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Chapter 1

Introduction

The ice cream company Häagen-Dazs has an advertising slogan: “Love her, love
Häagen-Dazs”. In China, the company uses a slightly revised Chinese version of
this slogan, which is literally translated in English as “Love her, take her to Häagen-
Dazs!”. Compared to the original slogan, the Chinese version refines the conditional
“protocol” with an action which is much more explicit than love itself. It seems
the subtle revision really can make a difference: this supermarket ice cream in U.S.
and Europe has become one of the most popular must-buys among Chinese young
couples (ask a Shanghai girl about it!). It seems that although it may take more than
one life to really understand what love is, you can simply show your love by taking
your girlfriend to a nearby Häagen-Dazs shop (and of course buying something
there). Actually, it does not matter what love is, what really matters is that what
you do is commonly known to be a proof of your (undefined) love. How come an ice
cream is associated with love? For that you must know that the company follows a
super high-end marketing strategy in China. It is the huge price difference with the
regular ice creams that contributes to the protocol “If you love her then take her to
Häagen-Dazs!”, for this is what allows you to show (off) your love. The protocol is
clearly not about truth, but it makes information flow.

Here by “protocol” we refer to the general notion of procedural rules that govern
the actions of humans or machines. Besides giving meaning to actions as in the
Häagen-Dazs story, protocols also let us know what to do or what not to do. In many
cases they are the reasons for us to act in a certain way. When you are driving a car
you are also driving with various traffic protocols. In case an accident happens legal
protocols are called into play. While you are sending emails or sms to a friend to
complain about the bad luck, communication protocols on computers are running to
make sure the messages are delivered. Your friend may reply to you with a remark
against the current local government who initiated a construction project which led
to the traffic chaos in the city centre and claim he will vote for another party a few
days later in the election according to the political protocol. Because of the existence
of such protocols which restrict the potential behaviour of humans and machines, we
save our civilization from a chaotic state. Without doubt, protocols rule the world.

Due to the importance of protocols, it is crucial to know the protocols. The

1



2 Chapter 1. Introduction

French greet each other by cheek kissing for (usually) two times while the Dutch
generally do it thrice. The first cheek kissing between someone from France and
someone Dutch may leave the proper termination of their greeting protocols in
question. However, for someone Chinese used to the greeting protocol of shaking
hands, the number of kisses is not the (only) question to execute the first such greeting
successfully: from which side should I start? how much noise should I make? why
alternating left and right? . . . A protocol announcement could solve this in advance.
If no information is provided, people can always rely on a default protocol such
as wait-and-see or copy-cat. The difference in protocols is the reason behind many
conflicts and misunderstandings, so keeping your protocol knowledge updated is
also important.

In many cases, protocols are used to reach certain goals, e.g., the exchange protocol
cash and carry is to guarantee a fair exchange in a (hostile) open market. However,
knowing the protocol may also prevent the protocol from achieving its goal. For
example, if a girl knows that the guy who takes her out on a first date acts out the
protocol “ask her about herself, to make her think you are really interested in her
feelings”, she is maybe less impressed with how the date goes than if she ignores
this. As a more intricate example, consider the following story in the historical novel
Romance of the Three Kingdoms, one of the greatest classics in Chinese literature: After
suffering his defeat at the battle of Red Cliffs, the warlord Cao Cao made his escape
to a crossroads where the main path was wide and flat but longer than the other
treacherous path which led to Huarong. The scouts reported to Cao Cao that smoke
was seen rising from the Huarong trail suggesting an ambush. Cao Cao laughed:
“I know Zhuge Kongming (the opponent strategist) so well. Everything he did was
intended to deceive me. Thus the apparent truth must be a deception. The smoke
seems to be signalling an ambush but it must be the enemy’s decoy to lure me to the
main road.” He then ordered his men into the Huarong Trail, only to be trapped there
by the ambush. In fact, knowing Cao Cao so well, Zhuge Kongming had guessed
how Cao Cao would reason, and taking this into account, he still outsmarted him,
and the smoke lured Cao Cao into the ambush. Ironically, just like what Cao Cao
said, everything Kongming did was intended to deceive him, and what seemed to
be the truth to Cao Cao was indeed a deception.

