
11 2 7
000 3 8
001 3 9
010 3 10
011 3 11
100 3 12

... and so on forever ...

Here there are a few things to notice. First is that the secondcolumn, the length ofx written
|x|, is related to theORD(x) by the following relationship:

log(ORD(x))≤ |x| ≤ log(ORD(x))+1. (2.3.1)

Thus we can see that the variablex can be interpreted polymorphically: as either a literal string
of characters having a particular sequence and length or instead as an integer in one of two ways:
either by referring to its length using the| · | symbol, or by referring to its ordinal number using
ORD(x). All of the mathematical functions used in this thesis are monomorphic in their argument
types: each argument can be either a number (typically an integer) or a string, but not both. Thus
without too much ambiguity we will sometimes leave out theORD symbol and just writex and
rely on the reader to pick out the types by their context and usage. Please notice thatx can either
stand for the stringx or the numberORD(x), but never for the length ofx, which we always
explicitly denote as|x|.
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2.4 Prefix Codes

A binary stringy is a proper prefixof a binary stringx if we can writex = yz for z 6= ε. A set
{x,y, . . .} ⊆ {0,1}∗ is prefix-freeif no element is a proper prefix of any other. A prefix-free set
can be used to define aprefix code. Formally, a prefix code is defined by adecoding function D,
which is a function from a prefix free set to some arbitrary setX . The elements of the prefix free
set are calledcode words. The elements ofX are calledsource words. If the inverseD−1 of D
exists, we call it theencoding function. An example of a prefix code, that is used later, encodes
a source wordx = x1x2 . . .xn by the code word

x = 1n0x.

HereX = {0,1}∗, D−1(x) = x = 1n0x. This prefix-free code is calledself-delimiting, because
there is a fixed computer program associated with this code that can determine where the code
word x̄ ends by reading it from left to right without backing up. Thisway a composite code
message can be parsed in its constituent code words in one pass by a computer program.1

In other words, a prefix code is a code in which no codeword is a prefix of another codeword.
Prefix codes are very easy to decode because codeword boundaries are directly encoded along
with each datum that is encoded. To introduce these, let us consider how we may combine any
two strings together in a way that they could be later separated without recourse to guessing. In
the case of arbitrary binary stringsx,y, we cannot be assured of this prefix condition:x might
be 0 whiley was 00 and then there would be no way to tell the original contents ofx or y given,
say, justxy. Therefore let us concentrate on just thex alone and think about how we might
augment the natural literal encoding to allow for prefix disambiguation. In real languages on
computers, we are blessed with whitespace and commas, both of which are used liberally for the
purpose of separating one number from the next in normal output formats. In a binary alphabet
our options are somewhat more limited but still not too bad. The simplest solution would be to
add in commas and spaces to the alphabet, thus increasing thealphabet size to 4 and the coding
size to 2 bits, doubling the length of all encoded strings. This is a needlessly heavy price to pay
for the privilege of prefix encoding, as we will soon see. But first let us reconsider another way to
do it in a bit more than double space: suppose we prefacex with a sequence of|x| 0’s, followed
by a 1, followed by the literal stringx. This then takes one bit more than twice the space forx
and is even worse than the original scheme with commas and spaces added to the alphabet. This
is just the scheme discussed in the beginning of the section.But this scheme has ample room
for improvement: suppose now we adjust it so that instead of outputting all those 0’s at first in
unary, we instead just output a number of zeros equal to

⌈log(|x|)⌉,
then a 1, then the binary number|x| (which satisfies|x| ≤ ⌈logx⌉+ 1, see Eq. (2.3.1)), thenx
literally. Here,⌈·⌉ indicates the ceiling operation that returns the smallest integer not less than

1This desirable property holds for every prefix-free encoding of a finite set of source words, but not for every
prefix-free encoding of an infinite set of source words. For a single finite computer program to be able to parse a
code message the encoding needs to have a certain uniformityproperty like thex code.
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its argument. This, then, would take a number of bits about

2⌈log logx⌉+ ⌈logx⌉+1,

which exceeds⌈logx⌉, the number of bits needed to encodex literally, only by a logarithmic
amount. If this is still too many bits then the pattern can be repeated, encoding the first set of 0’s
one level higher using the system to get

2⌈logloglogx⌉+ ⌈log logx⌉+ ⌈logx⌉+1.

Indeed, we can “dial up” as many logarithms as are necessary to create a suitably slowly-growing
composition of however many log’s are deemed appropriate. This is sufficiently efficient for all
purposes in this thesis and provides a general framework forconverting arbitrary data into prefix-
free data. It further allows us to compose any number of strings or numbers for any purpose
without restraint, and allows us to make precise the difficult concept ofK(x,y), as we shall see
in Section2.6.4.

2.4.1 Prefix Codes and the Kraft Inequality

Let X be the set of natural numbers and consider the straightforward non-prefix binary represen-
tation with theith binary string in the length-increasing lexicographicalorder corresponding to
the numberi. There are two elements ofX with a description of length 1, four with a description
of length 2 and so on. However, there are less binary prefix code words of each length: ifx is
a prefix code word then noy = xz with z 6= ε is a prefix code word. Asymptotically there are
less prefix code words of lengthn than the 2n source words of lengthn. Clearly this observation
holds for arbitrary prefix codes. Quantification of this intuition for countableX and arbitrary
prefix-codes leads to a precise constraint on the number of code-words of given lengths. This
important relation is known as theKraft Inequalityand is due to L.G. Kraft [60].

2.4.1.LEMMA . Let l1, l2, . . . be a finite or infinite sequence of natural numbers. There is a prefix
code with this sequence as lengths of its binary code words iff

∑
n

2−ln ≤ 1. (2.4.1)

2.4.2 Uniquely Decodable Codes

We want to code elements of some setX in a way that they can be uniquely reconstructed from the
encoding. Such codes are calleduniquely decodable. Every prefix-code is a uniquely decodable
code. On the other hand, not every uniquely decodable code satisfies the prefix condition. Prefix-
codes are distinguished from other uniquely decodable codes by the property that the end of
a code word is always recognizable as such. This means that decoding can be accomplished
without the delay of observing subsequent code words, whichis why prefix-codes are also called
instantaneous codes. There is good reason for our emphasis on prefix-codes. Namely, it turns
out that Lemma2.4.1 stays valid if we replace “prefix-code” by “uniquely decodable code.”
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This important fact means that every uniquely decodable code can be replaced by a prefix-code
without changing the set of code-word lengths. In this thesis, the only aspect of actual encodings
that interests us is their length, because this reflects the underlying probabilities in an associated
model. There is no loss of generality in restricting furtherdiscussion to prefix codes because of
this property.

2.4.3 Probability Distributions and Complete Prefix Codes

A uniquely decodable code iscompleteif the addition of any new code word to its code word
set results in a non-uniquely decodable code. It is easy to see that a code is complete iff equal-
ity holds in the associated Kraft Inequality. Letl1, l2, . . . be the code words of some complete
uniquely decodable code. Let us defineqx = 2−lx. By definition of completeness, we have
∑xqx = 1. Thus, theqx can be thought of asprobability mass functionscorresponding to some
probability distributionQ for a random variableX. We sayQ is the distributioncorrespondingto
l1, l2, . . .. In this way, each complete uniquely decodable code is mapped to a unique probability
distribution. Of course, this is nothing more than a formal correspondence: we may choose to
encode outcomes ofX using a code corresponding to a distributionq, whereas the outcomes are
actually distributed according to somep 6= q. But, as we argue below, ifX is distributed accord-
ing to p, then the code to whichp corresponds is, in an average sense, the code that achieves
optimal compression ofX. In particular, every probability mass functionp is related to a prefix
code, theShannon-Fano code, such that the expected number of bits per transmitted code word
is as low as is possible for any prefix code, assuming that a random sourceX generates the source
wordsx according toP(X = x) = p(x). The Shannon-Fano prefix code encodes a source word
x by a code word of lengthlx = ⌈log1/p(x)⌉, so that the expected transmitted code word length
equals∑x p(x) log1/p(x) = H(X), the entropy of the sourceX, up to one bit. This is optimal by
Shannon’s “noiseless coding” theorem [102]. This is further explained in Section2.7.

2.5 Turing Machines

This section mainly serves as a preparation for the next section, in which we introduce the funda-
mental concept ofKolmogorov complexity. Roughly speaking, the Kolmogorov complexity of a
string is the shortest computer program that computes the string, i.e. that prints it, and then halts.
The definition depends on the specific computer programming language that is used. To make the
definition more precise, we should base it on programs written for universal Turing machines,
which are an abstract mathematical representation of a general-purpose computer equipped with
a general-purpose oruniversalcomputer programming language.

Universal Computer Programming Languages: Most popular computer programming lan-
guages such as C, Lisp, Java and Ruby, areuniversal. Roughly speaking, this means that they
must be powerful enough to emulate any other computer programming language: every universal
computer programming language can be used to write a compiler for any other programming lan-
guage, including any other universal programming language. Indeed, this has been done already
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a thousand times over with the GNU (Gnu’s Not Unix) C compiler, perhaps the most successful
open-source computer program in the world. In this case, although there are many different as-
sembly languages in use on different CPU architectures, allof them are able to run C programs.
So we can always package any C program along with the GNU C compiler which itself is not
more than 100 megabytes in order to run a C program anywhere.

Turing Machines: TheTuring machineis an abstract mathematical representation of the idea
of a computer. It generalizes and simplifies all the many specific types of deterministic comput-
ing machines into one regularized form. A Turing machine is defined by a set of rules which
describe its behavior. It receives as its input a string of symbols, wich may be thought OF as a
“program”, and it outputs the result of running that program, which amounts to transforming the
input using the given set of rules. Just as there are universal computer languages, there are also
universal Turing machines. We say a Turing Machine is universal if it can simulate any other
Turing Machine. When such a universal Turing machine receives as input a pair〈x,y〉, wherex
is a formal specification of another Turing machineTx, it outputs the same result as one would
get if one would input the stringy to the Turing machineTx. Just as any universal programming
language can be used to emulate any other one, any universal Turing machine can be used to
emulate any other one. It may help intuition to imagine any familiar universal computer pro-
gramming language as a definition of a universal Turing machine, and the runtime and hardware
needed to execute it as a sort of real-world Turing machine itself. It is necessary to remove re-
source constraints (on memory size and input/output interface, for example) in order for these
concepts to be thoroughly equivalent theoretically.

Turing machines, formally: A Turing machine consists of two parts: a finite control and a
tape. The finite control is the memory (or current state) of the machine. It always contains
a single symbol from a finite setQ of possible states. The tape initially contains the program
which the Turing machine must execute. The tape contains symbols from the trinary alphabet
A = {0,1,B}. Initially, the entire tape contains theB (blank) symbol except for the place where
the program is stored. The program is a finite sequence of bits. The finite control also is always
positioned above a particular symbol on the tape and may moveleft or right one step. At first, the
tape head is positioned at the first nonblank symbol on the tape. As part of the formal definition
of a Turing machine, we must indicate which symbol fromQ is to be the starting state of the
machine. At every time step the Turing machine does a simple sort of calculation by consulting
a list of rules that define its behavior. The rules may be understood to be a function taking two
arguments (the current state and the symbol under the reading head) and returning a Cartesian
pair: the action to execute this timestep and the next state to enter. This is to say that the two input
arguments are a current state (symbol fromQ) of the finite control and a letter from the alphabet
A. The two outputs are a new state (also taken fromQ) and anaction symbol taken fromS.
The set of possible actions isS= {0,1,B,L,R}. The 0, 1, andB symbols refer to writing that
value below the tape head. TheL andR symbols refer to moving left or right, respectively. This
function defines the behavior of the Turing machine at each step, allowing it to perform simple
actions and run a program on a tape just like a real computer but in a very mathematically simple
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way. It turns out that we can choose a particular set of state-transition rules such that the Turing
machine becomesuniversalin the sense described above. This simulation is plausible given a
moment of reflection on how a Turing Machine is mechanically defined as a sequence of rules
governing state transitions etc. The endpoint in this line of reasoning is that a universal Turing
Machine can run a sort of Turing Machine simulation system and thereby compute identical
results as any other Turing Machine.

Notation: We typically use the Greek letterΦ to represent a Turing machineT as a partially
defined function. When the Turing machineT is not clear from the context, we writeΦT . The
function is supposed to take as input a program encoded as a finite binary string and outputs
the results of running that program. Sometimes it is convenient to define the function as taking
integers instead of strings; this is easy enough to do when weremember that each integer is iden-
tified with a given finite binary string given the natural lexicographic ordering of finite strings,
as in Section2.3 The functionΦ need only be partially defined; for some input strings it is not
defined because some programs do not produce a finite string asoutput, such as infinite looping
programs. We say thatΦ is defined only for those programs that halt and therefore produce a
definite output. We introduce a special symbol∞ that represents an abstract object outside the
space of finite binary strings and unequal to any of them. For those programs that do not halt we
sayΦ(x) = ∞ as a shorthand way of indicating this infinite loop:x is thus a non-halting program
like the following:

x = while true ; do ; done

Here we can look a little deeper into thex program above and see that although its runtime is
infinite, its definition is quite finite; it is less than 30 characters. Since this program is written in
the ASCII codespace, we can multiply this figure by 8 to reach asize of 240 bits.

Prefix Turing Machines: In this thesis we look at Turing Machines whose set of haltingpro-
grams is prefix free: that is to say that the set of such programs form a prefix code (Section2.4),
because no halting program is a prefix of another halting program. We can realize this by slightly
changing the definition of a Turing machine, equipping it with a one-way input or ‘data’ tape,
a separate working tape, and a one-way output tape. Such a Turing Machine is called aprefix
machine. Just as there are universal “ordinary” Turing Machines, there are also universal prefix
machines that have identical computational power.

2.6 Kolmogorov Complexity

Now is when things begin to become tricky. There is a very special functionK calledKolmogorov
Complexity. Intuitively, the Kolmogorov complexity of a finite stringx is the shortest computer
program that printsx and then halts. More precisely,K is usually defined as a unary function that
maps strings to integers and is implicitly based (orconditioned) on a concrete reference Turing
machine represented by functionΦ. The complete way of writing it isKΦ(x). In practice, we
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want to use a Turing Machine that is as general as possible. Itis convenient to require the prefix
property. Therefore we takeΦ to be a universal prefix Turing Machine.2 Because all universal
Turing Machines can emulate one another reasonably efficiently, it does not matter much which
one we take. We will say more about this later. For our purposes, we can suppose a universal
prefix Turing machine is equivalent to any formal (implemented, real) computer programming
language extended with a potentially unlimited memory. Recall that Φ represents a particular
Turing machine with particular rules, and rememberΦ is a partial function that is defined for all
programs that terminate. IfΦ is the transformation that maps a programx to its outputo, then
KΦ(z) represents the length of the minimum program size (in bits)|x| over all valid programsx
such thatΦ(x) = z.

We can think ofK as representing the smallest quantity of information required to recreate
an object by any reliable procedure. For example, letx be the first 1000000 digits ofπ. Then
K(x) is small, because there is a short program generatingx, as explained further below. On the
other hand, for a random sequence of digits,K(x) will usually be large because the program will
probably have to hardcode a long list of abitrary values.

2.6.1 Conditional Kolmogorov Complexity

There is another form ofK which is a bit harder to understand but still important to ourdiscus-
sions calledconditional Kolmogorov Complexityand written

K(z|y).

The notation is confusing to some because the function takestwo arguments. Its definition re-
quires a slight enhancement of the earlier model of a Turing machine. While a Turing machine
has a single infinite tape, Kolmogorov complexity is defined with respect to prefix Turing ma-
chines, which have an infinite working tape, an output tape and a restricted input tape that sup-
ports only one operation called “read next symbol”. This input tape is often referred to as a
data tapeand is very similar to an input data file or stream read from standard input in Unix.
Thus instead of imagining a program as a single string we mustimagine a total runtime envi-
ronment consisting of two parts: an input program tape with read/write memory, and a data tape
of extremely limited functionality, unable to seek backward with the same limitations as POSIX
standard input: there is getchar but no fseek. In the contextof this slightly more complicated
machine, we can defineK(z|y) as the size, in bits, of the smallest program that outputsz given
a prefix-free encoding ofy, sayȳ, as an initial input on the data tape. The idea is that ify gives
a lot of information aboutz thenK(z|y) << K(z), but if z andy are completely unrelated, then
K(z | y)≈ K(z). For example, ifz= y, theny provides a maximal amount of information about
z. If we know thatz= y then a suitable program might be the following:

while true ; do
c = getchar()

2There exists a version of Kolmogorov complexity that is based on standard rather than prefix Turing machines,
but we shall not go into it here.
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if (c == EOF) ; then \index{halt}halt
else putchar(c)

done

Here, already, we can see thatK(x|x)< 1000 given the program above and a suitable universal
prefix Turing machine. Note that the number of bits used to encode the whole thing is less
than 1000. The more interesting case is when the two arguments are not equal, but related.
Then the program must provide the missing information through more-complicated translation,
preprogrammed results, or some other device.

2.6.2 Kolmogorov Randomness and Compressibility

As it turns out,K provides a convenient means for characterizing random sequences. Contrary to
popular belief, random sequences are not simply sequences with no discernible patterns. Rather,
there are a great many statistical regularities that can be proven and observed, but the difficulty
lies in simply expressing them. As mentioned earlier, we canvery easily express the idea of
randomness by first defining different degrees of randomnessas follows: a stringx is k− random
if and only if K(x) > |x| − k. This simple formula expresses the idea that random stringsare
incompressible. The vast majority of strings are 1-random in this sense. This definition improves
greatly on earlier definitions of randomness because it provides a concrete way to show a given,
particular string is non-random by means of a simple computer program.

At this point, an example is appropriate. Imagine the following sequence of digits:
1, 4, 1, 5, 9, 2, 6, 5, 3, ...
and so on. Some readers may recognize the aforementioned sequence as the first digits of

the Greek letterπ with the first digit (3) omitted. If we extend these digits forward to a million
places and continue to follow the precise decimal approximation of π, we would have a sequence
that might appear random to most people. But it would be a matter of some confusing debate
to try to settle a bet upon whether or not the sequence were truly random, even with all million
of the digits written out in several pages. However, a cleverobserver, having noticed the digits
corresponded toπ, could simply write a short computer program (perhaps gotten off the internet)
of no more than 10 kilobytes that could calculate the digits and print them out. What a surprise
it would be then, to see such a short program reproduce such a long and seemingly meaningless
sequence perfectly. This reproduction using a much shorter(less than one percent of the literal
size) program is itself direct evidence that the sequence isnon-random and in fact implies a
certain regularity to the data with a high degree of likelihood. Simple counting arguments show
that there can be no more than a vanishingly small number of highly compressible programs; in
particular, the proportion of programs that are compressible by evenk bits is no more than 2−k.
This can be understood by remembering that there are just two1-bit strings (0 and 1), four 2-bit
strings, and 2m m-bit strings. So if we consider encodings of lengthm for source strings of length
n with n> m, then at most 2m different strings out of the total of 2n source strings can be encoded
in mbits. Thus, the ratio of strings compressible byn−mbits is at most a 2m−n proportion of all
strings.
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2.6.3 Universality In K

We have remarked earlier how universal Turing machines may emulate one another using finite
simulation programs. In talking about the asymptotic behavior of K, these finite simulation
programs do not matter more than an additive constant. For example, if we takexn to mean the
first n digits ofπ, thenK(xn) = O(logn) no matter which universal Turing machine is in use. This
is because it will be possible to calculate any number of digits of π using a fixed-size program
that reads as input the number of digits to output. The lengthof this input cannot be encoded in
shorter than logn bits by a counting argument as in the previous section.

This implies that all variations ofK are in some sense equivalent, because any two different
variants ofK given two different reference universal Turing machines will never differ by more
than a fixed-size constant that depends only on the particular Turing machines chosen and not
on the sequence. It is this universal character that winds uplending credence to the idea thatK
can be used as anabsolutemeasure of the information contained in a given object. Thisis quite
different from standard Shannon Information Theory based on the idea ofaverage information
required to communicate an object over a large number of trials and given some sort ofgenerating
source[103]. The great benefit of the Kolmogorov Complexity approach isthat we need not
explicitly define the generating source nor run the many trials to see desired results; just one look
at the object is enough. Section2.7provides an example that will serve to illustrate the point.

2.6.4 Sophisticated Forms of K

There is now one more form of theK function that should be addressed, though it is perhaps the
most complicated of all. It is written as follows:

K(x,y).

This represents the size in bits of the minimum program that outputsx followed byy, provided
the output is given by first outputtingx in a self-delimitting way (as explained earlier) and then
outputtingy. Formally, we defineK(x,y) asK(〈x,y〉), where〈·, ·〉 is defined as the pairing oper-
ation that takes two numbers and returns a pair:xy.

2.7 Classical Probability Compared to K

Suppose we flip a fair coin. The type of sequence generated by the series ofN flips of a fair
coin is unpredictable in natureby assumptionin normal probability theory. To define precisely
what this means presents a bewildering array of possibilities. In the simplest, we might say the
sequence is generated by a Bernoulli process whereX takes on value 0 or 1 with probability

P(X = 0) f air =
1
2

= P(X = 1) f air .

The notationP(·) represents the chance that the event inside occurs. It is expressed as a ratio
between 0 and 1 with 0 meaning never, 1 meaning always, and every number inbetween repre-
senting the proportion of times the event will be true given alarge enough number of independent
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trials. In such a setting, we may use a single bit to representeither possibility efficiently, and can
always storeN coin flips in justN bits regardless of the outcomes.

What if, instead of a fair coin, we use a biased one? For instance, if

P(X = 0)biased=
1
8
,

and therefore since our simplified coins always turn up 0 or 1,

P(X = 1)biased=
7
8
.

Then we may use the scheme above to reliably transmitN flips in N bits. Alternatively, we may
decide to encode the 1’s more efficiently by using the following simple rule. Assume thatN is
even. Divide theN flips into pairs, and encode the pairs so that a pair of 1’s takes just a single 1
bit to encode. If both are not 1, then instead output a 0 and then two more bits to represent the
actual outcomes in order. Then continue with the next pair oftwo. One can quickly calculate
that “49

64 of the time” the efficient 1-bit codeword will be output in this scheme which will save
a great deal of space. Some of this savings will be lost in the cases where the 3-bit codeword is
emitted,15

64 of the time. The average number of bits needed per outcome transmitted is then the
codelengthc:

c =
49
128

+
15·3
64

=
94
128

.

This can also be improved somewhat down to theShannon entropy H(X) [79] of the sourceX
with longer blocks or smarter encoding such as arithmetic codes [92] over an alphabetΣ:

H(X) = ∑
i∈Σ
−P(X = i) logP(X = i),

c =−1
8
· log(

1
8
)− 7

8
· log(

7
8
).

By Shannon’s famous coding theorem, this is essentially thesmallest average code length that
can be obtained under the assumption that the coin is independently tossed according toPbiased.
Here though, there is already a problem, as we now cannot say,unconditionally, at least, that
this many bits will be needed for any actual sequence of bits;luck introduces some variation
in the actual space needed, though it is usually near the average. We know that such a coin is
highly unlikely to repeatedly emit 0’s, yet we cannot actually rule out this possibility. More to
the point, in abstract terms the probability, while exponentially decaying with the greatest haste,
still never quite reaches zero. It is useful to think carefully about this problem. All the laws
of classical probability theory cannot make claims about a particular sequence but instead only
about ensembles of experiments and expected proportions. Trying to pin down uncertainty in this
crude way often serves only to make it appear elsewhere instead. In the Kolmogorov Complexity
approach, we turn things upside-down: we say that a string israndom if it is uncompressible. A
string isc− randomif K(x) > |x|−c. This then directly addresses the question of how random a
given string is by introducing different grades of randomness and invoking the universal function
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K to automatically rule out the possibility of any short programs predicting a random string
defined in this way. Returning to the fair coin example, the entropy is 1 bit per outcome. But
we cannot say with certainty that a sequence coming from sucha coin cannot be substantially
compressed. This is only true with high probability.

2.8 Uncomputability of Kolmogorov Complexity

Some have made the claim that Kolmogorov Complexity is objective. In theory, it is. But in
practice it is difficult to say; one major drawback ofK is that it is uncomputable. Trying to
compute it leads one to try immediately the shortest programs first, and as shown above it does
not take many characters in a reasonable language to producean infinite loop. This problem is
impossible to protect against in general, and any multi-threaded approach is doomed to failure
for this reason as it bumps up against the Halting Problem. [79]

A more fruitful approach has been to apply Kolmogorov Complexity by approximating it with
data compressors. We may consider the problem of efficientlyencoding a known biased random
source into a minimum number of bits in such a way that the original sequence, no matter what
it was, can once again be reconstructed, but so that also for certain sequences a shorter code is
output. This is the basic idea of a data compression program.The most commonly used data
compression programs of the last decade includegzip, bzip2, andPPM.

gzip is an old and reliable Lempel-Ziv type compressor with a32-kilobyte window [122]. It
is the simplest and fastest of the three compressors.

bzip2 is a wonderful new compressor using the blocksort algorithm [17]. It provides good
compression and an expanded window of 900 kilobytes allowing for longer-range patterns to be
detected. It is also reasonably fast.

PPM stands for Prediction by Partial Matching [4]. It is part of a new generation of powerful
compressors using a pleasing mix of statistical models arranged by trees, suffix trees or suffix
arrays. It usually achieves the best performance of any realcompressor yet is also usually the
slowest and most memory intensive.

Although restricted to the research community, a new challenger to PPM has arisen called
context mixing compression. It is often the best compression scheme for a variety of file types
but is very slow; further, it currently uses a neural networkto do the mixing of contexts. See the
paqseries of compressors on the internet for more information on this exciting development in
compression technology.

We use these data compressors to approximate from above the Kolmogorov Complexity func-
tion K. It is worth mentioning that all of the real compressors listed above operate on a bytewide
basis, and thus all will return a multiple of 8 bits in their results. This is unfortunate for ana-
lyzing small strings, because the granularity is too coarseto allow for fine resolution of subtle
details. To overcome this problem, the CompLearn system – the piece of software using which
almost all experiments in later chapters have been carried out – supports the idea of avirtual
compressor(originally suggested by Steven de Rooij): a virtual compressor is one that does not
actually output an encoded compressed form, but instead simply accumulates the number of bits
necessary to encode the results using a hypothetical arithmetic (or entropy) encoder. This frees
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us from the bytewide restriction and indeed eliminates the need for rounding to a whole number
of bits. Instead we may just return a real or floating-point value. This becomes quite useful when
analyzing very similar strings of less than 100 bytes.

2.9 Summary

We have introduced the notion of universal computation and the K function indicating Kol-
mogorov Complexity. We have introduced Turing Machines andprefix codes as well as prefix
machines. We have discussed a definition of a random string using K. We use these concepts in
the next few chapters to explain in great detail our theory and experimental results.

24



Chapter 3

Normalized Compression Distance (NCD)

You may very appropriately want to ask me how we are going to resolve the ever
acceleratingly dangerous impasse of world-opposed politicians and ideological dog-
mas. I answer, it will be resolved by the computer. Man has ever-increasing confi-
dence in the computer; witness his unconcerned landings as airtransport passengers
coming in for a landing in the combined invisibility of fog and night. While no politi-
cian or political system can ever afford to yield understandably and enthusiastically
to their adversaries and opposers, all politicians can and will yield enthusiastically to
the computers safe flight-controlling capabilities in bringing all of humanity in for a
happy landing. –Buckminster Fuller inOperating Manual for Spaceship Earth

In this chapter the Normalized Compression Distance (NCD) and the related Normalized In-
formation Distance (NID) are presented and investigated. NCD is a similarity measure based
on a data compressor. NID is simply the instantiation of NCD using the theoretical (and un-
computable) Kolmogorov compressor. Below we first review the definition of a metric. In Sec-
tion 3.3, we explain precisely what is meant by universality in the case of NID. We discuss
compressor axioms in Section3.2, and properties of NCD in Section 3.4. At the end of the chap-
ter, we connect NCD with a classical statistical quantity called Kullback-Leibler divergence. In
Section3.6.1we connect arithmetic compressors to entropy, and in Section 3.6.2we relate them
to KL-divergence.

3.1 Similarity Metric

In mathematics, different distances arise in all sorts of contexts, and one usually requires these
to be a “metric”. We give a precise formal meaning to the loosedistance notion of “degree of
similarity” used in the pattern recognition literature.

Metric: Let Ω be a nonempty set andR + be the set of nonnegative real numbers. Ametric
on Ω is a functionD : Ω×Ω→ R + satisfying the metric (in)equalities:

• D(x,y) = 0 iff x = y,
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• D(x,y) = D(y,x) (symmetry), and

• D(x,y)≤D(x,z)+D(z,y) (triangle inequality).

The valueD(x,y) is called thedistancebetweenx,y ∈ Ω. A familiar example of a metric is
the Euclidean metric, the everyday distancee(a,b) between two objectsa,b expressed in, say,
meters. Clearly, this distance satisfies the propertiese(a,a) = 0, e(a,b) = e(b,a), ande(a,b)≤
e(a,c)+e(c,b) (for instance,a= Amsterdam,b= Brussels, andc= Chicago.) We are interested
in “similarity metrics”. For example, if the objects are classical music pieces then the function
D(a,b) = 0 if a and b are by the same composer andD(a,b) = 1 otherwise, is a similarity
metric. This metric captures only one similarity aspect (feature) of music pieces, presumably an
important one because it subsumes a conglomerate of more elementary features.

Density: In defining a class of admissible distances (not necessarilymetric distances) we
want to exclude unrealistic ones likef (x,y) = 1

2 for everypairx 6= y. We do this by restricting the
number of objects within a given distance of an object. As in [9] we do this by only considering
effective distances, as follows.

3.1.1.DEFINITION. LetΩ = Σ∗, with Σ a finite nonempty alphabet andΣ∗ the set of finite strings
over that alphabet. Since every finite alphabet can be recoded in binary, we chooseΣ = {0,1}.
In particular, “files” in computer memory are finite binary strings. A functionD : Ω×Ω→ R +

is anadmissible distanceif for every pair of objectsx,y ∈ Ω the distanceD(x,y) satisfies the
densitycondition (a version of the Kraft Inequality (2.4.1)):

∑
y

2−D(x,y) ≤ 1, (3.1.1)

is computable, and issymmetric, D(x,y) = D(y,x).

If D is an admissible distance, then for everyx the set{D(x,y) : y ∈ {0,1}∗} is the length
set of a prefix code, since it satisfies (2.4.1), the Kraft inequality. Conversely, if a distance is the
length set of a prefix code, then it satisfies (2.4.1), see [31].

3.1.2.EXAMPLE . In representing the Hamming distanced between two strings of equal length
n differing in positionsi1, . . . , id, we can use a simple prefix-free encoding of(n,d, i1, . . . , id)
in 2 logn+ 4loglogn+ 2+ d logn bits. We encoden andd prefix-free in logn+ 2loglogn+ 1
bits each, see e.g. [79], and then the literal indexes of the actual flipped-bit positions. Adding
an O(1)-bit program to interpret these data, with the strings concerned beingx andy, we have
definedHn(x,y) = 2logn+4log logn+d logn+O(1) as the length of a prefix code word (prefix
program) to computex from y andvice versa. Then, by the Kraft inequality (Chapter 2, Sec-
tion 2.4.1), ∑y2−Hn(x,y) ≤ 1. It is easy to verify thatHn is a metric in the sense that it satisfies the
metric (in)equalities up toO(logn) additive precision.

Normalization: Large objects (in the sense of long strings) that differ by a tiny part are
intuitively closer than tiny objects that differ by the sameamount. For example, two whole
mitochondrial genomes of 18,000 bases that differ by 9,000 are very different, while two whole
nuclear genomes of 3×109 bases that differ by only 9,000 bases are very similar. Thus,absolute
difference between two objects does not govern similarity,but relative difference seems to.
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3.1.3.DEFINITION. A compressoris a lossless encoder mappingΩ into {0,1}∗ such that the
resulting code is a prefix code. “Lossless” means that there is a decompressor that reconstructs
the source message from the code message. For convenience ofnotation we identify “compres-
sor” with a “code word length function”C : Ω→ N , whereN is the set of nonnegative integers.
That is, the compressed version of a filex has lengthC(x). We only consider compressors such
thatC(x) ≤ |x|+ O(log|x|). (The additive logarithmic term is due to our requirement that the
compressed file be a prefix code word.) We fix a compressorC, and call the fixed compressor the
reference compressor.

3.1.4.DEFINITION. LetD be an admissible distance. Then we may make the definitionD+(x) =
max{D(x,z) : C(z) ≤C(x)}, andD+(x,y) is D+(x,y) = max{D+(x),D+(y)}. Note that since
D(x,y) = D(y,x), alsoD+(x,y) = D+(y,x).

3.1.5.DEFINITION. Let D be an admissible distance. Thenormalized admissible distance, also
called asimilarity distance, d(x,y), based onD relative to a reference compressorC, is defined
by

d(x,y) =
D(x,y)

D+(x,y)
.

It follows from the definitions that a normalized admissibledistance is a functiond : Ω×Ω→
[0,1] that is symmetric:d(x,y) = d(y,x).

3.1.6.LEMMA . For every x∈ Ω, and constant e∈ [0,1], a normalized admissible distance sat-
isfies the density constraint

|{y : d(x,y)≤ e, C(y)≤C(x)}|< 2eD+(x)+1. (3.1.2)

PROOF. Assume to the contrary thatd does not satisfy (3.1.2). Then, there is ane∈ [0,1] and
anx∈Ω, such that (3.1.2) is false. We first note that, sinceD(x,y) is an admissible distance that
satisfies (3.1.1), d(x,y) satisfies a “normalized” version of the Kraft inequality:

∑
y:C(y)≤C(x)

2−d(x,y)D+(x) ≤∑
y

2−d(x,y)D+(x,y) ≤ 1. (3.1.3)

Starting from (3.1.3) we obtain the required contradiction:

1≥ ∑
y:C(y)≤C(x)

2−d(x,y)D+(x)

≥ ∑
y:d(x,y)≤e, C(y)≤C(x)

2−eD+(x)

≥ 2eD+(x)+12−eD+(x) > 1.

2
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If d(x,y) is the normalized version of an admissible distanceD(x,y) then (3.1.3) is equivalent
to (3.1.1). We call a normalized distance a “similarity” distance, because it gives a relative simi-
larity according to the distance (with distance 0 when objects are maximally similar and distance
1 when they are maximally dissimilar) and, conversely, for every well-defined computable notion
of similarity we can express it as a metric distance according to our definition. In the literature a
distance that expresses lack of similarity (like ours) is often called a “dissimilarity” distance or a
“disparity” distance.

3.1.7.REMARK . As far as this author knows, the idea of normalized metric is, surprisingly, not
well-studied. An exception is [121], which investigates normalized metrics to account for relative
distances rather than absolute ones, and it does so for much the same reasons as in the present
work. An example there is the normalized Euclidean metric|x−y|/(|x|+ |y|), wherex,y∈ R n

(R denotes the real numbers) and| · | is the Euclidean metric—theL2 norm. Another example is
a normalized symmetric-set-difference metric. But these normalized metrics are not necessarily
effective in that the distance between two objects gives thelength of an effective description to
go from either object to the other one.

3.1.8.REMARK . Our definition of normalized admissible distance is more direct than in [77],
and the density constraints (3.1.2) and (3.1.3) follow from the definition. In [77] we put a stricter
density condition in the definition of “admissible” normalized distance, which is, however, harder
to satisfy and maybe too strict to be realistic. The purpose of this stricter density condition was to
obtain a stronger “universality” property than the presentTheorem3.5.3, namely one withα = 1
and ε = O(1/max{C(x),C(y)}). Nonetheless, both definitions coincide if we set the length
of the compressed versionC(x) of x to the ultimate compressed lengthK(x), the Kolmogorov
complexity ofx.

3.1.9.EXAMPLE . To obtain a normalized version of the Hamming distance of Example3.1.2, we
definehn(x,y) = Hn(x,y)/H+

n (x,y). We can setH+
n (x,y) = H+

n (x) = (n+2)⌈logn⌉+4⌈log logn⌉+
O(1) since every contemplated compressorC will satisfy C(x) = C(x), wherex is x with all bits
flipped (soH+

n (x,y) ≥ H+
n (z,z) for eitherz = x or z = y). By (3.1.2), for everyx, the num-

ber of y with C(y) ≤ C(x) in the Hamming ballhn(x,y) ≤ e is less than 2eH+
n (x)+1. This up-

per bound is an obvious overestimate fore≥ 1/ logn. For lower values ofe, the upper bound
is correct by the observation that the number ofy’s equals∑en

i=0

( n
en

)
≤ 2nH(e), whereH(e) =

eloge+(1−e) log(1−e), Shannon’s entropy function. Then,eH+
n (x) > enlogn> enH(e) since

elogn > H(e).

3.2 Normal Compressor

We give axioms determining a large family of compressors that both include most (if not all)
real-world compressors and ensure the desired properties of the NCD to be defined later.

3.2.1.DEFINITION. A compressorC is normal if it satisfies, up to an additiveO(logn) term,
with n the maximal binary length of an element ofΩ involved in the (in)equality concerned, the
following:
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1. Idempotency: C(xx) = C(x), andC(λ) = 0, whereλ is the empty string.

2. Monotonicity: C(xy)≥C(x).

3. Symmetry: C(xy) = C(yx).

4. Distributivity: C(xy)+C(z)≤C(xz)+C(yz).

Idempotency: A reasonable compressor will see exact repetitions and obeyidempotency up to
the required precision. It will also compress the empty string to the empty string.

Monotonicity: A real compressor must have the monotonicity property, at least up to the
required precision. The property is evident for stream-based compressors, and only slightly less
evident for block-coding compressors.

Symmetry: Stream-based compressors of the Lempel-Ziv family, like gzip and pkzip, and
the predictive PPM family, like PPMZ, are possibly not precisely symmetric. This is related to
the stream-based property: the initial filex may have regularities to which the compressor adapts;
after crossing the border toy it must unlearn those regularities and adapt to the ones ofy. This
process may cause some imprecision in symmetry that vanishes asymptotically with the length
of x,y. A compressor must be poor indeed (and will certainly not be used to any extent) if it
doesn’t satisfy symmetry up to the required precision. Apart from stream-based, the other major
family of compressors is block-coding based, like bzip2. They essentially analyze the full input
block by considering all rotations in obtaining the compressed version. It is to a great extent
symmetrical, and real experiments show no departure from symmetry.

Distributivity: The distributivity property is not immediately intuitive.In Kolmogorov com-
plexity theory the stronger distributivity property

C(xyz)+C(z)≤C(xz)+C(yz) (3.2.1)

holds (withK = C). However, to prove the desired properties of NCD below, only the weaker
distributivity property

C(xy)+C(z)≤C(xz)+C(yz) (3.2.2)

above is required, also for the boundary case wereC = K. In practice, real-world compressors
appear to satisfy this weaker distributivity property up tothe required precision.

3.2.2.DEFINITION. Define
C(y|x) = C(xy)−C(x). (3.2.3)

This numberC(y|x) of bits of information iny, relative tox, can be viewed as the excess number
of bits in the compressed version ofxy compared to the compressed version ofx, and is called
the amount ofconditional compressed information.