As we have seen from the above stories, protocol and knowledge have an intricate
and dynamic relation with each other, which deserves careful study, and is the starting
point of this dissertation:

“Epistemic Modelling and Protocol Dynamics”

1.1 Background

Epistemic Protocols Protocols that involve reasoning about knowledge have been
studied, under the name of knowledge-based programs, since the pioneering work of
[HF89] and [FHMV97] in the setting of Interpreted Systems (IS) [FHMV95](or, equiv-
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alently Epistemic Temporal Logic (ETL) [PR85]). Research within this framework has
revealed that protocols with knowledge tests (e.g., if Kip then do a) are essentially
more complex than standard programs [HF89, San91, Hal00]. Given an initial set-
ting, a knowledge-based program may be represented by none or more than one
interpreted system while a standard program induces a unique interpreted system.
[MDH86, Hal87] showed that knowledge may help to develop efficient algorithms
but the verification problem is quite involved. In the ETL framework, [PR03] gave a
semantics of actions based on protocols which fleshes out the intuition that protocols
let actions carry information as we remarked at the beginning of this chapter (see
also [BS97] for a more general treatment).

Knowledge-based programs can be generalized to epistemic protocols which not
only allow knowledge tests but also actions with epistemic effects, e.g. public an-
nouncements. Such actions are studied as objects in their own right in Dynamic Epis-
temic Logic (DEL) where actions and their epistemic effects are handled by epistemic
event models and the built-in update mechanism [Pla89, GG97, BMS98]. During the
last decade DEL has been successfully applied to a variety of scenarios from knowl-
edge puzzles to social norm changes [vDvdHK07], due to its flexibility in modelling
various epistemic interactions among agents.

Despite some informal protocols featured in the studies of epistemic puzzles (see,
e.g., [vD03, AvDR09, VO07, vD08, DvEW10]), the epistemic protocols have not been
formally studied as a central issue in the DEL framework until recently. Aiming at
merging the temporal aspect of ETL and the dynamic epistemic aspect of DEL, a series
of work has been done with extra protocol information provided to the epistemic
models [HY09, vBGHP09, Hos09, HP10b] (see also [Hos10] for a survey). A DEL-
protocol defined in this line of work is a set of sequences of DEL events (pointed
event models [BMS98]) closed under finite prefix, similar to the definition of the
protocol of [PR03] in an ETL setting. Moreover, a notion of state-dependent protocols is
introduced in [vBGHP09], which allows different states in a given epistemic Kripke
model to have different DEL protocols. In such a set up, the protocol at the real world
may not be common knowledge. Given a DEL protocol and an initial model, we
can generate a unique ETL-like model capturing both the epistemic dynamics and the
protocol information as [Hos10] puts it.

However, as remarked in [PR03], an explicit set of sequences of events, as in the
case of the DEL protocols mentioned above, is an extensional notion of the common
sense protocols which are usually specified by a few rules governing the communica-
tions. To formally study epistemic protocols, in particular to address their verification
problems, an epistemic protocol specification is preferably high-level, finitely repre-
sentable and independent from the models. Note that the verification of an epistemic
protocol can be tricky. Take the following classic example used in DEL literature: the
Russian Cards Problem (RCP) (introduced to DEL by van Ditmarsch [vD03]):

1.1.1. E. (Russian Cards Problem (RCP(n,n,k))) 2n + k cards are distributed ran-
domly to three agents {A,B,E} such that agent A has n cards, B has n cards, and E has k
cards. Now A and B want to inform each other their hands by public announcements, without
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revealing his cards to E. Is it possible? æ

Now let us consider a simple case: RCP2.2.1 where the cards are denoted as numbers
(0− 4). A “promising protocol” for A to let B know A’s cards without letting E know
any card of A is that: A announces the disjunction of his actual hand (say 01) with
all the different combinations of the remaining cards, so he would announce “I have
01 or 23 or 24 or 34.” Since B has one more card than E he can eliminate all of 23,
24 and 34, while E can only eliminate two of 23, 24 and 34. However, it does not
work like this any more if E knows that the protocol is meant to reveal A’s hand to
B. Assume that E has 3. Then after the announcement by A, E will know that A has
either 01 or 24. Now E can perform the following reasoning: suppose that A has 24
and B has 01. Then B could not have learnt A’s hand from A’s announcement. So E
can infer that A has 01. Another way to see that the would-be protocol is wrong is as
follows. Suppose the protocol is commonly known, e.g., the procedure to generate
the announcements is known to both A and E. Note that in the above case this
procedure is a function from hands of two cards x, y to announcements f (xy) =“ I
have xy or z1z2 or z2z3 or z1z3.”, where z1, z2, z3 are the remaining 3 cards other than
x, y. This function is injective, so the announcement reveals the hand immediately.

As demonstrated by the above example and many others mentioned in [vD03,
vDvdHK07], a notable feature of epistemic protocols, compared to usual communi-
cation protocols, is that the correctness of the epistemic protocols heavily relies on
the assumptions of the agents’ meta-knowledge about the protocol itself. It is reason-
able to assume that the protocol and its goals are commonly known by all the agents
including possible adversaries, if we want to apply the protocol repeatedly in real life
cases. To check the correctness of protocols under the assumption that the protocol
is commonly known, formalization of protocols is clearly imperative.

Dynamic Epistemic Modelling As in the formal verification of communication
protocols, we would like to apply model checking to the verification of epistemic
protocols, based on a logical language which can specify both the protocol and its goal.
However, as observed in [FHMV97], a protocol involving knowledge preconditions
should be verified w.r.t. the assumptions about the initial situation, e.g., to verify
a protocol for RCP2.2.1 on a model with only two agents A,B does not make sense.
However, two natural questions arise: how do we specify the assumptions and based
on these assumptions, how do we generate a correct model to be checked? Let us
now look at another classic puzzle in DEL and ETL (see e.g., [FHMV95, vDvdHK07]):

1.1.2. E. (n-Muddy Children) Out of n children, k ≥ 1 got mud on their foreheads
while playing. They can see whether other kids are dirty, but there is no mirror for them to
discover whether they are dirty themselves. Then father walks in and says: “At least one of
you is dirty!” Then he requests “If you know you are dirty, step forward now.” If nobody
steps forward, he repeats his request: “If you now know you are dirty, step forward now.”
After exactly k requests to step forward, the k dirty children suddenly do so. æ
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The changes of the children’s knowledge in this classic scenario are “perfectly”
modelled by the update mechanism of public announcements on an initial Kripke
model, usually in the following shape:

m1m2m3 3 m1m2m3

1m1m2m3

����
m1m2m3

2��
��

m1m2m3 m1m2m3

m1m2m3

����
m1m2m3

�����

where {1, 2, 3} is the set of 3 children, mi denotes the proposition that i is muddy
and mi denotes its negation. The labelled equivalence relations model children’s
epistemic accessibility relations (s←→i t means at state s, i thinks t is possible).

As remarked in [vB09]: There is no algorithm for producing it, but most people would
agree that it fits the situation. We assume that people, even non-logicians, would
be able to “read off” the information from the graph representation e.g. “In any
case, one agent does not know whether he is dirty or not, but he is sure about the
other two.” In epistemic logic, it amounts to a conjunction φ1 ∧ φ2 ∧ φ3 where
φ1 = (K1m2 ∨ K1m2) ∧ (K1m3 ∨ K1m3) ∧ ¬(K1m1 ∨ K1m1) and similar for φ2 and φ3.
This suggests that we may translate an informal initial setting into a set of logical
formulas and try to generate a correct model from this set of formulas.

In the context of dynamic epistemic modelling, [vDvdHK03a] demonstrates that
there are intuitive epistemic formulas (descriptions) that characterize the initial models
in the case of the card games. However, in general, a set of formulas translated from
an informal description of the scenario may not have a unique model. In many cases,
the informal assumptions in our mind can not be made fully precise. Even if the
initial specification induces a model, we still need a method to generate it.

Here we may seek insights from computer science. A useful approach to represent
models is the so-called operational semantics used for process algebra (e.g. CSP of
[Hoa85]), where the model of a process term is generated by the operational rules
on its subterms. A similar idea, Tableau [Pra80, SE89], appeared in logic as a method
for solving the satisfiability problem of logics. Another inspiration is from the ETL
framework where models are generated by composing local states of each agent. In
DEL [vD02] made an early attempt to program epistemic actions while [vDvdHK03a]
imported the idea of interpreted system in the specific context of card games.