In the definition of compressor the decompression algorithmis not included (unlike the case of
Kolmorogov complexity, where the decompressing algorithmis given by definition), but it is easy
to construct one: Given the compressed version ofx in C(x) bits, we can run the compressor on
all candidate stringsz—for example, in length-increasing lexicographical order, until we find the
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compressed stringz0 = x. Since this string decompresses tox we have foundx = z0. Given the
compressed version ofxy in C(xy) bits, we repeat this process using stringsxzuntil we find the
stringxz1 of which the compressed version equals the compressed version ofxy. Since the former
compressed version decompresses toxy, we have foundy = z1. By the unique decompression
property we find thatC(y|x) is the extra number of bits we require to describey apart from
describingx. It is intuitively acceptable that the conditional compressed informationC(x|y)
satisfies the triangle inequality

C(x|y)≤C(x|z)+C(z|y). (3.2.4)

3.2.3.LEMMA . Both(3.2.1) and (3.2.4) imply (3.2.2).

PROOF. ((3.2.1) implies (3.2.2):) By monotonicity.
((3.2.4) implies (3.2.2):) Rewrite the terms in (3.2.4) according to (3.2.3), cancelC(y) in the

left- and right-hand sides, use symmetry, and rearrange. 2

3.2.4.LEMMA . A normal compressor satisfies additionallysubadditivity: C(xy)≤C(x)+C(y).

PROOF. Consider the special case of distributivity withz the empty word so thatxz= x, yz= y,
andC(z) = 0. 2

Subadditivity: The subadditivity property is clearly also required for every viable compres-
sor, since a compressor may use information acquired fromx to compressy. Minor imprecision
may arise from the unlearning effect of crossing the border betweenx andy, mentioned in rela-
tion to symmetry, but again this must vanish asymptoticallywith increasing length ofx,y.

3.3 Background in Kolmogorov complexity

Technically, theKolmogorov complexityof x giveny is the length of the shortest binary program,
for the reference universal prefix Turing machine, that on input y outputsx; it is denoted as
K(x|y). For precise definitions, theory and applications, see [79]. The Kolmogorov complexity of
x is the length of the shortest binary program with no input that outputsx; it is denoted asK(x) =
K(x|λ) whereλ denotes the empty input. Essentially, the Kolmogorov complexity of a file is the
length of the ultimate compressed version of the file. In [9] the information distance E(x,y) was
introduced, defined as the length of the shortest binary program for the reference universal prefix
Turing machine that, with inputx computesy, and with inputy computesx. It was shown there
that, up to an additive logarithmic term,E(x,y) = max{K(x|y),K(y|x)}. It was shown also that
E(x,y) is a metric, up to negligible violations of the metric inequalties. Moreover, it is universal
in the sense that for every admissible distanceD(x,y) as in Definition3.1.1, E(x,y)≤D(x,y) up
to an additive constant depending onD but not onx andy. In [77], the normalized version of
E(x,y), called thenormalized information distance, is defined as

NID(x,y) =
max{K(x|y),K(y|x)}

max{K(x),K(y)} . (3.3.1)
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It too is a metric, and it is universal in the sense that this single metric minorizes up to an neg-
ligible additive error term all normalized admissible distances in the class considered in [77].
Thus, if two files (of whatever type) are similar (that is, close) according to the particular fea-
ture described by a particular normalized admissible distance (not necessarily metric), then they
are also similar (that is, close) in the sense of the normalized information metric. This justifies
calling the latterthesimilarity metric. We stress once more that different pairsof objects may
have different dominating features. Yet every such dominant similarity is detected by the NID .
However, this metric is based on the notion of Kolmogorov complexity. Unfortunately, the Kol-
mogorov complexity is non-computable in the Turing sense. Approximation of the denominator
of (3.3.1) by a given compressorC is straightforward: it is max{C(x),C(y)}. The numerator is
more tricky. It can be rewritten as

max{K(x,y)−K(x),K(x,y)−K(y)}, (3.3.2)

within logarithmic additive precision, by the additive property of Kolmogorov complexity [79].
The termK(x,y) represents the length of the shortest program for the pair(x,y). In compression
practice it is easier to deal with the concatenationxy or yx. Again, within logarithmic precision
K(x,y) = K(xy) = K(yx). Following a suggestion by Steven de Rooij, one can approximate
(3.3.2) best by min{C(xy),C(yx)}−min{C(x),C(y)}. Here, and in the later experiments using
the CompLearn Toolkit, we simply useC(xy) rather than min{C(xy),C(yx)}. This is justified
by the observation that block-coding based compressors aresymmetric almost by definition, and
experiments with various stream-based compressors (gzip,PPMZ) show only small deviations
from symmetry.

The result of approximating the NID using a real compressorC is called the normalized
compression distance (NCD ), formally defined in (3.5.1). The theory as developed for the
Kolmogorov-complexity based NID in [77], may not hold for the (possibly poorly) approximat-
ing NCD . It is nonetheless the case that experiments show that the NCD apparently has (some)
properties that make the NID so appealing. To fill this gap between theory and practice, we de-
velop the theory of NCD from first principles, based on the axiomatics of Section3.2. We show
that the NCD is a quasi-universal similarity metric relative to a normal reference compressorC.
The theory developed in [77] is the boundary caseC = K, where the “quasi-universality” below
has become full “universality”.

3.4 Compression Distance

We define a compression distance based on a normal compressorand show it is an admissible
distance. In applying the approach, we have to make do with anapproximation based on a far
less powerful real-world reference compressorC. A compressorC approximates the information
distanceE(x,y), based on Kolmogorov complexity, by the compression distanceEC(x,y) defined
as

EC(x,y) = C(xy)−min{C(x),C(y)}. (3.4.1)

Here,C(xy) denotes the compressed size of the concatenation ofx andy, C(x) denotes the com-
pressed size ofx, andC(y) denotes the compressed size ofy.

31



3.4.1.LEMMA . If C is a normal compressor, then EC(x,y)+O(1) is an admissible distance.

PROOF. Case 1: AssumeC(x) ≤ C(y). ThenEC(x,y) = C(xy)−C(x). Then, givenx and a
prefix-program of lengthEC(x,y) consisting of the suffix of theC-compressed version ofxy, and
the compressorC in O(1) bits, we can run the compressorC on all xz’s, the candidate stringsz
in length-increasing lexicographical order. When we find azso that the suffix of the compressed
version ofxzmatches the given suffix, thenz= y by the unique decompression property.

Case 2:AssumeC(y)≥C(x). By symmetryC(xy) = C(yx). Now follow the proof of Case
1. 2

3.4.2.LEMMA . If C is a normal compressor, then EC(x,y) satisfies the metric (in)equalities up
to logarithmic additive precision.

PROOF. Only the triangular inequality is non-obvious. By (3.2.2) C(xy)+C(z)≤C(xz)+C(yz)
up to logarithmic additive precision. There are six possibilities, and we verify the correctness of
the triangular inequality in turn for each of them. AssumeC(x) ≤C(y) ≤C(z): ThenC(xy)−
C(x)≤C(xz)−C(x)+C(yz)−C(y). AssumeC(y)≤C(x)≤C(z): ThenC(xy)−C(y)≤C(xz)−
C(y)+C(yz)−C(x). AssumeC(x)≤C(z)≤C(y): ThenC(xy)−C(x)≤C(xz)−C(x)+C(yz)−
C(z). AssumeC(y)≤C(z)≤C(x): ThenC(xy)−C(y)≤C(xz)−C(z)+C(yz)−C(y). Assume
C(z)≤C(x)≤C(y): ThenC(xy)−C(x)≤C(xz)−C(z)+C(yz)−C(z). AssumeC(z)≤C(y)≤
C(x): ThenC(xy)−C(y)≤C(xz)−C(z)+C(yz)−C(z). 2

3.4.3.LEMMA . If C is a normal compressor, then E+
C (x,y) = max{C(x),C(y)}.

PROOF. Consider a pair(x,y). The max{C(xz)−C(z) : C(z)≤C(y)} is C(x) which is achieved
for z= λ, the empty word, withC(λ) = 0. Similarly, the max{C(yz)−C(z) : C(z) ≤C(x)} is
C(y). Hence the lemma. 2

3.5 Normalized Compression Distance

The normalized version of the admissible distanceEC(x,y), the compressorC based approx-
imation of the normalized information distance (3.3.1), is called thenormalized compression
distanceor NCD:

NCD(x,y) =
C(xy)−min{C(x),C(y)}

max{C(x),C(y)} . (3.5.1)

This NCD is the main concept of this work. It is the real-worldversion of the ideal notion of
normalized information distance NID in (3.3.1).

3.5.1.REMARK . In practice, the NCD is a non-negative number 0≤ r ≤ 1+ε representing how
different the two files are. Smaller numbers represent more similar files. Theε in the upper
bound is due to imperfections in our compression techniques, but for most standard compression
algorithms one is unlikely to see anε above 0.1 (in our experiments gzip and bzip2 achieved
NCD ’s above 1, but PPMZ always had NCD at most 1).
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There is a natural interpretation to NCD(x,y): If, say,C(y)≥C(x) then we can rewrite

NCD(x,y) =
C(xy)−C(x)

C(y)
.

That is, the distance NCD(x,y) betweenx andy is the improvement due to compressingy using
x as previously compressed “data base,” and compressingy from scratch, expressed as the ratio
between the bit-wise length of the two compressed versions.Relative to the reference compressor
we can define the information inx abouty asC(y)−C(y|x). Then, using (3.2.3),

NCD(x,y) = 1−C(y)−C(y|x)
C(y)

.

That is, the NCD betweenx andy is 1 minus the ratio of the informationx abouty and the
information iny.

3.5.2.THEOREM. If the compressor is normal, then theNCD is a normalized admissible dis-
tance satsifying the metric (in)equalities, that is, a similarity metric.

PROOF. If the compressor is normal, then by Lemma3.4.1and Lemma3.4.3, the NCD is a
normalized admissible distance. It remains to show it satisfies the three metric (in)equalities.

1. By idempotency we have NCD(x,x) = 0. By monotonicity we have NCD(x,y) ≥ 0 for
everyx,y, with inequality fory 6= x.

2. NCD(x,y) = NCD(y,x). The NCD is unchanged by interchangingx andy in (3.5.1).

3. The difficult property is the triangle inequality. Without loss of generality we assume
C(x)≤C(y)≤C(z). Since the NCD is symmetrical, there are only three triangleinequal-
ities that can be expressed by NCD(x,y),NCD(x,z),NCD(y,z). We verify them in turn:

(a) NCD(x,y) ≤ NCD(x,z)+ NCD(z,y): By distributivity, the compressor itself satis-
fiesC(xy)+C(z)≤C(xz)+C(zy). SubtractingC(x) from both sides and rewriting,
C(xy)−C(x)≤C(xz)−C(x)+C(zy)−C(z). Dividing byC(y) on both sides we find

C(xy)−C(x)
C(y)

≤ C(xz)−C(x)+C(zy)−C(z)
C(y)

.

The left-hand side is≤ 1.

i. Assume the right-hand side is≤ 1. SettingC(z) = C(y)+ ∆, and adding∆ to
both the numerator and denominator of the right-hand side, it can only increase
and draw closer to 1. Therefore,

C(xy)−C(x)
C(y)

≤ C(xz)−C(x)+C(zy)−C(z)+∆
C(y)+∆

=
C(zx)−C(x)

C(z)
+

C(zy)−C(y)
C(z)

,

which was what we had to prove.
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ii. Assume the right-hand side is> 1. We proceed like in the previous case, and
add∆ to both numerator and denominator. Although now the right-hand side de-
creases, it must still be greater than 1, and therefore the right-hand side remains
at least as large as the left-hand side.

(b) NCD(x,z) ≤ NCD(x,y) + NCD(y,z): By distributivity we haveC(xz) + C(y) ≤
C(xy) +C(yz). SubtractingC(x) from both sides, rearranging, and dividing both
sides byC(z) we obtain

C(xz)−C(x)
C(z)

≤ C(xy)−C(x)
C(z)

+
C(yz)−C(y)

C(z)
.

The right-hand side doesn’t decrease when we substituteC(y) for the denominator
C(z) of the first term, sinceC(y)≤C(z). Therefore, the inequality stays valid under
this substitution, which was what we had to prove.

(c) NCD(y,z) ≤ NCD(y,x) + NCD(x,z): By distributivity we haveC(yz) + C(x) ≤
C(yx)+C(xz). SubtractingC(y) from both sides, using symmetry, rearranging, and
dividing both sides byC(z) we obtain

C(yz)−C(y)
C(z)

≤ C(xy)−C(x)
C(z)

+
C(yz)−C(y)

C(z)
.

The right-hand side doesn’t decrease when we substituteC(y) for the denominator
C(z) of the first term, sinceC(y)≤C(z). Therefore, the inequality stays valid under
this substitution, which was what we had to prove.

2

Quasi-Universality: We now digress to the theory developed in [77], which formed the mo-
tivation for developing the NCD . If, instead of the result ofsome real compressor, we substitute
the Kolmogorov complexity for the lengths of the compressedfiles in the NCD formula, the
result is the NID as in (3.3.1). It is universal in the following sense: Every admissible distance
expressing similarity according to some feature, that can be computed from the objects con-
cerned, is comprised (in the sense of minorized) by the NID . Note that every feature of the data
gives rise to a similarity, and, conversely, every similarity can be thought of as expressing some
feature: being similar in that sense. Our actual practice inusing the NCD falls short of this ideal
theory in at least three respects:

(i) The claimed universality of the NID holds only for indefinitely long sequencesx,y. Once
we consider stringsx,y of definite lengthn, it is only universal with respect to “simple” com-
putable normalized admissible distances, where “simple” means that they are computable by
programs of length, say, logarithmic inn. This reflects the fact that, technically speaking, the
universality is achieved by summing the weighted contribution of all similarity distances in the
class considered with respect to the objects considered. Only similarity distances of which the
complexity is small (which means that the weight is large), with respect to the size of the data
concerned, kick in.
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(ii) The Kolmogorov complexity is not computable, and it is in principle impossible to com-
pute how far off the NCD is from the NID . So we cannot in generalknow how well we are
doing using the NCD .

(iii) To approximate the NCD we use standard compression programs like gzip, PPMZ, and
bzip2. While better compression of a string will always approximate the Kolmogorov complexity
better, this may not be true for the NCD . Due to its arithmeticform, subtraction and division, it is
theoretically possible that while all items in the formula get better compressed, the improvement
is not the same for all items, and the NCD value moves away fromthe NID value. In our
experiments we have not observed this behavior in a noticable fashion. Formally, we can state
the following:

3.5.3.THEOREM. Let d be a computable normalized admissible distance and C bea normal
compressor. Then,NCD(x,y)≤ αd(x,y)+ ε, where for C(x)≥C(y), we haveα = D+(x)/C(x)
andε = (C(x|y)−K(x|y))/C(x), with C(x|y) according to(3.2.3).

PROOF. Fix d,C,x,y in the statement of the theorem. Since the NCD is symmetrical, we can,
without loss of generality, letC(x)≥C(y). By (3.2.3) and the symmetry propertyC(xy) = C(yx)
we haveC(x|y) ≥C(y|x). Therefore, NCD(x,y) = C(x|y)/C(x). Let d(x,y) be the normalized
version of the admissible distanceD(x,y); that is,d(x,y) = D(x,y)/D+(x,y). Let d(x,y) = e.
By (3.1.2), there are< 2eD+(x)+1 many(x,v) pairs, such thatd(x,v)≤ e andC(y)≤C(x). Since
d is computable, we can compute and enumerate all these pairs.The initially fixed pair(x,y)
is an element in the list and its index takes≤ eD+(x) + 1 bits. Therefore, givenx, the y can
be described by at mosteD+(x) + O(1) bits—its index in the list and anO(1) term account-
ing for the lengths of the programs involved in reconstructing y given its index in the list, and
algorithms to compute functionsd andC. Since the Kolmogorov complexity gives the length
of the shortest effective description, we haveK(y|x) ≤ eD+(x) + O(1). Substitution, rewrit-
ing, and usingK(x|y) ≤ E(x,y) ≤ D(x,y) up to ignorable additive terms (Section3.3), yields
NCD(x,y) = C(x|y)/C(x)≤ αe+ ε, which was what we had to prove.

2

3.5.4.REMARK . Clustering according to NCD will group sequences togetherthat are similar ac-
cording to features that are not explicitly known to us. Analysis of what the compressor actually
does, still may not tell us which features that make sense to us can be expressed by conglomerates
of features analyzed by the compressor. This can be exploited to track down unknown features
implicitly in classification: forming automatically clusters of data and see in which cluster (if
any) a new candidate is placed.

Another aspect that can be exploited is exploratory: Given that the NCD is small for a pair
x,y of specific sequences, what does this really say about the sense in which these two sequences
are similar? The above analysis suggests that close similarity will be due to a dominating feature
(that perhaps expresses a conglomerate of subfeatures). Looking into these deeper causes may
give feedback about the appropriateness of the realized NCDdistances and may help extract
more intrinsic information about the objects, than the oblivious division into clusters, by looking
for the common features in the data clusters.
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3.6 Kullback-Leibler divergence and NCD

NCD is sometimes considered a mysterious and obscure measure of information distance. In
fact, as we explain in this section, in some cases it can be thought of as a generalization and ex-
tension of older and well-established methods. The Normalized Information Distance is a purely
theoretical concept and cannot be exactly computed for eventhe simplest files due to the inherent
incomputability of Kolmogorov Complexity. The NormalizedCompression Distance, however,
replaces the uncomputable K with an approximation based on aparticular data compressor. Dif-
ferent data compression algorithms lead to different varieties of NCD. Modern data compression
programs use highly evolved and complicated schemes that involve stochastic and adaptive mod-
elling of the data at many levels simultaneously. These are all but impossible to analyze from a
precise mathematical viewpoint, and thus many consider modern data compression as much an
art as a science. If, however, we look instead at the compressors popular in UNIX in the 1970’s,
we can begin to understand how NCD achieves its results. As weshow in this section, it turns
out that with such simple compressors, the NCD calculates the total KL-divergence to the mean.
Below we first (Section3.6.1) connect such compressors to entropy, and then (Section3.6.2)
relate them to KL-divergence.

3.6.1 Static Encoders and Entropy

The UNIX System Vpack command uses a static (non-adaptive) Huffman coding schemeto
compress files. The method works in two passes. First, the input file is considered as a sequence
of 8-bit bytes, and a histogram is constructed to represent the frequency of each byte. Next, an
optimal Huffman code is constructed according to this histogram, and is represented in memory
as a Huffman tree. This Huffman tree is written out as a variable-length header in the compressed
file. Finally, the algorithm makes a second pass through the file and encodes it using the Huffman
code it has constructed. Notice that the coding scheme does not change throughout the duration
of the file. It is this failure to adapt that makes this compressor amenable to mathematical anal-
ysis. In the following example, we analyze a hypothetical static arithmetic coder which yields
simpler codelength equations. The simpler Huffman pack encoder will perform similarly but
must round upwards the codelengths of each symbol to a whole number of bits and thus can lose
at most 1 bit per symbol as compared to the arithmetic coder described below.

Consider therefore the particular case of a simple static arithmetic coderS. LetS(D) represent
the function mapping a file,D, to the number of bits needed to encodeD with S. A static
arithmetic encoder really models its input file as an i.i.d. (independently, identically distributed)
Bernoulli process. For distributions of this type, the codelength that is achieved very closely
approximates the empirical Shannon entropy of the file [92, 48] multiplied by the file sizeND.
Thus, if data are indeed distributed according to a Bernoulli process, then this encoder almost
achieves the theoretically ideal Shannon limit. Let us explain this in more detail. LetD be a file
over an alphabetΣ. Let n(D, i) denote the number of occurrences of symboli in file D, and let
ND denote the total number of symbols in fileD. Then

ND = ∑
i∈Σ

n(D, i). (3.6.1)

36



Theempirical distributioncorresponding to fileD is defined as the probability distribution that
assigns a probability to each symbol in the alphabet given by

PD(i) =
n(D, i)

ND
. (3.6.2)

The empirical distributionPD is just the histogram of relative frequencies of the symbolsof Σ
occurring inD.

It turns out that, when provided the empirical distributionPD, the theoretical arithmetic coder
Srequires just this many bits:

Z(D) = NDH(PD), (3.6.3)

with H representingShannon entropy:

H(PD) = ∑
i∈Σ
−PD(i) logPD(i). (3.6.4)

For a real static arithmetic coding implementationS, there is a need to transmit a small fixed
sized header as a preamble to the arithmetic coding. This header provides an encoding of the
histogramPD corresponding to the fileD to be encoded. This quantity is termed‖hdr‖. So:

S(D) = NDH(PD)+‖hdr‖. (3.6.5)

To be fully precise, in a real implementation, the number of bits needed is always an integer,
so (3.6.5) really needs to be rounded up; but the effects of this changeis negligible, so we will
ignore it.

3.6.1.REMARK . Let us give a little bit more explanation of (3.6.3). From the Kraft inequality
(Section2.4.1), we know that for any distributionP on stringsD ∈ Σn of lengthN, there exists
a compressorZ such that for allD ∈ ΣN, Z(D) = − logP(D), where again we ignore rounding
issues. Now let us modelD according to a Bernoulli process, where each element ofD is dis-
tributed independently according to the empirical distributionPD. Under this distribution, setting
D = x1 . . .xn,

Z(D) = − logP(D) =− log
N

∏
j=1

PD(x j)

= − log∏
i∈Σ

PD(i)n(D,i) =−N ∑
i∈Σ

n(D, i)
N

logPD(i) (3.6.6)

= −N ∑
i∈Σ

PD(i) logPD(i) =−NEPD[− logPD(X)] (3.6.7)

= NH(PD). (3.6.8)

Such a compressorZ makes use of the empirical distributionPD, so the encoding ofD with
lengthZ(D) can only be decoded by a decoder who already knowsPD. Thus, to turnZ into a
compressorS that can be used on all sequences (and not only those with a given, fixedPD), it
suffices to first encodePD using some previously agreed-upon code, which takes‖hdr‖ bits, and
then encodeD usingZ(D) bits. By (3.6.8) this is equal to (3.6.5).
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3.6.2 NCD and KL-divergence

We now connect the NCD based on a static arithmetic encoder with the KL-divergence [31].
Consider two filesF andG with empirical distributionsPF andPG:

PF(i) =
n(F, i)

NF
; PG(i) =

n(G, i)
NG

. (3.6.9)

There is a fileB that is the concatenation ofF followed byG and has empirical distribution

PB(i) =
n(F, i)+n(G, i)

NF +NG
. (3.6.10)

The size forS run onB is just the size of the histogram‖hdr‖ and the entropy ofPB times the
number of symbols:

S(B) = ‖hdr‖+(NF +NG)H(PB)

= ‖hdr‖+(NF +NG)∑
i∈Σ
−PB(i) logPB(i)

= ‖hdr‖− (NF +NG)∑
i∈Σ

n(F, i)+n(G, i)
NF +NG

log
n(F, i)+n(G, i)

NF +NG

= ‖hdr‖−∑
i∈Σ

(n(F, i)+n(G, i)) log
n(F, i)+n(G, i)

NF +NG
. (3.6.11)

Recall that Kullback-Leibler divergence [31] is defined upon two distributionsP,Q as

KL(P ‖Q) = ∑
i∈Σ

P(i) log
P(i)
Q(i)

, (3.6.12)

so that

S(B) = ‖hdr‖+NFH(PF)+NGH(PG)+NFKL(PF ‖ PB)+NGKL(PG ‖ PB). (3.6.13)

At this point we determine a formula forNCDS. Recall that the NCD is defined in (3.5.1) as a
function to determine an information distance between two input files:

NCDC(x,y) =
C(xy)−min{C(x),C(y)}

max{C(x),C(y)} .

Here,C(xy) denotes the compressed size of the concatenation ofx andy, C(x) denotes the com-
pressed size ofx, andC(y) denotes the compressed size ofy. C is a function returning a length,
usually measured in bits, and realized by a particular data compression program. Different al-
gorithms will yield different behaviors for this quotient.For our simple compressorS, we get

NCDS(F,G) =
S(B)−min{S(F),S(G)}

max{S(F),S(G)} . (3.6.14)
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Assume without loss of generality thatS(F)≤ S(G), thenNCDS(F,G) =

=
‖hdr‖+NFH(PF)+NGH(PG)+NFKL(PF ‖ PB)+NGKL(PG ‖ PB)−‖hdr‖−NFH(PF)

‖hdr‖+NGH(PG)

=
NGH(PG)+NFKL(PF ‖ PB)+NGKL(PG ‖ PB)

‖hdr‖+NGH(PG)
. (3.6.15)

In the limit, asNF,G→ ∞,

lim
NF ,NG→∞

NCDS(F,G) = 1+
NFKL(PF ‖ PB)+NGKL(PG ‖ PB)

NGH(PG)

= 1+

NF
NG

KL(PF ‖ PB)+KL(PG ‖ PB)

H(PG)
. (3.6.16)

Notice that 0≤ NF
NG

< 1. It is apparent thatPB represents an aggregate distribution formed by
combiningPF andPG. WhenNF = NG,

lim
NF ,NG→∞

NCDS(F,G) = 1+
KL(PF ‖ PB)+KL(PG ‖ PB)

max{H(PF),H(PG)} , (3.6.17)

or usingA(PF ,PG) to representinformation radius[52] or total KL-divergence to the mean[32],
then

lim
NF ,NG→∞

NCDS(F,G) = 1+
A(PF ,PG)

max{H(PF),H(PG)} . (3.6.18)

We may interpretNCDS to behave as a ratio of information radius to maximum individual en-
tropy. The static arithmetic coderS severely violates thesubadditivityassumption of anormal
compressor(Section3.2) and causes a positive offset bias of+1. In general,NCDS behaves lo-
cally quadratically when at least one of the two files involved has high entropy. This fact can be
demonstrated by use of Taylor series to approximate the logarithms inNCDS aboutPB (we omit
the details). When bothH(PF) andH(PG) are small,NCDS can grow hyperbolically without
bound.

Let us now turn to a new compressor,T. T is a first-order static arithmetic coder. It maintains
a table of|Σ| separate contexts, and corresponds to modelling data as a first-order Markov chain.
In fact, it can be shown that the correspondence betweenNCD, KL, andH continues for any
finite-order Markov chain (we omit the details).

We have done an experiment to verify these relations. In thisexperiment, we create files of
exact empirical distributions. The alphabet isΣ = {0,1}. The "fixed" fileF is set to aθ = 0.55
Bernoulli binary distribution, i.e.F consists of 55% 1s. The other fileG is allowed to vary from
0.30≤ θ ≤ 0.80. We have used Michael Schindler’s Range encoder,R, as a fast and simple
arithmetic coder. The results are in Figure3.1. The graph’s horizontal axis represents empirical
bias in fileG. The‖hdr‖ addend is necessary to allow for the empirical discrete finite probability
distribution for the input file to be encoded so that during decompression the arithmetic decoder
statistics can accurately represent those of the original encoding. There is good agreement be-
tween theNCDR and the prediction based on information radius and maximum entropy. In these
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experiments, 200000 symbol files were used forF andG. The deviation between theNCDR and
the information radius (both shown in the graph, with nearlyoverlapping curves) is on the order
of 0.001 bit, and this can be attributed to imperfections in compression, header length, etc.
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Figure 3.1: A comparison of predicted and observed values for NCDR.

3.6.2.REMARK . It seems clear that many simple compressors yield simple closed-form formu-
las for specific variants of NCD. It is not clear whether such aclose correspondence between the
NCD and KL-divergence (or other simple analytic quantities) still holds in realistic situations,
where a sophisticated compressor (such as gzip or ppm, or paq) is used on real-world data. The
Shannon entropy and KL-divergence areexpectedcodelengths, i.e. theoretical averages taken
with respect to some hypothesized distribution. The NCD is based onactual, individual se-
quence codelengths, obtained with some compressorZ. By the Kraft inequality (Chapter 2),Z
must correspond to some distributionP such that for all data sequencesD of given length,

Z(D) =− logP(D).

In case of the static arithmetic encoder, it turned out that this expression could be rewritten as

Z(D) = ‖hdr‖− logPD(D) = ‖hdr‖+NDEPD[− logPD(D)],

where the latter equality follows from (3.6.6) and (3.6.7). These two crucial steps, which replace
a log-probability of an actually realized sequence by its expectation, allow us to connect NCD
with Shannon entropy, and then, KL-divergence. It can readily be seen that a similar replacement
can still be done if a fixed-order arithmetic coder is used (corresponding, to, say,k-th order
Markov chains). However, the largerk, the larger the size of the header will be, and thus the
more data are needed before the size of the header becomes negligible. With real data, not
generated by any finite order chain, and modern compressors (which are not fixed-order), it is
therefore not clear whether an analogue of (3.6.18) still holds. This would be an interesting topic
for future research.
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3.7 Conclusion

In this chapter we have introduced the idea of a mathematicaldistance function and discussed the
notion of a similarity metric. We defined NCD and the related NID function, and talked about
some properties of each. A strategy for calculating these functions using real compressors was
outlined, and a mathematical connection was made between a particular case of NCD and the
familiar statistical quantity called KL-divergence.
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Chapter 4

A New Quartet Tree Heuristic For Hierarchical
Clustering

This chapter is about the quartet method for hierarchical clustering. We introduce the notion of
hierarchical clustering in Section4.3, and then proceed to explain the quartet method in Sec-
tion 4.4. We address computational complexity issues in Section4.5.1. Our line of reasoning
leads naturally to a simple but effective non-deterministic algorithm to monotonically approx-
imate a best-fitting solution to a given input quartet cost list. We describe the algorithm in
Section4.6.1, with performance analysis in Section4.6.2. In the remainder of the chapter we
present a series of experiments demonstrating the tree building system.

4.1 Summary

We consider the problem of constructing an optimal-weight tree from the 3
(n

4

)
weighted quartet

topologies onnobjects, where optimality means that the summed weight of the embedded quartet
topologies is optimal (so it can be the case that the optimal tree embeds all quartets as non-
optimal topologies). We present a heuristic for reconstructing the optimal-weight tree, and a
canonical manner to derive the quartet-topology weights from a given distance matrix. The
method repeatedly transforms a bifurcating tree, with all objects involved as leaves, achieving
a monotonic approximation to the exact single globally optimal tree. This contrasts to other
heuristic search methods from biological phylogeny, like DNAML or quartet puzzling, which,
repeatedly, incrementally construct a solution from a random order of objects, and subsequently
add agreement values. We do not assume that there exists a true bifurcating supertree that embeds
each quartet in the optimal topology, or represents the distance matrix faithfully—not even under
the assumption that the weights or distances are corrupted by a measuring process. Our aim is
to hierarchically cluster the input data as faithfully as possible, both phylogenetic data and data
of completely different types. In our experiments with natural data, like genomic data, texts
or music, the global optimum appears to be reached. Our method is capable of handling over
100 objects, possibly up to 1000 objects, while no existing quartet heuristic can computationally
approximate the exact optimal solution of a quartet tree of more than about 20–30 objects without
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running for years. The method is implemented and AVAILABle as public software.

4.2 Introduction

We present a method of hierarchical clustering based on a novel fast randomized hill-climbing
heuristic of a new global optimization criterion. Given a the weights of all quartet topologies, or
a matrix of the pairwise distances between the objects, we obtain an output tree with the objects
as leaves, and we score how well the tree represents the information in the distance matrix on
a scale of 0 to 1. As proof of principle, we experiment on threedata sets, where we know
what the final answer should be: (i) reconstruct a tree from a distance matrix obtained from a
randomly generated tree; (ii) reconstruct a tree from files containing artificial similarities; and
(iii) reconstruct a tree from natural files of heterogeneousdata of vastly different types. We
give examples in whole-genome phylogeny using the whole mitochondrial DNA of the species
concerned, in SARS virus localization among other virri, and in analyzing the spreading of the
bird-flu H5N1 virus mutations. We compare the hierarchical clustering of our method with a
more standard method of two-dimensional clustering (to show that our dendrogram method of
depicting the clusters is more informative). The new methodwas developed as an auxiliary tool
for [25, 26, 22], since the available quartet tree methods were too slow when they were exact, and
too inaccurate or uncertain when they were statistical incremental. Our new quartet tree heuristic
runs orders of magnitudes faster than any other exact quartet tree method, and gives consistently
good results in practice.

Relation with Previous Work: The Minimum Quartet Tree Cost (MQTC) problem below
for which we give a new computational heuristic is related tothe Quartet Puzzling problem,
[109]. There, the quartet topologies are provided with a probability value, and for each quartet
the topology with the highest probability is selected (randomly, if there are more than one) as the
maximum-likelihood optimal topology. The goal is to find a bifurcating tree that embeds these
optimal quartet topologies. In the biological setting it isassumed that the observed genomic
data are the result of an evolution in time, and hence can be represented as the leaves of an
evolutionary tree. Once we obtain a proper probabilistic evolutionary model to quantify the
evolutionary relations between the data we can search for the true tree. In a quartet method one
determines the most likely quartet topology under the givenassumptions, and then searches for a
tree that represents as many of such topologies as is possible. If the theory and data were perfect
then there was a tree that represented precisely all most likely quartet topologies. Unfortunately,
in real life the theory is not perfect, the data are corrupted, and the observation pollutes and
makes errors. Thus, one has to settle for embedding as many most likely quartet topologies
as possible, do error correction on the quartet topologies,and so on. Forn objects, there are
(2n− 5)!! ≡ (2n− 5)× (2n− 3)× ·· · × 3 unrooted bifurcating trees. Forn large, exhaustive
search for the optimal tree is impossible, and turns out to beNP-hard, and hence infeasible in
general. There are two main avenues that have been taken:

(i) Incrementally grow the tree in random order by stepwise addition of objects in the current
optimal way, repeat this for different object orders, and add agreement values on the branches,
like DNAML [ 39], or quartet puzzling [109].
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(ii) Approximate the global optimum monotonically or compute it, using geometric algorithm
or dynamic programming [6], and linear programming [119].

These methods, other methods, as well as methods related to the MQT problem, cannot
handle more than 15–30 objects [119, 81, 89, 12] directly, even while using farms of desktops.
To handle more objects one needs to construct a supertree from the constituent quartet trees for
subsets of the original data sets, [95], as in [81, 89].

In 2003 in [25, 26, 22] we considered a new approach, like [119], and possibly predating it.
Our goal was to use a quartet method to obtain high-quality hierarchical clustering of data from
arbitrary (possibly heterogeneous) domains, not necessarily phylogeny data. We thus do not as-
sume that there exists a true evolutionary tree, and our aim is not to just embed as many optimal
quartet topologies as is possible. Instead, forn objects we consider all 3

(n
4

)
possible quartet

topologies, each with a given weight, and our goal is to find the tree such that the summed
weights of the embedded quartet topologies is optimal. We develop an heuristic that monotoni-
cally approximates this optimum, a figure of merit that quantifies the quality of the best current
candidate tree. We show that the problem is NP-hard, but we give evidence that the natural data
sets we consider have qualities of smoothness so that the monotonic heuristic obtains the global
optimum in a feasible number of steps.

Materials and Methods: Some of the experiments reported are taken from [25, 26, 22]
where many more can be found. The data samples we used were obtained from standard data
bases accessible on the world-wide web, generated by ourselves, or obtained from research
groups in the field of investigation. We supply the details with each experiment. The cluster-
ing heuristic generates a tree with an optimality quantification, called standardized benefit score
or S(T) value in the sequel. Contrary to other phylogeny methods, wedo not have agreement
or confidence values on the branches: we generate the best tree possible, globally balancing all
requirements. Generating trees from the same distance matrix many times resulted in the same
tree in case of highS(T) value, or a similar tree in case of moderately highS(T) value, for all
distance matrices we used, even though the heuristic is randomized. That is, there is only one
way to be right, but increasingly many ways to be increasingly wrong which can all be realized
by different runs of the randomized algorithm. The quality of the results depends on how well
the hierarchical tree represents the information in the matrix. That quality is measured by the
S(T) value, and is given with each experiment. In certain naturaldata sets, such as H5N1 ge-
nomic sequences, consistently highS(T) values are returned even for large sets of objects of 100
or more nodes. In other discordant natural data sets however, theS(T) value deteriorates more
and more with increasing number of elements being put in the same tree. The reason is that with
increasing size of a discordant natural data set the projection of the information in the distance
matrix into a ternary tree gets necessarily increasingly distorted because the underlying structure
in the data is incommensurate with any tree shape whatsoever. In this way, larger structures may
induce additional “stress” in the mapping that is visible aslower and lowerS(T) scores.

Figures: We use two styles to display the hierarchical clusters. In the case of genomics
of Eutherian orders, it is convenient to follow the dendrograms that are customary in that area
(suggesting temporal evolution) for easy comparison with the literature. In the other experiments
(even the genomic SARS experiment) it is more informative todisplay an unrooted ternary tree
(or binary tree if we think about incoming and outgoing edges) with explicit internal nodes. This
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facilitates identification of clusters in terms of subtreesrooted at internal nodes or contiguous
sets of subtrees rooted at branches of internal nodes.

4.3 Hierarchical Clustering

Given a set of objects as points in a space provided with a (notnecessarily metric) distance
measure, the associateddistance matrixhas as entries the pairwise distances between the objects.
Regardless of the original space and distance measure, it isalways possible to configuren objects
in n-dimensional Euclidean space in such a way that the associated distances are identical to
the original ones, resulting in an identical distance matrix. This distance matrix contains the
pairwise distance relations according to the chosen measure in raw form. But in this format that
information is not easily usable, since forn > 3 our cognitive capabilities rapidly fail. Just as
the distance matrix is a reduced form of information representing the original data set, we now
need to reduce the information even further in order to achieve a cognitively acceptable format
like data clusters. To extract a hierarchy of clusters from the distance matrix, we determine a
dendrogram (ternary tree) that agrees with the distance matrix according to a cost measure. This
allows us to extract more information from the data than justflat clustering (determining disjoint
clusters in dimensional representation).

Clusters are groups of objects that are similar according toour metric. There are various
ways to cluster. Our aim is to analyze data sets for which the number of clusters is not known a
priori, and the data are not labeled. As stated in [36], conceptually simple, hierarchical clustering
is among the best known unsupervised methods in this setting, and the most natural way is to
represent the relations in the form of a dendrogram, which iscustomarily a directed binary tree
or undirected ternary tree. With increasing number of data items, the projection of the distance
matrix information into the tree representation format mayget distorted. Not all natural data sets
exhibit this phenomenon; but for some, the tree gets increasingly distorted as more objects are
added. A similar situation sometimes arises in using alignment cost in genomic comparisons.
Experience shows that in both cases the hierarchical clustering methods seem to work best for
small sets of data, up to 25 items, and to deteriorate for some(but not all) larger sets, say 40
items or more. This deterioration is directly observable intheS(T) score and degrades solutions
in two common forms: tree instability when different or verydifferent solutions are returned on
successive runs or tree “overlinearization” when some datasets produce caterpillar-like structures
only or predominantly. In case a large set of objects, say 100objects, clusters with highS(T)
value this is evidence that the data are of themselves tree-like, and the quartet-topology weights,
or underlying distances, truly represent to similarity relationships between the data.

4.4 The Quartet Method

Given a setN of n objects, we consider every set of four elements from our set of n elements;
there are

(n
4

)
such sets. From each set{u,v,w,x}we construct a tree of arity 3, which implies that

the tree consists of two subtrees of two leaves each. Let us call such a tree aquartet topology. The
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set of 3
(n

4

)
quartet topologies induced byN is denoted byQ. We denote a partition{u,v},{w,x}

of {u,v,w,x} by uv|wx. There are three possibilities to partition{u,v,w,x} into two subsets of
two elements each: (i)uv|wx, (ii) uw|vx, and (iii)ux|vw. In terms of the tree topologies: a vertical
bar divides the two pairs of leaf nodes into two disjoint subtrees (Figure4.1).
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Figure 4.1: The three possible quartet topologies for the set of leaf labelsu,v,w,x.

4.4.1.DEFINITION. Define abinary dendrogramas an element from the classT of undirected
trees of arity 3 withn≥ 4 leaves, labeled with the elements ofN.

Such trees haven leaves andn−2 internal nodes. For any given treeT from this class, and any
set of four leaf labelsu,v,w,x∈N, we sayT is consistentwith uv|wx if and only if the path from
u to v does not cross the path fromw to x. It is easy to see that precisely one of the three possible
quartet topologies for any set of 4 labels is consistent for agiven tree from the above class, and
therefore a tree fromT contains precisely

(n
4

)
different quartet topologies. We may think of a

large tree having many smaller quartet topologies embeddedwithin its structure. Commonly the
goal in the quartet method is to find (or approximate as closely as possible) the tree that embeds
the maximal number of consistent (possibly weighted) quartet topologies from a given setP⊆Q
of quartet topologies [53] (Figure 4.2). A weight function W: P→ R , with R the set of real
numbers determines the weights. The unweighted case is whenW(uv|wx) = 1 for all uv|wx∈ P.

4.4.2.DEFINITION. The (weighted)Maximum Quartet Consistency (MQC)is defined as fol-
lows:

GIVEN: N, P, andW.
QUESTION: FindT0 = maxT ∑{W(uv|wx) : uv|wx∈ P anduv|wx is consistent withT}.
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Figure 4.2: An example tree consistent with quartet topology uv|wx .

4.5 Minimum Quartet Tree Cost

The rationale for the MQC optimization problem is the assumption that there is exists a treeT0

as desired in the classT under consideration, and our only problem is to find it. This assumption
reflects the genesis of the method in the phylogeny community. Under the assumption that
biological species developed by evolution in time, andN is a subset of the now existing species,
there is a phylogenyP (tree inT ) that represents that evolution. The set of quartet topologies
consistent with this tree, has one quartet topology per quartet which is the true one. The quartet
topologies inP are the ones which we assume to be among the true quartet topologies, and
weights are used to express our relative certainty about this assumption concerning the individual
quartet topologies inP.

However, the data may be corrupted so that this assumption isno longer true. In the gen-
eral case of hierarchical clustering we do not even have a priori knowledge that certain quartet
topologies are objectively true and must be embedded. Rather, we are in the position that we
can somehow assign a relative importance to the different quartet topologies. Our task is then
to balance the importance of embedding different quartet topologies against one another, leading
to a tree that represents the concerns as well as possible. Westart from a cost-assignment to the
quartet topologies; the method by which we assign costs to the 3

(n
4

)
quartet topologies is for now

immaterial to our problem. Given a setN of n objects, letQ be the set of quartet topologies, and
let C : Q→ R be acost functionassigning a real valued costCuv|wx to each quartetuv|wx∈Q.

4.5.1.DEFINITION. Thecost CT of a treeT with a setN of leaves (external nodes of degree 1)
is defined byCT = ∑{u,v,w,x}⊆N{Cuv|wx : T is consistent withuv|wx}—the sum of the costs of all
its consistent quartet topologies.
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4.5.2.DEFINITION. GivenN andC, theMinimum Quartet Tree Cost (MQTC)is minT{CT : T is
a tree with the setN labeling its leaves}.

We normalize the problem of finding the MQTC as follows: Consider the list of all possible
quartet topologies for all four-tuples of labels under consideration. For each group of three
possible quartet topologies for a given set of four labelsu,v,w,x, calculate a best (minimal) cost

m(u,v,w,x) = min{Cuv|wx,Cuw|vx,Cux|vw}

and a worst (maximal) costM(u,v,w,x) = max{Cuv|wx,Cuw|vx,Cux|vw}. Summing all best quartet
topologies yields the best (minimal) costm = ∑{u,v,w,x}⊆N m(u,v,w,x). Conversely, summing
all worst quartet topologies yields the worst (maximal) cost M = ∑{u,v,w,x}⊆N M(u,v,w,x). For
some distance matrices, these minimal and maximal values can not be attained by actual trees;
however, the scoreCT of every treeT will lie between these two values. In order to be able to
compare the scores of quartet trees for different numbers ofobjects in a uniform way, we now
rescale the score linearly such that the worst score maps to 0, and the best score maps to 1:

4.5.3.DEFINITION. Thenormalized tree benefit score S(T) is defined by

S(T) = (M−CT)/(M−m).

Our goal is to find a full tree with a maximum value ofS(T), which is to say, the lowest
total cost. Now we can rephrase the MQTC problem in such a way that solutions of instances of
different sizes can be uniformly compared in terms of relative quality:

4.5.4.DEFINITION. Definition of theMQTC problem:
GIVEN: N andC.
QUESTION: Find a treeT0 with S(T0) = max{S(T) : T is a tree with the setN labeling its

leaves}.

4.5.1 Computational Hardness

The hardness of Quartet Puzzling is informally mentioned inthe literature [119, 81, 89], but we
provide explicit proofs. To express the notion of computational difficulty one uses the notion
of “nondeterministic polynomial time (NP)”. If a problem concerningn objects is NP-hard this
means that the best known algorithm for this (and a wide classof significant problems) requires
computation time exponential inn. That is, it is infeasible in practice. TheMQC decision
problem is the following: Given a setN of n objects, letT be a tree of which then leaves
are labeled by the objects, and letQ be the set of quartet topologies andQT be the set of quartet
topologies embedded inT. Given a set of quartet topologiesP⊆Q, and an integerk, the problem
is to decide whether there is a binary treeT such thatP

T

QT > k. In [108] it is shown that
the MQC decision problem is NP-hard. We have formulated the NP-hardness of the so-called
incompleteMQC decision problem, the less generalcomplete MQC decision problemrequiresP
to contain precisely one quartet topology per quartet out ofN, and is proven to be NP-hard as
well in [12].
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4.5.5.THEOREM. The MQTC decision problem is NP-hard.

PROOF. By reduction from the MQC decision problem. For every MQC decision problem one
can define a corresponding MQTC decision problem that has thesame solution: give the quartet
topologies inP cost 0 and the ones inQ−P cost 1. Consider the MQTC decision problem: is
there a treeT with the setN labeling its leaves such thatCT <

(n
4

)
−k? An alternative equivalent

formulation is: is there a treeT with the setN labeling its leaves such that

S(T) >
M−

(n
4

)
+k

M−m
?

Note that every treeT with the setN labeling its leaves has precisely one out of the three quartet
topologies of every of the

(n
4

)
quartets embedded in it. Therefore, the costCT =

(n
4

)
−|PT

QT |.
If the answer to the above question is affirmative, then the number of quartet topologies inP
that are embedded in the tree exceedsk; if it is not then there is no tree such that the number of
quartet topologies inP embedded in it exceedsk. This way the MQC decision problem can be
reduced to the MQTC decision problem, which shows also the latter to be NP-hard. 2

Is it possible that the bestS(T) value is always one, that is, there always exists a tree that
embeds all quartets at minimum cost quartet topologies? Consider the casen = |N| = 4. Since
there is only one quartet, we can setT0 equal to the minimum cost quartet topology, and have
S(T0) = 1. A priori we cannot exclude the possibility that for everyN andC there always is a
treeT0 with S(T0) = 1. In that case, the MQTC Problem reduces to finding thatT0. However,
the situation turns out to be more complex. Note first that theset of quartet topologies uniquely
determines a tree inT , [15].

4.5.6.LEMMA . Let T,T′ be different labeled trees inT and let QT ,QT′ be the sets of embedded
quartet topologies, respectively. Then, QT 6= QT ′.

A complete setof quartet topologies onN is a set containing precisely one quartet topology

per quartet. There are 3(n
4) such combinations, but only 2(

n
2) labeled undirected graphs onn nodes

(and therefore|T | ≤ 2(n
2)). Hence, not every complete set of quartet topologies corresponds to

a tree inT . This already suggests that we can weight the quartet topologies in such a way that
the full combination of all quartet topologies at minimal costs does not correspond to a tree in
T , and henceS(T0) < 1 for T0 ∈ T realizing the MQTC optimum. For an explicit example of
this, we use that a complete set corresponding to a tree inT must satisfy certain transitivity
properties, [29, 28]:

4.5.7.LEMMA . Let T be a tree in the considered class with leaves N, Q the set of quartet topolo-
gies and Q0⊆Q. Then Q0 uniquely determines T if

(i) Q0 contains precisely one quartet topology for every quartet,and
(ii) For all {a,b,c,d,e}⊆N, if ab|bc,ab|de∈Q then ab|ce∈Q, as well as if ab|cd,bc|de∈Q

then ab|de∈Q.
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4.5.8.THEOREM. There are N (with n= |N| = 5) and a cost function C such that, for every
T ∈ T , S(T) does not exceed4/5.

PROOF. ConsiderN = {u,v,w,x,y} andC(uv|wx) = 1− ε(ε > 0),C(uw|xv) = C(ux|vw) = 0,
C(xy|uv) = C(wy|uv) = C(uy|wx) = C(vy|wx) = 0, andC(ab|cd) = 1 for all remaining quartet
topologiesab|cd∈ Q. We see thatM = 5− ε, m= 0. The treeT0 = (y,((u,v),(w,x))) has cost
CT0 = 1− ε, since it embeds quartet topologiesuw|xv,xy|uv,wy|uv,uy|wx,vy|wx. We show that
T0 achieves the MQTC optimum.Case 1:If a treeT 6= T0 embedsuv|wx, then it must by Item
(i) of Lemma4.5.7also embed a quartet topology containingy that has cost 1.

Case 2:If a treeT 6= T0 embedsuw|xvandxy|uv, then it must by Item (ii) of the Lemma4.5.7
also embeduw|xy, and hence have costCT ≥ 1. Similarly, all other remaining cases of embedding
a combination of a quartet topology not containingy of 0 cost with a quartet topology containing
y of 0 cost inT, imply an embedded quartet topology of cost 1 inT. 2

Altogether, the MQTC optimization problem is infeasible inpractice, and natural data can
have an optimalS(T) < 1. In fact, it follows from the above analysis that to determineS(T) in
general is NP-hard. In [12] a polynomial time approximation scheme for complete MQC isex-
hibited, a theoretical approximation scheme allowing the approximation of the optimal solution
up to arbitrary precision, with running time polynomial in the inverse of that precision. We say
“theoretical” since that algorithm would run in something like n19. For incomplete MQC it is
shown that even such a theoretical algorithm does not exist,unless P=NP. Hence, computation
of the MQTC optimum, and even its approximation with given precision, requires superpolyno-
mial time unless P=NP. Therefore, any practical approach toobtain or approximate the MQTC
optimum requires heuristics.

4.6 New Heuristic

Our algorithm is essentially randomized hill-climbing, using parallellized Genetic Programming,
where undirected trees evolve in a random walk driven by a prescribed fitness function. We are
given a setN of n objects and a weighting functionW.

4.6.1.DEFINITION. We define asimple mutationon a labeled undirected ternary tree as one of
three possible transformations:

1. A leaf swap, which consists of randomly choosing two leaf nodes and swapping them.

2. A subtree swap, which consists of randomly choosing two internal nodes andswapping
the subtrees rooted at those nodes.

3. A subtree transfer, whereby a randomly chosen subtree (possibly a leaf) is detached and
reattached in another place, maintaining arity invariants.

Each of these simple mutations keeps the number of leaf nodesand internal nodes in the tree
invariant; only the structure and placements change.

4.6.2.DEFINITION. A k-mutationis a sequence ofk simple mutations. Thus, a simple mutation
is a 1-mutation.
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4.6.1 Algorithm

Step 1: First, a random treeT ∈ T with 2n−2 nodes is created, consisting ofn leaf nodes (with
1 connecting edge) labeled with the names of the data items, andn−2 non-leaf orinternalnodes
labeled with the lowercase letter “k” followed by a unique integer identifier. Each internal node
has exactly three connecting edges.

Step 2: For this treeT, we calculate the total cost of all embedded quartet topologies, com-
puteS(T).

Comment:A tree is consistent with precisely13 of all quartet topologies, one for every quartet.
A random tree is likely to be consistent with about1

3 of the best quartet topologies—but this is
necessarily imprecise because of dependencies.

Step 3: Thecurrently best known treevariableT0 is set toT: T0← T.
Comment:ThisT0 is used as the basis for further searching.
Step 4:Pick a numberk with probabilityp(k) = c/(k(logk)2) where 1/c= ∑∞

k=11/(k(logk)2).
Comment:This numberk is the number of simple mutations that we will perform in the

nextk-mutation. The probability distributionp(k) is easily generated by running a random fair
bit generator and setk to the length of the first self-delimiting sequence generated. That is, if
x = x1 . . .xk ∈ {0,1}k (|x| = k≥ 1), then ¯x = 1k−10x, x′ = |x|x, andx′′ = |x′|x′. Thus, the length
|x′′|= k+ logk+2log logk. The probability of generatingx′′ corresponding to a givenx of length
k by fair coin flips is 2−|x

′′| = 2−k−logk−2log logk = 2−k/(k(logk)2). The probability of generating
x′′ corresponding tosome xof lengthk is 2k times as large, that is, 1/(k(logk)2). In practice, we
used a “shifted” fat tail distribution 1/((k+2)(logk+2)2)

Step 5: Compose ak-mutation by, for each such simple mutation, choosing one ofthe three
types listed above with equal probability. For each of thesesimple mutations, we uniformly at
random select leaves or internal nodes, as appropriate.

Comment:Notice that trees which are close to the original tree (in terms of number of simple
mutation steps in between) are examined often, while trees that are far away from the original
tree will eventually be examined, but not very frequently.

Step 6: In order to search for a better tree, we simply apply thek-mutation constructed in
Step 5on T0 to obtainT ′, and then calculateS(T′). If S(T′) ≥ S(T0), then replace the current
candidate inT0 by T (as the new best tree):T0← T.

Step 7: If S(T0) = 1 or atermination condition to be discussed below holds, then output the
tree inT0 as the best tree and halt. Otherwise, go toStep 4.

4.6.3.REMARK . We have chosenp(k) to be a “fat-tail” distribution, with the fattest tail possible,
so that we may concentrate maximal probability also on the larger values ofk. That way, the
likelihood of getting trapped in local minima is minimized.In contrast, if one would choose an
exponential scheme, likeq(k) = ce−k, then the larger values ofk would arise so scarcely that
practically speaking the distinction between being absolutely trapped in a local optimum, and
the very low escape probability, would be insignificant. Considering positive-valued probability
mass functionsq : N → (0,1], with N the natural numbers, as we do here, we note that such a
function (i) limk→∞ q(k) = 0, and (ii)∑∞

k=1q(k) = 1. Thus, every function of the natural numbers
that has strictly positive values and converges can be normalized to such a probability mass
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function. For smooth analytic functions that can be expressed a series of fractional powers and
logarithms, the borderline between converging and diverging is as follows:∑1/k,∑1/(k logk),
∑1/(k logk loglogk) and so on diverge, while∑1/k2,∑1/(k(logk)2),∑1/(k logk(loglogk)2)
and so on converge. Therefore, the maximal fat tail of a “smooth” function f (x) with ∑ f (x) < ∞
arises for functions at the edge of the convergence family. The distributionp(k) = c/(k(logk)2)
is as close to the edge as is reasonable, and because the used coding x→ x′′ is a prefix code
we have∑1/(k(logk)2)≤ 1 by the Kraft Inequality (see for example [79]) and thereforec≥ 1.
Let us see what this means for our algorithm using the chosen distribution p(k). For N = 64,
say, we can change any tree inT to any other tree inT with a 64-mutation. The probability
of such a complex mutation occurring is quite large with sucha fat tail: 1/(64·62) = 1/2304,
that is, more than 40 times in 100,000 generations. If we can get out of a local minimum with
already a 32-mutation, then this occurs with probability atleast 1/800, so 125 times, and with a
16-mutation with probability at least 1/196, so 510 times.

4.6.2 Performance

The main problem with hill-climbing algorithms is that theycan get stuck in a local optimum.
However, by randomly selecting a sequence of simple mutations, longer sequences with de-
creasing probability, we essentially run a Metropolis Monte Carlo algorithm [83], reminiscent
of simulated annealing [56] at random temperatures. Since there is a nonzero probability for
every tree inT being transformed into every other tree inT , there is zero probability that we get
trapped forever in a local optimum that is not a global optimum. That is, trivially:

4.6.4.LEMMA . (i) The algorithm approximates the MQTC optimal solution monotonically in
each run.

(ii) The algorithm without termination condition solves the MQTC optimization problem
eventually with probability 1 (but we do not in general know when the optimum has been reached
in a particular run).

The main question therefore is the convergence speed of the algorithm on natural data, and
a termination criterion to terminate the algorithm when we have an acceptable approximation.
From the impossibility result in [12] we know that there is no polynomial approximation scheme
for MQTC optimization, and whether our scheme is expected polynomial time seems to require
proving that the involved Metropolis chain is rapidly mixing [116], a notoriously hard and gen-
erally unsolved problem. In practice, in our experiments there is unanimous evidence that for
the natural data and the weighting function we have used, convergence is always fast. We have
to determine the cost of

(n
4

)
quartets to determine eachS(T) value. Hence the algorithm runs in

time at least that much. In experiments we found that for the same data set different runs con-
sistently showed the same behavior, for example Figure4.3 for a 60-object computation. There
the S(T) value leveled off at about 70,000 examined trees, and the termination condition was
“no improvement in 5,000 trees.” Different random runs of the algorithm nearly always gave the
same behavior, returning a tree with the sameS(T) value, albeit a different tree in most cases
with hereS(T)≈ 0.865, a relatively low value. That is, since there are many ways to find a tree
of optimalS(T) value, and apparently the algorithm never got trapped in a lower local optimum.
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Figure 4.3: Progress of a 60-item data set experiment over time.

For problems with highS(T) value, as we see later, the algorithm consistently returnedthe same
tree. This situation is perhaps similar to the behavior of the Simplex method in linear program-
ming, that can be shown to run in exponential time on a badly chosen problem instance, but in
practice on natural problems consistently runs in linear time.

Note that if a tree is ever found such thatS(T) = 1, then we can stop because we can be
certain that this tree is optimal, as no tree could have a lower cost. In fact, this perfect tree result
is achieved in our artificial tree reconstruction experiment (Section4.6.5) reliably in a few min-
utes. For real-world data,S(T) reaches a maximum somewhat less than 1, presumably reflecting
distortion of the information in the distance matrix data bythe best possible tree representation,
as noted above, or indicating getting stuck in a local optimum or a search space too large to
find the global optimum. On many typical problems of up to 40 objects this tree-search gives a
tree withS(T) ≥ 0.9 within half an hour. For large numbers of objects, tree scoring itself can
be slow: as this takes ordern4 computation steps. Current single computers can score a tree of
this size in about a minute. Additionally, the space of treesis large, so the algorithm may slow
down substantially. For larger experiments, we used the C program called partree (part of the
CompLearn package [21]) with MPI (Message Passing Interface, a common standard used on
massively parallel computers) on a cluster of workstationsin parallel to find trees more rapidly.
We can consider the graph mapping the achievedS(T) score as a function of the number of
trees examined. Progress occurs typically in a sigmoidal fashion towards a maximal value≤ 1,
Figure4.3.
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4.6.3 Termination Condition

The termination conditionis of two types and which type is used determines the number of
objects we can handle.

Simple termination condition:We simply run the algorithm until it seems no better trees are
being found in a reasonable amount of time. Here we typicallyterminate if no improvement in
S(T) value is achieved within 100,000 examined trees. This criterion is simple enough to enable
us to hierarchically cluster data sets up to 80 objects in a few hours. This is way above the 15–30
objects in the previous exact (non-incremental) methods (see Introduction).

Agreement termination condition:In this more sophisticated method we select a number
2≤ r ≤ 6 of runs, and we runr invocations of the algorithm in parallel. Each time anS(T) value
in run i = 1, . . . , r is increased in this process it is compared with theS(T) values in all the other
runs. If they are all equal, then the candidate trees of the runs are compared. This can be done
by simply comparing the ordered lists of embedded quartet topologies, in some standard order,
since the set of embedded quartet topologies uniquely determines the quartet tree by [15]. If the
r candidate trees are identical, then terminate with this quartet tree as output, otherwise continue
the algorithm.

This termination condition takes (for the same number of steps per run) aboutr times as
long as the simple termination condition. But the termination condition is much more rigorous,
provided we chooser appropriate to the numbern of objects being clustered. Since all the runs
are randomized independently at startup, it seems very unlikely that with natural data all of them
get stuck in the same local optimum with the same quartet treeinstance, provided the numbern
of objects being clustered is not too small. Forn = 5 and the number of invocationsr = 2, there
is a reasonable probability that the two different runs by chance hit the same tree in the same
step. This phenomenon leads us to require more than two successive runs with exact agreement
before we may reach a final answer for smalln. In the case of 4≤ n≤ 5, we require 6 dovetailed
runs to agree precisely before termination. For 6≤ n≤ 9, r = 5. For 10≤ n≤ 15, r = 4. For
16≤ n≤ 17, r = 3. For all othern≥ 18, r = 2. This yields a reasonable tradeoff between speed
and accuracy.

It is clear that there is only one tree withS(T) = 1 (if that is possible for the data), and random
trees (the majority of all possible quartet trees) haveS(T) ≈ 1/3 (above). This gives evidence
that the number of quartet trees with largeS(T) values is much smaller than the number of trees
with smallS(T) values. It is furthermore evident that the precise relationdepends on the data set
involved, and hence cannot be expressed by a general formulawithout further assumptions on the
data. However, we can safely state that small data sets, of say≤ 15 objects, that in our experience
often lead toS(T) values close to 1 have very few quartet trees realizing the optimal S(T) value.
On the other hand, those large sets of 60 or more objects that contain some inconsistency and
thus lead to a low finalS(T) value also tend to exhibit more variation as one might expect. This
suggests that in the agreement termination method each run will get stuck in a different quartet
tree of a similarS(T) value, so termination with the same tree is not possible. Experiments show
that with the rigorous agreement termination we can handle sets of up to 40 objects, and with
the simple termination up to at least 80 objects on a single computer or 100-200 objects using a
cluster of computers in parallel.
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4.6.4 Tree Building Statistics

We used the CompLearn package, (further described in Chapter 10) [21], to analyze a “10-
mammals” example withzlib compression yielding a 10× 10 distance matrix, similar to the
examples in Section4.10. The algorithm starts with four randomly initialized trees. It tries to
improve each one randomly and finishes when they match. Thus,every run produces an output
tree, a maximum score associated with this tree, and has examined some total number of trees,
T, before it finished. Figure4.4 shows a graph displaying a histogram ofT over one thousand
runs of the distance matrix. Thex-axis represents a number of trees examined in a single run
of the program, measured in thousands of trees and binned in 1000-wide histogram bars. The
maximum number is about 12000 trees examined. The graph suggests a Poisson distribution.
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Figure 4.4: Histogram of run-time number of trees examined before termination.

About 2/3rd of the trials take less than 4000 trees. In the thousand trials above, 994 ended with
the optimalS(T) = 0.999514. The remaining six runs returned 5 cases of the second-highest
score,S(T) = 0.995198 and one case ofS(T) = 0.992222. It is important to realize that outcome
stability is dependent on input matrix particulars.

Another interesting distribution is the mutation stepsize. Recall that the mutation length is
drawn from a shifted fat-tail distribution. But if we restrict our attention to just the mutations
that improve theS(T) value, then we may examine these statistics to look for evidence of a
modification to this distribution due to, for example, the presence of very many isolated areas that
have only long-distance ways to escape. Figure4.5shows the histogram of successful mutation
lengths (that is, number of simple mutations composing a single complex mutation) and rejected
lengths (both normalized) which shows that this is not the case. Here thex-axis is the number of
mutation steps and they-axis is the normalized proportion of times that step size occurred. This
gives good empirical evidence that in this case, at least, wehave a relatively easy search space,
without large gaps.
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Figure 4.5: Histogram comparing distributions ofk-mutations per run.

4.6.5 Controlled Experiments

With natural data sets, say music data, one may have the preconception (or prejudice) that mu-
sic by Bach should be clustered together, music by Chopin should be clustered together, and so
should music by rock stars. However, the preprocessed musicfiles of a piece by Bach and a
piece by Chopin, or the Beatles, may resemble one another more than two different pieces by
Bach—by accident or indeed by design and copying. Thus, natural data sets may have ambigu-
ous, conflicting, or counterintuitive outcomes. In other words, the experiments on natural data
sets have the drawback of not having an objective clear “correct” answer that can function as a
benchmark for assessing our experimental outcomes, but only intuitive or traditional preconcep-
tions. We discuss three experiments that show that our program indeed does what it is supposed
to do—at least in artificial situations where we know in advance what the correct answer is.

4.7 Quartet Topology Costs Based On Distance Matrix

Given a distance matrix, with entries giving the pairwise distances between the objects, we want
to form a hierarchical cluster by representing the objects as leaves of a ternary tree representing
the distances in the matrix as faithfully as possible. It is important that we do not assume that
there is a true tree; rather, we want to model the data as well as possible. The cost of a quartet
topology is defined as the sum of the distances between each pair of neighbors; that is,Cuv|wx =
d(u,v) + d(w,x). This seems most natural given a distance matrix. In the nextsection, we
review in brief the most common inputs to the quartet tree algorithm as used in this thesis. This
information is more thoroughly covered in other chapters.
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4.7.1 Distance Measure Used

Recall that the problem of clustering data consists of two parts: (i) extracting a distance matrix
from the data, and (ii) constructing a tree from the distancematrix using our novel quartet based
heuristic. To check the new quartet tree method in action we use a new compression based dis-
tance, called NCD. The theoretical foundation and notionalantecedent for NCD was developed
by Li and Vitanyiet al. [75, 77] as a normalized version of the “information metric” of [79, 9].
Roughly speaking, two objects are deemed close if we can significantly “compress” one given
the information in the other, the idea being that if two pieces are more similar, then we can more
succinctly describe one given the other. The mathematics used is based on Kolmogorov complex-
ity theory [79]. In [77] we defined a new class of (possibly non-metric) distances, taking values
in [0,1] and appropriate for measuring effective similarity relations between sequences, say one
type of similarity per distance, andvice versa. It was shown that an appropriately “normalized”
information metric minorizes every distance in the class. It discovers all effective similarities
in the sense that if two objects are close according to some effective similarity, then they are
also close according to the normalized information distance. Put differently, the normalized in-
formation distance represents similarity according to thedominating shared feature between the
two objects being compared. In comparisons of more than two objects, different pairs may have
different dominating features. The normalized information distance is a metric and takes values
in [0,1]; hence it may be called“the” similarity metric. To apply this ideal precise mathematical
theory in real life, we have to replace the use of the uncomputable Kolmogorov complexity by an
approximation using a standard real-world compressor, resulting in the NCD, see [22]. This has
been used in the first completely automatic construction of the phylogeny tree based on whole
mitochondrial genomes, [75, 80, 77], a completely automatic construction of a language tree
for over 50 Euro-Asian languages [77], detects plagiarism in student programming assignments
[74], gives phylogeny of chain letters [10], and clusters music [26, 25], Analyzing network traffic
and worms using compression [118], and many more topics [22]. The method turns out to be
robust under change of the underlying compressor-types: statistical (PPMZ), Lempel-Ziv based
dictionary (gzip), block based (bzip2), or special purpose(Gencompress).

4.7.2 CompLearn Toolkit

Oblivious to the problem area concerned, simply using the distances according to the NCD
above, the method described in this thesis fully automatically classifies the objects concerned.
The method has been released in the public domain as open-source software: The CompLearn
Toolkit [21] is a suite of simple utilities that one can use to apply compression techniques to the
process of discovering and learning patterns in completelydifferent domains, and hierarchically
cluster them using the new quartet method described in this thesis. In fact, this method is so
general that it requires no background knowledge about any particular subject area. There are no
domain-specific parameters to set, and only a handful of general settings.
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Figure 4.6: The randomly generated tree that our algorithm reconstructed.S(T) = 1.

4.7.3 Testing The Quartet-Based Tree Construction

We first test whether the quartet-based tree construction heuristic is trustworthy: We generated
a ternary treeT with 18 leaves, using the pseudo-random number generator “rand” of the Ruby
programming language, and derived a metric from it by defining the distance between two nodes
as follows: Given the length of the path froma to b, in an integer number of edges, asL(a,b), let

d(a,b) =
L(a,b)+1

18
,

except whena = b, in which cased(a,b) = 0. It is easy to verify that this simple formula always
gives a number between 0 and 1, and is monotonic with path length. Given only the 18×18
matrix of these normalized distances, our quartet method exactly reconstructed the original tree
T represented in Figure4.6, with S(T) = 1.
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Figure 4.7: Classification of artificial files with repeated 1-kilobyte tags. Not all possibilities are
included; for example, file “b” is missing.S(T) = 0.905.

4.8 Testing On Artificial Data

Given that the tree reconstruction method is accurate on clean consistent data, we tried whether
the full procedure works in an acceptable manner when we knowwhat the outcome should be
like. We used the “rand” pseudo-random number generator from the C programming language
standard library under Linux. We randomly generated 11 separate 1-kilobyte blocks of data
where each byte was equally probable and called thesetags. Each tag was associated with a
different lowercase letter of the alphabet. Next, we generated 22 files of 80 kilobyte each, by
starting with a block of purely random bytes and applying one, two, three, or four different
tags on it. Applying a tag consists of ten repetitions of picking a random location in the 80-
kilobyte file, and overwriting that location with the globally consistent tag that is indicated. So,
for instance, to create the file referred to in the diagram by “a,” we start with 80 kilobytes of
random data, then pick ten places to copy over this random data with the arbitrary 1-kilobyte
sequence identified as taga. Similarly, to create file “ab,” we start with 80 kilobytes ofrandom
data, then pick ten places to put copies of taga, then pick ten more places to put copies of tag
b (perhaps overwriting some of thea tags). Because we never use more than four different tags,
and therefore never place more than 40 copies of tags, we can expect that at least half of the data
in each file is random and uncorrelated with the rest of the files. The rest of the file is correlated
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Figure 4.8: Classification of different file types. Tree agrees exceptionally well with NCD dis-
tance matrix:S(T) = 0.984.

with other files that also contain tags in common; the more tags in common, the more related
the files are. The compressor used to compute the NCD matrix was bzip2. The resulting tree is
given in Figure4.7; it can be seen that the clustering has occurred exactly as wewould expect.
TheS(T) score is 0.905.

We will provide more examples of natural data later in this thesis.

4.9 Testing On Heterogeneous Natural Data

We test gross classification of files based on heterogeneous data of markedly different file types:
(i) Four mitochondrial gene sequences, from a black bear, polar bear, fox, and rat obtained from
the GenBank Database on the world-wide web; (ii) Four excerpts from the novelThe Zeppelin’s
Passengerby E. Phillips Oppenheim, obtained from the Project Gutenberg Edition on the World-
Wide web; (iii) Four MIDI files without further processing; two from Jimi Hendrix and two
movements from Debussy’s Suite Bergamasque, downloaded from various repositories on the
world-wide web; (iv) Two Linux x86 ELF executables (thecpandrmcommands), copied directly
from the RedHat 9.0 Linux distribution; and (v) Two compiledJava class files, generated by
ourselves. The compressor used to compute the NCD matrix wasbzip2. As expected, the
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program correctly classifies each of the different types of files together with like near like. The
result is reported in Figure4.8 with S(T) equal to the very high confidence value 0.984. This
experiment shows the power and universality of the method: no features of any specific domain
of application are used. We believe that there is no other method known that can cluster data that
is so heterogeneous this reliably. This is borne out by the massive experiments with the method
in [54].

4.10 Testing on Natural Data

Like most hierarchical clustering methods for natural data, the quartet tree method has been de-
veloped in the biological setting to determine phylogeny trees from genomic data. In that setting,
the data are (parts of) genomes of currently existing species, and the purpose is to reconstruct the
evolutionary tree that led to those species. Thus, the species are labels of the leaves, and the tree
is traditionally binary branching with each branching representing a split in lineages. The inter-
nal nodes and the root of the tree correspond with extinct species (possibly a still existing species
in a leaf directly connected to the internal node). The case is roughly similar for the language
tree reconstruction mentioned in the Introduction. The root of the tree is commonly determined
by adding an object that is known to be less related to all other objects than the original objects
are with respect to each other. Where the unrelated object joins the tree is where we put the root.
In these settings, the direction from the root to the leaves represents an evolution in time, and the
assumption is that there is a true tree we have to discover. However, we can also use the method
for hierarchical clustering, resulting an unrooted ternary tree, and the assumption is not that there
is a true tree we must discover. To the contrary, there is no true tree, but all we want is to model
the similarity relations between the objects as well as possible, given the distance matrix. The
interpretation is that objects in a given subtree are pairwise closer (more similar) to each other
than any of those objects is with respect to any object in a disjoint subtree.

4.10.1 Analyzing the SARS and H5N1 Virus Genomes

As an application of our methods we clustered the SARS virus after its sequenced genome was
made publicly available, in relation to potential similar virii. The 15 virus genomes were down-
loaded from The Universal Virus Database of the International Committee on Taxonomy of
Viruses, available on the world-wide web. The SARS virus wasdownloaded from Canada’s
Michael Smith Genome Sciences Centre which had the first public SARS Coronavirus draft
whole genome assembly available for download (SARS TOR2 draft genome assembly 120403).
The NCD distance matrix was computed using the compressor bzip2. The relations in Figure4.9
are very similar to the definitive tree based on medical-macrobio-genomics analysis, appearing
later in the New England Journal of Medicine, [63]. We depicted the figure in the ternary tree
style, rather than the genomics-dendrogram style, since the former is more precise for visual
inspection of proximity relations.

More recently, we downloaded 100 different H5N1 sample genomes from the NCBI/NIH
database online. We simply concatenated all data together directly, ignoring problems of data
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Figure 4.9: SARS virus among other virii. Legend: AvianAdeno1CELO.inp: Fowl aden-
ovirus 1; AvianIB1.inp: Avian infectious bronchitis virus(strain Beaudette US); AvianIB2.inp:
Avian infectious bronchitis virus (strain Beaudette CK); BovineAdeno3.inp: Bovine aden-
ovirus 3; DuckAdeno1.inp: Duck adenovirus 1; HumanAdeno40.inp: Human adenovirus
type 40; HumanCorona1.inp: Human coronavirus 229E; MeaslesMora.inp: Measles virus
Moraten; MeaslesSch.inp: Measles virus strain Schwarz; MurineHep11.inp: Murine hepati-
tis virus strain ML-11; MurineHep2.inp: Murine hepatitis virus strain 2; PRD1.inp: Enter-
obacteria phage PRD1; RatSialCorona.inp: Rat sialodacryoadenitis coronavirus; SARS.inp:
SARS TOR2v120403; SIRV1.inp: Sulfolobus SIRV-1; SIRV2.inp: Sulfolobus virus SIRV-2.
S(T) = 0.988.
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cleanup and duplication. We were warned in advance that certain coding regions in the viral
genome were sometimes listed twice and also many sequences are incomplete or missing certain
proteins. In this case we sought to test the robustness at thehigh end and at the same time
verify, contextualize, and expand on the many claims of genetic similarity and diversity in the
virology community. We used the CompLearn package, [21], with theppmdcompressor for this
experiment and performed no alignment step whatsoever. We used order 15 with 250 megabytes
memory maximum.

We have abbreviated Ck for Chicken and Dk for duck. Samples are named with species,
location, sequence number, followed by the year double digits at the end. Naming is not 100%
consistent. We can see the following features in Figure4.10, that are possibly significant:

First, there is near-perfect temporal separation by branchand year, going all the way back
to HongKong and GuangDong in 1997. Next, there is near-perfect regional separation with
clear delineation of Japan and the crucial Qinghai, Astrakhan, Mongolia, and Novosibirsk, as
well as near-perfect separation of Vietnam and Thailand. The placement CkVietnamC5804 and
Vietnam306204 is interesting in that they are both near Thailand branches and suggest that they
may be for example the migratory bird links that have been hypothesized or some other genetic
intermediate. There is also throughout the tree substantial agreement with (and independent ver-
ification of) independent experts like Dr. Henry L. Niman [86] on every specific point regarding
genetic similarity. The technique provides here an easy verification procedure without much
work.

4.10.2 Music

The amount of digitized music available on the internet has grown dramatically in recent years,
both in the public domain and on commercial sites. Napster and its clones are prime examples.
Websites offering musical content in some form or other (MP3, MIDI, . . . ) need a way to or-
ganize their wealth of material; they need to somehow classify their files according to musical
genres and subgenres, putting similar pieces together. Thepurpose of such organization is to
enable users to navigate to pieces of music they already knowand like, but also to give them
advice and recommendations (“If you like this, you might also like. . . ”). Currently, such orga-
nization is mostly done manually by humans, but some recent research has been looking into
the possibilities of automating music classification. In [26, 25] we cluster music using the Com-
pLearn Toolkit [21]. One example is a small set of classical piano sonatas, consisting of the 4
movements from Debussy’s “Suite Bergamasque,” 4 movementsof book 2 of Bach’s “Wohltem-
perierte Klavier,” and 4 preludes from Chopin’s “Opus 28.” As one can see in Figure4.11, our
program does a pretty good job at clustering these pieces. The S(T) score is also high: 0.968.
The 4 Debussy movements form one cluster, as do the 4 Bach pieces. The only imperfection in
the tree, judged by what one would intuitively expect, is that Chopin’s Prélude no. 15 lies a bit
closer to Bach than to the other 3 Chopin pieces. This Préludeno 15, in fact, consistently forms
an odd-one-out in our other experiments as well. This is an example of pure data mining, since
there is some musical truth to this, as no. 15 is perceived as by far the most eccentric among the
24 Préludes of Chopin’s opus 28.
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Figure 4.10: One hundred H5N1 (bird flu) sample genomes, S(T)= 0.980221.
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Figure 4.11: Output for the 12-piece set.
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Figure 4.12: The evolutionary tree built from complete mammalian mtDNA sequences of 24
species, using the NCD matrix of Figure4.14on page70 where it was used to illustrate a point
of hierarchical clustering versus flat clustering. We have redrawn the tree from our output to
agree better with the customary phylogeny tree format. The tree agrees exceptionally well with
the NCD distance matrix:S(T) = 0.996.

4.10.3 Mammalian Evolution

As the complete genomes of various species become available, it has become possible to do
whole genome phylogeny (this overcomes the problem that using different targeted parts of the
genome, or proteins, may give different trees [94]). Traditional phylogenetic methods on individ-
ual genes depended on multiple alignment of the related proteins and on the model of evolution of
individual amino acids. Neither of these is practically applicable to the genome level. In absence
of such models, a method which can compute the shared information between two sequences
is useful because biological sequences encode information, and the occurrence of evolutionary
events (such as insertions, deletions, point mutations, rearrangements, and inversions) separating
two sequences sharing a common ancestor will result in the loss of their shared information.
Our method (in the form of the CompLearn Toolkit) is a fully automated software tool based on
such a distance to compare two genomes. In evolutionary biology the timing and origin of the
major extant placental clades (groups of organisms that have evolved from a common ancestor)
continues to fuel debate and research.

The full experiment on mammalian evolution is discussed in Section4.10.3. Here we just
want to point out issues relevant for hierarchical clustering versus nonhierarchical clustering, and
to our quartet tree method. We demonstrate that a whole mitochondrial genome phylogeny of
the Eutherians (placental mammals) can be reconstructed automatically from a set ofunaligned
complete mitochondrial genomes by use of our compression method.