Model Checking During the last three decades, (temporal logic) model checking
has become a prominent application of logic in computer science (see [CGP99]
for an extensive survey). We would like to apply model checking for epistemic
protocols as attempted in [vDRV05, vE07, vD03]. However, when dynamic epis-
temic modelling is applied to complex situations, very large (even infinite) epistemic
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models or event models are inevitable (see, for example [DW07]. The verifica-
tion of certain properties may require the (exhaustive) exploration of such large
models. In computer science, this problem is known as the state space explosion
problem. Various methods have been proposed to handle this problem in tempo-
ral logic model checking. A very successful one in practice is the symbolic model
checking technique initiated by McMillan et.al [BCM+92], which boosted the capa-
bility of model checking on large system enormously (see, for example [BCM+92],
where more than 1020 states are handled in some case studies). Despite the suc-
cess of BDD-based symbolic model checking and the more recent development
of bounded model checking using SAT-solvers (see, e.g., [CBRZ01, McM02]), the
state explosion problem still remains a major hurdle to model checking real life
complex systems. To reduce the state space, many approaches have been devel-
oped, for example, symmetry reduction [CEFJ96, ES96, ID96, SG04], partial order
reduction [GPS96, Pel93], abstract interpretation [CC77], and abstraction-refinement
methods [CGL94, CGJ+03, GHJ01, SG08]. Among such approaches, the abstraction-
refinement method is considered to be the most general and flexible one; also it is
fully automated [CGJ+03]. However, such techniques have not been introduced to
the epistemic setting until recently [DOW08, CDLR09, CLDQ09].

1.2 Overview of the Dissertation

The general storyline of the dissertation is as follows: In Part I, we introduce logics
to specify epistemic protocols including their goals and their dynamics. The verifica-
tion problem can then be formalized as a model checking problem within a unified
logical framework. To perform model checking we need to develop methods for find-
ing/generating epistemic models, and this problem is addressed in Part II. Part III
introduces abstraction techniques that are particularly useful on making the model
checking more efficient in the epistemic setting. In Part IV we survey the application
of epistemic analysis on protocols in a setting of security protocol verification.

The contributions of each chapter are briefly summarized as follows:

In Chapter 2: Preliminaries, we list the basic definitions used throughout this dis-
sertation.

Part I

Chapter 3: Meta-knowledge Matters departs from the existing discussions about pro-
tocols in DEL by introducing a logic which can specify both the epistemic protocols
(by regular expressions) and their goals inside the language. By formally defining the
epistemic protocol specification and their verification problems under the assump-
tion of the meta-knowledge about the intended goal, we flesh out the remarks about
the subtleties of epistemic protocol verification. Based on this framework, we discuss
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how to find and verify deterministic epistemic protocols for the classic Russian Card
Problem RCP3.3.1.

In Chapter 4: Logics of Knowledge and Protocol Change, we address the question:
“how people get to know a protocol?” by developing three logics which are conve-
nient for reasoning about knowledge and protocol changes with different perspec-
tives. With various protocol announcement modalities, we can handle the dynamics of
protocols and formalize how the protocols let the actions carry new meanings. We
show that all the three logics we introduced can be translated back to PDL on standard
Kripke models, thus the techniques of modelling and model checking we developed
in the other parts of the dissertation can be applied to these logics.

Part II

We then turn to the issues of modelling in Chapter 5: Composing Models. We propose
new composition operations on static and event models with arbitrary vocabularies,
aiming at a compositional method for generating initial epistemic models. We prove
some decomposition theorems w.r.t. our new operator and demonstrate the use of
our methods by various examples. Algebraic properties linking the new operator to
standard product update are also addressed.

In Chapter 6: Counting Models, we report some results on counting the number of
different models given a finite set of initial assumptions. Restricted to image-finite
models, we show that if a modal µ-calculus formula has an infinite model modulo
bisimulation then it has 2ℵ0 (cardinality of the continuum) different models modulo
bisimulation. On the other hand, if it does not have any infinite models then all its
models can be represented in a normal form.

Part III

A 3-valued semantics for public announcement logic is defined and studied in Chap-
ter 7: Making Models Smaller to facilitate abstractions of models for logic with dynamic
modalities. We define a relation with vocabulary and agent mappings between con-
crete models and their abstractions, thus making it possible to also abstract the
signatures of models. It is particularly applicable in an epistemic setting where
agents are usually similar to each other. We then give a logical characterization of the
abstraction relation thus showing it is safe to check properties on the abstract model
instead of the original concrete model.

Chapter 8: Accelerating the Transitions studies the PDL on so-called accelerated Kripke
models where the transitions in the models are labelled by regular expressions in order
to obtain informative abstractions. By making use of a technique of regular expres-
sion rewriting, we analyse the complexity of the model checking and satisfiability
problems of this logic and give a complete axiomatization.