The whole mitochondrial genomes of the total of 24 species weused were downloaded from
the GenBank Database on the world-wide web. Each is around 17,000 bases. The NCD dis-
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Figure 4.13: Multidimensional clustering of same NCD matrix (Figure4.14) as used for Fig-
ure6.7. Kruskall’s stress-1 = 0.389.

tance matrix was computed using the compressor PPMZ. The resulting phylogeny, with an al-
most maximalS(T) score of 0.996 supports anew the currently accepted grouping (Rodents,
(Primates, Ferungulates)) of the Eutherian orders, and additionally the Marsupionta hypothesis
((Prototheria, Metatheria), Eutheria), see Figure4.12. The NCD distance matrix is given in Fig-
ure 4.14, so the reader can get a feeling on what distances the quartettree is based. For more
explanation and details see Section4.10.3.

4.11 Hierarchical versus Flat Clustering

This is a good place to contrast the informativeness of hierarchical clustering with multidimen-
sional clustering using the same NCD matrix, exhibited in Figure4.14. The entries give a good
example of typical NCD values; we truncated the number of decimals from 15 to 3 significant
digits to save space. Note that the majority of distances bunches in the range[0.9,1]. This is due
to the regularities the compressor can perceive. The diagonal elements give the self-distance,
which, for PPMZ, is not actually 0, but is off from 0 only in thethird decimal. In Figure4.13
we clustered the 24 animals using the NCD matrix by multidimenional scaling as points in 2-
dimensional Euclidean space. In this method, the NCD matrixof 24 animals can be viewed as
a set of distances between points inn-dimensional Euclidean space (n≤ 24), which we want to
project into a 2-dimensional Euclidean space, trying to distort the distances between the pairs
as little as possible. This is akin to the problem of projecting the surface of the earth globe on
a two-dimensional map with minimal distance distortion. The main feature is the choice of the
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measure of distortion to be minimized, [36]. Let the original set of distances bed1, . . . ,dk and
the projected distances bed′1, . . . ,d

′
k. In Figure4.13we used the distortion measureKruskall’s

stress-1, [62], which minimizes
√

(∑i≤k(di−d′i )
2)/∑i≤k d2

i . Kruskall’s stress-1 equal 0 means
no distortion, and the worst value is at most 1 (unless you have a really bad projection). In the
projection of the NCD matrix according to our quartet methodone minimizes the more subtle
distortionS(T) measure, where 1 means perfect representation of the relative relations between
every 4-tuple, and 0 means minimal representation. Therefore, we should compare distortion
Kruskall stress-1 with 1−S(T). Figure4.12has a very good 1−S(T) = 0.04 and Figure4.13
has a poor Kruskall stress 0.389. Assuming that the comparison is significant for small val-
ues (close to perfect projection), we find that the multidimensional scaling of this experiment’s
NCD matrix is formally inferior to that of the quartet tree. This conclusion formally justifies the
impression conveyed by the figures on visual inspection.
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Figure 4.14: Distance matrix of pairwise NCD. For display purpose, we have truncated the
original entries from 15 decimals to 3 decimals precision.
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Chapter 5

Classification systems using NCD

This chapter explores the concept ofclassification. In rough terms, classification refers to the
placement of unknowntest objectsinto one of several categories based on a training set of ob-
jects. It is different from the hierarchical clustering problem that has been the primary focus
in this thesis up to this point, yet it is no less fundamental.Combining NCD with a trainable
machine learning module yields wonderfully effective and often surprising results, showing that
in certain situations, we may in essencelearn by examplewith the help of human experts. In
Section5.1 below, classification is first addressed from a general perspective. In Section5.2,
it is shown how to combine NCD in combination with trainable classifiers based on so-called
anchors. Section5.3 discusses two options for such trainable classifiers: neural networks and
support vector machines.

5.1 Basic Classification

The classification problem setting as considered in this thesis is given as follows. A human
expert has preparedn training examples. Each training example consists of ad-dimensional
input vectorx and a target training labely. y must be chosen from a discrete setL of labels. A
human expert supplies this information; the accuracy of thetrained system would of course be
limited by the accuracy of the labels in the training set. Atraining sessioncomputes a model
M from the input ortraining data(xi,yi) for 1≤ i ≤ n. The goal of a classification algorithm
is to make good predictions based on the input training data.After M has been calculated by
someclassifier learning algorithm, henceforth calledtrainable classifier system, it is used to
classify unknown test objectsxtest, also of dimensiond. It will output an element fromL for
each such object. Note thatM can be thought of as afunction that maps test input vectorsx
to labels in the setL. We refer to such a function as aclassifier. Learning good classifiers is
considered one of the most important problems in machine learning and pattern recognition in
current times. One of the most important early successes hasbeen in the field of optical character
recognition, or OCR. This is the problem of taking a rasterized bitmap image and converting it to
a sequence of ASCII characters according to some symbol recognition algorithm. Typical OCR
software can work on as little as ten classes for applications such as numerical digit recognition,
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or many dozens of characters for scanning full text. They canoperate in a highly specific way,
for instance recognizing only one text font of a particular size, or they can be more generic, for
instance learning handwritten letters and digits. In this situation, a typical setup would be to
first use some preprocessing to try to split the large image into smaller images each containing
just one symbol (or glyph). Then pad these boxes so that they are all squares of the same size
and the glyph is roughly centered. Next each pixel may be readoff in order and converted to
a successive dimension inx = (x1, . . . ,xd): pixel i corresponds to dimensionxi . For each pixel,
a background color would be represented by 0 and a foregroundcolor by 1. Thus eachx input
would be a binary vector with dimension equal to the number ofpixels in the boxes surrounding
each symbol. The output from such a classification system would be a single character from the
range of possible characters under consideration. In this context, a learning algorithm would be
given as input a training sequence((x1,y1), . . . ,(xn,yn)), and then output a “learned” classifierM.
This learned classifierM could then be used, for any new examplex (pixel vector representing a
character), to make a prediction of the corresponding classy (the actual character). The situation
just described corresponds to a typical setup, however in the following experiments we take a
somewhat different approach using NCD.

5.1.1 Binary and Multiclass Classifiers

The simplest kind of classifier is called the binary classifier. This type of classifier can only
produce two labels as output for each test case. The labels are usually written+1 and−1 or 0 and
1 depending on the problem. A common example of binary classification is the spam-filtering
problem. This problem is to determine if a given email message is an unwanted commercial
advertisement (spam) or not automatically before being brought to the attention of an email user.
Another important kind of classifier is the multiclass classifier. This type of classifier applies
more than two different types of labels. This is useful in cases like handwritten digit recognition,
where there are at least ten different labels for handwritten digits that must sometimes be output.

It is usually simpler mathematically to consider only the binary classification case. This is
justified by the fact that there are two well known ways to create a multiclass classifier using
several binary classifiers acting cooperatively together.The two traditional ways of doing this
are calledone-of-kstyle combination andpairwisecombination. The one-of-k style is simple
to explain. A classifier is trained, one per class, for each ofthe k classes in the multiclass
classification problem. Each classifier is trained to distinguish only members of its own class
and reject (return 0) members of any other class.

In contrast, pairwise combination trains a separate binaryclassifier to distinguish each unique
unordered pair of classes under consideration. Then a voting scheme is used to determine the
winning class by running through all classifiers for each input sample. This results inO(k2)
classifiers fork classes.

The one-of-k style combination yields the worst accuracy typically but is the simplest and
fastest. The pairwise combination is usually the most accurate.
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5.1.2 Naive NCD Classification

The simplest (and undoubtedly popular) way to use NCD to classify is to choose, for each ofk
classes, a singleprototype objectof the class that somehow captures the essence of the category.
So, for example, if the task were to distinguish English and Chinese, we might consider using
an English dictionary as the prototype object for the English class, and a Chinese dictionary
for the Chinese class. In each case, we simplify a class down to a single example. Then the
classification is done by calculating the NCD of the test object with each of thek prototype
objects, and selecting the class corresponding to the object with the minimum NCD value. This
approach seems intuitively obvious and is usually the first method people new to NCD invent.
In some domains it works well, but in many more subtle classification problems it suffers a
problem of uncorrectable bias. This relates to the fact thatthe different classes of most problems
(such as the character classes in OCR) do not usually balancewell under any particular available
compressors. For example, the pixelated character class ofthe numeral “1” is sufficiently bland
as to have a high NCD when compared to most other scribblings,even other members of the
“1” class. This contrasts with the numeral “8” which has a rich combination of shapes that tends
to compress well with most other outline images due to the wide variety of possible matches.
This type of bias leads to a large constant error margin that cannot readily be improved within
this framework as there are no natural adjustments available. In the next section, we explore a
solution to this problem.

5.2 NCD With Trainable Classifiers

The simplest solution to the problem of how to use NCD for highaccuracy classification is to
combine it with a trainable classifier system by using NCD as afeature extraction technique. A
trainable classifier system tries to pick up functional relationships in the input and output quanti-
ties. While trainable classifier systems output functions with a discrete range (the set of classes),
some of the most successful ones, such as neural network– andSVM– based algorithms, are
built on top of continuous learning algorithms. The continuous learners are a broad and impor-
tant class of algorithms in machine learning. Given a training sequence(x1,y1), . . . ,(xn,yn),
they learn/output a continuous functionM mappingd-dimensional input vectors to the one-
dimensional reals. Such learners can be transformed into learning algorithms for binary clas-
sification, by classifying test vectorx as 1 ifM(x) > 0, andx as−1 if M(x) < 0.

In order to apply this idea, one must set up a problem so that unknown objects are somehow
converted to fixed-dimensional vectors using some sort of projection using NCD. One of the
easiest techniques is to designate somed objects asanchorsand to use them to convert all other
objects in the experiment intod-dimensional vectors. This can be achieved by using anchor
objectai to calculate vector dimensioni for 1≤ i ≤ d. That is, for objecto we calculate the
correspondingx = (x1, . . . ,xd) usingxi = NCD(o,ai).

For example, in handwritten digit recognition, our training data may originally consist of
pairs ((o1,y1) . . . ,(on,yn)), whereoi represents an image (represented with one character per
pixel, and one character as a line terminator) of a handwritten digit andyi ∈ {0, . . . ,9} is the
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corresponding digit. One then takes 80 imageso′1, . . . ,o
′
80, so that each handwritten digit is

represented eight times. The training data(o1, . . . ,on) are then converted to(x1, . . . ,xn), where
eachxi is the 80-dimensional vector(NCD(oi,o′1), . . . ,NCD(oi,o′80)).

5.2.1 Choosing Anchors

The anchors may be chosen by a human expert or be chosen randomly from a large pool of train-
ing objects. Intuitively, it may seem very important which objects are chosen as anchors. While
this is sometimes the case, more often it is not. Random anchors usually work well. But most
practitioners agree that picking at least one anchor from each significant category under consid-
eration is advisable to avoid falling into low-accuracy performance due to insufficient variation
in the anchor set. The anchor can be used with NCD. It can also be used with the Normalized
Google Distance (NGD), which we discuss in Chapter7. We will give details using NGD terms
in Section7.6.4, and details using Optical Character Recognition with NCD in Section6.8.

In choosing a learning system to use with the anchor featuresextracted above, it seems best
to choose as general a learning system as possible. One particularly important class of learning
algorithms are called the universal continuous function learners. These include neural networks
and Support Vector Machines. The universal learning property in this context means that they
can approximate any continuous function to an arbitrarily high degree of accuracy given enough
training data in the neighborhood of the point under consideration. Using a learner with this
property ensures a certain degree of reliability and optimality to the results that it generates as
compared to other more specialized learning algorithms.

5.3 Trainable Learners of Note

There are at least two good choices for trainable learner components for use with NCD. These
are called theneural networkand theSupport Vector Machine. Both of these techniques take as
input the set of labeled training data as well as some specialized model parameters that must be
set through some means. Usually the specialized parametersare set by a human expert or set
through an automatic procedure using cross-validation based parameter scanning [11].

Both learner systems produce a single label out of the setL as a result given any inputd-
dimensional test vector. Each have many strengths and weaknesses, and they each give unique
performance profiles. They should both be considered when deciding to do classification using
NCD, although all experiments in this thesis are based on support vector machines.

5.3.1 Neural Networks

The older and considerably popular choice is artificial neural networks [46]. As mentioned
previously, these have the advantage of being universal classifier systems: they have provable
learning capability for any continuous function. Additionally, they have a host of decent training
algorithms as well as learning modes. Popular choices here are Fast Backpropagation and Self
Organizing Maps. SOM’s have not been designed explicitly for classification, but can easily
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adapted to be used for classification tasks when used in combination with compression metrics
like NCD.

There is one major difficulty in all types of neural network investigated; they have some
rather tricky parameter settings. A neural network of any sophistication must have a nonlinear
component (transfer function) of some sort, and common choices are transcendental sigmoid
functions like arctangent. There are several others in use.Another hard issue with many types
of neural networks is to decide how many layers should be used. For each layer a specific
number of neurons must be set in advance as well. Similarly, there is usually a learning rate and
sometimes a momentum parameter that can radically affect the network’s gross behavior and
overall success or failure. Altogether this implies at least four hard choices before one can train
a neural network. There is no simple rule to guide how to choose these parameters because there
are all sorts of bad behavior possible from wrong choices. The most common are overlearning
and underlearning. Informally, overlearning occurs when there are too many neurons for the task
at hand. Underlearning is when there are too few. In the case of overlearning, the neural network
will appear to have great accuracy in the training data yet terrible accuracy in the testing phase
and show almost no generalization capability. In the underlearning case, accuracy will simply
be capped at a number far worse than what may otherwise be achieved. It’s quite difficult to tell
what the best parameters are for a neural network and in real commercial systems there is usually
a considerable amount of sophisticated semi-automatic machinery in place to assist the user in
setting these parameters. For example, genetic algorithmsare sometimes employed combined
with cross-validation to adjust parameters in a semi-automatic fashion. This heavy emphasis on
parameter-setting in advance makes neural networks a difficult component to integrate into an
easy-to-use parameter-free learning system.

5.3.2 Support Vector Machines

More recently another type of continuous universal learnerhas come into great popularity. They
have the same sort of universal properties as artificial neural networks but with substantially
less hassle [11]. They are called support vector machines. They take advantage of dot products
in a high dimensional space to efficiently find solutions to a convex optimization problem that
winds up bending a decision surface around training points in the least stressful way. In order
to use an SVM, one needs to first choose a kernel function and this corresponds roughly to the
transfer function in neural networks. Although a linear kernel is an option and polynomials are
sometimes used, they do not yield the same (typically desirable) infinite-dimensional properties
that the exponential Radial Basis Function kernels do. These are described further below.

For all of our experiments we have found RBF kernels to be about as good as any other choice
and often substantially better. There are only two other parameters for SVM’s. In our context,
these are calledC andg. C is the cost for wrong answers, or training points that fall onthe wrong
side of the decision boundary. Adjusting this can compensate for noisy or mislabeled training
data. Theg parameter represents kernel width and determines the rate of exponential decay
around each of the training points. The very wonderful property of both of these parameters is
that they can be determined through a simple two dimensionalgrid search.

This procedure was found to be much simpler to automate and far more robust than neural
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networks. Therefore, most of our experiments have focused on SVM as the trainable learning
component. In the next section technical details are presented regarding SVM’s.

5.3.1.REMARK . It is important to realize that we still have not exhausted the possibilities for
combining NCD with other machine learning algorithms; there are in fact many interesting op-
tions. For example, Gaussian processes could also serve as agood next phase learner but have
not yet been investigated. Similarly, the previously mentioned quartet-tree search is another op-
tion at this same stage in the pipeline, as is multidimensional scaling, nearest neighbor search
and most other classical machine learning algorithms. In this light we may consider NCD as
a particularly convenient and sometimes highly intelligent feature-extraction (or dimensionality
reduction) technique suitable for drop-in replacement in anumber of larger automatic learning
systems.

5.3.2.REMARK . Many classification systems, including both of those mentioned above, are able
to be used in a special mode calledregression mode. In this mode, the output is not a member
of the set of labelsL but instead is a real (scalar) value, typically between 0 and1 or between -1
and 1. This mode allows prediction of continuous variables such as temperature or duration. It
is again a fundamental problem in machine learning and comesup often and provides yet more
reason to use one of the two universal learners mentioned above with NCD.

5.3.3 SVM Theory

This section provides a brief glimpse at relevant mathematical theory surrounding Support Vector
Machines. For more information please see [16]. Support Vector Machines represent a way to
learn a classification or regression problem by example, andare comparable to neural networks
in that they have the capacity to learn any function. They arelarge-marginclassifiers [11]. They
take as input a list ofk-dimensional vectors, and output a single scalar value. In order to learn,
an SVM solves a convex optimization problem that is closely related to a simpler classification
engine termed the separating hyperplane. In this setting, we are given a set ofk-dimensional
training vectorsxi each labeledyi which is 1 or−1 according to the classification. For a particular
problem, a discriminating hyperplanew is one that creates a decision function that satisfies the
constraint for alli:

yi(xi ·w+b)−1≥ 0.

If no such separating hyperplane exists, then we term the learning problemlinearly inseparable.
The constants used in this equation are more fully explainedin [16]. In rough terms, the equa-
tion represents a linear programming problem that tries to find a simple (fewer support vectors
chosen) and accurate (less disagreements with training data) model using a convex optimization
technique.

Many real-world learning problems, such as the famous exclusive-or function, are linearly
inseparable. This is problematic because a hyperplane can only separate spaces into linearly
separable components. There are many strategies for dealing with this issue. Support vector ma-
chines use a nonlinear kernel function to address this issue. By creating a kernel function,k(x,y)
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that satisfies theMercer condition, we may substantially enhance the power of the separating
hyperplane. A kernel function defines an inner-product on the input space, and then this inner
product may be used to calculate many higher-power terms of combinations of samples in the
input space. This forms a higher-dimensional space, and it is well-known that once this space is
made large enough, there will be a separating hyperplane. Inour SVM experiments, we use a
Radial Basis Function (RBF) kernel. This allows the SVM to learn any function given enough
training data.

5.3.4 SVM Parameter Setting

There are two parameters that control the learning of the SVM. The first relates to the kernel
function. An RBF, or Radial Basis Function, kernel assumes the value 1 whenever the two input
vectors are equal. If they are unequal, it decays slowly towards 0 in a radially symmetric way:

K(xi ,x j) = e−‖xi−x j‖2/2g2
.

Here,g is a parameter that controls the rate of decay or width of the kernel function. Because of
the exponential form, the effective dimension of an RBF kernel is potentially infinite and thus this
kernel can be used to approximate any continuous function toan arbitrary degree of accuracy.
This parameter must be set before the learning can begin withan SVM. Another parameter
relates to how misclassified points are handled in the training data; Though it is always possible
to simply continue to make the kernel width smaller and the expanded space larger until the SVM
becomes essentially a lookup-table, this is often not the best strategy for learning. An alternative
is to define a cost parameter and allow this to adjust the tolerance for misclassified points in the
training data. This allows the SVM to generalize well even inthe presence of noisy data. This
cost parameter, often calledc, must also be defined before training can begin.

We selectg and c using a grid searching technique. For each of these parameters, it is
appropriate to search dozens of powers of two. Together, this creates a grid with hundreds of
different parameter settings. We use five-fold cross-validation to select which of these grid points
defines the optimal parameter setting. First the data is divided into five random partitions: A, B,
C, D, E. Then, for each candidate parameter setting or grid point, we run five different training
runs. On the first run, we train on B, C, D, and E, and then we determine an accuracy using part
A. Next, we train on A, C, D, E and test with B. We continue in this way and then average all five
test scores to arrive at an estimate of how well the learning process performed. Once this process
is done for all training data, we may just choose one of the grid points that attains a maximum
accuracy.

These parameters (C andg) do not usually need to be exact; instead one can simply do a
stepwise search along a grid of points in log space; thus it isfine to try just 64 points forC ranging
from 2−31 to 232 doubling each time. A similar procedure works to chooseg. In each case one
may use five-fold cross-validation to estimate the accuracyof the given parameter setting and
then just choose the maximum at the end. Five-fold cross validation is a popular procedure that
tries to estimate how well a model (of any type) that is trained on a set of training data will
perform on unknown testing data. The basic assumption is simply that the training data and the

77



testing data are similar. In order to estimate the testing accuracy using only the training algorithm
and the training data, first label the training set randomly with five labels, numbered 1 through 5.
Next, train a model (SVM, neural network, or otherwise) on four of the five parts, but leave part 1
out. Use this part 1 for testing the model made from the other 4parts. Tally this score and repeat
the procedure, but this time withhold part 2 for testing. Repeat this procedure five times, once
for each part, and then average the accuracy scores to arriveat an estimate of the testing accuracy
to be expected for a given set of parameters. This entire five-fold cross-validation procedure is
repeated for each point (particular parameter setting) in the parameter grid space in order to find
the optimal settings using just the training data.
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Chapter 6

Experiments with NCD

This chapter demonstrates the surprisingly general and robust nature of the methods so far dis-
cussed through many real examples from diverse areas such asmusic and evolution. The combi-
nation of NCD and the quartet method yield interesting results.

In Section6.1, we introduce the general concept of feature-based similarity, and explain how
NCD can be used with it. In Section6.2 we present experimental validation that our method
works. Starting in Section6.4, we introduce a plethora of experiments in a wide array of fields,
beginning with automatic music analysis. Next, we study evolutionary genomics, literature and
language analysis, radio astronomy, and optical characterrecognition. At the end of this chap-
ter the reader will have encountered a highly serviceable survey of experimental results using
objective data compressors based on files, without externalinformation input from the internet.

6.1 Similarity

We are presented with unknown data and the question is to determine the similarities among
them and group like with like together. Commonly, the data are of a certain type: music files,
transaction records of ATM machines, credit card applications, genomic data. In these data there
are hidden relations that we would like to get out in the open.For example, from genomic data
one can extract letter- or block frequencies (the blocks areover the four-letter alphabet); from
music files one can extract various specific numerical features, related to pitch, rhythm, harmony
etc. One can extract such features using for instance Fourier transforms [114] or wavelet trans-
forms [44]. The feature vectors corresponding to the various files arethen classified or clustered
using existing classification software, based on various standard statistical pattern recognition
classifiers [114], Bayesian classifiers [33], hidden Markov models [19], ensembles of nearest
neighbor classifiers [44] or neural networks [33, 101]. For example, in music one feature would
be to look for rhythm in the sense of beats per minute. One can make a histogram where each his-
togram bin corresponds to a particular tempo in beats-per-minute and the associated peak shows
how frequent and strong that particular periodicity was over the entire piece. In [114] we see
a gradual change from a few high peaks to many low and spread-out ones going from hip-hip,
rock, jazz, to classical. One can use this similarity type totry to cluster pieces in these categories.
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However, such a method requires specific and detailed knowledge of the problem area, since one
needs to know what features to look for.

Non-Feature Similarities: Our aim is to capture, in a single similarity metric,every effective
metric: effective versions of Hamming distance, Euclidean distance, edit distances, alignment
distance, Lempel-Ziv distance [30], and so on. This metric should be so general that it works in
every domain: music, text, literature, programs, genomes,executables, natural language deter-
mination, equally and simultaneously. It would be able to simultaneously detectall similarities
between pieces that other effective metrics can detect.

Compression-based Similarity:Such a “universal” metric was developed by Li and Vitanyi
et al. [75, 77] as a normalized version of the “information metric” of [79, 9], see Chapter 3.
Recall that two objects are deemed close if we can significantly “compress” one given the in-
formation in the other, the idea being that if two pieces are more similar, then we can more
succinctly describe one given the other. Recall from Chapter 3 that an appropriately “normal-
ized” information distance minorizes every metric in the class of effective similarity metrics. It
discovers all effective similarities in the sense that if two objects are close according to some
effective similarity, then they are also close according tothe normalized information distance.
Put differently, the normalized information distance represents similarity according to the dom-
inating shared feature between the two objects being compared. The normalized information
distance too is a metric and takes values in[0,1]; hence it may be called“the” similarity metric.
To apply this ideal precise mathematical theory in real life, we have to replace the use of the
uncomputable Kolmogorov complexity by an approximation using a standard real-world com-
pressor. Approaches predating this thesis include the firstcompletely automatic construction
of the phylogeny tree based on whole mitochondrial genomes,[75, 80, 77], a completely auto-
matic construction of a language tree for over 50 Euro-Asianlanguages [77], detects plagiarism
in student programming assignments [74], gives phylogeny of chain letters [10], and clusters
music [26, 25]. Moreover, the method turns out to be robust under change ofthe underlying
compressor-types: statistical (PPMZ), Lempel-Ziv based dictionary (gzip), block based (bzip2),
or special purpose (Gencompress).

Related Work: In view of the simplicity and naturalness of our proposal, itis perhaps sur-
prising that compression based clustering and classification approaches did not arise before. But
recently there have been several partially independent proposals in that direction: [8, 3] for build-
ing language trees—while citing [79, 9]—is by essentially moread hocarguments about empiri-
cal Shannon entropy and Kullback-Leibler distance. This approach is used to cluster music MIDI
files by Kohonen maps in [34]. Another recent offshoot based on our work is [61] hierarchical
clustering based on mutual information. In a related, but considerably simpler feature based ap-
proach, one can compare the word frequencies in text files to assess similarity. In [120] the word
frequencies of words common to a pair of text files are used as entries in two vectors, and the
similarity of the two files is based on the distance between those vectors. The authors attribute
authorship to Shakespeare plays, the Federalist Papers, and the Chinese classic “The Dream of
the Red Chamber.” The approach to similarity distances based on block occurrence statistics is
standard in genomics, and in an experiment below it gives inferior phylogeny trees compared to
our compression method (and wrong ones according to currentbiological wisdom). The possi-
bly new feature in the cited work is that it uses statistics ofonly the words that the files being
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compared have in common. A related, opposite, approach was taken in [59], where literary texts
are clustered by author gender or fact versus fiction, essentially by first identifying distinguishing
features, like gender dependent word usage, and then classifying according to those features.

Apart from the experiments reported here, the clustering bycompression method reported
in this thesis has recently been used to analyze network traffic and cluster computer worms and
viruses [118]. Finally, recent work [54] reports experiments with our method on all time se-
quence data used in all the major data-mining conferences inthe last decade. Comparing the
compression method with all major methods used in those conferences they established clear su-
periority of the compression method for clustering heterogenous data, and for anomaly detection.

To substantiate our claim of universality, we apply the method to different areas, not using
any feature analysis at all. We first give an example in whole-genome phylogeny using the
whole mitochondrial DNA of the species concerned. We compare the hierarchical clustering
of our method with a more standard method of two-dimensionalclustering (to show that our
dendrogram method of depicting the clusters is more informative). We give a whole-genome
phylogeny of fungi and compare this to results using alignment of selected proteins (alignment
being often too costly to perform on the whole-mitochondrial genome, but the disadvantage of
protein selection being that different selections usuallyresult in different phylogenies—so which
is right?). We identify the virii that are closest to the sequenced SARS virus; we give an example
of clustering of language families; Russian authors in the original Russian, the same pieces in
English translation (clustering partially follows the translators); clustering of music in MIDI
format; clustering of handwritten digits used for optical character recognition; and clustering
of radio observations of a mysterious astronomical object,a microquasar of extremely complex
variability. In all these cases the method performs very well in the following sense: The method
yields the phylogeny of 24 species precisely according to biological wisdom. The probability
that it randomly would hit this one outcome, or anything reasonably close, is very small. In
clustering 36 music pieces taken equally many from pop, jazz, classic, so that 12-12-12 is the
grouping we understand is correct, we can identify convex clusters so that only six errors are
made. (That is, if three items get dislodged then six items get misplaced.) The probability that
this happens by chance is extremely small. The reason why we think the method does something
remarkable is concisely put by Laplace [70]:

“If we seek a cause wherever we perceive symmetry, it is not that we regard the
symmetrical event as less possible than the others, but, since this event ought to be
the effect of a regular cause or that of chance, the first of these suppositions is more
probable than the second. On a table we see letters arranged in this orderC o n s t
a n t i n o p l e, and we judge that this arrangement is not the result of chance,
not because it is less possible than others, for if this word were not employed in any
language we would not suspect it came from any particular cause, but this word
being in use among us, it is incomparably more probable that some person has thus
arranged the aforesaid letters than that this arrangement is due to chance.”

Materials and Methods: The data samples we used were obtained from standard data bases
accessible on the world-wide web, generated by ourselves, or obtained from research groups in
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the field of investigation. We supply the details with each experiment. The method of process-
ing the data was the same in all experiments. First, we preprocessed the data samples to bring
them in appropriate format: the genomic material over the four-letter alphabet{A,T,G,C} is
recoded in a four-letter alphabet; the music MIDI files are stripped of identifying information
such as composer and name of the music piece. Then, in all cases the data samples were com-
pletely automatically processed by our CompLearn Toolkit,rather than as is usual in phylogeny,
by using an eclectic set of software tools per experiment. Oblivious to the problem area con-
cerned, simply using the distances according to the NCD below, the method described in this
thesis fully automatically classifies the objects concerned. The CompLearn Toolkit is a suite of
simple utilities that one can use to apply compression techniques to the process of discovering
and learning patterns in completely different domains. In fact, this method is so general that it re-
quires no background knowledge about any particular subject area. There are no domain-specific
parameters to set, and only a handful of general settings.

The CompLearn Toolkit using NCD and not, say, alignment, cancope with full genomes and
other large data files and thus comes up with a single distancematrix. The clustering heuristic
generates a tree with a certain confidence, called standardized benefit score orS(T) value in the
sequel. Generating trees from the same distance matrix manytimes resulted in the same tree or
almost the same tree, for all distance matrices we used, eventhough the heuristic is randomized.
The differences that arose are apparently due to early or late termination with differentS(T) val-
ues. This is a great difference with previous phylogeny methods, where because of computational
limitations one uses only parts of the genome, or certain proteins that are viewed as significant
[55]. These are run through a tree reconstruction method like neighbor joining [99], maximum
likelihood, maximum evolution, maximum parsimony as in [55], or quartet hypercleaning [13],
many times. The percentage-wise agreement on certain branches arising are called “bootstrap
values.” Trees are depicted with the best bootstrap values on the branches that are viewed as
supporting the theory tested. Different choices of proteins result in different best trees. One way
to avoid this ambiguity is to use the full genome, [94, 77], leading to whole-genome phylogeny.
With our method we do whole-genome phylogeny, and end up witha single overall best tree, not
optimizing selected parts of it.

The quality of the results depends on (a) the NCD distance matrix, and (b) how well the
hierarchical tree represents the information in the matrix. The quality of (b) is measured by
the S(T) value, and is given with each experiment. In general, theS(T) value deteriorates for
large sets. We believe this to be partially an artifact of a low-resolution NCD matrix due to
limited compression power, and limited file size. The main reason, however, is the fact that with
increasing size of a natural data set the projection of the information in the NCD matrix into a
binary tree can get increasingly distorted as explained in Chapter 5, page45. Another aspect
limiting the quality of the NCD matrix is more subtle. Recallthat the method knows nothing
about any of the areas we apply it to. It determines the dominant feature as seen through the
NCD filter. The dominant feature of likeness between two filesmay not correspond to our a
priori conception but may have an unexpected cause. The results of our experiments suggest that
this is not often the case: In the natural data sets where we have preconceptions of the outcome,
for example that works by the same authors should cluster together, or music pieces by the
same composers, musical genres, or genomes, the outcomes conform largely to our expectations.

82



For example, in the music genre experiment the method would fail dramatically if genres were
evenly mixed, or mixed with little bias. However, to the contrary, the separation in clusters is
almost perfect. The few misplacements that are discernibleare either errors (the method was
not powerful enough to discern the dominant feature), or thedominant feature between a pair of
music pieces is not the genre but some other aspect. The surprising news is that we can generally
confirm expectations with few misplacements, indeed, that the data does not contain unknown
rogue features that dominate to cause spurious (in our preconceived idea) clustering. This gives
evidence that where the preconception is in doubt, like withphylogeny hypotheses, the clustering
can give true support of one hypothesis against another one.

Figures: We use two styles to display the hierarchical clusters. In the case of genomics of
Eutherian orders and fungi, language trees, it is convenient to follow the dendrograms that are
customary in that area (suggesting temporal evolution) foreasy comparison with the literature.
Although there is no temporal relation intended, the dendrogram representation looked also ap-
propriate for the Russian writers, and translations of Russian writers. In the other experiments
(even the genomic SARS experiment) it is more informative todisplay an unrooted ternary tree
(or binary tree if we think about incoming and outgoing edges) with explicit internal nodes. This
facilitates identification of clusters in terms of subtreesrooted at internal nodes or contiguous
sets of subtrees rooted at branches of internal nodes.

Testing the similarity machine on natural data: We test gross classification of files based
on markedly different file types. Here, we chose several files: (i) Four mitochondrial gene se-
quences, from a black bear, polar bear, fox, and rat obtainedfrom the GenBank Database on
the world-wide web; (ii) Four excerpts from the novelThe Zeppelin’s Passengerby E. Phillips
Oppenheim, obtained from the Project Gutenberg Edition on the World Wide web; (iii) Four
MIDI files without further processing; two from Jimi Hendrixand two movements from De-
bussy’s Suite Bergamasque, downloaded from various repositories on the world-wide web; (iv)
Two Linux x86 ELF executables (thecpandrm commands), copied directly from the RedHat 9.0
Linux distribution; and (v) Two compiled Java class files, generated by ourselves. The compres-
sor used to compute the NCD matrix was bzip2. As expected, theprogram correctly classifies
each of the different types of files together with like near like. The result is reported in Figure6.1
with S(T) equal to the very high confidence value 0.984. This experiment shows the power and
universality of the method: no features of any specific domain of application are used.

6.2 Experimental Validation

We developed the CompLearn Toolkit, and performed experiments in vastly different application
fields to test the quality and universality of the method. Thesuccess of the method as reported
below depends strongly on the judicious use of encoding of the objects compared. Here one
should use common sense on what a real world compressor can do. There are situations where
our approach fails if applied in a straightforward way. For example: comparing text files by
the same authors in different encodings (say, Unicode and 8-bit version) is bound to fail. For the
ideal similarity metric based on Kolmogorov complexity as defined in [77] this does not matter at
all, but for practical compressors used in the experiments it will be fatal. Similarly, in the music
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experiments below we use symbolic MIDI music file format rather than wave format music files.
The reason is that the strings resulting from straightforward discretizing the wave form files may
be too sensitive to how we discretize.

6.3 Truly Feature-Free: The Case of Heterogenous Data
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Figure 6.1: Classification of different file types. Tree agrees exceptionally well with NCD dis-
tance matrix:S(T) = 0.984.

We show the method is truly feature-free, or, anyway, as feature-free as we could possibly
want, by showing once more its success in clustering data from truly different domains. No other
method can apparently do so with so much success, since all other methods rfely on some definite
features they analyze. In contrast, we just compress. Onr may say that the used compressor de-
termines the features analyzed, but this seems ill-tergeted at general-purpose compressors which
simply aim at analyzing general features as well as is possible. We test gross classification of
files based on markedly different file types, as on page84, recalling Figure6.1displayed there.

1. Four mitochondrial gene sequences, from a black bear, polar bear, fox, and rat.

2. Four excerpts from the novelThe Zeppelin’s Passengerby E. Phillips Oppenheim
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3. Four MIDI files without further processing; two from Jimi Hendrix and two movements
from Debussy’s Suite bergamasque

4. Two Linux x86 ELF executables (thecp andrm commands)

5. Two compiled Java class files.

As expected, the program correctly classifies each of the different types of files together with like
near like. The result is reported in Figure6.1with S(T) equal to 0.984. Recall thatS is defined
as a linear normalized and inverted tree cost score as previously explained in Chapter 5, page49.
This means that this tree is very near an optimal best tree.

6.4 Music Categorization

The first result found relates to music analysis using gzip orbzip2 with preprocessed MIDI files.
Surprisingly, the computer was able to reconstruct some common musical notions without any
training whatsoever using just compression and quartet tree search.

A human expert, comparing different pieces of music with theaim to cluster likes together,
will generally look for certain specific similarities. Previous attempts to automate this process
do the same. Generally speaking, they take a file containing apiece of music and extract from
it various specific numerical features, related to pitch, rhythm, harmony etc. One can extract
such features using for instance Fourier transforms [114] or wavelet transforms [44]. The feature
vectors corresponding to the various files are then classified or clustered using existing classifica-
tion software, based on various standard statistical pattern recognition classifiers [114], Bayesian
classifiers [33], hidden Markov models [19], ensembles of nearest-neighbor classifiers [44] or
neural networks [33, 101]. For example, one feature would be to look for rhythm in the sense
of beats per minute. One can make a histogram where each histogram bin corresponds to a par-
ticular tempo in beats-per-minute and the associated peak shows how frequent and strong that
particular periodicity was over the entire piece. In [114] we see a gradual change from a few high
peaks to many low and spread-out ones going from hip-hip, rock, jazz, to classical. One can use
this similarity type to try to cluster pieces in these categories. However, such a method requires
specific and detailed knowledge of the problem area, since one needs to know what features to
look for.

Our aim is much more general. We do not look for similarity in specific features known to
be relevant for classifying music; instead we apply a general mathematical theory of similarity.
The aim is to capture, in a single similarity metric,every effective metric: effective versions of
Hamming distance, Euclidean distance, edit distances, Lempel-Ziv distance, and so on. Such a
metric would be able to simultaneously detectall similarities between pieces that other effective
metrics can detect. As we have seen in Chapter 3, such a “universal” metric indeed exists. It is
the NID metric which is approximated by the NCD metric.

In this section we apply this compression-based method to the classification of pieces of mu-
sic. We perform various experiments on sets of mostly classical pieces given as MIDI (Musical
Instrument Digital Interface) files. This contrasts with most earlier research, where the music

85



was digitized in some wave format or other (the only other research based on MIDI that we are
aware of is [33]). We compute the distances between all pairs of pieces, andthen build a tree
containing those pieces in a way that is consistent with those distances. First, we show that our
program can distinguish between various musical genres (classical, jazz, rock) quite well. Sec-
ondly, we experiment with various sets of classical pieces.The results are quite good (in the
sense of conforming to our expectations) for small sets of data, but tend to get a bit worse for
large sets. Considering the fact that the method knows nothing about music, or, indeed, about
any of the other areas we have applied it to elsewhere, one is reminded of Dr Johnson’s remark
about a dog’s walking on his hind legs: “It is not done well; but you are surprised to find it done
at all.”

6.4.1 Details of Our Implementation

Initially, we downloaded 118 separate MIDI (Musical Instrument Digital Interface, a versatile
digital music format available on the world-wide-web) filesselected from a range of classical
composers, as well as some popular music. Each of these files was run through a preproces-
sor to extract just MIDI Note-On and Note-Off events. These events were then converted to a
player-piano style representation, with time quantized in0.05 second intervals. All instrument
indicators, MIDI Control signals, and tempo variations were ignored. For each track in the MIDI
file, we calculate two quantities: Anaverage volumeand amodal note. The average volume is
calculated by averaging the volume (MIDI Note velocity) of all notes in the track. The modal
note is defined to be the note pitch that sounds most often in that track. If this is not unique, then
the lowest such note is chosen. The modal note is used as a key-invariant reference point from
which to represent all notes. It is denoted by 0, higher notesare denoted by positive numbers,
and lower notes are denoted by negative numbers. A value of 1 indicates a half-step above the
modal note, and a value of−2 indicates a whole-step below the modal note. The tracks aresorted
according to decreasing average volume, and then output in succession. For each track, we iter-
ate through each time sample in order, outputting a single signed 8-bit value for each currently
sounding note. Two special values are reserved to representthe end of a time step and the end
of a track. This file is then used as input to the compression stage for distance matrix calculation
and subsequent tree search.

Because we have already shown examples of the accuracy of thequartet tree reconstruction
on artificial and controlled data, we will proceed immediately to natural data of considerably
more interest than that already shown in earlier chapters.

6.4.2 Genres: Rock vs. Jazz vs. Classical

Before testing whether our program can see the distinctionsbetween various classical composers,
we first show that it can distinguish between three broader musical genres: classical music, rock,
and jazz. This should be easier than making distinctions “within” classical music. All musical
pieces we used are listed in the tables in the appendix. For the genre-experiment we used 12
classical pieces (the small set from Table6.1, consisting of Bach, Chopin, and Debussy), 12 jazz
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pieces (Table6.2), and 12 rock pieces (Table6.3). The tree that our program came up with is
given in Figure6.2. TheS(T) score is 0.858.
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Figure 6.2: Output for the 36 pieces from 3 genres.

The discrimination between the 3 genres is good but not perfect. The upper branch of the tree
contains 10 of the 12 jazz pieces, but also Chopin’s Prélude no. 15 and a Bach Prelude. The two
other jazz pieces, Miles Davis’ “So what” and John Coltrane’s “Giant steps” are placed elsewhere
in the tree, perhaps according to some kinship that now escapes us but can be identified by closer
studying of the objects concerned. Of the rock pieces, 9 are placed close together in the rightmost
branch, while Hendrix’s “Voodoo chile”, Rush’ “Yyz”, and Dire Straits’ “Money for nothing”
are further away. In the case of the Hendrix piece this may be explained by the fact that it does
not fit well in a specific genre. Most of the classical pieces are in the lower left part of the tree.
Surprisingly, 2 of the 4 Bach pieces are placed elsewhere. Itis not clear why this happens and
may be considered an error of our program, since we perceive the 4 Bach pieces to be very close,
both structurally and melodically (as they all come from themono-thematic “Wohltemperierte
Klavier”). However, Bach’s is a seminal music and has been copied and cannibalized in all kinds
of recognizable or hidden manners; closer scrutiny could reveal likenesses in its present company
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Figure 6.3: Output for the 12-piece set.

that are not now apparent to us. In effect our similarity engine aims at the ideal of a perfect data
mining process, discovering unknown features in which the data can be similar.

6.4.3 Classical Piano Music (Small Set)

In Table6.1 we list all 60 classical piano pieces used, together with their abbreviations. Some
of these are complete compositions, others are individual movements from larger compositions.
They all are piano pieces, but experiments on 34 movements ofsymphonies gave very similar
results (Section6.4.6). Apart from running our program on the whole set of 60 piano pieces,
we also tried it on two smaller sets: a small 12-piece set, indicated by ‘(s)’ in the table, and a
medium-size 32-piece set, indicated by ‘(s)’ or ‘(m)’.

The small set encompasses the 4 movements from Debussy’s Suite bergamasque, 4 move-
ments of book 2 of Bach’s Wohltemperierte Klavier, and 4 preludes from Chopin’s opus 28. As
one can see in Figure6.3, our program does a pretty good job at clustering these pieces. The
S(T) score is also high: 0.958. The 4 Debussy movements form one cluster, as do the 4 Bach
pieces. The only imperfection in the tree, judged by what onewould intuitively expect, is that
Chopin’s Prélude no. 15 lies a bit closer to Bach than to the other 3 Chopin pieces. This Prélude
no 15, in fact, consistently forms an odd-one-out in our other experiments as well. This is an
example of pure data mining, since there is some musical truth to this, as no. 15 is perceived as
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by far the most eccentric among the 24 Préludes of Chopin’s opus 28.

6.4.4 Classical Piano Music (Medium Set)
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Figure 6.4: Output for the 32-piece set.

The medium set adds 20 pieces to the small set: 6 additional Bach pieces, 6 additional
Chopins, 1 more Debussy piece, and 7 pieces by Haydn. The experimental results are given
in Figure6.4. TheS(T) score is slightly lower than in the small set experiment: 0.895. Again,
there is a lot of structure and expected clustering. Most of the Bach pieces are together, as are the
four Debussy pieces from the Suite bergamasque. These four should be together because they
are movements from the same piece; The fifth Debussy item is somewhat apart since it comes
from another piece. Both the Haydn and the Chopin pieces are clustered in little sub-clusters
of two or three pieces, but those sub-clusters are scatteredthroughout the tree instead of being
close together in a larger cluster. These small clusters maybe an imperfection of the method, or,
alternatively point at musical similarities between the clustered pieces that transcend the similar-
ities induced by the same composer. Indeed, this may point the way for further musicological
investigation.
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Figure 6.5: Output for the 60-piece set.

6.4.5 Classical Piano Music (Large Set)

Figure6.5 gives the output of a run of our program on the full set of 60 pieces. This adds 10
pieces by Beethoven, 8 by Buxtehude, and 10 by Mozart to the medium set. The experimental
results are given in Figure6.5. The results are still far from random, but leave more to be desired
than the smaller-scale experiments. Indeed, theS(T) score has dropped further from that of the
medium-sized set to 0.844. This may be an artifact of the interplay between the relatively small
size, and large number, of the files compared: (i) the distances estimated are less accurate; (ii) the
number of quartets with conflicting requirements increases; and (iii) the computation time rises
to such an extent that the correctness score of the displayedcluster graph within the set time limit
is lower than in the smaller samples. Nonetheless, Bach and Debussy are still reasonably well
clustered, but other pieces (notably the Beethoven and Chopin ones) are scattered throughout
the tree. Maybe this means that individual music pieces by these composers are more similar to
pieces of other composers than they are to each other? The placement of the pieces is closer to
intuition on a small level (for example, most pairing of siblings corresponds to musical similarity
in the sense of the same composer) than on the larger level. This is similar to the phenomenon of
little sub-clusters of Haydn or Chopin pieces that we saw in the medium-size experiment.
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Figure 6.6: Output for the set of 34 movements of symphonies.

6.4.6 Clustering Symphonies

Finally, we tested whether the method worked for more complicated music, namely 34 sym-
phonic pieces. We took two Haydn symphonies (no. 95 in one file, and the four movements
of 104), three Mozart symphonies (39, 40, 41), three Beethoven symphonies (3, 4, 5), of Schu-
bert’s Unfinished symphony, and of Saint-Saens Symphony no.3. The results are reported in
Figure6.6, with a quite reasonableS(T) score of 0.860.

6.4.7 Future Music Work and Conclusions

Our research raises many questions worth looking into further:

• The program can be used as a data mining machine to discover hitherto unknown simi-
larities between music pieces of different composers or indeed different genres. In this
manner we can discover plagiarism or indeed honest influences between music pieces and
composers. Indeed, it is thinkable that we can use the methodto discover seminality of
composers, or separate music eras and fads.

• A very interesting application of our program would be to select a plausible composer for a
newly discovered piece of music of which the composer is not known. In addition to such
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a piece, this experiment would require a number of pieces from known composers that are
plausible candidates. We would just run our program on the set of all those pieces, and see
where the new piece is placed. If it lies squarely within a cluster of pieces by composer
such-and-such, then that would be a plausible candidate composer for the new piece.

• Each run of our program is different—even on the same set of data—because of our use
of randomness for choosing mutations in the quartet method.It would be interesting to
investigate more precisely how stable the outcomes are overdifferent such runs.

• At various points in our program, somewhat arbitrary choices were made. Some examples
are: the compression algorithms we use (all practical compression algorithms will fall
short of Kolmogorov complexity, but some less so than others); the way we transform
the MIDI files (choice of length of time interval, choice of note-representation); the cost
function in the quartet method. Other choices are possible and may or may not lead to
better clustering.1 Ideally, one would like to have well-founded theoretical reasons to
decide such choices in an optimal way. Lacking those, trial-and-error seems the only way
to deal with them.

• The experimental results got decidedly worse when the number of pieces grew. Better com-
pression methods may improve this situation, but the effectis probably due to unknown
scaling problems with the quartet method or nonlinear scaling of possible similarities in a
larger group of objects (akin to the phenomenon described inthe so-called “birthday para-
dox”: in a group of about two dozen people there is a high chance that at least two of the
people have the same birthday). Inspection of the underlying distance matrices makes us
suspect the latter.

• Our program is not very good at dealing with very small data files (100 bytes or so),
because significant compression only kicks in for larger files. We might deal with this by
comparing various sets of such pieces against each other, instead of individual ones.

6.4.8 Details of the Music Pieces Used

1We compared the quartet-based approach to the tree reconstruction with alternatives. One such alternative that
we tried is to compute the Minimum Spanning Tree (MST) from the matrix of distances. MST has the advantage
of being very efficiently computable, but resulted in trees that were much worse than the quartet method. It appears
that the quartet method is extremely sensitive in extracting information even from small differences in the entries of
the distance matrix, where other methods would be led to error.
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Composer Piece Acronym

J.S. Bach (10) Wohltemperierte Klavier II: Preludes and fugues 1,2BachWTK2{F,P}{1,2} (s)
Goldberg Variations: Aria, Variations 1,2 BachGold{Aria,V1,V2} (m)
Kunst der Fuge: Variations 1,2 BachKdF{1,2} (m)
Invention 1 BachInven1 (m)

Beethoven (10) Sonata no. 8 (Pathetique), 1st movement BeetSon8m1
Sonata no. 14 (Mondschein), 3 movements BeetSon14m{1,2,3}
Sonata no. 21 (Waldstein), 2nd movement BeetSon21m2
Sonata no. 23 (Appassionata) BeetSon23
Sonata no. 26 (Les Adieux) BeetSon26
Sonata no. 29 (Hammerklavier) BeetSon29
Romance no. 1 BeetRomance1
Für Elise BeetFurElise

Buxtehude (8) Prelude and fugues, BuxWV 139,143,144,163 BuxtPF{139,143,144,163}
Toccata and fugue, BuxWV 165 BuxtTF165
Fugue, BuxWV 174 BuxtFug174
Passacaglia, BuxWV 161 BuxtPassa161
Canzonetta, BuxWV 168 BuxtCanz168

Chopin (10) Préludes op. 28: 1, 15, 22, 24 ChopPrel{1,15,22,24} (s)
Etudes op. 10, nos. 1, 2, and 3 ChopEtu{1,2,3} (m)
Nocturnes nos. 1 and 2 ChopNoct{1,2} (m)
Sonata no. 2, 3rd movement ChopSon2m3 (m)

Debussy (5) Suite bergamasque, 4 movements DebusBerg{1,2,3,4} (s)
Children’s corner suite (Gradus ad Parnassum) DebusChCorm1 (m)

Haydn (7) Sonatas nos. 27, 28, 37, and 38 HaydnSon{27,28,37,38} (m)
Sonata no. 40, movements 1,2 HaydnSon40m{1,2} (m)
Andante and variations HaydnAndaVari (m)

Mozart (10) Sonatas nos. 1,2,3,4,6,19 MozSon{1,2,3,4,6,19}
Rondo from Sonata no. 16 MozSon16Rondo
Fantasias K397, 475 MozFantK{397,475}
Variations “Ah, vous dirais-je madam” MozVarsDirais

Table 6.1: The 60 classical pieces used (‘m’ indicates presence in the medium set, ‘s’ in the small
and medium sets).

6.5 Genomics and Phylogeny

In recent years, as the complete genomes of various species become available, it has become pos-
sible to do whole genome phylogeny (this overcomes the problem that using different targeted
parts of the genome, or proteins, may give different trees [94]). Traditional phylogenetic meth-
ods on individual genes depended on multiple alignment of the related proteins and on the model
of evolution of individual amino acids. Neither of these is practically applicable to the genome
level. In absence of such models, a method which can compute the shared information between
two sequences is useful because biological sequences encode information, and the occurrence
of evolutionary events (such as insertions, deletions, point mutations, rearrangements, and inver-
sions) separating two sequences sharing a common ancestor will result in the loss of their shared
information. Our method (in the form of the CompLearn Toolkit) is a fully automated software

93



John Coltrane Blue trane
Giant steps
Lazy bird
Impressions

Miles Davis Milestones
Seven steps to heaven
Solar
So what

George Gershwin Summertime
Dizzy Gillespie Night in Tunisia
Thelonious Monk Round midnight
Charlie Parker Yardbird suite

Table 6.2: The 12 jazz pieces used.

The Beatles Eleanor Rigby
Michelle

Eric Clapton Cocaine
Layla

Dire Straits Money for nothing
Led Zeppelin Stairway to heaven
Metallica One
Jimi Hendrix Hey Joe

Voodoo chile
The Police Every breath you take

Message in a bottle
Rush Yyz

Table 6.3: The 12 rock pieces used.

tool based on such a distance to compare two genomes.

6.5.1 Mammalian Evolution:

In evolutionary biology the timing and origin of the major extant placental clades (groups of
organisms that have evolved from a common ancestor) continues to fuel debate and research.
Here, we provide evidence by whole mitochondrial genome phylogeny for competing hypotheses
in two main questions: the grouping of the Eutherian orders,and the Therian hypothesis versus
the Marsupionta hypothesis.

Eutherian Orders: It was demonstrated in [77] that a whole mitochondrial genome phylogeny
of the Eutherians (placental mammals) can be reconstructedautomatically from a set ofun-
alignedcomplete mitochondrial genomes by use of an early form of ourcompression method,
using standard software packages. As more genomic materialhas become available, the debate
in biology has intensified concerning which two of the three main groups of placental mammals

94



platypus
opossum
wallaroo

Marsupials

mouse
rat

Rodents

horse
whiterhino

cat
graySeal

harborSeal
blueWhale

finWhale

Ferungulates

gibbon
orangutan

gorilla
human

chimpanzee
pigmyChimpanzee

Primates

Figure 6.7: The evolutionary tree built from complete mammalian mtDNA sequences of 24
species, using the NCD matrix of Figure4.14on page70 where it was used to illustrate a point
of hierarchical clustering versus flat clustering. We have redrawn the tree from our output to
agree better with the customary phylogeny tree format. The tree agrees exceptionally well with
the NCD distance matrix:S(T) = 0.996.

are more closely related: Primates, Ferungulates, and Rodents. In [18], the maximum likeli-
hood method of phylogeny tree reconstruction gave evidencefor the (Ferungulates, (Primates,
Rodents)) grouping for half of the proteins in the mitochondrial genomes investigated, and (Ro-
dents, (Ferungulates, Primates)) for the other halves of the mt genomes. In that experiment they
aligned 12 concatenated mitochondrial proteins, taken from 20 species: the humble rat (Rattus
norvegicus), house mouse (Mus musculus), grey seal (Halichoerus grypus), harbor seal (Phoca
vitulina), cat (Felis catus), white rhino (Ceratotherium simum), horse (Equus caballus), finback
whale (Balaenoptera physalus), blue whale (Balaenoptera musculus), cow (Bos taurus), gibbon
(Hylobates lar), gorilla (Gorilla gorilla ), human (Homo sapiens), chimpanzee (Pan troglodytes),
pygmy chimpanzee (Pan paniscus), orangutan (Pongo pygmaeus), Sumatran orangutan (Pongo
pygmaeus abelii), using opossum (Didelphis virginiana), wallaroo (Macropus robustus), and the
platypus (Ornithorhynchus anatinus) as outgroup. In [80, 77] we used the whole mitochondrial
genome of the same 20 species, computing the NCD distances (or a closely related distance in
[80]), using the GenCompress compressor, followed by tree reconstruction using the neighbor
joining program in the MOLPHY package [99] to confirm the commonly believed morphology-
supported hypothesis (Rodents, (Primates, Ferungulates)). Repeating the experiment using the
hypercleaning method [13] of phylogeny tree reconstruction gave the same result. Here, we re-
peated this experiment several times using the CompLearn Toolkit using our new quartet method
for reconstructing trees, and computing the NCD with various compressors (gzip, bzip2, PPMZ),
again always with the same result. These experiments are notreported since they are subsumed
by the larger experiment of Figure6.7.
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Marsupionta and Theria: The extant monophyletic divisions of the class Mammalia arethe
Prototheria (monotremes: mammals that procreate using eggs), Metatheria (marsupials: mam-
mals that procreate using pouches), and Eutheria (placental mammals: mammals that procreate
using placentas). The sister relationships between these groups is viewed as the most funda-
mental question in mammalian evolution [55]. Phylogenetic comparison by either anatomy or
mitochondrial genome has resulted in two conflicting hypotheses: the gene-isolation-supported
Marsupionta hypothesis: ((Prototheria, Metatheria), Eutheria) versus the morphology-supported
Theria hypothesis: (Prototheria, (Metatheria, Eutheria)), the third possiblity apparently not being
held seriously by anyone. There has been a lot of support for either hypothesis; recent support for
the Theria hypothesis was given in [55] by analyzing a large nuclear gene (M6P/IG2R), viewed
as important across the species concerned, and even more recent support for the Marsupionta hy-
pothesis was given in [51] by phylogenetic analysis of another sequence from the nuclear gene
(18S rRNA) and by the whole mitochondrial genome.

Experimental Evidence: To test the Eutherian orders simultaneously with the Marsupionta
versus Theria hypothesis, we added four animals to the abovetwenty: Australian echidna (Tachy-
glossus aculeatus), brown bear (Ursus arctos), polar bear (Ursus maritimus), using the common
carp (Cyprinus carpio) as the outgroup. Interestingly, while there are many species of Euthe-
ria and Metatheria, there are only three species of now living Prototheria known: platypus, and
two types of echidna (or spiny anteater). So our sample of thePrototheria is large. The addi-
tion of the new species might be risky in that the addition of new relations is known to distort
the previous phylogeny in traditional computational genomics practice. With our method, using
the full genome and obtaining a single tree with a very high confidenceS(T) value, that risk is
not as great as in traditional methods obtaining ambiguous trees with bootstrap (statistic sup-
port) values on the edges. The mitochondrial genomes of the total of 24 species we used were
downloaded from the GenBank Database on the world-wide web.Each is around 17,000 bases.
The NCD distance matrix was computed using the compressor PPMZ. The resulting phylogeny,
with an almost maximalS(T) score of 0.996 supports anew the currently accepted grouping
(Rodents, (Primates, Ferungulates)) of the Eutherian orders, and additionally the Marsupionta
hypothesis ((Prototheria, Metatheria), Eutheria), see Figure6.7(reproducing Figure4.12for the
readers convenience). Overall, our whole-mitochondrial NCD analysis supports the following
hypothesis:

Mammalia
︷ ︸︸ ︷

((primates, f erungulates)(rodents
︸ ︷︷ ︸

Eutheria

,(Metatheria,Prototheria))),

which indicates that the rodents, and the branch leading to the Metatheria and Prototheria, split
off early from the branch that led to the primates and ferungulates. Inspection of the distance ma-
trix Figure4.14on page70 (exhibited earler in the context of hierarchical versus flatclustering)
shows that the primates are very close together, as are the rodents, the Metatheria, and the Pro-
totheria. These are tightly-knit groups with relatively close NCD’s. The ferungulates are a much
looser group with generally distant NCD’s. The intergroup distances show that the Prototheria
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Figure 6.8: Dendrogram of mitochondrial genomes of fungi using NCD. This represents the
distance matrix precisely withS(T) = 0.999.
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Verticilliumlecanii
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Figure 6.9: Dendrogram of mitochondrial genomes of fungi using block frequencies. This rep-
resents the distance matrix precisely withS(T) = 0.999.

are furthest away from the other groups, followed by the Metatheria and the rodents. Also the
fine-structure of the tree is consistent with biological wisdom.

6.5.2 SARS Virus:

In another experiment we clustered the SARS virus after its sequenced genome was made pub-
licly available, in relation to potential similar virii. The 15 virus genomes were downloaded from
The Universal Virus Database of the International Committee on Taxonomy of Viruses, avail-
able on the world-wide web. The SARS virus was downloaded from Canada’s Michael Smith
Genome Sciences Centre which had the first public SARS Coronavirus draft whole genome
assembly available for download (SARS TOR2 draft genome assembly 120403). The NCD
distance matrix was computed using the compressor bzip2. The relations in Figure4.9are very
similar to the definitive tree based on medical-macrobio-genomics analysis, appearing later in the
New England Journal of Medicine, [63]. We depicted the figure in the ternary tree style, rather
than the genomics-dendrogram style, since the former is more precise for visual inspection of
proximity relations.

6.5.3 Analysis of Mitochondrial Genomes of Fungi:

As a pilot for applications of the CompLearn Toolkit in fungigenomics research, the group
of T. Boekhout, E. Kuramae, V. Robert, of the Fungal Biodiversity Center, Royal Netherlands
Academy of Sciences, supplied us with the mitochondrial genomes ofCandida glabrata, Pichia
canadensis, Saccharomyces cerevisiae, S. castellii, S. servazzii, Yarrowia lipolytica(all yeasts),
and two filamentous ascomycetesHypocrea jecorinaandVerticillium lecanii. The NCD distance
matrix was computed using the compressor PPMZ. The resulting tree is depicted in Figure6.8.
The interpretation of the fungi researchers is “the tree clearly clustered the ascomycetous yeasts
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Figure 6.10: Clustering of Native-American, Native-African, and Native-European languages.
S(T) = 0.928.

versus the two filamentous Ascomycetes, thus supporting thecurrent hypothesis on their classi-
fication (for example, see [65]). Interestingly, in a recent treatment of the Saccharomycetaceae,
S. servazii, S. castellii and C. glabrata were all proposed to belong to genera different from
Saccharomyces, and this is supported by the topology of our tree as well [64].”

To compare the veracity of the NCD clustering with a more feature-based clustering, we also
calculated the pairwise distances as follows: Each file is converted to a 4096-dimensional vector
by considering the frequency of all (overlapping) 6-byte contiguous blocks. The l2-distance
(Euclidean distance) is calculated between each pair of files by taking the square root of the sum
of the squares of the component-wise differences. These distances are arranged into a distance
matrix and linearly scaled to fit the range[0,1.0]. Finally, we ran the clustering routine on this
distance matrix. The results are in Figure6.9. As seen by comparing with the NCD-based
Figure 6.8 there are apparent misplacements when using the Euclidean distance in this way.
Thus, in this simple experiment, the NCD performed better, that is, agreed more precisely with
accepted biological knowledge.

6.6 Language Trees

Our method improves the results of [8], using a linguistic corpus of “The Universal Declaration
of Human Rights (UDoHR)” [27] in 52 languages. Previously, [8] used an asymmetric measure
based on relative entropy, and the full matrix of the pair-wise distances between all 52 languages,
to build a language classification tree. This experiment wasrepeated (resulting in a somewhat
better tree) using the compression method in [77] using standard biological software packages
to construct the phylogeny. We have redone this experiment,and done new experiments, using
the CompLearn Toolkit. Here, we report on an experiment to separate radically different lan-
guage families. We downloaded the language versions of the UDoHR text in English, Spanish,
Dutch, German (Native-European), Pemba, Dendi, Ndbele, Kicongo, Somali, Rundi, Ditammari,
Dagaare (Native African), Chikasaw, Perhupecha, Mazahua,Zapoteco (Native-American), and
didn’t preprocess them except for removing initial identifying information. We used an Lempel-
Ziv-type compressorgzip to compress text sequences of sizes not exceeding the lengthof the
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Figure 6.11: Clustering of Russian writers. Legend: I.S. Turgenev, 1818–1883 [Father and Sons,
Rudin, On the Eve, A House of Gentlefolk]; F. Dostoyevsky 1821–1881 [Crime and Punishment,
The Gambler, The Idiot; Poor Folk]; L.N. Tolstoy 1828–1910 [Anna Karenina, The Cossacks,
Youth, War and Piece]; N.V. Gogol 1809–1852 [Dead Souls, Taras Bulba, The Mysterious Por-
trait, How the Two Ivans Quarrelled]; M. Bulgakov 1891–1940[The Master and Margarita, The
Fatefull Eggs, The Heart of a Dog].S(T) = 0.949.

sliding windowgzip uses (32 kilobytes), and compute the NCD for each pair of language se-
quences. Subsequently we clustered the result. We show the outcome of one of the experiments
in Figure6.10. Note that three groups are correctly clustered, and that even the subclusters of
the European languages are correct (English is grouped withthe Romance languages because it
contains up to 40% admixture of words from Latin origin).

6.7 Literature

The texts used in this experiment were down-loaded from the world-wide web in original Cyrillic-
lettered Russian and in Latin-lettered English by L. Avanasiev (Moldavian MSc student at the
University of Amsterdam). The compressor used to compute the NCD matrix was bzip2. We
clustered Russian literature in the original (Cyrillic) byGogol, Dostojevski, Tolstoy, Bulgakov,Tsjechov,
with three or four different texts per author. Our purpose was to see whether the clustering is sen-
sitive enough, and the authors distinctive enough, to result in clustering by author. In Figure6.11
we see a perfect clustering. Considering the English translations of the same texts, in Figure6.12,
we see errors in the clustering. Inspection shows that the clustering is now partially based on the
translator. It appears that the translator superimposes his characteristics on the texts, partially
suppressing the characteristics of the original authors. In other experiments we separated authors
by gender and by period.
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Figure 6.12: Clustering of Russian writers translated in English. The translator is given in brack-
ets after the titles of the texts. Legend: I.S. Turgenev, 1818–1883 [Father and Sons (R. Hare),
Rudin (Garnett, C. Black), On the Eve (Garnett, C. Black), A House of Gentlefolk (Garnett, C.
Black)]; F. Dostoyevsky 1821–1881 [Crime and Punishment (Garnett, C. Black), The Gambler
(C.J. Hogarth), The Idiot (E. Martin); Poor Folk (C.J. Hogarth)]; L.N. Tolstoy 1828–1910 [Anna
Karenina (Garnett, C. Black), The Cossacks (L. and M. Aylmer), Youth (C.J. Hogarth), War and
Piece (L. and M. Aylmer)]; N.V. Gogol 1809–1852 [Dead Souls (C.J. Hogarth), Taras Bulba (≈
G. Tolstoy, 1860, B.C. Baskerville), The Mysterious Portrait + How the Two Ivans Quarrelled (≈
I.F. Hapgood]; M. Bulgakov 1891–1940 [The Master and Margarita (R. Pevear, L. Volokhonsky),
The Fatefull Eggs (K. Gook-Horujy), The Heart of a Dog (M. Glenny)]. S(T) = 0.953.

Figure 6.13: Images of handwritten digits used for OCR.
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Figure 6.14: Clustering of the OCR images.S(T) = 0.901.

6.8 Optical Character Recognition

Perhaps surprisingly, it turns out that scanning a picture in raster row-major order retains enough
regularity in both dimensions for the compressor to grasp. Asimple task along these lines is
to cluster handwritten characters. The handwritten characters in Figure6.13were downloaded
from the NIST Special Data Base 19 (optical character recognition database) on the world-wide
web. Each file in the data directory contains 1 digit image, either a four, five, or six. Each pixel is
a single character; ’#’ for a black pixel, ’.’ for white. Newlines are added at the end of each line.
Each character is 128x128 pixels. The NCD matrix was computed using the compressor PPMZ.
Figure6.14shows each character that is used. There are 10 of each digit “4,” “5,” “6,” making a
total of 30 items in this experiment. All but one of the 4’s areput in the subtree rooted atn1, all
but one of the 5’s are put in the subtree rooted atn4, and all 6’s are put in the subtree rooted at
n3. The remaining 4 and 5 are in the branchn23,n13 joiningn6 andn3. So 28 items out of 30
are clustered correctly, that is, 93%.

Classification In the experiment above we used only 3 digits. Using the full set of decimal
digits results in a lower clustering accuracy. However, we can use the NCD as a oblivious feature
extraction technique to convert generic objects into finite-dimensional vectors. This is done using
theanchor methodwhich we introduced in Chapter 5, Section5.2. We have used this technique
to train a support vector machine (SVM) based OCR system to classify handwritten digits by
extracting 80 distinct, ordered NCD features from each input image. The images are black and
white square rasterized images. The anchors are chosen onceand for all at the beginning of the
experiment randomly from the training object pool, ensuring that eight examples of each class are
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chosen. Once chosen, the anchors are kept in order (so that the first coordinate always refers to
the same anchor and so on) and used to translate all other training data files into 80-dimensional
vectors. In this initial stage of ongoing research, by our oblivious method of compression-based
clustering to supply a kernel for an SVM classifier, we achieved a handwritten single decimal
digit recognition accuracy of 85%. The current state-of-the-art for this problem, after half a
century of interactive feature-driven classification research, in the upper ninety % level [87, 113].
All experiments are bench marked on the standard NIST Special Data Base 19 (optical character
recognition database).

6.9 Astronomy

As a proof of principle we clustered data from unknown objects, for example objects that are far
away. In [5] observations of the microquasar GRS 1915+105 made with theRossi X-ray Tim-
ing Explorer were analyzed. The interest in this microquasar stems from the fact that it was the
first Galactic object to show a certain behavior (superluminal expansion in radio observations).
Photonometric observation data from X-ray telescopes weredivided into short time segments
(usually in the order of one minute), and these segments havebeen classified into a bewilder-
ing array of fifteen different modes after considerable effort. Briefly, spectrum hardness ratios
(roughly, “color”) and photon count sequences were used to classify a given interval into cate-
gories of variability modes. From this analysis, the extremely complex variability of this source
was reduced to transitions between three basic states, which, interpreted in astronomical terms,
gives rise to an explanation of this peculiar source in standard black-hole theory. The data we
used in this experiment made available to us by M. Klein Wolt (co-author of the above paper)
and T. Maccarone, both researchers at the Astronomical Institute “Anton Pannekoek”, University
of Amsterdam. The observations are essentially time series, and our aim was experimenting with
our method as a pilot to more extensive joint research. Here the task was to see whether the
clustering would agree with the classification above. The NCD matrix was computed using the
compressor PPMZ. The results are in Figure6.15. We clustered 12 objects, consisting of three
intervals from four different categories denoted asδ,γ,φ,θ in Table 1 of [5]. In Figure6.15we
denote the categories by the corresponding Roman letters D,G, P, and T, respectively. The result-
ing tree groups these different modes together in a way that is consistent with the classification
by experts for these observations. The oblivious compression clustering corresponds precisely
with the laborious feature-driven classification in [5].

6.10 Conclusion

To interpret what the NCD is doing, and to explain its remarkable accuracy and robustness across
application fields and compressors, the intuition is that the NCD minorizes all similarity metrics
based on features that are captured by the reference compressor involved. Such features must be
relativelysimplein the sense that they are expressed by an aspect that the compressor analyzes
(for example frequencies, matches, repeats). Certain sophisticated features may well be express-
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Figure 6.15: 16 observation intervals of GRS 1915+105 from four classes. The initial capital
letter indicates the class corresponding to Greek lower case letters in [5]. The remaining letters
and digits identify the particular observation interval interms of finer features and identity. The
T-cluster is top left, theP-cluster is bottom left, theG-cluster is to the right, and theD-cluster
in the middle. This tree almost exactly represents the underlying NCD distance matrix:S(T) =
0.994.

ible as combinations of such simple features, and are therefore themselves simple features in this
sense. The extensive experimenting above shows that even elusive features are captured.

A potential application of our non-feature (or rather, many-unknown-feature) approach is
exploratory. Presented with data for which the features areas yet unknown, certain dominant
features governing similarity are automatically discovered by the NCD. Examining the data un-
derlying the clusters may yield this hitherto unknown dominant feature.

Our experiments indicate that the NCD has application in twonew areas of support vector
machine (SVM) based learning. Firstly, we find that the inverted NCD (1-NCD) is useful as a
kernel for generic objects in SVM learning. Secondly, we canuse the normal NCD as a feature-
extraction technique to convert generic objects into finite-dimensional vectors, see the last para-
graph of Section6.8. In effect our similarity engine aims at the ideal of a perfect data mining
process, discovering unknown features in which the data canbe similar. This is the subject of
current joint research in genomics of fungi, clinical molecular genetics, and radio-astronomy.

The results in this section owe thanks to Loredana Afanasiev, Graduate School of Logic,
University of Amsterdam; Teun Boekhout, Eiko Kuramae, Vincent Robert, Fungal Biodiversity
Center, Royal Netherlands Academy of Sciences; Marc Klein Wolt, Thomas Maccarone, As-
tronomical Institute “Anton Pannekoek”, University of Amsterdam; Evgeny Verbitskiy, Philips
Research; Steven de Rooij, Ronald de Wolf, CWI; the refereesand the editors, for suggestions,
comments, help with experiments, and data; Jorma Rissanen and Boris Ryabko for useful dis-
cussions, Tzu-Kuo Huang for pointing out some typos and simplifications, and Teemu Roos and
Henri Tirry for implementing a visualization of the clustering process.
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Chapter 7

Automatic Meaning Discovery Using Google

The NCD investigations of the previous chapters focused on using data compressors to compress
data in files. This chapter deals with an entirely different sort of analysis that is not performed
on files but rather onsearch termsfor the Google web search engine. By using well-known con-
nections between code-lengths and probabilities, we applythe NCD theory to Google’s search
engine index, providing insight into the subjective relationships enjoyed among a group of words
or phrases. The Google Simple Object Access Protocol is usedto connect it with the CompLearn
system. Remarkably, the system does not use the contents of web pages directly, but instead only
uses the estimated results count indicator from the Google search engine to make a probabilis-
tic model of the web. This model is based on sampling each search term in a group as well
as all pairs in order to find structure in their co-occurrence. Before explaining the method in
detail the reader is invited to have a look at the experiment in Figure7.1 involving the names
of politicians. The tree shows the subjective relationships among several European Commis-
sion members. After giving a general introduction to the method, we introduce some relevant
background material in Section7.1.2. We explain the formula that connects NCD to Google in
Section7.3. We provide a sketch of one possible theoretical breakdown concerning the surpris-
ing robustness of the results and consequent Google-based distance metric. We prove a certain
sort of universality property for this metric. In Section7.4, we present a variety of experiments
demonstrating the sorts of results that may be obtained. We demonstrate positive correlations,
evidencing an underlying semantic structure, in both numerical symbol notations and number-
name words in a variety of natural languages and contexts. Next, we demonstrate the ability to
distinguish between colors and numbers, and to distinguishbetween 17th century Dutch painters;
the ability to understand electrical terms, religious terms, and emergency incidents; we conduct a
massive experiment in understanding WordNet categories; and finally we demonstrate the ability
to do a simple automatic English-Spanish vocabulary acquisition.

7.1 Introduction

Objects can be given literally, like the literal four-letter genome of a mouse, or the literal text of
War and Peaceby Tolstoy. For simplicity we take it that all meaning of the object is represented
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Figure 7.1: European Parliament members
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by the literal object itself. Objects can also be given by name, like “the four-letter genome of a
mouse,” or “the text ofWar and Peaceby Tolstoy.” There are also objects that cannot be given
literally, but only by name, and that acquire their meaning from their contexts in background
common knowledge in humankind, like “home” or “red.” To makecomputers more intelligent
one would like to represent meaning in computer digestible form. Long-term and labor-intensive
efforts like theCycproject [71] and theWordNetproject [37] try to establish semantic relations
between common objects, or, more precisely,namesfor those objects. The idea is to create a
semantic web of such vast proportions that rudimentary intelligence, and knowledge about the
real world, spontaneously emerge. This comes at the great cost of designing structures capable
of manipulating knowledge, and entering high quality contents in these structures by knowledge-
able human experts. While the efforts are long-running and large scale, the overall information
entered is minute compared to what is available on the world-wide-web.

The rise of the world-wide-web has enticed millions of usersto type in trillions of characters
to create billions of web pages of on average low quality contents. The sheer mass of the informa-
tion available about almost every conceivable topic makes it likely that extremes will cancel and
the majority or average is meaningful in a low-quality approximate sense. We devise a general
method to tap the amorphous low-grade knowledge available for free on the world-wide-web,
typed in by local users aiming at personal gratification of diverse objectives, and yet globally
achieving what is effectively the largest semantic electronic database in the world. Moreover,
this database is available for all by using any search enginethat can return aggregate page-count
estimates for a large range of search queries, like Google.

Previously, we and others developed a compression-based method to establish a universal
similarity metric among objects given as finite binary strings [9, 75, 76, 26, 25, 22], which was
widely reported [85, 88, 35]; some of these experiments are shown in chapters 5 and 7. Such
objects can be genomes, music pieces in MIDI format, computer programs in Ruby or C, pictures
in simple bitmap formats, or time sequences such as heart rhythm data. This method is feature-
free in the sense that it does not analyze the files looking forparticular features; rather it analyzes
all features simultaneously and determines the similaritybetween every pair of objects according
to the most dominant shared feature. The crucial point is that the method analyzes the objects
themselves. This precludes comparison of abstract notionsor other objects that do not lend
themselves to direct analysis, like emotions, colors, Socrates, Plato, Mike Bonanno and Albert
Einstein. While the previous method that compares the objects themselves is particularly suited
to obtain knowledge about the similarity of objects themselves, irrespective of common beliefs
about such similarities, here we develop a method that uses only the name of an object and
obtains knowledge about the similarity of objects by tapping available information generated by
multitudes of web users. Here we are reminded of the words of D.H. Rumsfeld [96]

“A trained ape can know an awful lot
Of what is going on in this world,
Just by punching on his mouse
For a relatively modest cost!”

This is useful to extract knowledge from a given corpus of knowledge, in this case the Google
database, but not to obtain true facts that are not common knowledge in that database. For
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example, common viewpoints on the creation myths in different religions may be extracted by
the Googling method, but contentious questions of fact concerning the phylogeny of species can
be better approached by using the genomes of these species, rather than by opinion.

7.1.1 Googling for Knowledge

Intuitively, the approach is as follows. The Google search engine indexes around ten billion
pages on the web today. Each such page can be viewed as a set of index terms. While the theory
we propose is rather intricate, the resulting method is simple enough. We give an example: At
the time of doing the experiment, a Google search for “horse”, returned 46,700,000 hits. The
number of hits for the search term “rider” was 12,200,000. Searching for the pages where both
“horse” and “rider” occur gave 2,630,000 hits, and Google indexed 8,058,044,651 web pages.
Using these numbers in the main formula (7.3.3) we derive below, withN = 8,058,044,651, this
yields a Normalized Google Distance between the terms “horse” and “rider” as follows:

NGD(horse, rider)≈ 0.443.

In the next part of this thesis we argue that the NGD is a normedsemantic distance between the
terms in question, usually (but not always, see below) inbetween 0 (identical) and 1 (unrelated),
in the cognitive space invoked by the usage of the terms on theworld-wide-web as filtered by
Google. Because of the vastness and diversity of the web thismay be taken as related to the
current use of the terms in society. We did the same calculation when Google indexed only one-
half of the number of pages: 4,285,199,774. It is instructive that the probabilities of the used
search terms didn’t change significantly over this doublingof pages, with number of hits for
“horse” equal 23,700,000, for “rider” equal 6,270,000, andfor “horse, rider” equal to 1,180,000.
The NGD(horse, rider) we computed in that situation was≈ 0.460. This is in line with our
contention that the relative frequencies of web pages containing search terms gives objective
information about the semantic relations between the search terms. If this is the case, then the
Google probabilities of search terms and the computed NGD ’sshould stabilize (become scale
invariant) with a growing Google database.

7.1.2 Related Work and Background NGD

It has been brought to our attention, that there is a great deal of work in both cognitive psychology
[68], linguistics, and computer science, about using word (phrases) frequencies in text corpora
to develop measures for word similarity or word association, partially surveyed in [112, 111],
going back to at least [72]. These approaches are based on arguments and theories thatare fun-
damentally different from the approach we develop, which isbased on coding and compression,
based on the theory of Kolmogorov complexity [79]. This allows to express and prove properties
of absolute relations between objects that cannot even be expressed by other approaches. The
NGD is the result of a new type of theory and as far as we know is not equivalent to any earlier
measure. Nevertheless, in practice the resulting measure may still sometimes lead to similar re-
sults as existing methods. The current thesis is a next step in a decade of cumulative research in

108



this area, of which the main thread is [79, 9, 80, 76, 26, 25, 22] with [75, 10] using the related
approach of [78].