Part IV

Chapter 9: Epistemic Approaches to Security Protocol Verification surveys the epistemic
approaches to security protocol analysis. We summarize the most important tech-
niques in the ETL and DEL approaches to security protocol verification, and compare
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these two approaches in term of convenience. We argue that some security properties
can only be faithfully formalized by temporal logic with knowledge operators, but
are not expressible by standard temporal logic. However, we need to pay some cost
in model checking complexity, in exchange to the expressiveness we gain by using
ETL.

1.3 Origins of the Material

The material that forms the main body of this dissertation is based on collabo-
rations with various people: Chapter 3 extends a joint paper with Lakshmanan
Kuppusamy and Jan van Eijck [WKvE09]; Chapter 4 is based on an unpublished
manuscript; Chapter 5 is an elaborated version of joint work with Jan van Eijck
and Floor Sietsma [vEWS10]; Chapter 6 is an extension of a discussion note with
Floor Sietsma; Chapter 7 reports joint work with Francien Dechesne and Simona
Orzan [DOW08]; Chapter 8 is an updated version of a paper with Taolue Chen and
Jaco van de Pol [CvdPW08]; and Chapter 9 is based on a joint paper with Francien
Dechesne [DW10].

Some papers related to the general topic of this dissertation are not included in the
above chapters. I mention them here as pointers for further reading. With Francien
Dechesne, I explored the possibility of using DEL for security protocol verification, as
reported in [DW07]. This work also motivated the writing of the material constituting
Chapter 9 where the essential ideas of [DW07] are summarized and compared to
other approaches. Note that in this dissertation, we focus on knowledge but not
belief while in joint work [vEW08] with Jan van Eijck we study a PDL-style DEL
as a belief revision logic, which in the end leads to the use of PDL as a protocol
logic in Chapter 3 and Chapter 4. Together with Floor Sietsma and Jan van Eijck,
I designed a flexible logical framework for reasoning about communications over
networks [WSvE10], which combines the dynamics of protocols as in Chapter 4
and the modelling advantages of ETL and DEL respectively. A game theoretical
perspective of protocol execution is missing in the current dissertation. However,
interested readers may have a look at joint work [TDW08] with Mohammad Dashti
which presents a game theoretical analysis of exchange protocols with untrusted third
parties. In the end, if the reader prefers a more entertaining introduction to (security)
protocols than Chapter 9, she/ he may want to look at [DvETW09, DETW09] written
by Francien Dechesne, Jan van Eijck, Wouter Teepe, and me.



Chapter 2

Preliminaries

This chapter introduces a few very basic concepts and notations which are frequently
used throughout the thesis. In the follow-up chapters, we will refer to the definitions
in this chapter when needed.

2.1 Finite Automata and Regular Expressions

2.1.1. D. (Finite Automata on Finite Words) A (non-deterministic) finite
automaton is a tuple A = (Q,Σ, q0,�,F) where:

• Q is a finite non-empty set of states, with q0 ∈ Q being the start state;

• Σ is an alphabet;

• � ⊆ Q × Σ ×Q is the set of labelled transitions over Q;

• F ⊆ Q is the set of accept states.

ç

Notation For any a ∈ Σ, we write a
� for {(q, q′) | (q, a, q′) ∈�}. Let Σ∗ be the set

of finite (possibly empty) strings of labels in Σ, for any w = (a0, a1, . . . , an) ∈ Σ∗, we
write q w

� q′ if there is a path q
a0� q1

a1� · · ·
an� q′ in A. Given an unspecified finite

automaton A we use QA, ΣA, qA,�A and FA for the corresponding components in the
definition of the automaton.

Given�, we let the induced transition function δ : Q × Σ 7→ 2Q be defined as
δ(q, a) = {q′ | q a

� q′}. Note that δ(q, a) may be ∅ for some q and a. A finite automaton
on finite words A is said to be deterministic, if for any q ∈ QA and a ∈ Σ: δ(q, a) is
a singleton. We can extend the transition function δ to δ∗ : Q × Σ∗ → 2Q such that
δ∗(q,w) = {q′ | q w

� q′}. It is clear that deterministic finite automata (DFA) have the
property that for any word w ∈ Σ∗, δ∗(q,w) is a singleton.

Given a finite automaton A = (Q,Σ, q0,�,F) and a word w = (a1, . . . , an) ∈ Σ∗,
we call a sequence r = (q0, q1, · · · , qn) a run of A over w if for 0 ≤ i ≤ n : qi

ai+1� qi+1.

9
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A run r = (q0, · · · , qn) is said to be accepting if qn ∈ F. We say A accepts w if there
exists an accepting run of A over w. The language of a finite automaton A is the set
L(A) = {w ∈ Σ∗ | A accepts w}. We say A and A′ are language equivalent (A =L A′) if
L(A) = L(A′).

Given an alphabet Σ, regular expressions over Σ are of the form:

π ::= 0 | 1 | a | π + π | π · π | π∗

where a ∈ Σ and 0, 1 are constants for the empty language and the empty string respec-
tively. We let RegΣ be the set of all the regular expressions over Σ.

Given L,L′ ⊆ Σ∗, we define L ◦ L′ to be the set {wv | w ∈ L, v ∈ L′}. For n ≥ 0 we
define L0 = {ε} and Ln+1 = L◦Ln where ε is the empty string. We write L? for

⋃
n≥0 Ln.

2.1.2. D. (Language of Regular Expressions) The language of a regular
expression π (denoted as L(π)) is a set of finite strings over Σ defined as follows:

L(0) = ∅ L(1) = {ε} L(a) = {a}
L(π · π′) = L(π) ◦ L(π′)
L(π + π′) = L(π) ∪ L(π′)
L(π∗) = (L(π))?

ç

The following result is well-known:

2.1.3. T (Kleene’s Theorem). For any regular expression π, there exists a finite (de-
terministic) automaton A such that L(A) = L(π). For any finite (deterministic) automaton
A there is a regular expression π such that L(π) = L(A).

2.2 Kripke Models and Bisimulation

2.2.1. D. (Kripke Model) A Kripke model (KM) is a tuple:

M = (S,P,Σ,→,V)

where:

• S is a non-empty set of states (or possible worlds);

• P is a set of proposition letters;

• Σ is a non-empty set of labels;

• → ⊆ S × Σ × S is the set of labelled relations over S;

• V : S→ 2P is the valuation function.
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We call P the vocabulary ofM and Σ the set of labels ofM. (P,Σ) is called the signature
ofM. A pointed Kripke model (M, s) is a KM with a designated point in the set of
states. Following the tradition in modal logic, we shall call F = (S,P,Σ,→) a Kripke
frame. ç

As w
� in the case of finite automata, we adapt the notion s w

→ t for a ∈ Σ and w ∈ Σ∗

in the context of Kripke models, similarly for SM, PM, ΣM,→M and VM.

A Kripke modelM is said to be finite, if SM, ΣM and PM are all finite. A Kripke
model is image-finite or finitely branching if for every state and every label a ∈ Σ, there
are only at most finitely many a-successors; it is ω−branching if for every state and
every label a ∈ Σ, there are only at most countably many a-successors.

An S5 Kripke modelM is a KM whose labelled relations are equivalence relations,
i.e., for all a ∈ ΣM : a

→ is reflexive (∀s : s a
→ s), symmetric (∀s, t : s a

→ t ⇐⇒ t a
→ s), and

transitive (∀s, t, r : (s a
→ t∧ t a

→ r) =⇒ s a
→ r). Therefore, in the case of S5 models, we

also use ∼ to denote the set of relations. S5 models are standard models for epistemic
logic where the set of labels are interpreted as the set of agents. In such a context we

may use I instead of Σ when defining an S5 model and use ∼i instead of i
∼ for i ∈ I,

following the standard notations in epistemic logic.
Note that in computer science a Kripke frame is usually called a Labelled Transi-

tion System (LTS) and Kripke models are sometimes called Kripke Labelled Transition
Systems (KLTS).

2.2.2. D. (Bisimulation) A binary relation R between the domains of two
KMsM = (S,P,Σ,→,V) and N = (T,P,Σ,→′,V′) is called a bisimulation iff (s, t) ∈ R
implies that the following conditions hold:

Invariance For any p ∈ P : p ∈ V(s) ⇐⇒ p ∈ V′(t).

Zig if s a
→ s′ inM then there exists a t′ inN such that t

a
→
′ t′ and s′Rt′.