7.1.3 Outline

Previously, we have outlined the classical information theoretic notions that have underpinned
our approach, as well as the more novel ideas of Kolmogorov complexity, information distance,
and compression-based similarity metric (Section7.1.2). Here, we give a technical description
of the Google distribution, the Normalized Google Distance, and the universality of these notions
(Section7.3), preceded by Subsection7.2.1pressing home the difference between literal object
based similarity (as in compression based similarity), andcontext based similarity between ob-
jects that are not given literally but only in the form of names that acquire their meaning through
contexts in databases of background information (as in Google based similarity). In Section7.4
we present a plethora of clustering and various classification experiments to validate the univer-
sality, robustness, and accuracy of our proposal. A mass of experimental work, which for space
reasons can not be reported here, is available [23]. In section5.3.3we explained some basics of
the SVM approach we use in the classification experiments, where the Google similarity is used
to extract feature vectors used by the kernel.

7.2 Extraction of Semantic Relations with Google

Every text corpus or particular user combined with a frequency extractor defines its own relative
frequencies of words and phrases. In the world-wide-web andGoogle setting there are millions
of users and text corpora, each with its own distribution. Inthe sequel, we show (and prove) that
the Google distribution is universal for all the individualweb users distributions.

The number of web pages currently indexed by Google is approaching 1010. Every common
search term occurs in millions of web pages. This number is sovast, and the number of web
authors generating web pages is so enormous (and can be assumed to be a truly representative
very large sample from humankind), that the probabilities of Google search terms, conceived as
the frequencies of page counts returned by Google divided bythe number of pages indexed by
Google, may approximate the actual relative frequencies ofthose search terms as actually used
in society. Based on this premise, the theory we develop in this chapter states that the relations
represented by the Normalized Google Distance (7.3.3) approximately capture the assumed true
semantic relations governing the search terms. The NGD formula (7.3.3) only uses the probabil-
ities of search terms extracted from the text corpus in question. We use the world wide web and
Google, but the same method may be used with other text corpora like the King James version of
the Bible or the Oxford English Dictionary and frequency count extractors, or the world-wide-
web again and Yahoo as frequency count extractor. In these cases one obtains a text corpus and
frequency extractor biased semantics of the search terms. To obtain the true relative frequencies
of words and phrases in society is a major problem in applied linguistic research. This requires
analyzing representative random samples of sufficient sizes. The question of how to sample ran-
domly and representatively is a continuous source of debate. Our contention that the web is such
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a large and diverse text corpus, and Google such an able extractor, that the relative page counts
approximate the true societal word- and phrases usage, starts to be supported by current real
linguistics research [100].

Similarly, the NGD minorizes and incorporates all the different semantics of all the different
users and text corpora on the web. It extracts as it were the semantics as used in the society (of all
these web users) and not just the bias of any individual user or document. This is only possible
using the web, since its sheer mass of users and documents with different intentions averages
out to give the true semantic meaning as used in society. Thisis experimentally evidenced by
the fact that when Google doubled its size the sample semantics of rider, horse stayed the same.
Determining the NGD between two Google search terms does notinvolve analysis of particular
features or specific background knowledge of the problem area. Instead, it analyzes all features
automatically through Google searches of the most general background knowledge data base: the
world-wide-web. (In Statistics “parameter-free estimation” means that the number of parameters
analyzed is infinite or not a priori restricted. In our setting “feature-freeness” means that we
analyze all features.)

7.2.1 Genesis of the Approach

We start from the observation that a compressor defines a codeword length for every source
word, namely, the number of bits in the compressed version ofthat source word. Viewing this
code as a Shannon-Fano code, Section2.7, it defines in its turn a probability mass function on
the source words. Conversely, every probability mass function of the source words defines a
Shannon-Fano code of the source words. Since this code is optimally compact in the sense of
having expected code-word length equal to the entropy of theinitial probability mass function,
we take the viewpoint that a probability mass function is a compressor.

7.2.1.EXAMPLE . For example, the NID (Normalized Information Distance, Chapter 3, Sec-
tion 3.3) uses the probability mass functionm(x) = 2−K(x), whereK is the Kolmogorov com-
plexity function, Chapter 2. This function is not computable, but it has the weaker property
of being lower semi-computable: by approximatingK(x) from above by better and better com-
pressors, we approximatem(x) from below. The distributionm(x) has the remarkable property
that it dominates every lower semi-computable probabilitymass functionP(x) (and hence all
computable ones) by assigning more probability to every finite binary stringx thanP(x), up to
a multiplicative constantcP > 0 depending onP but not onx (m(x) ≥ cPP(x)). We say that
m(x) is universalfor the enumeration of all lower semi-computable probability mass functions,
[79], a terminology that is closely related to the “universality” of a universal Turing machine
in the enumeration of all Turing machines. It is this property that allows us to show [76] that
NID is themost informativedistance (actually a metric) among a large family of (possibly non-
metric) “admissible normalized information distances.” But we cannot apply these same formal
claims to the real-world NCD , except in a sense that is relativized on how well the compressor
approximates the ultimate Kolmogorov complexity [22, 26, 25] and as shown in Section3.3.

In essence, the choice of compressor brings a particular setof assumptions to bear upon an
incoming data stream, and if these assumptions turn out to beaccurate for the data in question,
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then compression is achieved. This is the same as saying thatthe probability mass function
defined by the compressor concentrates high probability on these data. If a pair of files share
information in a way that matches the assumptions of a particular compressor, then we obtain a
low NCD . Every compressor analyzes the string to be compressed by quantifying an associated
family of features. A compressor such asgzip detects a class of features, for example match-
ing substrings that are separated by no more than 32 kilobytes. Certain higher-order similarities
are detected in the final Huffman coding phase. This explainshow gzip is able to correctly
cluster files generated by Bernoulli processes. A better compressor likebzip2 detects substring
matches across a wider window of 900 kilobytes, and detects an expanded set of higher-order
features. Such compressors implicitly assume that the datahas no global, structured, meaning.
The compressor only looks for statistical biases, repetitions, and other biases in symmetrically
defined local contexts, and cannot achieve compression evenfor very low-complexity meaning-
ful strings like the digits ofπ. They assume the data source is at some level a simple stationary
ergodic random information source which is by definition meaningless. The problem with this is
clearly sketched by the great probabilist A.N. Kolmogorov [57, 58]: “The probabilistic approach
is natural in the theory of information transmission over communication channels carrying ‘bulk’
information consisting of a large number of unrelated or weakly related messages obeying def-
inite probabilistic laws.. . . [it] can be convincingly applied to the information contained, for
example, in a stream of congratulatory telegrams. But what real meaning is there, for example,
in [applying this approach to] ‘War and Peace’?· Or, on the other hand, must we assume that the
individual scenes in this book form a random sequence with ‘stochastic relations’ that damp out
quite rapidly over a distance of several pages?” The compressors apply no external knowledge to
the compression, and so will not take advantage of the fact thatU always followsQ in the English
language, and instead must learn this fact anew for each separate file (or pair) despite the simple
ubiquity of this rule. Thus the generality of common data compressors is also a liability, because
the features which are extracted are by construction meaningless and devoid of relevance.

Yet, files exist in the real world, and the files that actually exist in stored format by and large
carry a tremendous amount of structural, global, meaning; if they didn’t then we would throw
them away as useless. They do exhibit heavy biases in terms ofthe meaningless features, for
instance in the way the lettersT andE occur more frequently in English thanZ or Q, but even this
fails to capture the heart of the reason of the file’s existence in the first place: because of its rele-
vance to the rest of the world. Butgzip does not know this reason; it is as if everywheregzip
looks it only finds a loaded die or biased coin, resolute in itsobjective and foolish consistency.
In order to address this coding deficiency we choose an opposing strategy: instead of trying to
apply no external knowledge at all during compression, we try to apply as much as we can from
as many sources as possible simultaneously, and in so doing attempt to capture not theliteral
part but instead thecontextualized importanceof each string within a greater and all-inclusive
whole.

Thus, instead of starting with a standard data compression program, we start from a probabil-
ity mass function that reflects knowledge, and construct thecorresponding Shannon-Fano code
to convert probabilities to code word lengths, and apply theNCD formula. At this moment one
database stands out as the pinnacle of computer accessible human knowledge and the most inclu-
sive summary of statistical information: the Google searchengine. There can be no doubt that
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Google has already enabled science to accelerate tremendously and revolutionized the research
process. It has dominated the attention of internet users for years, and has recently attracted sub-
stantial attention of many Wall Street investors, even reshaping their ideas of company financing.
We have devised a way to interface the Google search engine toour NCD software to create a
new type of pseudo-compressor based NCD , and call this new distance the Normalized Google
Distance, or NGD . We have replaced the obstinate objectivity of classical compressors with an
anthropomorphic subjectivity derived from the efforts of millions of people worldwide. Exper-
iments suggest that this new distance shares some strengthsand weaknesses in common with
the humans that have helped create it: it is highly adaptableand nearly unrestricted in terms of
domain, but at the same time is imprecise and fickle in its behavior. It is limited in that it doesn’t
analyze the literal objects like the NCD does, but instead uses names for those objects in the
form of ASCII search terms or tuples of terms as inputs to extract the meaning of those objects
from the total of information on the world-wide-web.

7.2.2.EXAMPLE . An example may help clarify the distinction between these two opposing
paradigms. Consider the following sequence of letters:

U Q B

Assume that the next letter will be a vowel. What vowel would you guess is most likely,
in the absence of any more specific information? One common assumption is that the samples
are i.i.d. (identical, independently distributed), and given this assumption a good guess isU ;
since it has already been shown once, chances are good thatU is weighted heavily in the true
generating distribution. In assuming i.i.d.-ness, we implicitly assume that there is some true
underlying random information source. This assumption is often wrong in practice, even in an
approximate sense. Changing the problem slightly, using English words as tokens instead of just
letters, suppose we are given the sequence

the quick brown

Now we are told that the next word has three letters and does not end the sentence. We may
imagine various three letter words that fit the bill. On an analysis as before, we ought to expect
the to continue the sentence. The computer lists 535 English words of exactly three letters. We
may use thegzip data compressor to compute the NCD for each possible completion like this:
NCD (the quick brown,cow), NCD (the quick brown,the), and so on, for all of the 3-letter
words. We may then sort the words in ascending order of NCD andthis yields the following
words in front, all with NCD of 0.61: own, row, she, the . There are other three letter
words, likehot, that have NCD of 0.65, and many with larger distance. With such very small
input strings, there are granularity effects associated with the compressor rounding to full bytes,
which makes compression resolve only to the level of 8 bits atbest. So as we might expect,gzip
is using a sort of inference substantially similar to the sort that might lead the reader to guessU
as a possible completion in the first example above.

Consider now what would happen if we were to use Google instead of gzip as the data com-
pressor. Here we may change the input domain slightly; before, we operated on general strings,
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binary or otherwise. With Google, we will restrict ourselves to ASCII words that can be used
as search terms in the Google Search engine. With each searchresult, Google returns a count of
matched pages. This can be thought to define a function mapping search terms (or combinations
thereof) to page counts. This, in turn, can be thought to define a probability distribution, and
we may use a Shannon Fano code to associate a code length with each page count. We divide
the total number of pages returned on a query by the maximum that can be returned, when con-
verting a page count to a probability; at the time of these experiments, the maximum was about
5,000,000,000. Computing the NGD of the phrasethe quick brown, with each three-letter
word that may continue the phrase (ignoring the constraint that that word immediately follows
the wordbrown), we arrive at these first five most likely (candidate, NGD )-pairs (using the
Google values at the time of writing):

fox: 0.532154812757325
vex: 0.561640307093518
jot: 0.579817813761161
hex: 0.589457285818459
pea: 0.604444512168738

As many typing students no doubt remember, a popular phrase to learn the alphabet isThe
quick brown fox jumps over the lazy dog.It is valuable because it uses every letter of the English
alphabet.

Thus, we see a contrast between two styles of induction: The first type is the NCD based
on aliteral interpretation of the data: the data is the object itself. The second type is the NGD
based on interpreting the data as anamefor an abstract object which acquires its meaning from
masses ofcontextsexpressing a large body of common-sense knowledge. It may besaid that the
first case ignores the meaning of the message, whereas the second focuses on it.

7.3 Theory of Googling for Similarity

Every text corpus or particular user combined with a frequency extractor defines its own relative
frequencies of words and phrases usage. In the world-wide-web and Google setting there are mil-
lions of users and text corpora, each with its own distribution. We will next show that the Google
distribution is universal for all the individual web users distributions. The number of web pages
currently indexed by Google is approaching 1010. Every common search term occurs in millions
of web pages. This number is so vast, and the number of web authors generating web pages is so
enormous (and can be assumed to be a truly representative very large sample from humankind),
that the probabilities of Google search terms, conceived asthe frequencies of page counts re-
turned by Google divided by the number of pages indexed by Google, approximate the actual
relative frequencies of those search terms as actually usedin society. Based on this premise, the
theory we develop in this paper states that the relations represented by the Normalized Google
Distance (7.3.3) approximately capture the assumed true semantic relations governing the search
terms. The NGD formula (7.3.3) only uses the probabilities of search terms extracted fromthe
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text corpus in question. We use the world-wide-web and Google, but the same method may be
used with other text corpora like the King James version of the Bible or the Oxford English Dic-
tionary and frequency count extractors, or the world-wide-web again and Yahoo as frequency
count extractor. In these cases one obtains a text corpus andfrequency extractor biased seman-
tics of the search terms. To obtain the true relative frequencies of words and phrases in society
is a major problem in applied linguistic research. This requires analyzing representative random
samples of sufficient sizes. The question of how to sample randomly and representatively is a
continuous source of debate. Our contention that the web is such a large and diverse text corpus,
and Google such an able extractor, that the relative page counts approximate the true societal
word- and phrases usage, starts to be supported by current real linguistics research [100].

7.3.1 The Google Distribution:

Let the set of singletonGoogle search termsbe denoted byS . In the sequel we use both singleton
search terms and doubleton search terms{{x,y} : x,y ∈ S }. Let the set of web pages indexed
(possible of being returned) by Google beΩ. The cardinality ofΩ is denoted byM = |Ω|, and at
the time of this writing 8·109≤M ≤ 9·109 (and presumably greater by the time of reading this).
Assume that a priori all web pages are equi-probable, with the probability of being returned by
Google being 1/M. A subset ofΩ is called anevent. Everysearch term xusable by Google
defines asingleton Google eventx ⊆ Ω of web pages that contain an occurrence ofx and are
returned by Google if we do a search forx. Let L : Ω→ [0,1] be the uniform mass probability
function. The probability of an eventx is L(x) = |x|/M. Similarly, thedoubleton Google event
x

T

y⊆Ω is the set of web pages returned by Google if we do a search for pages containing both
search termx and search termy. The probability of this event isL(x

T

y) = |xT

y|/M. We can
also define the other Boolean combinations:¬x = Ω\x andx

S

y =¬(¬x
T¬y), each such event

having a probability equal to its cardinality divided byM. If e is an event obtained from the basic
eventsx,y, . . ., corresponding to basic search termsx,y, . . ., by finitely many applications of the
Boolean operations, then the probabilityL(e) = |e|/M.

7.3.2 Google Semantics:

Google events capture in a particular sense all background knowledge about the search terms
concerned available (to Google) on the web.

The Google eventx, consisting of the set of all web pages containing one or more
occurrences of the search termx, thus embodies, in every possible sense, all direct
context in whichx occurs on the web. This constitutes the Google semantics of the
term.

7.3.1.REMARK . It is of course possible that parts of this direct contextual material link to other
web pages in whichx does not occur and thereby supply additional context. In ourapproach this
indirect context is ignored. Nonetheless, indirect context may be important and future refine-
ments of the method may take it into account.
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7.3.3 The Google Code:

The eventx consists of all possible direct knowledge on the web regarding x. Therefore, it is
natural to consider code words for those events as coding this background knowledge. However,
we cannot use the probability of the events directly to determine a prefix code, or, rather the
underlying information content implied by the probability. The reason is that the events over-
lap and hence the summed probability exceeds 1. By the Kraft inequality [31] this prevents a
corresponding set of code-word lengths. The solution is to normalize: We use the probability
of the Google events to define a probability mass function over the set{{x,y} : x,y ∈ S } of
Google search terms, both singleton and doubleton terms. There are|S | singleton terms, and
(|S |

2

)
doubletons consisting of a pair of non-identical terms. Define

N = ∑
{x,y}⊆S

|x
\

y|,

counting each singleton set and each doubleton set (by definition unordered) once in the sum-
mation. Note that this means that for every pair{x,y} ⊆ S , with x 6= y, the web pagesz∈ x

T

y
are counted three times: once inx = x

T

x, once iny = y
T

y, and once inx
T

y. Since every
web page that is indexed by Google contains at least one occurrence of a search term, we have
N ≥ M. On the other hand, web pages contain on average not more thana certain constantα
search terms. Therefore,N≤ αM. Define

g(x) = g(x,x), g(x,y) = L(x
\

y)M/N = |x
\

y|/N. (7.3.1)

Then,∑{x,y}⊆S g(x,y) = 1. Thisg-distribution changes over time, and between different sam-
plings from the distribution. But let us imagine thatg holds in the sense of an instantaneous
snapshot. The real situation will be an approximation of this. Given the Google machinery, these
are absolute probabilities which allow us to define the associated prefix code-word lengths (in-
formation contents) for both the singletons and the doubletons. TheGoogle code Gis defined
by

G(x) = G(x,x), G(x,y) = log1/g(x,y). (7.3.2)

7.3.4 The Google Similarity Distance:

In contrast to stringsx where the complexityC(x) represents the length of the compressed version
of x using compressorC, for a search termx (just the name for an object rather than the object
itself), the Google code of lengthG(x) represents the shortest expected prefix-code word length
of the associated Google eventx. The expectation is taken over the Google distributiong. In this
sense we can use the Google distribution as a compressor for the Google semantics associated
with the search terms. The associated NCD , now called thenormalized Google distance (NGD
) is then defined by (7.3.3), and can be rewritten as the right-hand expression:

NGD(x,y) =
G(x,y)−min(G(x),G(y))

max(G(x),G(y))
(7.3.3)

=
max{log f (x), log f (y)}− log f (x,y)

logN−min{log f (x), log f (y)} ,
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where f (x) denotes the number of pages containingx, and f (x,y) denotes the number of pages
containing bothx andy, as reported by Google. This NGD is an approximation to the NID of
(3.3.1) using the prefix code-word lengths (Google code) generatedby the Google distribution as
defining a compressor approximating the length of the Kolmogorov code, using the background
knowledge on the web as viewed by Google as conditional information. In practice, use the
page counts returned by Google for the frequencies, and we have to chooseN. From the right-
hand side term in (7.3.3) it is apparent that by increasingN we decrease the NGD , everything
gets closer together, and by decreasingN we increase the NGD , everything gets further apart.
Our experiments suggest that every reasonable (M or a value greater than anyf (x)) value can
be used as normalizing factorN, and our results seem in general insensitive to this choice.In
our software, this parameterN can be adjusted as appropriate, and we often useM for N. The
following are the main properties of the NGD (as long as we choose parameterN≥M):

1. Therangeof the NGD is in between 0 and∞ (sometimes slightly negative if the Google
counts are untrustworthy) and statef (x,y) > max{ f (x), f (y)}:

(a) If x = y or if x 6= y but frequencyf (x) = f (y) = f (x,y) > 0, then NGD(x,y) = 0.
That is, the semantics ofx andy in the Google sense is the same.

(b) If frequency f (x) = 0, then for every search termy we have f (x,y) = 0, and the
NGD(x,y) = ∞/∞, which we take to be 1 by definition.

2. The NGD is always nonnegative and NGD(x,x) = 0 for everyx. For every pairx,y we
have NGD(x,y) = NGD(y,x): it is symmetric. However, the NGD isnot a metric: it does
not satisfy NGD(x,y) > 0 for everyx 6= y. As before, letx denote the set of web pages
containing one or more occurrences ofx. For example, choosex 6= y with x = y. Then,
f (x) = f (y)= f (x,y) and NGD(x,y)= 0. Nor does the NGD satisfy the triangle inequality
NGD(x,y)≤NGD(x,z)+NGD(z,y) for all x,y,z. For example, choosez= x

S

y, x
T

y =
/0, x = x

T

z, y = y
T

z, and|x|= |y| =
√

N. Then, f (x) = f (y) = f (x,z) = f (y,z) =
√

N,
f (z) = 2

√
N, and f (x,y) = 0. This yields NGD(x,y) = ∞ and NGD(x,z) = NGD(z,y) =

2/ logN, which violates the triangle inequality for allN.

3. The NGD isscale-invariantin the following sense: Assume that when the numberN of
pages indexed by Google (accounting for the multiplicity ofdifferent search terms per
page) grows, the number of pages containing a given search term goes to a fixed fraction
of N, and so does the number of pages containing a given conjunction of search terms.
This means that ifN doubles, then so do thef -frequencies. For the NGD to give us
an objective semantic relation between search terms, it needs to become stable when the
numberN grows unboundedly.

7.3.5 Universality of Google Distribution:

A central notion in the application of compression to learning is the notion of “universal distribu-
tion,” see [79]. Consider an effective enumerationP = p1, p2, . . . of probability mass functions
with domainS . The listP can be finite or countably infinite.
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7.3.2.DEFINITION. A probability mass functionpu occurring inP is universal for P , if for
every pi in P there is a constantci > 0 and∑i 6=uci ≥ 1, such that for everyx ∈ S we have
pu(x)≥ ci · pi(x). Hereci may depend on the indexesu, i, but not on the functional mappings of
the elements of listP nor onx.

If pu is universal forP , then it immediately follows that for everypi in P , the prefix code-
word length for source wordx, see [31], associated withpu, minorizes the prefix code-word
length associated withpi , by satisfying log1/pu(x)≤ log1/pi(x)+ log1/ci , for everyx∈ S .

In the following we consider partitions of the set of web pages, each subset in the partition
together with a probability mass function of search terms. For example, we may consider the list
A = 1,2, . . . ,a of web authors producing pageson the web, and consider the set of web pages
produced by each web author, or some other partition. “Web author” is just a metaphor we use
for convenience. Let web authori of the list A produce the set of web pagesΩi and denote
Mi = |Ωi|. We identify a web authori with the set of web pagesΩi he produces. Since we have
no knowledge of the set of web authors, we consider every possible partition ofΩ into one or
more equivalence classes,Ω = Ω1

S · · ·SΩa, Ωi
T

Ω j = /0 (1≤ i 6= j ≤ a≤ |Ω|), as defining a
realizable set of web authorsA = 1, . . . ,a.

Consider a partition ofΩ into Ω1, . . . ,Ωa. A search termx usable by Google defines an event
xi ⊆ Ωi of web pages produced by web authori that contain search termx. Similarly, xi

T

yi is
the set of web pages produced byi that is returned by Google searching for pages containing
both search termx and search termy. Let

Ni = ∑
{x,y}⊆S

|xi

\

yi |.

Note that there is anαi ≥ 1 such thatMi ≤ Ni ≤ αiMi . For every search termx ∈ S define a
probability mass functiongi , the individual web author’s Google distribution, on the sample
space{{x,y} : x,y∈ S} by

gi(x) = gi(x,x), gi(x,y) = |xi
\

yi|/Ni . (7.3.4)

Then,∑{x,y}⊆S gi(x,y) = 1.

7.3.3.THEOREM. Let Ω1, . . . ,Ωa be any partition ofΩ into subsets (web authors), and let
g1, . . . ,ga be the corresponding individual Google distributions. Then the Google distribution
g is universal for the enumeration g,g1, . . . ,ga.

PROOF. We can express the overall Google distribution in terms of the individual web author’s
distributions:

g(x,y) = ∑
i∈A

Ni

N
gi(x,y).

Consequently,g(x,y) ≥ (Ni/N)gi(x,y). Since alsog(x,y) ≥ g(x,y), we have shown thatg(x,y)
is universal for the familyg,g1, . . . ,ga of individual web author’s google distributions, according
to Definition7.3.2. 2
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7.3.4.REMARK . Let us show that, for example, the uniform distributionL(x) = 1/s (s= |S |)
over the search termsx∈ S is not universal, fors> 2. By the requirement∑ci ≥ 1, the sum taken
over the numbera of web authors in the listA , there is ani such thatci ≥ 1/a. Taking the uniform
distribution on says search terms assigns probability 1/s to each of them. By the definition of
universality of a probability mass function for the list of individual Google probability mass
functionsgi , we can choose the functiongi freely (as long asa≥ 2, and there is another function
g j to exchange probabilities of search terms with). So choose some search termx and setgi(x) =
1, andgi(y) = 0 for all search termsy 6= x. Then, we obtaing(x) = 1/s≥ cigi(x) ≥ 1/a. This
yields the required contradiction fors> a≥ 2.

7.3.6 Universality of Normalized Google Distance:

Every individual web author produces both an individual Google distributiongi , and anindivid-
ual prefix code-word length Gi associated withgi (see [31] for this code) for the search terms.

7.3.5.DEFINITION. The associatedindividual normalized Google distanceNGDi of web author
i is defined according to (7.3.3), with Gi substituted forG.

These Google distances NGDi can be viewed as the individual semantic distances according
to the bias of web authori. These individual semantics are subsumed in the general Google
semantics in the following sense: The normalized Google distance isuniversalfor the family
of individual normalized Google distances, in the sense that it is as about as small as the least
individual normalized Google distance, with high probability. Hence the Google semantics as
evoked by all of the web society in a certain sense captures the biases or knowledge of the
individual web authors. In Theorem7.3.8we show that, for everyk≥ 1, the inequality

NGD(x,y) < β NGDi(x,y)+ γ, (7.3.5)

with

β =
max{Gi(x),Gi(y)}
max{G(x),G(y)} ≤ 1+

log(2k)
max{G(x),G(y)}

γ =
min{Gi(x),Gi(y)}−min{G(x),G(y)}+ logN/Ni

max{G(x),G(y)}

≤ log(2kN/Ni)

max{G(x),G(y)},

is satisfied withgi-probability going to 1 with growingk.

7.3.6.REMARK . To interpret (7.3.5), we observe that in caseG(x) andG(y) are large with re-
spect to logk, thenβ≈ 1. If moreover logN/Ni is large with respect to logk, then approximately
γ≤ (logN/Ni)/max{G(x),G(y)}. Let us estimateγ for this case under reasonable assumptions.
Without loss of generality assumeG(x)≥ G(y). If f (x) = |x|, the number of pages returned on
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queryx, thenG(x) = log(N/ f (x)). Thus, approximatelyγ≤ (logN/Ni)/(logN/ f (x)). The uni-
form expectation ofNi is N/|A |, andN divided by that expectation ofNi equals|A |, the number
of web authors producing web pages. The uniform expectationof f (x) is N/|S |, andN divided
by that expectation off (x) equals|S |, the number of Google search terms we use. Thus, approx-
imately,γ≤ (log|A |)/(log|S |), and the more the number of search terms exceeds the number of
web authors, the moreγ goes to 0 in expectation.

7.3.7.REMARK . To understand (7.3.5), we may consider the codelengths involved as the Google
database changes over time. It is reasonable to expect that both the total number of pages as well
as the total number of search terms in the Google database will continue to grow for some time.
In this period, the sum total probability mass will be carvedup into increasingly smaller pieces
for more and more search terms. The maximum singleton and doubleton codelengths within the
Google database will grow. But the universality property ofthe Google distribution implies that
the Google distribution’s code length for almost all particular search terms will only exceed the
best codelength among any of the individual web authors as in(7.3.5). The size of this gap will
grow more slowly than the codelength for any particular search term over time. Thus, the coding
space that is suboptimal in the Google distribution’s code is an ever-smaller piece (in terms of
proportion) of the total coding space.

7.3.8.THEOREM. For every web author i∈ A , the gi-probability concentrated on the pairs of
search terms for which(7.3.5) holds is at least(1−1/k)2.

PROOF. The prefix code-word lengthsGi associated withgi satisfyG(x)≤Gi(x)+ logN/Ni and
G(x,y) ≤ Gi(x,y)+ logN/Ni . SubstitutingG(x,y) by Gi(x,y)+ logN/Ni in the middle term of
(7.3.3), we obtain

NGD(x,y)≤ Gi(x,y)−min{G(x),G(y)}+ logN/Ni

max{G(x),G(y)} . (7.3.6)

Markov’s Inequalitysays the following: Letp be any probability mass function; letf be any
nonnegative function withp-expected valueE = ∑i p(i) f (i) < ∞. For E > 0 we have∑i{p(i) :
f (i)/E > k}< 1/k.

Fix web authori ∈ A . We consider the conditional probability mass functionsg′(x) = g(x|x∈
S ) andg′i(x) = gi(x|x ∈ S ) over singleton search terms inS (no doubletons): Theg′i-expected
value ofg′(x)/g′i(x) is

∑
x

g′i(x)
g′(x)
g′i(x)

≤ 1,

sinceg′ is a probability mass function summing to≤ 1. Then, by Markov’s Inequality

∑
x
{g′i(x) : g′(x)/g′i(x) > k}<

1
k

(7.3.7)

Since the probability of an event of a doubleton set of searchterms is not greater than that of
an event based on either of the constituent search terms, andthe probability of a singleton event
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conditioned on it being a singleton event is at least as largeas the unconditional probability of that
event, 2g(x)≥ g′(x) ≥ g(x) and 2gi(x) ≥ g′i(x) ≥ gi(x). If g(x) > 2kgi(x), theng′(x)/g′i(x) > k
and the search termsx satisfy the condition of (7.3.7). Moreover, the probabilities satisfygi(x)≤
g′i(x). Together, it follows from (7.3.7) that∑x{gi(x) : g(x)/(2gi(x)) > k}< 1

k and therefore

∑
x
{gi(x) : g(x)≤ 2kgi(x)}> 1− 1

k
.

For thex’s with g(x) ≤ 2kgi(x) we haveGi(x) ≤ G(x) + log(2k). SubstituteGi(x)− log(2k)
for G(x) (there isgi-probability≥ 1−1/k thatGi(x)− log(2k) ≤ G(x)) andGi(y)− log(2k) ≤
G(y) in (7.3.6), both in the min-term in the numerator, and in the max-term in the denominator.
Noting that the twogi-probabilities(1−1/k) are independent, the totalgi-probability that both
substitutions are justified is at least(1−1/k)2. 2

Therefore, the Google normalized distance minorizes everynormalized compression distance
based on a particular user’s generated probabilities of search terms, with high probability up to
an error term that in typical cases is ignorable.

7.4 Introduction to Experiments

7.4.1 Google Frequencies and Meaning

In our first experiment, we seek to verify that Google page counts capture something more than
meaningless noise. For simplicity, we do not use NGD here, but instead look at just the Google
probabilities of small integers in several formats. The first format we use is just the standard
numeric representation using digits, for example “43”. Thenext format we use is the number
spelled out in English, as in “forty three”. Then we use the number spelled in Spanish, as in
“cuarenta y tres”. Finally, we use the number as digits again, but now paired with the fixed and
arbitrary search termgreen. In each of these examples, we compute the probability of search
term x as f (x)/M. Here, f (x) represents the count of webpages containing search termx. We
plotted log( f (x)/M) againstx in Figure7.2 for x runs from 1 to 120. Notice that numbers such
as even multiples of ten and five stand out in every representation in the sense that they have
much higher frequency of occurrence. We can treat only low integers this way: integers of the
order 1023 mostly do not occur since there are not web pages enough to represent a noticeable
fraction of them (but Avogadro’s number 6.022×1023 occurs with high frequency both in letters
and digits).

Visual inspection of the plot gives clear evidence that there is a positive correlation between
every pair of formats. We can therefore assume that that there is some underlying structure that is
independent of the language chosen, and indeed the same structure appears even in the restricted
case of just those webpages that contain the search termgreen.
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Figure 7.2: Numbers versus log probability (pagecount / M) in a variety of languages and for-
mats.

7.4.2 Some Implementation Details

Before explaining our primary NGD results, a few implementation details should be clarified.
When entering searches in Google, a rich syntax is availablewhereby searches may be precisely
constrained, see [50]. We use two important features. If you enter the termevery generation
in Google, it counts precisely the number of pages that contain both the wordeveryand the
word generation, but not necessarily consecutively likeevery generation. If you instead en-
ter "every generation", then this tells Google that both words must appear consecutively.
Another feature that is important is the+ modifier. Google ignores common words and charac-
ters such as “where” and “how”, as well as certain single digits and single letters. Prepending a
+ before a searchterm indicates that every result must include the following term, even if it is a
term otherwise ignored by Google. Experiments show thatevery generation and+"every"
+"generation" give slightly different results, say 17,800,000 against 17,900,000. Some other
experiments show, that whatever the Google manual says, theform horse rider is slightly
sensitive to adding spaces, while+"horse" +"rider" is not. Therefore, we only use the latter
form. Our translation from a tuple of search terms into a Google search query proceeds in three
steps: First we put double-quotes around every search term in the tuple. Next, we prepend a+
before every term. Finally, we join together each of the resultant strings with a single space. For
example, when using the search terms “horse” and “rider”, itis converted to the Google search
query+"horse" +"rider".

Another detail concerns avoiding taking the logarithm of 0.Although our theory conveniently
allows for∞ in this case, our implementation makes a simplifying compromise. When returning
f (x) for a given search, we have two cases. If the number of pages returned is non-zero, we
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return twice this amount. If the pages is equal to 0, we do not return 0, but instead return 1.
Thus, even though a page does not exist in the Google index, wecredit it half the probability of
the smallest pages that do exist in Google. This greatly simplifies our implementation and seems
not to result in much distortion in the cases we have investigated.

7.4.3 Three Applications of the Google Method

In this chapter we give three applications of the Google method: unsupervised learning in the
form of hierarchical clustering, supervised learning using support vector machines, and match-
ing using correlation. For the hierarchical clustering method we refer to Section4.1. and the
correlation method is well known. For the supervised learning, several techniques are available.
For the SVM method used in this thesis, we refer to the excellent exposition [16], and give a
brief summary in Appendix5.3.3.

7.5 Hierarchical Clustering

For these examples, we used our software tool available fromhttp://complearn.sourceforge.net/,
the same tool that has been used in other chapters to construct trees representing hierarchical
clusters of objects in an unsupervised way. However, now we use the normalized Google distance
(NGD ) instead of the normalized compression distance (NCD ). Recapitulating, the method
works by first calculating a distance matrix using NGD among all pairs of terms in the input
list. Then it calculates a best-matching unrooted ternary tree using a novel quartet-method style
heuristic based on randomized hill-climbing using a new fitness objective function optimizing
the summed costs of all quartet topologies embedded in candidate trees.

7.5.1 Colors and Numbers

In the first example, the objects to be clustered are search terms consisting of the names of colors,
numbers, and some tricky words. The program automatically organized the colors towards one
side of the tree and the numbers towards the other, Figure7.3. It arranges the terms which have
as only meaning a color or a number, and nothing else, on the farthest reach of the color side and
the number side, respectively. It puts the more general terms black and white, and zero, one, and
two, towards the center, thus indicating their more ambiguous interpretation. Also, things which
were not exactly colors or numbers are also put towards the center, like the word “small”. We
may consider this an example of automatic ontology creation.

7.5.2 Dutch 17th Century Painters

In the example of Figure7.4, the names of fifteen paintings by Steen, Rembrandt, and Bol were
entered. The names of the associated painters were not included in the input, however they were
added to the tree display afterword to demonstrate the separation according to painters. This type
of problem has attracted a great deal of attention [97]. A more classical solution is offered in
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Figure 7.3: Colors and numbers arranged into a tree using NGD.
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Steen  Prince’s Day

Steen  The Merry Family

Steen  Leiden Baker Arend Oostwaert

Steen  Keyzerswaert

Steen  Woman at her Toilet

Steen  Two Men Playing Backgammon

Rembrandt  Hendrickje slapend

Rembrandt  Portrait of Maria Trip

Rembrandt  Portrait of Johannes Wtenbogaert

Rembrandt  The Stone Bridge

Bol  Maria Rey

Rembrandt  The Prophetess Anna

Bol  Consul Titus Manlius Torquatus

Bol  Swartenhont

Bol  Venus and Adonis

Figure 7.4: Fifteen paintings tree by three different painters arranged into a tree hierarchical
clustering. In the experiment, only painting title names were used; the painter prefix shown in
the diagram above was added afterwords as annotation to assist in interpretation. The painters
and paintings used follow.Rembrandt van Rijn : Hendrickje slapend; Portrait of Maria Trip;
Portrait of Johannes Wtenbogaert ; The Stone Bridge ; The Prophetess Anna; Jan Steen :
Leiden Baker Arend Oostwaert ; Keyzerswaert ; Two Men Playing Backgammon ; Woman at her
Toilet ; Prince’s Day ; The Merry Family; Ferdinand Bol : Maria Rey ; Consul Titus Manlius
Torquatus ; Swartenhont ; Venus and Adonis.

[1], where a domain-specific database is used for similar ends.The present automatic oblivious
method obtains results that compare favorably with the latter feature-driven method.

7.5.3 Chinese Names

In the example of Figure7.5, several Chinese names were entered. The tree shows the separation
according to concepts like regions, political parties, people, etc. See Figure7.6 for English
translations of these characters. This figure also shows a feature of the CompLearn system that
has not been encountered before: the CompLearn system can draw dotted lines with numbers
inbetween each adjacent node along the perimeter of the tree. These numbers represent the NCD
distance between adjacent nodes in the final (ordered tree) output of the CompLearn system. The
tree is presented in such a way that the sum of these values in the entire ring is minimized. This
generally results in trees that makes the most sense upon initial visual inspection, converting an
unordered binary tree to an ordered one. This feature allowsfor a quick visual inspection around
the edges to determine the major groupings and divisions among coarse structured problems. It
grew out of an idea originally suggested by Lloyd Rutledge atCWI [97].
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Figure 7.5: Several people’s names, political parties, regions, and other Chinese names.
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Figure 7.6: English Translation of Chinese Names
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Training Data
Positive Training (22 cases)
avalanche bomb threat broken leg burglary car collision
death threat fire flood gas leak heart attack
hurricane landslide murder overdose pneumonia
rape roof collapse sinking ship stroke tornado
train wreck trapped miners

Negative Training (25 cases)
arthritis broken dishwasher broken toe cat in tree contemptof court
dandruff delayed train dizziness drunkenness enumeration
flat tire frog headache leaky faucet littering
missing dog paper cut practical joke rain roof leak
sore throat sunset truancy vagrancy vulgarity

Anchors (6 dimensions)
crime happy help safe urgent
wash

Testing Results
Positive tests Negative tests

Positive assault, coma, menopause, prank call,
Predictions electrocution, heat stroke, pregnancy, traffic jam

homicide, looting,
meningitis, robbery,
suicide

Negative sprained ankle acne, annoying sister,
Predictions campfire, desk,

mayday, meal

Accuracy 15/20 = 75.00%

Figure 7.7: Google-SVM learning of “emergencies.”

7.6 SVM Learning

We augment the Google method by adding a trainable componentof the learning system. This
allows us to consider classification rather than clusteringproblems. Here we use the Support
Vector Machine (SVM) as a trainable component. For a brief introduction to SVM’s see Sec-
tion 5.3.3. We use LIBSVM software for all of our SVM experiments.