Zag if t
a
→
′ t′ inN then there exists an s′ inM such that s a

→ s′ and s′Rt′.

Two pointed Kripke models (M, s) and (N , t) are said to be bisimilar (M, s ↔ N , t) if
there is a bisimulation R between them such that (s, t) ∈ R. We say a bisimulation R
is total, if every world in one model is linked by R to some world in the other model.
We writeM↔N if there is a total bisimulation betweenM andN . ç

Note that the above standard bisimulation is defined between models with the
same signature. In this thesis we will also work with models with different vo-
cabularies. We say two pointed models (M, s) and (N , t) are restricted bisimilar w.r.t
P′ ⊆ PM ∩ PN (notation: M, s ↔P′ N , t ), if M, s and N , t are bisimilar with the
original invariance condition replaced by a restricted invariance condition:

[P′-Invariance] for any p ∈ P′ : p ∈ VM(s) ⇐⇒ p ∈ VN (t).
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Similarly we can define total restricted bisimulation w.r.t P′ (M ↔P′ N) in the
straightforward way.

Note that an autobisimulation of a model is an equivalence relation on the state
space of a model. Thus we can have a quotient model w.r.t to the maximal autobisim-
ulation on a model.

2.2.3. D. (Bisimulation Contraction) Given a Kripke modelM = (S,P,Σ,→
,V), let ≡b ⊆ S × S be the autobisimulation: {(s, t) | M, s ↔M, t}. The bisimulation con-
traction ofM is the quotient model

M/≡b = (S′,P,Σ,→′,V′)

where:

• S′ = {[s] | s ∈ S}where [s] is the equivalence class containing s w.r.t ≡b;

• ([s], a, [t]) ∈ →′ iff (s, a, t) ∈ →;

• V′([s]) = V(s).

ç

We can adapt the definition of bisimulation for finite automata by replacing the
invariance condition with the following:

[Accept Invariance] : s ∈ F ⇐⇒ t ∈ F′

where F and F′ are the sets of accept states in two automata. We say automata A
and B are bisimilar if there is a bisimulation R between QA and QB with the accept
invariance condition such that (qA, qB) ∈ R. It is easy to see that A↔ A′ =⇒ A =L A′,
but the converse does not hold.

2.2.4. D. (n-round Bisimulation Game) An n-round bisimulation game
Gn((M, s), (N , t)) between two pointed KMs (M, s) and (N , t) with the same signature
is a two player game based on the configurations in SM×SN . The initial configuration
is (s, t) and the players, Spoiler and Verifier, play in rounds. Each round consists of
two moves: first by Spoiler and then by Verifier. At each configuration (s′, t′), there
are two options:

• Spoiler selects an a ∈ Σ and a state s′′ inM such that s′ a
→M s′′ and then Verifier

needs to come up with a state in N such that t′ a
→N t′′ and V(s′′) = V(t′′). The

configuration is then changed to (s′′, t′′).

• Spoiler selects an a ∈ Σ and a state t′′ inN such that t′ a
→N t′′ and then Verifier

needs to respond with a state inM such that s′ a
→M s′′ and V(s′′) = V(t′′). The

configuration is then changed to (s′′, t′′).
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Spoiler wins the game if within n − 1 rounds some configuration (s′, t′) is reached
such that Spoiler can make a legal move but Verifier does not have a legal move to
respond. Verifier wins the game otherwise. ç

We say (M, s) and (N , t) are modally equivalent (M, s ≡ML N , t) ifM, s and N , t satisfy
exactly the same basic modal logic (ML) formulas1. The following facts are well known
(cf., e.g., [BdRV02]).

2.2.5. F. For image-finite pointed Kripke models (M, s) and (N , t), the following
are equivalent:

• M, s↔ N , t.
• M, s ≡ML N , t.
• for all n ∈N : Verifier has a winning strategy in the game Gn((M, s), (N , t)).

ê

2.3 Three Logics

2.3.1 Propositional Dynamic Logic

Propositional Dynamic Logic (PDL), introduced by Fischer and Ladner [FL79] (following
the idea of [Pra76]), is a branching-time logic of programs (represented by regular
expressions):

φ ::= > | p | φ ∧ φ | ¬φ | 〈π〉φ

where p ranges over a set of propositions P and π is a regular expression over some
alphabet Σwith tests in terms of PDL formulas:

π ::= 0 | 1 | a | ?φ | π + π | π · π | π∗

where a ∈ Σ. When Σ is not fixed, we use PDLΣ to denote the PDL language based
on Σ. As usual, we define ⊥, φ ∨ ψ, φ → ψ and [π]φ as the abbreviations of ¬>,
¬(¬φ ∧ ¬ψ), ¬φ ∨ ψ and ¬〈π〉¬φ respectively.