The setting is a binary classification problem on examples represented by search terms. We
require a human expert to provide a list of at least 40training words, consisting of at least 20
positive examples and 20 negative examples, to illustrate the contemplated concept class. The
expert also provides, say, sixanchor words a1, . . . ,a6, of which half are in some way related
to the concept under consideration. Then, we use the anchor words to convert each of the 40
training wordsw1, . . . ,w40 to 6-dimensionaltraining vectorsv̄1, . . . , v̄40. The entryv j ,i of v̄ j =
(v j ,1, . . . ,v j ,6) is defined asv j ,i = NGD(w j ,ai) (1≤ j ≤ 40, 1≤ i ≤ 6). The training vectors are
then used to train an SVM to learn the concept, and then test words may be classified using the
same anchors and trained SVM model. We present all positive examples asx-data (input data),
paired withy = 1. We present all negative examples asx-data, paired withy =−1.

7.6.1 Emergencies

In the next example, Figure7.7, we trained using a list of emergencies as positive examples, and
a list of “almost emergencies” as negative examples. The figure is self-explanatory. The accuracy
on the test set is 75%.
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Training Data
Positive Training (21 cases)
11 13 17 19 2
23 29 3 31 37
41 43 47 5 53
59 61 67 7 71
73

Negative Training (22 cases)
10 12 14 15 16
18 20 21 22 24
25 26 27 28 30
32 33 34 4 6
8 9

Anchors (5 dimensions)
composite number orange prime record

Testing Results
Positive tests Negative tests

Positive 101, 103, 110
Predictions 107, 109,

79, 83,
89, 91,
97

Negative 36, 38,
Predictions 40, 42,

44, 45,
46, 48,
49

Accuracy 18/19 = 94.74%

Figure 7.8: Google-SVM learning of primes.

7.6.2 Learning Prime Numbers

In Figure7.8 the method learns to distinguish prime numbers from non-prime numbers by ex-
ample:

The prime numbers example illustrates several common features of our method that distin-
guish it from the strictly deductive techniques. It is common for our classifications to be good
but imperfect, and this is due to the unpredictability and uncontrolled nature of the Google dis-
tribution.

7.6.3 WordNet Semantics: Specific Examples

To create the next example, we used WordNet. WordNet is a semantic concordance of English.
It also attempts to focus on the meaning of words instead of the word itself. The category
we want to learn, the concept, is termed “electrical”, and represents anything that may pertain
to electronics, Figure7.9. The negative examples are constituted by simply everything else.
Negative samples were chosen randomly and uniformly from a dictionary of English words.
This category represents a typical expansion of a node in theWordNet hierarchy. The accuracy
on the test set is 100%: It turns out that “electrical terms” are unambiguous and easy to learn and
classify by our method.

In the next example, Figure7.10, the concept to be learned is “religious”. Here the positive
examples are terms that are commonly considered as pertaining to religious items or notions, the
negative examples are everything else. The accuracy on the test set is 88.89%. Religion turns
out to be less unequivocal and unambiguous than “electricity” for our method.

Notice that what we may consider to be errors, can be explained, or point at, a secondary
meaning or intention of these words. For instance, some may consider the word “shepherd” to
be full of religious connotation. And there has been more than one religion that claims to involve
“earth” as a component. Such examples suggest to use the method for exploratory semantics:
establishing less common, idiosyncratic, or jargon meaning of words.

128



Training Data
Positive Training (58 cases)
Cottrell precipitator Van de Graaff generator Wimshurst machine aerial antenna
attenuator ballast battery bimetallic strip board
brush capacitance capacitor circuit condenser
control board control panel distributer electric battery electric cell
electric circuit electrical circuit electrical condenser electrical device electrical distributor
electrical fuse electrical relay electrograph electrostatic generator electrostatic machine
filter flasher fuse inductance inductor
instrument panel jack light ballast load plug
precipitator reactor rectifier relay resistance
security security measures security system solar array solar battery
solar panel spark arrester spark plug sparking plug suppresser
transmitting aerial transponder zapper

Negative Training (55 cases)
Andes Burnett Diana DuPonts Friesland
Gibbs Hickman Icarus Lorraine Madeira
Quakeress Southernwood Waltham Washington adventures
affecting aggrieving attractiveness bearer boll
capitals concluding constantly conviction damming
deeper definitions dimension discounting distinctness
exclamation faking helplessness humidly hurling
introduces kappa maims marine moderately
monster parenthesis pinches predication prospect
repudiate retry royalty shopkeepers soap
sob swifter teared thrashes tuples

Anchors (6 dimensions)
bumbled distributor premeditation resistor suppressor
swimmers

Testing Results
Positive tests Negative tests

Positive cell, male plug,
Predictions panel, transducer,

transformer
Negative Boswellizes, appointer,
Predictions enforceable, greatness,

planet

Accuracy 10/10 = 100.00%

Figure 7.9: Google-SVM learning of “electrical” terms.
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Training Data
Positive Training (22 cases)
Allah Catholic Christian Dalai Lama God
Jerry Falwell Jesus John the Baptist Mother Theresa Muhammad
Saint Jude The Pope Zeus bible church
crucifix devout holy prayer rabbi
religion sacred

Negative Training (23 cases)
Abraham Lincoln Ben Franklin Bill Clinton Einstein George Washington
Jimmy Carter John Kennedy Michael Moore atheist dictionary
encyclopedia evolution helmet internet materialistic
minus money mouse science secular
seven telephone walking

Anchors (6 dimensions)
evil follower history rational scripture
spirit

Testing Results
Positive tests Negative tests

Positive altar, blessing, earth, shepherd
Predictions communion, heaven,

sacrament, testament,
vatican

Negative angel Aristotle, Bertrand Russell,
Predictions Greenspan, John,

Newton, Nietzsche,
Plato, Socrates,
air, bicycle,
car, fire,
five, man,
monitor, water,
whistle

Accuracy 24/27 = 88.89%

Figure 7.10: Google-SVM learning of “religious” terms.

7.6.4 WordNet Semantics: Statistics

The previous examples show only a few hand-crafted special cases. To investigate the more
general statistics, a method was devised to estimate how well the NGD -Google-SVM approach
agrees with WordNet in a large number of automatically selected semantic categories. Each
automatically generated category followed the following sequence.

First we must review the structure of WordNet; the followingis paraphrased from the official
WordNet documentation available online. WordNet is calleda semantic concordance of the
English language. It seeks to classify words into many categories and interrelate the meanings
of those words. WordNet contains synsets. A synset is a synonym set; a set of words that are
interchangeable in some context, because they share a commonly-agreed upon meaning with
little or no variation. Each word in English may have many different senses in which it may be
interpreted; each of these distinct senses points to a different synset. Every word in WordNet
has a pointer to at least one synset. Each synset, in turn, must point to at least one word. Thus,
we have a many-to-many mapping between English words and synsets at the lowest level of
WordNet. It is useful to think of synsets as nodes in a graph. At the next level we have lexical
and semantic pointers. Lexical pointers are not investigated in this thesis; only the following
semantic pointer types are used in our comparison: A semantic pointer is simply a directed edge
in the graph whose nodes are synsets. The pointer has one end we call asourceand the other end
we call adestination. The following relations are used:

1. hyponym: X is a hyponym of Y if X is a (kind of) Y.
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2. part meronym: X is a part meronym of Y if X is a part of Y.

3. member meronym: X is a member meronym of Y if X is a member of Y.

4. attribute : A noun synset for which adjectives express values. The nounweight is an
attribute, for which the adjectiveslight andheavyexpress values.

5. similar to : A synset is similar to another one if the two synsets have meanings that are
substantially similar to each other.

Using these semantic pointers we may extract simple categories for testing. First, a random
semantic pointer (or edge) of one of the types above is chosenfrom the WordNet database. Next,
the source synset node of this pointer is used as a sort of root. Finally, we traverse outward in a
breadth-first order starting at this node and following onlyedges that have an identical semantic
pointer type; that is, if the original semantic pointer was ahyponym, then we would only follow
hyponym pointers in constructing the category. Thus, if we were to pick a hyponym link initially
that says atiger is acat, we may then continue to follow further hyponym relationships in order
to continue to get more specific types of cats. See the WordNethomepage [37] documentation
for specific definitions of these technical terms. For examples of each of these categories consult
the experiments listed in the Appendix at [23].

Once a category is determined, it is expanded in a breadth first way until at least 38 synsets
are within the category. 38 was chosen to allow a reasonable amount of training data to be
presented with several anchor dimensions, yet also avoiding too many. Here,Bernie’s Rule1

is helpful: it states that the number of dimensions in the input data must not exceed one tenth
the number of training samples. If the category cannot be expanded this far, then a new one is
chosen. Once a suitable category is found, and a set of at least 38 members has been formed, a
training set is created using 25 of these cases, randomly chosen. Next, three are chosen randomly
as anchors. And finally the remaining ten are saved as positive test cases. To fill in the negative
training cases, random words are chosen from the WordNet database. Next, three random words
are chosen as unrelated anchors. Finally, 10 random words are chosen as negative test cases.

For each case, the SVM is trained on the training samples, converted to 6-dimensional vec-
tors using NGD . The SVM is trained on a total of 50 samples. Thekernel-width and error-cost
parameters are automatically determined using five-fold cross validation. Finally testing is per-
formed using 20 examples in a balanced ensemble to yield a final accuracy.

There are several caveats with this analysis. It is necessarily rough, because the problem
domain is difficult to define. There is no protection against certain randomly chosen negative
words being accidentally members of the category in question, either explicitly in the greater
depth transitive closure of the category, or perhaps implicitly in common usage but not indicated
in WordNet. In several cases, such as “radio wave” and “DC” inthe “big science” experiment,
there appears to be an arguable case to support the computer’s classification in cases where this
phenomenon occurs. Another detail to notice is that WordNetis available through some web
pages, and so undoubtedly contributes something to Google pagecounts. Further experiments

1Allegedly named after Bernie Widrow in the context of neuralnetwork training.
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Figure 7.11: Histogram of accuracies over 100 trials of WordNet experiment.

comparing the results when filtering out WordNet images on the web suggest that this problem
does not usually affect the results obtained, except when one of the anchor terms happens to be
very rare and thus receives a non-negligible contribution towards its page count from WordNet
views. In general, our previous NCD based methods, as in [22], exhibit large-granularity artifacts
at the low end of the scale; for small strings we see coarse jumps in the distribution of NCD
for different inputs which makes differentiation difficult. With the Google-based NGD we see
similar problems when page counts are less than a hundred.

We ran 100 experiments. The actual data are available at [23]. A histogram of agreement
accuracies is shown in Figure7.11. On average, our method turns out to agree well with the
WordNet semantic concordance made by human experts. The mean of the accuracies of agree-
ments is 0.8725. The variance is≈ 0.01367, which gives a standard deviation of≈ 0.1169.
Thus, it is rare to find agreement less than 75%. These resultsconfirm that we are able to per-
form a rudimentary form ofgeneralizationwithin aconceptual domainprogrammatically using
Google. For hand-crafted examples it performed comparably, and so this suggests that there may
be latent semantic knowledge. Is there a way to use it?

7.7 Matching the Meaning

Yet another potential application of the NGD method is in natural language translation. (In the
experiment below we do not use SVM’s to obtain our result, butdetermine correlations instead.)
Suppose we are given a system that tries to infer a translation-vocabulary among English and
Spanish. Assume that the system has already determined thatthere are five words that appear
in two different matched sentences, but the permutation associating the English and Spanish
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Given starting vocabulary
English Spanish

tooth diente
joy alegria
tree arbol

electricity electricidad
table tabla

money dinero
sound sonido
music musica

Unknown-permutation vocabulary
plant bailar

car hablar
dance amigo
speak coche
friend planta

Figure 7.12: English-Spanish Translation Problem.

words is, as yet, undetermined. This setting can arise in real situations, because English and
Spanish have different rules for word-ordering. Thus, at the outset we assume a pre-existing
vocabulary of eight English words with their matched Spanish translation. Can we infer the
correct permutation mapping the unknown words using the pre-existing vocabulary as a basis?
We start by forming an NGD matrix using additional English words of which the translation is
known, Figure7.12. We label the columns by the translation-known English words, the rows by
the translation-unknown words. The entries of the matrix are the NGD ’s of the English words
labeling the columns and rows. This constitutes the Englishbasis matrix. Next, consider the
known Spanish words corresponding to the known English words. Form a new matrix with the
known Spanish words labeling the columns in the same order asthe known English words. Label
the rows of the new matrix by choosing one of the many possiblepermutations of the unknown
Spanish words. For each permutation, form the NGD matrix forthe Spanish words, and compute
the pairwise correlation of this sequence of values to each of the values in the given English word
basis matrix. Choose the permutation with the highest positive correlation. If there is no positive
correlation report a failure to extend the vocabulary. In this example, the computer inferred the
correct permutation for the testing words, see Figure7.13.

7.8 Conclusion

A comparison can be made with theCycproject [71]. Cyc, a project of the commercial venture
Cycorp, tries to create artificial common sense. Cyc’s knowledge base consists of hundreds
of microtheories and hundreds of thousands of terms, as wellas over a million hand-crafted
assertions written in a formal language called CycL [90]. CycL is an enhanced variety of first
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Predicted (optimal) permutation

English Spanish
plant planta

car coche
dance bailar
speak hablar
friend amigo

Figure 7.13: Translation Using NGD.

order predicate logic. This knowledge base was created overthe course of decades by paid
human experts. It is therefore of extremely high quality. Google, on the other hand, is almost
completely unstructured, and offers only a primitive querycapability that is not nearly flexible
enough to represent formal deduction. But what it lacks in expressiveness Google makes up for
in size; Google has already indexed more than eight billion pages and shows no signs of slowing
down.

Epistemology: In the case of context-free statistical compression such asgzip , we are trying
to approximate the Kolmogorov complexity of a string. Another way of describing the calcu-
lation is to view it as determining a probability mass function (viewing the compressed string
as Shannon-Fano code, Section2.7), approximating theuniversal distribution, that is, the nega-
tive exponential of the Kolmogorov complexity [79]. The universal probability of a given string
can equivalently be defined as the probability that the reference universal Turing machine out-
puts the string if its input program is generated by fair coinflips. In a similar manner, we can
associate a particular Shannon-Fano code, theGoogle code, with the Google probability mass
function. Coding every search term by its Google code, we define a “Google compressor.” Then,
in the spirit of Section7.3, we can view the Google probability mass function as a universal dis-
tribution for the individual Google probability mass functions generated by the individual web
authors, substituting “web authors” for “Turing machines”.

Concerning the SVM method: The Google-SVM method does not use an individual word in
isolation, but instead uses an ordered list of its NGD relationships with fixed anchors. This then
removes the possibility of attaching to the isolated (context-free) interpretation of a literal term.
That is to say, the inputs to our SVM are not directly search terms, but instead an image of the
search term through the lens of the Google distribution, andrelative to other fixed terms which
serve as a grounding for the term. In most schools of ontological thought, and indeed in the
WordNet database, there is imagined a two-level structure that characterizes language: a many-
to-many relationship between word-forms or utterances andtheir many possible meanings. Each
link in this association will be represented in the Google distribution with strength proportional
to how common that usage is found on the web. The NGD then amplifies and separates the
many contributions towards the aggregate page count sum, thereby revealing some components
of the latent semantic web. In almost every informal theory of cognition we have the idea of
connectedness of different concepts in a network, and this is precisely the structure that our
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experiments attempt to explore.

Universality: The Google distribution is a comparable notion, in the context of the world-
wide-web background information, to the universal distribution: The universal distribution mul-
tiplicatively dominates all other distributions in that itassigns a higher weight to some elements
when appropriately scaled. This suggests that it covers everything without bound. Google surely
represents the largest publicly-available single corpus of aggregate statistical and indexing in-
formation so far created. Only now has it been cheap enough tocollect this vast quantity of
data, and it seems that even rudimentary analysis of this distribution yields a variety of intriguing
possibilities. One of the simplest avenues for further exploration must be to increase training
sample size, because it is well-known that SVM accuracy increases with training sample size.
It is likely that this approach can never achieve 100% accuracy like in principle deductive logic
can, because the Google distribution mirrors humankind’s own imperfect and varied nature. But
it is also clear that in practical terms the NGD can offer an easy way to provide results that are
good enough for many applications, and which would be far toomuch work if not impossible to
program in a foolproof deductive way.

The Road Ahead: We have demonstrated that NGD can be used to extract meaning in a variety
of ways from the statistics inherent to the Google database.So far, all of our techniques look
only at the page count portion of the Google result sets and achieve surprising results. How much
more amazing might it be when the actual contents of search results are analyzed? Consider the
possibility of using WordNet familiarity counts to filter returned search results to select only the
least familiar words, and then using these in turn as furtherinputs to NGD to create automatic
discourse or concept diagrams with arbitrary extension. Orperhaps this combination can be used
to expand existing ontologies that are only seeded by humans. Let us list some of the future
directions and potential application areas:

1. There seems to also be an opportunity to apply these techniques to generic language acqui-
sition, word sense disambiguation, knowledge representation, content-filtration and collab-
orative filtering, chat bots, and discourse generation.

2. There are potential applications of this technique to semi-intelligent user-interface design;
for predictive completion on small devices, speech recognition, or handwriting recognition.

3. A user interface possibility is the idea of concept-classprogramming for non-programmers,
or software to form a conceptual predicate by way of example without forcing the user to
learn a formal programming language. This might be used, forexample, in a network
content filtration system that is installed by non-programmer parents to protect their young
children from some parts of the internet. Or perhaps an IT manager is able to adjust the
rule determining if a particular email message is a well-known virus and should be filtered
without writing explicit rules but just showing some examples.
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4. How many people are able to write down a list of prime numbers as shown in an earlier test
case, Figure7.8, compared to how many people are able to write a program in a real pro-
gramming language that can calculate prime numbers? Concept clustering by example is
significantly simpler than any formal programming languageand often yields remarkably
accurate results without any effort at hand-tuning parameters.

5. The colors versus numbers tree example, Figure7.3, is rife with possibilities. A major
challenge of the Semantic Web and XML as it stands is in integrating diverse ontologies
created by independent entities [67]. XML makes the promise of allowing seamless inte-
gration of web services via customized structured tags. This promise is for the most part
unrealized at this point on the web, however, because there is not yet sufficient agreement
on what sets of XML tags to use in order to present information; when two different parties
each build databases of recipes, but one organizes the recipes according to their country
of origin and another according to their sweetness or savoryflavor, these two databases
cannot “understand” one another insofar as they may exchange recipes. XML allows us
to format our data in a structured way, but fails to provide for a way for different struc-
ture conventions to interoperate. There have been many attempts to solve this and none
have been satisfactory. Usually solutions involve mappingthe separate schemas into some
sort of global schema and then creating a global standardization problem that requires sig-
nificant coordinated effort to solve. Another approach is tocreate a meta-language like
DAML that allows for automatic translation among certain very similar types of ontolo-
gies, however this requires a great deal of effort and forethought on the part of the schema
designers in advance and is brittle in the face of changing ontologies. By using NGD we
may create a democratic and natural ontology for almost any application in an unsuper-
vised way. Furthermore, if instead we want finer control overthe ontological organization,
then a human expert may define a custom ontology and then NGD may be used to pro-
vide a normal, global, and automatic reference frame withinwhich this ontology may be
understood without additional costly human effort. So, forexample, NGD may be used
in the recipe example above, Figure7.12, 7.13, to automatically “understand” the differ-
ence between a Chinese or Mediterranean recipe, and could thus be used to automatically
translate between the two conflicting ontologies.

6. Another future direction is to apply multiple concurrentbinary classifiers for the same
classification problem but using different anchors. The separate classifications would have
to be combined using a voting scheme, boosting scheme, or other protocol in an effort to
boost accuracy.

This section owes thanks to Teemu Roos, Hannes Wettig, PetriMylliymaki, and Henry Tirri
at COSCO and The Helsinki Institute for Information Technology for interesting discussions. We
also thank Chih-Jen Lin and his excellent group for providing and supporting vigorously, free of
charge to all, the very easy to use LIBSVM package. We thank the Cognitive Science Laboratory
at Princeton University for providing the wonderful and free WordNet database. And we wish to
thank the staff of Google, Inc. for their delightful supportof this research by providing an API
as well as generous access to their websearch system.
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Chapter 8

Stemmatology

Stemmatology studies relations among different variants of a text that has been gradually altered
as a result of imperfectly copying the text over and over again. This chapter presents a new
method for using this assumption to reconstruct a lineage tree explicating the derivational rela-
tionships among the many variations, just as we might reconstruct an evolutionary tree from a set
of gene sequences. We propose a new computer assisted methodfor stemmatic analysis based
on compression of the variants. We will provide an overview of the chapter at the end of the next
section. The method is related to phylogenetic reconstruction criteria such as maximum parsi-
mony and maximum likelihood. We apply our method to the tradition of the legend of St. Henry
of Finland, and report encouraging preliminary results. The obtained family tree of the variants,
the stemma, corresponds to a large extent with results obtained with more traditional methods.
Some of the identified groups of manuscripts are previously unrecognized ones. Moreover, due
to the impossibility of manually exploring all plausible alternatives among the vast number of
possible trees, this work is the first attempt at a complete stemma for the legend of St. Henry.
The used methods are being released as open-source software, and are entirely distinct from the
CompLearn system. They are presented here only for rough comparison.

8.1 Introduction

St. Henry, according to the medieval tradition Bishop of Uppsala (Sweden) and the first Bishop
of Finland, is the key figure of the Finnish Middle Ages. He seems to have been one of the leaders
of a Swedish expedition to Finland probably around 1155. After this expedition Henry stayed in
Finland with sad consequences: he was murdered already nextyear. He soon became the patron
saint of Turku cathedral and of the bishopric covering the whole of Finland. He remained the
only ‘local’ one of the most important saints until the reformation. Henry is still considered to
be the Finnish national saint. The knowledge of writing was almost totally concentrated into the
hands of the Church and the clergymen during the early and high Middle Ages. On the other
hand, the official and proper veneration of a saint needed unavoidably a written text containing
the highlights of the saint’s life and an account of his miracles to be recited during the services
in the church. The oldest text concerning St. Henry is his legend written in Latin. It contains
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Figure 8.1: An excerpt of a 15th century manuscript ‘H’ from the collections of the Helsinki
University Library, showing the beginning of the legend of St. Henry on the right:“Incipit
legenda de sancto Henrico pontifice et martyre; lectio prima; Regnante illustrissimo rege sancto
Erico, in Suecia, uenerabilis pontifex beatus Henricus, deAnglia oriundus, ...”[47].

both his life and a collection of his miracles and seems to have been ready by the end of the 13th
century at the very latest. The text is the oldest literary work preserved in Finland and can thus
be seen as the starting point of the Finnish literary culture. Whereas the influence of St. Henry on
the Christianization of Finland has been one of the focusingpoints of the Finnish and Swedish
medievalists for hundreds of years, only the most recent research has really concentrated on
his legend as a whole. According to the latest results, the Latin legend of St. Henry is known
in 52 different medieval versions preserved in manuscriptsand incunabula written in the early
14th–early 16th centuries (Fig.8.1).1

The reasons for such a substantial amount of versions differing from each other are several.
On one hand, the texts were copied by hand until the late 15th and early 16th centuries, which
resulted in a multitude of unintended scribal errors by the copyists. In addition, the significance of

1For identification of the sources as well as a modern edition of the legend see [47].
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the cult of St. Henry varied considerably from one part of theLatin Christendom to the other. In
the medieval bishopric of Turku covering the whole of medieval Finland St. Henry was venerated
as the most important local saint, whose adoration requiredthe reciting of the whole legend
during the celebrations of the saint’s day. In Sweden, for instance, St. Henry was not so important
a saint, which led to different kinds of abridgments fitted into the needs of local bishoprics and
parishes. As a consequence, the preserved versions of the legend are all unique.

With the aid of traditional historically oriented auxiliary sciences like codicology and pa-
leography it is possible to find out — at least roughly — where and when every version was
written. Thus, the versions form a pattern representing themedieval and later dissemination of
the text. Even if the existent manuscripts containing the different versions represent but a tiny
part of the much larger number of manuscripts and versions written during the Middle Ages, they
still provide us with an insight into a variety of aspects of medieval culture. The versions help to
reconstruct the actual writing process and the cultural ties that carried the text from one place to
another. When one combines the stemma — i.e. the family tree —of a text with a geographical
map and adds the time dimension, one gets important information that no single historical source
can ever provide a historian with. The potential of this kindof an approach is emphasized when
researching hagiographical texts — i.e. saints’ lives, forinstance — since they were the most
eagerly read and most vastly disseminated literary genre ofthe Middle Ages.

Taking into consideration the possibilities of stemmatology, it is not surprising that the histo-
rians and philologists have tried to establish a reliable way to reconstruct the stemma of the text
and its versions for centuries. The main difficulty has been the great multitude of textual variants
that have to be taken into consideration at the same time. An example from the legend material
of St. Henry shall elucidate the problems: there are over 50 manuscripts and incunabula to be
taken into consideration; in the relatively short text there are nearly one thousand places where
the versions differ from each other. Since the multitude of variants rises easily to tens of thou-
sands, it has been impossible for researchers using traditional methods of paper and pen to form
the stemma and thus get reliable answers to the questions related to the writing and disseminat-
ing of the text. There have been some previous attempts to solve the problems of stemmatology
with the aid of computer science. In addition, the powerful computer programs developed for
the needs of the computer aided cladistics in the field of evolutionary biology have been used. In
many cases this has proven to be a fruitful approach, extending the possibilities of stemmatics
to the analysis of more complex textual traditions that are outside the reach of manual analysis.
Moreover, formalizing the often informal and subjective methods used in manual analysis makes
the methods and results obtained with them more transparentand brings them under objective
scrutiny. Still, many issues in computer assisted stemmatic analysis remain unsolved, underlin-
ing the importance of advances towards general and reliablemethods for shaping the stemma of
a text.

Overview of this Chapter: The chapter is organized as follows: In Section8.2 we present
a criterion for stemmatic analysis that is based on compression of the manuscripts. We then
outline an algorithm, in Section8.3, that builds stemmata by comparing a large number of tree-
shaped stemmata and choosing the one that minimizes the criterion. The method is demonstrated
on a simple example in Section8.4, where we also present our main experiment using some
50 variants of the legend of St. Henry, and discuss some of therestrictions of the method and
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potential ways to overcome them. Conclusions are presentedin Section8.5. We also compare
our method to a related method in the CompLearn package in Appendix A.

8.2 A Minimum-Information Criterion

One of the most applied methods in biological phylogeny is so-called maximum parsimony.
A maximally parsimonious tree minimizes the total number ofdifferences between connected
nodes — i.e., species, individuals, or manuscripts that aredirectly related — possibly weighted
by their importance. Stemmatology analysis is based on variable readings that result from un-
intentional errors in copying or intentional omissions, insertions, or other modifications. In his
seminal work on computer assisted stemmatology, O’Hara used a parsimony method of the PAUP
software [110] in Robinson’s Textual Criticism challenge [93]. For further applications of maxi-
mum parsimony and related method, see [49, 69, 107, 117] and references therein.

The compression-basedminimum informationcriterion shares many properties of the very
popular maximum parsimony method. Both can also be seen as instances of theminimum de-
scription length(MDL) principle of Rissanen [91] — although this is slightly anachronistic: the
maximum parsimony method predates the more general MDL principle — which in turn is a
formal version of Occam’s razor. The underlying idea in the minimum information criterion is to
minimize the amount of information, orcode-length, required to reproduce all the manuscripts
by the process of copying and modifying the text under study.In order to describe a new ver-
sion of an existing manuscript, one needs an amount of information that depends on both the
amount and the type of modifications made. For instance, a deletion of a word or a change of
word order requires less information to describe compared to introducing a completely new ex-
pression. In order to be concrete, we need a precise, numerical, and computable measure for
the amount of information. The commonly accepted definitionof the amount information in
individual objects is Kolmogorov complexity [57, 79], defined as the length of the shortest com-
puter program to describe the given object, as explained in Chapter 3. However, Kolmogorov
complexity is defined only up to a constant that depends on thelanguage used to encode pro-
grams, and what is more, fundamentally uncomputable. In thespirit of a number of earlier
authors [7, 10, 20, 22, 45, 82, 115] we approximate Kolmogorov complexity by using a com-
pression program, also as we did in previous chapters. Currently, we usegzip based on the
LZ77 [122] algorithm, and plan to experiment with other compressors in subsequent work. In
particular, given two strings,x andy, the amount of information iny conditional onx, denoted
byC(y | x) is given by the length of the compressed version of the concatenated stringx,y minus
the length of the compressed version ofx alone2. A simple example illustrating these concepts
is given below in Section8.4.

In addition to the MDL interpretation, our method can be seenas (an approximation of)
maximum likelihood, another commonly used criterion in phylogeny. The maximum likelihood
criterion requires that we have a probabilistic model for evolution, assigning specific probabilities
for each kind of change. The joint likelihood of the whole graph is then evaluated as a product

2We insert a newline in the end of each string and betweenx andy.
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of likelihoods of the individual changes. The tree achieving the highest joint likelihood given
the observed data is then preferred. In the case of manuscripts such a model is clearly more
difficult to construct that in biology, where the probabilities of mutation can be estimated from
experimental data. Nevertheless, a model for manuscript evolution is presented in [106]. Code-
length is isomorphic to (behaves in the same way as) likelihood: sums of code-lengths have a
direct correspondence with products of likelihoods. If theprobability induced by the information
cost, 2−C(y|x), is approximately proportional to the likelihood of creating a copyy based on the
originalx, then minimizing the total information cost approximates maximizing the likelihood.

Let G = (V,E) be an undirected graph whereV is a set of nodes corresponding to the text
variants,E ⊂V×V is a set of edges. We require that the graph is a connected bifurcating tree,
i.e., that (i) each node has either one or three neighbors, and (ii) the tree is acyclic. Such a graph
G can be made directed by picking any one of the nodes as a root and directing each edge away
from the root. Given a directed graph~G, the total information cost of the tree is given by

C(~G) = ∑
v∈V

C(v | Pa(v))

= ∑
v∈V

C(Pa(v),v)−C(Pa(v)), (8.2.1)

where Pa(v) denotes the parent node ofv unlessv is the root in which case Pa(v) is the empty
string. Assuming that order has no significant effect on the complexity of a concatenated string,
i.e., we haveC(x,y)≈C(y,x), as seems to be the case in our data, it can easily verified thatfor
acyclic bifurcating trees, the above can rewritten as

C(G)≈ ∑
(v,w)∈E

C(v,w)−2 ∑
v∈VI

C(v), (8.2.2)

where the first summation has a term for each edge in the graph,and the second summation goes
over the set of interior nodesVI . The formula is a function of the undirected structureG only:
the choice of the root is irrelevant. The factor two in the latter term comes from usingbifurcating
trees.

For practical reasons we make three modifications to this criterion. First, as we explain in
the next section, due to algorithmic reasons we need to splice the texts in smaller segments, not
longer than roughly 10–20 words (we used 11). Secondly, we found that the cost assigned by
gzip to reproducing an identical copy of a string is too high in thesense that it is sometimes
‘cheaper’ to omit a large part of the text for a number of generations and to re-invent it later in an
identical form. Therefore we define the cost of making an identical copy to be zero. Thirdly, it is
known that the variation between an ampersand (’&’) and the wordet, and the lettersv andu was
mostly dependent on the style of the copyist and changed withtime and region, and thus, bears
little information relevant to stemmatic analysis. This domain knowledge was taken into account
by replacing, in both of the above cases, all occurrences of the former by the latter3. Thus, we

3Howeet al. [49] use as an example the wordskirk andchurchin 15th century English whose variation mainly
reflects local dialect.
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use the following modified cost function

C′(~G) = ∑
v∈V

n

∑
i=1

C′(vi | Pai(v)), (8.2.3)

wheren is the number of segments into which each text is spliced,vi and Pai(v) are theith
segment of variantv and its parent, respectively, all strings are modified according to the above
rules (ampersand toet, andv to u), andC′(x | y) equals thegzip cost if x and y differ, and
zero otherwise. This modified cost also allows a form similarto (8.2.2) and hence, is practically
independent of the choice of the root.

8.3 An Algorithm for Constructing Stemmata

Since it is known that many of the text variants have been lostduring the centuries between
the time of the writing of the first versions and present time,it is not realistic to build a tree of
only the about 50 variants that we have as our data. This problem is even more prominent in
biology where we can only make observations about organismsthat still exist (excluding fossil
evidence). The common way of handling this problem is to include in the tree a number of
‘hidden’ nodes, i.e., nodes representing individuals whose characteristics are unobserved. We
construct bifurcating trees that haveN observed nodes as leafs, andN−2 hidden nodes as the
interior nodes.

Evaluating the criterion (8.2.3) now involves the problem of dealing with the hidden nodes.
Without knowing the values of Pai(v), it is not possible to computeC′(v | Pai(v)). We solve this
problem by searching simultaneously for the best tree structure~G and for the optimal contents of
the hidden nodes with respect to criterion (8.2.3). As mentioned above, we patch up the contents
of the interior nodes from segments of length 10–20 words appearing in some of the available
variants. In principle we would like to do this on a per-word-basis, which would not be a notable
restriction since it is indeed reasonable to expect that a reconstruction only consists of words
appearing in the available variants — any other kind of behavior would require rather striking
innovation. However, since we evaluate thegzip cost in terms of the segments, it is likely give
better values when the segments are longer than one word. Secondly, one of the most common
modifications is change in word order. Using 10-20 word segments we assign less cost to change
in word order than to genuine change of words, unless the change happens to cross a segment
border.

Perhaps surprisingly, given a tree structure, finding the optimal contents is feasible. The
method for efficiently optimizing the contents of the hiddennodes is an instance of dynamic
programming and called ‘the Sankoff algorithm’ [40] or ‘the Felsenstein’s algorithm’ [104]. As
Siepel and Haussler [104] note, it is in fact an instance of a ‘message-passing’ or ‘elimination’
algorithm in graphical models (see also [42]). The basic idea is to maintain for each node a table
of minimal costs for the whole subtree starting at the node, given that the contents of the node
take any given value. For instance, let us fix a segment, and denote byx1, . . . ,xm the different
versions of the segment that appear in some of the observed variants. The minimal cost for the
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subtree starting at nodei, given that the segment in question of nodei contains the stringx j is
given by (see [40])

costi( j) = min
k

[

C′(xk | x j)+costa(k)
]

+min
l

[

C′(xl | x j)+costb(l)
]

,

wherea andb are the two children of nodei. For leaf nodes the cost is defined as being infinite
if j does not match the known content of the node, and zero ifj matches or if the content of
the node is unknown. Evaluating costi( j) can be done for each segment independently, starting
from the leaf nodes and working towards the root. Finally, the (unconditional) complexity of
the root is added so that the minimal cost of the segment is obtained by choosing at the root the
stringx j that minimizes the sum costroot( j)+C′(x j). The total cost of the tree is then obtained
by summing over the minimal costs for each segment. After this, actually filling the contents can
be done by propagating back down from the root towards the leafs. It is important to remember
that while the algorithm for optimizing the contents of the hidden nodes requires that a root is
selected, the resulting cost and the optimal contents of thehidden nodes only depend on the
undirected structure (see Eq. (8.2.2)).

There still remains the problem of finding the tree structure, which together with correspond-
ing optimal contents of the hidden nodes minimizes criterion (8.2.3). The obvious solution,
trying all possible tree structures and choosing the best one, fails because forN leafs nodes, the
number of possible bifurcating trees is as large as (see [40])

1×3×5× . . .× (2N−5).

For N = 52 this number is about 2.73×1078, which is close to the estimated number of atoms
in the universe. Instead, we have to resort to heuristic search, trying to find as good a tree as
possible in the time available.

We use a simulated annealing algorithm which starts with an arbitrary tree and iteratively
tries to improve it by small random modification, such as exchanging the places of two subtrees4.
Every modification that reduces the value of the criterion isaccepted. In order to escape local
optima in the search space, modifications that increase the value are accepted with probability

exp

(
C′old−C′new

T

)

,

whereC′old is the cost of the current tree,C′new is the cost of the modified tree, andT is a ‘temper-
ature’ parameter that is slowly decreased to zero. In our main experiment, reported in the next
section, we ran 1,200,000 iterations of annealing, which wefound to be sufficient in our setting.

8.4 Results and Discussion

We first illustrate the behavior of the method by an artificialexample in Fig.8.2. Assume that
we have observed five pieces of text, shown at the tips of the tree’s branches. Because the text

4The algorithm also takes advantage of the fact that changes like exchanging subtrees only require partial updat-
ing of the dynamic programming table used to evaluate the information cost.
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3. & 4.

1.

5.

2.

sanctus henricus ex Anglia

beatus henricus ex Anglia

beatus henricus in Anglia

beatus Henricus ex anglia

beatus Henricus in anglia

beatus henricus ex Anglia

beatus henricus ex Anglia

beatus Henricus ex anglia

Figure 8.2: An example tree obtained with the compression-based method. Changes are circled
and labeled with numbers 1–5. Costs of changes are listed in the box. Best reconstructions at
interior nodes are written at the branching points.

is so short, the length of the segment was fixed to one word. Oneof the trees — not the only
one — minimizing the information cost with total cost of 44 units (bytes) is drawn in the figure.
Even though, as explained above, the obtained tree is undirected, let us assume for simplicity
that the original version is the topmost one (“sanctus henricus ex Anglia”). The sum of the
(unconditional) complexities of the four words in this string is equal to 8+9+3+7= 27, which
happens to coincide with the length of the string, includingspaces and a finishing newline. The
changes, labeled by number 1–5 in the figure, yield 5+3+3+3+3= 17 units of cost. Thus the
total cost of the tree equals 27+17= 44 units.

As our main experiment, we analyzed a set of 49 variants of thelegend of St. Henry. We had
prepared four out of the nine sections (sections 1,4,5, and 6) in a suitable format. Three variants
were excluded since they had only ten words or less in the prepared sections. The remaining

144



variants contained 33–379 words each. Table8.5on page150lists the estimated time or writing
and place of origin, as well as the number of words in the used sections for each manuscript.
The best (wrt. the information cost) tree found is shown in Fig. 8.3. By comparing the tree with
earlier results [47], it can be seen that many groups of variants have been successfully placed
next to each other. For instance, groups of Finnish variantsappearing in the tree that are believed
to be related are Ho–I–K–T and R–S. Among the printed versions the pairs BA–BS and BLu–BL
are correctly identified and also grouped close the each other5. Other pairs of variants appearing
in the tree that are believed to be directly related are Li–Q (that are also correctly associated
with BA–BS and BL–BLu), JG–B, Dr–M, NR2–JB, LT–E, AJ–D, and Bc–MN–Y. In addition,
the subtree including the nine nodes between (and including) BU and Dr is rather well supported
by traditional methods. All in all, the tree corresponds very well with relationships discovered
with more traditional methods. This is quite remarkable taking into account that in the current
experiments we have only used four out of the nine sections ofthe legend.

In order to quantify confidence in the obtained trees we used on top of our method, block-wise
bootstrap [66] and a consensus tree program in the phylogeny inference package PHYLIP [41],
Section9. One hundred bootstrap samples were generated by sampling (with replacement)n
segments out of then segments that make each manuscript. The compression-basedmethod
described in this work was run on each bootstrap sample — thistook about a week of computa-
tion — and the resulting 100 trees were analyzed with theconsense program in PHYLIP using
default settings (modified majority rule). The resulting consensus tree is shown in Fig.8.4.

It should be noted that the central node with nine neighbors does not corresponds to a single
manuscript with nine descendants, but rather, that the relationships between the nine subtrees is
unidentified. Because the interpretation of the consensus tree is less direct than the interpretation
of the tree in Fig.8.3 as the family tree of the variants, it is perhaps best to use the consensus
tree to quantify the confidence in different parts of the treein Fig. 8.3. For instance, it can be
seen that the pairs BL–BLu, AJ–D, Li–Q, NR2–JB, O–P, L–G, JG–B, and R–S are well sup-
ported. More interestingly, The group Ho–I–K–T–A is organized in a different order in Fig.8.3
and the consensus tree. This group also illustrates one of the problems in the consensus tree
method. Namely the confidence in contiguous groups that are in the middle of the tree tends to
be artificially low since the group does not make up a subtree,in this case only 3/100 (Fig.8.4).

The following potential problems and sources of bias in the resulting stemmata are roughly
in decreasing order of severity:

1. The gzip algorithm does not even attempt to fully reflect the process of imperfectly copying
manuscripts. It remains to be studied how sensible thegzip information cost, or costs based on
other compression algorithms, are in stemmatic analysis.

2. Trees are not flexible enough to represent all realistic scenarios. More than one original manuscript
may have been used when creating a new one — a phenomenon termed contamination(or hori-
zontal transfer in genomics). Point5 below may provide a solution but for non-tree structures the
dynamic programming approach does not work and serious computational problems may arise.

5The printed versions are especially suspect to contamination since it is likely that more than one manuscript
was used when composing a printed version.
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Figure 8.3: Best tree found. Most probable place of origin according to [47], see Ta-
ble 8.5, indicated by color — Finland (blue): K,Ho,I,T,A,R,S,H,N,Fg; Vadstena (red):
AJ,D,E,LT,MN,Y,JB,NR2,Li,F,G; Central Europe (yellow):JG,B; other (green). Some groups
supported by earlier work are circled in red.

3. Patching up interior node contents from 10–20 word segments is a restriction. This restriction could
be removed for cost functions that are defined as a sum of individual words’ contributions. Such
cost functions may face problems in dealing with change of word order.

4. The number of copies made from a single manuscript can be other than zero and two. The imme-
diate solution would be to use multifurcating trees in combination with our method, but this faces
the problem that the number of internal nodes strongly affects the minimum-information criterion.
The modification hinted to at point5 may provide a solution to this problem.

5. Rather than looking for the tree structure that together with the optimal contents of the interior nodes
minimizes the cost, it would be more principled from a probabilistic point of view to ‘marginalize’
the interior nodes (see [42]). In this case we should also account for possible forms (words or
segments) not occurring in any of the observed variants.
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6. The search space is huge and the algorithm only finds a localoptimum whose quality cannot be
guaranteed. Bootstrapping helps to identify which parts ofthe tree are uncertain due to problems
in search (as well as due to lack of evidence).

7. Bootstrapping is known to underestimate the confidence inthe resulting consensus tree. This is
clearly less serious thanoverestimation.

In future work we plan to investigate ways to overcome some ofthese limitations, to carry out
more experiments with more data in order to validate the method and to compare the results with
those obtained with, for instance, the existing methods in CompLearn [21], PHYLIP [41], and
PAUP [110]. We are also planning to release the software as a part of theCompLearn package.
Among the possibilities we have not yet explored is the reconstruction of a likely original text.
In fact, in addition to the stemma, the method finds an optimal— i.e., optimal with respect to
the criterion — history of the manuscript including a text version at each branching point of the
stemma. Assuming a point of origin, or a root, in the otherwise undirected stemma tree, thus
directly suggests a reconstruction of the most original version.

8.5 Conclusions

We proposed a new compression-based criterion, and an associated algorithm for computer as-
sisted stemmatic analysis. The method was applied to the tradition of the legend of St. Henry of
Finland, of which some fifty manuscripts are known. Even for such a moderate number, manual
stemma reconstruction is prohibitive due to the vast numberof potential explanations, and the
obtained stemma is the first attempt at a complete stemma of the legend of St. Henry. The rela-
tionships discovered by the method are largely supported bymore traditional analysis in earlier
work, even though we have thus far only used a part of the legend in our experiments. Moreover,
our results have pointed out groups of manuscripts not noticed in earlier manual analysis. Con-
sequently, they have contributed to research on the legend of St. Henry carried out by historians
and helped in forming a new basis for future studies. Trying to reconstruct the earliest version of
the text and the direction of the relationships between the nodes in the stemma is an exciting line
of research where a combination of stemmatological, palaeographical, codicological and content
based analysis has great potential.

Appendix A: Comparison with the CompLearn package

The CompLearn package [21] (Section4.7.2) performs similar analysis as our method in a more
general context where the strings need not consist of word-by-word aligned text. Recall that it
is based on the Normalized Compression Distance (NCD) defined as in (3.5.1), for convenience
restated,

NCD(x,y) =
max{C(x | y),C(y | x)}

max{C(x),C(y)} ,

that was developed and analyzed in [9, 10, 20, 22, 79] (Chapter 3). Both our minimum infor-
mation criterion and NCD are based on (approximations of) Kolmogorov complexity. The core
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method in CompLearn uses a quartet tree heuristic in order tobuild a bifurcating tree with the
observed strings as leafs [24] (Chapter 5).

In contrast to our method, where the cost function involves the contents of both the observed
strings in the leaves and the unobserved interior nodes, CompLearn only uses the pairwise NCD
distances between the observed strings (in [40] the latter kind of methods are called distance
matrix methods).

The relation between NCD and the criterion presented in thiswork may be made more clear
by considering the sum-distanceC(y | x)+C(x | y). Bennettet al. [9] show that the sum-distance
is sandwiched between the numerator of NCD and two times the same quantity, ignoring loga-
rithmic terms:

max{C(x | y),C(y | x)} ≤C(y | x)+C(x | y)≤ 2max{C(x | y),C(y | x)}. (8.5.1)

Assuming thatC(x,y)≈C(y,x) for all x,y, the sum-distance yields the cost

∑
(v,w)∈E

C(w | v)+C(v | w) = 2 ∑
(v,w)∈E

C(v,w)−3 ∑
v∈VI

C(v)− ∑
w∈VL

C(w),

where the summations are over the set of edgesE, the set of interior nodesVI , and the set of leaf
nodesVL, respectively. Since the set of leaf nodes is constant in thephylogenetic reconstruction
problem, the last term can be ignored. Comparing the first twoterms with (8.2.2) shows that the
only difference is in the ratio of the factors of the first two terms (2 : 3 above; 1 : 2 in (8.2.2)).
Thus, the difference between the the sum-distance and the information cost depends only on
the variation ofC(v): if all strings are of roughly the same complexity, the difference is small.
On the other hand, the difference between the sum-distance and NCD results, up to a factor
of two (inequality (8.5.1)), from the normalization by max{C(x),C(y)} in NCD . Thus, if all
strings are equally complex, the sum-distance and NCD do notdiffer ‘too much’, which in turn
implies,summa summarum, that the information cost and NCD agree, at least roughly. However,
in our case, many of the variants are partially destroyed, and consequently the complexity of
the existing texts varies. The difference between the quartet tree heuristic and the Sankoff-style
algorithm (Section8.3) is more difficult to analyze, but clearly, both are designedfor the same
purpose.

Figure8.5 shows the tree obtained by CompLearn using a blocksort approximation to Kol-
mogorov complexity (see the documentation of CompLearn formore information). The tree
agrees at least roughly in many places with the tree in Fig.8.3, for instance, the expected pairs
Ho–T, JB–NR2, D–AJ, JG–B, MN–Y, BA–BS, and LT–E are next to oralmost next to each other
in both trees. We plan to investigate whether the remaining differences between the two trees
are due to the cost functions, the search methods, or other features of the methods. At any rate,
such agreements corroborate the validity of both methods and provide yet stronger support for
the results.
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It should be realized that the structure of the output trees in the two cases are different. This
is due to differences in constraints and assumptions as wellas explicit algorithmic differences as
already noted. Thus, not too many conclusions should be drawn from this rough comparison.
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Table 8.1. Estimated time of writing and place of origin (alternative place in parentheses) from [47],
and total number of words in Sections 1,4,5, and 6.

Code Time Place # of Words
A 1st half of 14th c. . . . . . . . . . Finland (/Sweden) . . . . . . . . . .. . . . . . 364
Ab 14th c. . . . . . . . . . . . . . . . . . . . Finland . . . . . . . . . . . . . . . . .. . . . . . . . . 7
AJ 1416–1442 . . . . . . . . . . . . . . . Vadstena . . . . . . . . . . . . . . . . .. . . . . . . . 185
B ca. 1460 . . . . . . . . . . . . . . . . . . Cologne . . . . . . . . . . . . . . . . . .. . . . . . . . 336

BA 1513 . . . . . . . . . . . . . . . . . . . . . Västeröas . . . . . . . . . . . . . . .. . . . . . . . . 185
Bc 15th c. . . . . . . . . . . . . . . . . . . . Sweden . . . . . . . . . . . . . . . . . .. . . . . . . . 250
BL 1493 . . . . . . . . . . . . . . . . . . . . . Linköping . . . . . . . . . . . . . . .. . . . . . . . . 246
BLu 1517 . . . . . . . . . . . . . . . . . . . . . Lund . . . . . . . . . . . . . . . . . . .. . . . . . . . . 185
BS 1498 . . . . . . . . . . . . . . . . . . . . . Skara . . . . . . . . . . . . . . . . . . .. . . . . . . . . 185
BSt 1495 . . . . . . . . . . . . . . . . . . . . . Strängnäs . . . . . . . . . . . . . .. . . . . . . . . . 189
BU 1496 . . . . . . . . . . . . . . . . . . . . . Uppsala . . . . . . . . . . . . . . . . .. . . . . . . . . 329
C 14th to 15th c. . . . . . . . . . . . . Sweden . . . . . . . . . . . . . . . . . . . .. . . . . . 375
Cd 15th c. . . . . . . . . . . . . . . . . . . . Sweden (/Finland) . . . . . . . .. . . . . . . . 102
CP 1462–1500 . . . . . . . . . . . . . . . Vadstena . . . . . . . . . . . . . . . . .. . . . . . . . 59
D 1446–1460 . . . . . . . . . . . . . . . Vadstena . . . . . . . . . . . . . . . . . .. . . . . . . 181
De 15th c. . . . . . . . . . . . . . . . . . . . Växjö (/Sweden) . . . . . . . . . .. . . . . . . . 95
Dr end of 14th c. . . . . . . . . . . . . . Linköping (/Växjö) . . . . . . . .. . . . . . . 371
E 1442–1464 . . . . . . . . . . . . . . . Vadstena . . . . . . . . . . . . . . . . . .. . . . . . . 237
Ef end of 14th c. / . . . . . . . . . . . . Sweden (/Finland) . . . . . . . . .. . . . . . . 82

beginning of 15th c.
F 1st half of 15th c. . . . . . . . . . Vadstena (/Linköping) . . . . . .. . . . . . . 339
Fg 14th c. . . . . . . . . . . . . . . . . . . . Finland (Sweden) . . . . . . . . .. . . . . . . . 44
G 1476–1514 . . . . . . . . . . . . . . . Vadstena . . . . . . . . . . . . . . . . . .. . . . . . . 251
Gh 14th c. . . . . . . . . . . . . . . . . . . . Sweden (/Finland) . . . . . . . .. . . . . . . . 97
H end of 14th c. / . . . . . . . . . . . Finland . . . . . . . . . . . . . . . . . . . .. . . . . . 74

beginning of 15th c.
Ho after 1485 . . . . . . . . . . . . . . . . Hollola . . . . . . . . . . . . . . . . .. . . . . . . . . 371
I end of 15th c. / . . . . . . . . . . . Ikaalinen . . . . . . . . . . . . . . . . . .. . . . . . . 267

beginning of 16th c.
JB 1428–1447 . . . . . . . . . . . . . . . Vadstena . . . . . . . . . . . . . . . . .. . . . . . . . 166
JG ca. 1480 . . . . . . . . . . . . . . . . . . Brussels . . . . . . . . . . . . . . . .. . . . . . . . . . 341
K end of 15th c. / . . . . . . . . . . . Kangasala . . . . . . . . . . . . . . . . . .. . . . . . 372

beginning of 16th c.
L 15th c. . . . . . . . . . . . . . . . . . . . Sweden . . . . . . . . . . . . . . . . . . .. . . . . . . 132
Li 2nd half of 15th c. . . . . . . . . Vadstena . . . . . . . . . . . . . . . . . .. . . . . . . 193
LT 1448–1458 . . . . . . . . . . . . . . . Vadstena . . . . . . . . . . . . . . . . .. . . . . . . . 266
Lu 1st half of 14th c. . . . . . . . . . Sweden . . . . . . . . . . . . . . . . . . .. . . . . . . 149
M 1st half of 15th c. . . . . . . . . . Bishopric of Linköping . . . . . .. . . . . . 228

MN 1495 . . . . . . . . . . . . . . . . . . . . . Vadstena . . . . . . . . . . . . . . . .. . . . . . . . . 372
N 15th c. . . . . . . . . . . . . . . . . . . . Finland . . . . . . . . . . . . . . . . . .. . . . . . . . 373

NR 1476–1514 . . . . . . . . . . . . . . . Vadstena . . . . . . . . . . . . . . . . .. . . . . . . . 0
NR2 after 1489 . . . . . . . . . . . . . . . . Vadstena . . . . . . . . . . . . . . .. . . . . . . . . . 158

O middle 14th c. . . . . . . . . . . . . Ösmo (/Uppsala) . . . . . . . . . . . .. . . . . . 182
P ca. 1380 . . . . . . . . . . . . . . . . . . Strängnäs (/Vadstena) . . . . .. . . . . . . . 379
Q 2nd half of 15th c., . . . . . . . . Bishopric of Linköping . . . . . .. . . . . . 176

before 1493 (/Vadstena)
R 15th c. . . . . . . . . . . . . . . . . . . . Finland . . . . . . . . . . . . . . . . . .. . . . . . . . 267
S 1st half of 15th c. . . . . . . . . . Finland . . . . . . . . . . . . . . . . . . .. . . . . . . 370
St beginning of 15th c. . . . . . . . Bishopric of Strängnäs (/Sweden) . . 211
T ca. 1485 . . . . . . . . . . . . . . . . . . Finland . . . . . . . . . . . . . . . . . .. . . . . . . . 373
U 15th c. . . . . . . . . . . . . . . . . . . . Uppsala . . . . . . . . . . . . . . . . . .. . . . . . . . 154
V 1485 . . . . . . . . . . . . . . . . . . . . . Bishopric of Uppsala . . . . . . .. . . . . . . 301

Vae 14th c. . . . . . . . . . . . . . . . . . . . Sweden (/Finland) . . . . . . .. . . . . . . . . 247
Vg end of 14th c. / . . . . . . . . . . . Sweden (/Finland) . . . . . . . . . .. . . . . . 33

beginning of 15th c.
X middle or late 15th c. . . . . . . Bishopric of Uppsala . . . . . . . .. . . . . . 188
Y ca. 1500 . . . . . . . . . . . . . . . . . Vadstena (/Linköping) . . . . . .. . . . . . . 372
Z 15th c. . . . . . . . . . . . . . . . . . . . Sweden (/Finland) . . . . . . . . .. . . . . . . 10
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complearn version 0.8.19
tree score S(T) = 0.944473

compressor: blocksort
Username: cilibrar
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Figure 8.5: CompLearn tree showing many similarities with the tree in Fig.8.3.
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Chapter 9

Comparison of CompLearn with PHYLIP

In tree reconstruction systems like PHYLIP, trees are constructed in a greedy fashion using a ran-
domly permuted ordering. Many different permutations are sampled and tree-splits are classified
according to how consistently they come up with a score from 0to 100 indicating a percentage
agreement. This results in a so-called “consensus tree”. While this method is far quicker than
ours for large trees, it is probably in certain situations more error prone. It does not directly
address the whole tree as one structured object but instead says something about the most likely
paths where trees are iteratively increased one step at a time. Another difficulty of this approach
is that sometimes bootstrap values are just too low, less than 50 for all splits, in which case
PHYLIP’s answer is considered too suspicious to use. In our technique this is rarely the case be-
cause we start with a random tree and make a monotonic sequence of nondeterministic steps to
improve it. Our algorithm will always produce something better than random in practice and typ-
ically produces something reasonably good for natural data. Another problem with PHYLIP and
the like is that there are many parameters and adjustments that must be made in order to properly
calculate distances in the matrix creation phase; further,there are many choices of parameters in
the tree-building phase so it takes more effort to use.

The most difficult part is a multiple-alignment phase that typically involves a biology expert.
For comparison, The kitsch program in PHYLIP was run with theH5N1 distance matrix to build
the tree. The kitsch program is generally considered the most accurate in the PHYLIP suite.
Using a random seed value of 1 and generating 100 different random orderings for 100 different
trees of 100 nodes yields the consensus tree of Figure9.1. A casual observation and comparison
with Figure4.10 indicates that this tree is largely similar but not identical to the CompLearn
output. This is attributed to the fact that theS(T) score is quite high suggesting that the input
data distance matrix has very good projection to a binary tree without substantial distortion and
thus serves as a relatively “easy” case of the difficult problem domain. CompLearn shows a
more clear advantage in the next experiment involving 102 Nobel prize winning writers. Here,
NGD is used to generate the distance matrix in a quantitativeway similar to the newly popular
approaches such as Moretti’s [84]:

Theories are nets, and we should learn to evaluate them for the empirical data they
allow us to process and understand: for how they concretely change the way we
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Figure 9.1: Using thekitsch program in PHYLIP for comparison of H5N1 tree.
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work, rather than as ends in themselves. Theories are nets; and there are so many
interesting creatures that await to be caught, if only we try. – Moretti

Here, the maximal score is not as high as the H5N1 tree. The PHYLIP package does not cope
as well with the ambiguities and seems to produce a much quicker yet obviously lower quality
tree as shown below. The clustering of American and British writers is more scattered. This run
used 100 jumbles (random permutations) to form the consensus. This strategy of simple random
permutation based sampling serves to increase the effective power of PHYLIP considerably, but
does not work very well to get high-accuracy plots of high-inconsistency data which often occur
in practice.
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Figure 9.4: 102 Nobel prize winning writers using CompLearnand NGD; S(T)=0.905630 (part
3).
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Figure 9.5: 102 Nobel prize winning writers using the PHYLIPkitsch.
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Chapter 10

CompLearn Documentation

This chapter presents an overview of the CompLearn system. It provides a functional description
from a high level followed by a detailed manual for basic installation and use. The material in
this chapter will be useful for those wanting to run their ownexperiments using the CompLearn
data mining system.

We start with a current snapshot of some important documentation for the CompLearn soft-
ware system is presented. It is the core software behind almost all experiments mentioned in
this thesis and represents a first general purpose open source data compression based learning
system. The following documentation is literally copied from the online website and the reader
is referred tohttp://complearn.org/ for more info.1

What is CompLearn?
CompLearn is a suite of simple-to-use utilities that you canuse to apply compression tech-

niques to the process of discovering and learning patterns.
The compression-based approach used is powerful because itcan mine patterns in completely

different domains. It can classify musical styles of piecesof music and identify unknown com-
posers. It can identify the language of bodies of text. It candiscover the relationships between
species of life and even the origin of new unknown viruses such as SARS. Other uncharted areas
are up to you to explore.

In fact, this method is so general that it requires no background knowledge about any partic-
ular classification. There are no domain-specific parameters to set and only a handful of general
settings. Just feed and run.

Installation Installation
CompLearn was packaged usingAutoconf. Installation steps:

$ ./configure
$ make
$ make install

1 It should be mentioned that in recent time the CompLearn system has had an improvement made which is not
explained in the previously published literature. It concerns the dotted lines around the edge nodes on trees with
numerical scores in the middle, see Chapter7, Section7.5.3.
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To view installation options:

$ ./configure --help

complearn(5)

NAME
complearn - file format for the complearn configuration file
SYNOPSIS
$HOME/.complearn/config.yml - controls options for CompLearn

DESCRIPTION

The CompLearn toolkit is a suite of utilities to analyze arbitrary data. The
commands ncd(1), maketree(1), all use the config.yml configuration file. First,
the user home directory ($HOME) is searched for a directory called .complearn.
Within this directory, CompLearn reads a file called config.yml, a text file
structured in the YAML format. If CompLearn can not locate this file, default
values are used. The path to a configuration file may also be specified by the
-c option. A configuration file specified in this manner overrides all other
options.

For more information on the CompLearn project, please see
http://www.complearn.org

The format of this file is as follows:

<VariableName>: <value>

Blank lines are allowed. Comments are designated with a # sign. Variables come
in one of four types: boolean, integer, or string.

The following VariableNames are valid.

compressor: string (ncd (1))
The builtin compressor to be used. Valid values are: bzip, zlib, and google.

GoogleKey: string (ncd (1), google compressor)
Key necessary to perform search queries against Google database. Can be

obtained directory from Google at http://www.google.com/apis/.

blocksize: int (ncd (1), bzip compressor)
An integer from 1 to 9. 9 gives the best compression but takes the most
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memory. Default 9.

workfactor: int (ncd (1), bzip compressor)
An integer from 0 to 250 and controls how the compression phase behaves

when presented with the worst case, highly repetitive, input date. CompLearn’s
default value of 30 gives reasonable behavior over a wide range of
circumstances.

bzverbosity: int (ncd (1), bzip compressor)
An integer from 0 and 4. 0 is silent and greater numbers give increasingly

verbose monitoring/debugging output. Default 0.

zliblevel: int (ncd (1), zlib compressor)
An integer from 1 to 9. 1 is the fastest and produces the least

compression. 9 is the slowest and produces the most compression. Default 9.

isRooted: bool (maketree (1))
Whether or not to create a rooted binary tree. Default 0.

isOrdered: bool (maketree (1))
Whether or not to order the nodes. Default 0.

selfAgreementTermination: bool (maketree (1))
Whether or not to insist k number of trees must reach an agreed score

before the program exits. Default 1.

maxFailCount: int (maketree (1))
An integer specifying how many failed batches of trees must occur in

succession before the program exits. Only used when selfAgreementTermination is
off. Default 100000.

EXAMPLE

#
# comments are written like this
#
GoogleKey: A/OGsJTQFHSpufko/rRS/KLA7NAT8UNf
compressor: bzip
blocksize: 5
workfactor: 100
isRooted: 1
selfAgreementTermination: 0
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maxFailCount: 50000
# etc

FILES
$HOME/.complearn/config.yml

configuration file, overrides system default
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Usage: ncd [OPTION] ... [FILE | STRING | DIR ] [FILE | STRING | DIR]

ENUMERATION MODES:
-f, --file-mode=FILE file; default mode
-l, --literal-mode=STRING string literal
-p, --plainlist-mode=FILE list of file names by linebreaks
-t, --termlist-mode=FILE list of string literals separated by linebreaks
-d, --directory-mode=DIR directory of files
-w, --windowed-mode=FILE,firstpos,stepsize,width,lastpos

file be separated into windows

NCD OPTIONS:
-C, --compressor=STRING use builtin compressor
-L, --list list of available builtin compressors
-g, --google use Google compression (NGD)
-D, --delcache clear the Google cache
-o, --outfile=distmatname set the default distance matrix output name
-r, --realcomp=pathname use real compressor, passing in pathname of

compressor

OPTIONS:
-c, --config-file=FILE in YAML format
-S, --size compressed size 1 FILE, STRING or DIR
-x, --exp print out 2^val instead of val
-B, --binary enable binary output mode
-P, --svd-project output a singular value decomposition matrix
-s, --suppress suppress ASCII output
-b, --both enable both binary and text output mode
-H, --html output in HTML format
-P, --svd-project activate SVD projection mode
-r, --suppressdetails do not print details to dot file
-V, --version
-v, --verbose
-h, --help
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Usage: maketree [OPTION] ... FILE

MAKETREE OPTIONS:
-o, --outfile=treename set the default tree output name
-R, --rooted create rooted tree
-O, --ordered create ordered tree
-T, --text-input format of distance matrix is text
-F disable self agreement termination and enable

max fail count

OPTIONS:
-c, --config-file=FILE in YAML format
-S, --size compressed size 1 FILE, STRING or DIR
-x, --exp print out 2^val instead of val
-B, --binary enable binary output mode
-P, --svd-project output a singular value decomposition matrix
-s, --suppress suppress ASCII output
-b, --both enable both binary and text output mode
-H, --html output in HTML format
-P, --svd-project activate SVD projection mode
-r, --suppressdetails do not print details to dot file
-V, --version
-v, --verbose
-h, --help
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CompLearn FAQ

1. What is CompLearn?

CompLearn is a software system built to support compression-based learning in a
wide variety of applications. It provides this support in the form of a library
written in highly portable ANSI C that runs in most modern computer
environments with minimal confusion. It also supplies a small suite of simple,
composable command-line utilities as simple applications that use this library.
Together with other commonly used machine-learning tools such as LIBSVM and
GraphViz, CompLearn forms an attractive offering in machine-learning frameworks
and toolkits. It is designed to be extensible in a variety of ways including
modular dynamic-linking plugins (like those used in the Apache webserver) and a
language-neutral SOAP interface to supply instant access to core functionality
in every major language.

2. Why did the version numbers skip so far between 0.6.4 and 0.8.12?

In early 2005 a major rewrite occurred. This was due to poor organization of
the original complearn package, leading to compilation and installation
difficulties in far too many situations. This issue was addressed by using a
complete rewrite from the ground up of all functionality; earlier versions used
a combination of C and Ruby to deliver tree searching. The new version delivers
all core functionality, such as NCD and tree searching, in a pure C library. On
top of this library is layered a variety of other interfaces such as SOAP and a
new in-process direct-extension CompLearn Ruby binding layer. But all
dependencies have been reworked and are now modularized so that Ruby and almost
every other software package is now optional and a variety of different
configurations will compile cleanly.

Another major enhancement in the new complearn is the addition of a Google
compressor to calculate NGD. This has opened up whole new areas of Quantitative
Subjective Analysis (QSA) to complement our existing more classically pure
statistical methods in earlier gzip-style NCD research. By querying the Google
webserver through a SOAP layer we may convert page counts of search terms to
virtual file lengths that can be used to determine semantic relationships
between terms. Please see the paper Automatic Meaning Discovery Using Google
for more information.

3. I can’t get the Google compressor to work. When I
type ncd -L, it’s not even listed as one of the builtin compressors. What am I
doing wrong?
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You may not have the csoap library installed, which is necessary for the Google
compressor to work. You can check this when you run your ./configure command
during the CompLearn installation phase. A "NO" in the CompLearn dependency
table for csoap indicates you need to install the csoap library.

You can download csoap at the following link:

http://sourceforge.net/project/showfiles.php?group_id=74977

Once csoap is installed, you will need to run the ./configure command again
(for CompLearn), perhaps with a "--with-csoap" option depending on the location
of the csoap installation. For more options, you can type

./configure --help

Please see our Dependencies section for more information on CompLearn library
dependencies.

4. The Windows demo isn’t working for me? Why not?

If you have cygwin installed on your computer, it’s very likely you need to
update it. The CompLearn Windows demo uses version 1.5.17 of the cygwin dll;
any previous versions are not compatible with the demo. To update your cygwin,
go to http://cygwin.com and hit the Install or Update now link.

You may also need to download and install DirectX.
5. gsl and CompLearn seemed to install perfectly, but ncd can’t load the gsl
library.

Users may get the following message if this happens:

ncd: error while loading shared libraries: libgslcblas.so.0: cannot
open shared object file: No such file or directory

If this is the case, your LD_LIBRARY_PATH environment variable may need to be
set. For example, you can try the following before running the ncd command:

export LD_LIBRARY_PATH=/usr/local/lib

6. How can this demo work with only 1000 queries a day?

There are two reasons this demo is able to do as much as it does. One is that
Google has generously (and free of charge to me) upgraded my Google API account
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key daily search limit. You might email them to ask yourself if you have an
interesting Google API based search application of your own. The other reason
the demo works is because there is a cache of recent page result counts. You
can see this cache by looking in the $HOME/.complearn directory. Sometimes
larger experiments must be run over the course of two days.

7. How come the counts returned from (any particular) Google API are different
that the numbers I see when I enter searches by hand?

I have two possible explanations for this behavior. One is that it would be
prohibitively expensive to count the exact total of all pages indexed for most
common search terms. Instead they use an estimation heuristic called
"prefixing" whereby they just use a short sample of webpages as a
representative set for the web and scale up as appropriate. I presume this and
also that when you do a search (either by hand or from the API) you can get
connected to any one of a number of different search servers, each with a
slightly different database. In a rapidly changing large global network it is
unlikely that there will be an exact match for the counts on any particular
common term because each server must maintain its own distinct "aging snapshot"
of the internet.

8. When I compile csoap, I don’t seem to be getting shared
libraries. Or even though csoap is installed, complearn doesn’t seem to be
detecting the shared library.

Try compiling csoap from source with the following options:

--with-libxml-prefix=/usr --enable-shared --with-pic

Then try reconfiguring and recompiling complearn.

Thanks to Tsu Do Nimh for this tip.

9. Is it important to adjust or choose a compressor? How should I do it?

Yes, it is very important to choose a good compressor for your application. The
"blocksort" compressor is the current default. It is a virtual compressor using
a simple blocksorting algorithm. It will give results something like frequency
analysis, spectral analysis, and substring matching combined. It works very
well for small strings (or files) of 100 bytes or less. If you have more than
about 100 bytes then it is probably better to use one of the other three
favorite compressors other than the default:
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ncd -C zlib

will get you "zlib" style compression which is like gzip and is limited to
files of up to 15K in size.

ncd -C bzip

will get you "bzip2" style compression which is like zlib but allows for files
up to about 450K in size. The best accuracy is available using the "real
compressor" shell option. For this to work you need to use a script like this:

#!/bin/bash
cd /tmp
cat >infile
/ufs/cilibrar/bin/ppmd e infile >/dev/null </dev/null 2>/dev/null
cat infile.pmd
rm infile infile.pmd

If you install that script in $HOME/bin/catppmd and don’t forget to chmod it
executable (using chmod a+rx $HOME/bin/catppmd for instance) then you can use
it with the following option to ncd:

ncd -r $HOME/bin/catppmd

10. Running ./configure gives me the following error: cannot find input file:
src/complearn/aclconfig.h.in. Where can I find this file?

You will need to generate this header input file by running the autoheader
command. autoheader is packaged with autoconf.

autoheader

11. I get the configure error: Can’t locate object method "path" via package
"Request" at /usr/share/autoconf/Autom4te/C4che.pm line 69, line 111. make[1]:
*** [configure] Error 1. Is there an easy way to fix this?

In the top directory of the CompLearn distribution, run the following commands:

rm -rf autom4te.cache

or

make maintainer-clean
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Chapter 11

Nederlands Samenvatting

Statistische Inferentie met Datacompressie
door Rudi Cilibrasi

Dit proefschrift gaat over de theorie en praktijk van datacompressie-programma’s die ge-
bruikt worden om een bepaalde vorm van machinaal leren te realiseren. Het gaat hierbij in eerste
instantie om het groeperen (clusteren) van objecten die op de een of andere manier op elkaar
lijken. In eerste instantie gaat het om objecten die letterlijk in een computerbestand kunnen
worden gerepresenteerd, zoals bijvoorbeeld literaire teksten, DNA sequenties, muziekstukken en
afbeeldingen. Een van de belangrijkste conclusies van het proefschrift is dat het ook mogelijk is
om te werken met objecten die staan voor abstracte begrippen, zoals “liefde” en “geluk.”

De eenvoudigste en meest populaire toepassing die al in gebruik was voordat Cilibrasi aan
zijn onderzoek begon, was taalboomconstructie. In een vroeg experiment werd de Universele
Verklaring van de Rechten van de Mens gebruikt om verrassendaccurate etymologische bomen
te construeren. Dit gebeurde via een computerprogramma, zonder enige menselijke tussenkomst.
Toch stemden deze bomen overeen met de beste inschattingen van taalkundige experts. Het
computerprogramma was gebaseerd op twee onderdelen: ten eerste een elementair, en algemeen
toepasbaar datacompressieprogramma, en ten tweede, een betrekkelijk eenvoudig boomzoeksys-
teem.

In zijn werk met voornamelijk Prof. Paul Vitányi heeft Cilibrasi getracht op beide onderdelen
vooruitgang te boeken en nieuwe toepassingen te ontwikkelen. Dit werk begon met het schri-
jven van een eenvoudig conversieprogramma voor zogenaamde“pianola”-bestanden dat werd
toegepast op MIDI-bestanden. Hiermee was Cilibrasi in staat om muziek automatisch naar genre
of componist te classificeren; het bleek dat algemeen gebruikte compressieprogramma’s zoals
gzip of bzip2 tot op zekere hoogte in staat waren jazz, rock enklassiek van elkaar te onder-
scheiden. Ook was het in veel gevallen mogelijk om componisten te identificeren, soms zelfs
met huiveringwekkende precisie. Dit experiment was zo succesvol, dat besloten werd tot het
ontwikkelen van een breder toepasbare computerapplicatie. Cilibrasi ontwierp een “open bron”-
programma genaamd CompLearn (beschikbaar via www.complearn.org). Dit maakte het mo-
gelijk systematisch onderzoek te doen naar de vraag naar hoeuniverseel deGenormaliseerde
Compressie Afstand(of NCD, “Normalized Compression Distance”) nu eigenlijk was. De NCD
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is een afstandsmaat tussen bestanden die aangeeft in hoeverre twee bestanden op elkaar lijken.
Verschillende datacompressoren leiden tot verschillendeversies van deze afstandsmaat.

In het eerste belangrijke artikel, Clustering by Compression (Groeperen met Compressie),
ontwikkelden Vitányi en Cilibrasi een methode om aannames over datacompressoren te formalis-
eren, en beschreven zij enkele formele eigenschappen van zowel de theoretische “Kolmogorov
Complexiteit compressor” als van praktische, daadwerkelijk toepasbare compressoren. Vervol-
gens pasten zij het CompLearn systeem toe op genetische analyse waarbij zij gebruik maken
van complete genoomsequenties. Dit gebeurde wederom zonder enige biologische aannames
of menselijke tussenkomst, hetgeen leidde tot de veronderstelling dat de methode enigszins
objectiever was dan eerdere, vergelijkbare pogingen. Verder paste Cilibrasi CompLearn en
NCD toe op een probleem in de radioastronomie, een domein waarvan hij bijna niets afwist.
Gelukkig kwamen de resultaten overeen met die van in de nabijheid werkende astromische ex-
perts. Toepassing van het programma op vertaalde Russischeliteratuur toonde dat het boeken
groepeerde aan de hand van een combinatie van vertaler en originele auteur. Misschien het meest
verrassende resultaat werd bereikt bij het experiment waarbij afbeeldingen herkend moesten wor-
den: het bleek mogelijk om het standaard compressieprogramma gzip te gebruiken voor het
identificeren van afbeeldingen van handgeschreven cijfersuit een NIST gegevensbank. Cilibrasi
werkte deze toepassing verder uit door het combineren van deNCD met zogenaamde Support
Vector Machines. Dit zijn zelflerende systemen (algoritmen) die elke continue functie kunnen
leren. De matrix van NCD afstanden tussen een groep “trainings”-bestanden en een aantal van te
voren gekozen “anker”-bestanden werd hier gebruikt als input voor de support vector machine.
Het resultaat is een algemeen classificatie- en regressieprogramma dat de kracht van discrete
patroonvergelijking in datacompressoren combineert met de flexibiliteit van universeel lerende
automaten van continue functies zoals Support Vector Machines of neurale netwerken.

De volgende grote vernieuwing kwam toen Cilibrasi zich realiseerde dat we dezelfde wiskun-
dige formalismen die ten grondslag liggen aan datacompressie ook kunnen toepassen op andere
objecten dan bestanden (of reeksen van bits). Het domein zoubijvoorbeeld ook uit zoekter-
men of tupels van zoektermen kunnen bestaan. Men kan dan een zoekmachine zoals Google
gebruiken om het aantal pagina’s op het world wide web te bepalen waarin deze (tupels van)
zoektermen voorkomen. Het resultaat is dan de zogenaamde “genormaliseerde Google afstand”
(NGD), die voor twee willekeurige termen (bijvoorbeeld woorden) aangeeft hoeveel ze, volgens
het world wide web, op elkaar lijken. De NGD werd geimplementeerd als onderdeel van de
CompLearn software met het zogenaamde Simple Object AccessProtocol (SOAP) met de C
en Ruby programmeertalen. Het grote verschil met NCD is dat het nu mogelijk is om afstand
te bepalen op basis van denamenvan objecten in plaats van hun, statistisch genomen, letter-
lijke inhoud. Dit bracht een scala aan nieuwe mogelijkhedenteweeg. Cilibrasi vergeleek au-
tomatisch gegenereerde monsters van ontologische predicaten met die van WordNet, een project
van de universiteit van Princeton. WordNet is een semantische concordantie van de Engelse
taal die is gebouwd door menselijke experts. Er was ongeveer85% overeenstemming tussen
de eenvoudige, volledige automatisch lerende automaat en WordNet. Dit maakt automatische
ontologie-uitbreiding een veelbelovende onderzoeksrichting. Hiermee zou als het waregratis
structuur aangebracht kunnen worden in het web; dit in tegenstelling tot een meer traditionele
aanpak met RDF tripletten, het Sematische Web en XML uitwisseling. Al deze methoden
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vereisen zeer tijdrovende menselijke arbeid, terwijl de nieuwe, op de NGD gebaseerde tech-
nieken, moeiteloos soortgelijke kennis vergaren uit het grote, ongebruikte reservoir van reeds
bestaande webpagina’s. Een ander interessant experiment was een automatisch Engels-Spaans
vertaalsysteem dat werkte zonder menselijke hulp. Cilibrasi was in staat om de Spaanse vertalin-
gen van vijf Engelse woorden door elkaar te husselen en de computer te laten uitvogelen welke
Engelse en Spaanse woorden overeenstemden. Slechts door decorrelatie tussen de Engelse NGD
matrix en alle Spaanse permutaties te berekenen, lukte het de juiste volgorde te vinden.

In het meest recente artikel over Cilibrasi’s onderzoek, bepaalden Cilibrasi en Vitányi de
wiskundige details van het exacte type niet-deterministisch kwartetboomzoeksysteem dat hij
uiteindelijk bouwde. Dit bleek een interessant project te zijn vanuit het oogpunt van de algo-
ritmiek: het is een NP-hard probleem om de beste boom te bepalen volgens het gebruikte eval-
uatiecriterium, maar desalniettemin bleek het mogelijk voor vele interessante en bruikbare voor-
beelden het antwoord te benaderen met een verrassende mate van snelheid en precisie. Daarbij
maakte Cilibrasi gebruik van een cluster-berekenend systeem dat gebouwd was volgens de zoge-
naamde Message Passing Interface (MPI) standaard. Een voorbeeld dat Cilibrasi op dit moment
zeer interesseert is een boom van 100 verschillende monsters van het vogelgriepvirus. Terwijl
mutaties en recombinaties nieuwe virale variaties vormen,is het systeem in staat gebleken snelle
en nuttige antwoorden te geven.

Cilibrasi moedigt geïnteresseerden aan de artikelen te bekijken die gepubliceerd zijn op zijn
onderzoeks-homepage, of de online demo te proberen op de CompLearn website. Er kan ook een
3D demo gedownload worden met sleur-en-pleur-datamining.Windows en linux versies van alle
programmatuur zijn tevens beschikbaar. Mede door een verbinding te maken met ongeveer 15
andere programmatuursystemen, heeft Cilibrasi een stuk gereedschap geproduceerd dat waarde-
vol kan zijn voor onderzoekers over de hele wereld.
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