Intuitively, 〈π〉φ says that there is an execution of program π such that after the
execution φ holds.

We define the satisfaction relation � between a pointed model (M, s) with the
signature (P,Σ) and a PDLΣ formula φ as follows:

M, s � p ⇔ p ∈ VM(s)
M, s � ¬φ ⇔ M, s 2 φ

M, s � φ ∧ ψ ⇔ M, s � φ andM, s � ψ
M, s � 〈π〉φ ⇔ ∃s′ : s~π�s′ andM, s′ � φ

where ~π� is defined as:
1ML extends propositional logic with modal formulas 2φ and their Boolean combinations.
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s~1�s′ ⇔ s = s′

s~0�s′ ⇔ never
s~a�s′ ⇔ s a

→ s′

s~?ψ�s′ ⇔ s = s′ andM, s′ � ψ
s~π1 · π2�s′ ⇔ s~π1� ◦ ~π2�s′

s~π1 + π2�s′ ⇔ s~π1� ∪ ~π2�s′

s~(π1)∗�s′ ⇔ s~π1�?s′

where ◦,∪ and ? are the usual composition, union and reflexive transitive closure on
relations respectively.

We can view π as a regular expression over Σ ∪ {?φ | ?φ appears in π}, then:

M, s � 〈π〉φ ⇔ there exists a path s = s0~a1�s1~a2� · · · ~an�sn
inM such thatM, sn � φ and a0a1 . . . an ∈ L(π)

PDL can be axiomatized by the following axioms and inference rules [Seg82,
Par78]2:

TAUTOLOGY all the tautologies
K [π](φ→ φ′)→ ([π]φ→ [π]φ′)
0 [0]φ↔ >
1 [1]φ↔ φ
TEST [?ψ]φ↔ (ψ→ φ)
SEQ 〈π1 · π2〉φ↔ 〈π1〉〈π2〉φ
OR 〈π1 + π2〉φ↔ (〈π1〉φ ∨ 〈π2〉φ)
Star1 〈π∗〉φ↔ (φ ∨ 〈π〉〈π∗〉φ)
Star2 [π∗](φ→ [π]φ)→ (φ→ [π∗]φ)
Rules

2
φ

[π]φ

MP
φ,φ→ ψ

ψ

Note that with the presence of tests ?φ we can eliminate basic programs 0 and 1 by
defining them as ?⊥ and ?> respectively. Sometimes we are interested in the test-free
fragment of PDL in which we do not have ? as one of the program constructors but
we do have 0 and 1.

We write Kiφ (i knows φ) and K̂iφ (i thinks φ is possible) for [i]φ and 〈i〉φ respec-
tively, when interpreting PDLI on S5 models in an epistemic setting. We write CGφ (φ
is common knowledge among the agents in G) as [(i1 + · · · in)∗]φ if G = i1, . . . , in ⊆ I.

2The PDL formulas which are valid (i.e. hold on all the pointed models) are precisely the ones that can
be derived from the following proof system.
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2.3.2 Epistemic Temporal Logic

Developed independently by [PR85] and [HM90], and later made popular by the
seminal book [FHMV95], the Interpreted Systems (IS) (or Epistemic Temporal Logic
(ETL)) framework nicely combines the temporal developments of a system (in runs)
with epistemic ones in a distributed setting. Following the exposition in [FHMV95],
we give the definition of interpreted systems as follows:

2.3.1. D. (Interpreted System) Given a set of agents I = {i1, . . . , in}, given
n + 1 non-empty sets Lε,L1, . . . ,Ln of local states of (one for the environment ε, and
one for each agent in I), the set of global states for an interpreted system is a set
S ⊆ Lε × L1 × · · · × Ln. An interpreted system I is a triple (R,P,V) where R is a set of
runs, i.e. functions r : N→ S, and V : S 7→ 2P is a valuation function. We denote the
finite history (m-prefix) of a run r as (r,m). (r,m) and (r′,m′) are indistinguishable for
agent i (notation: (r,m) ∼i (r′,m′)) if global states r(m) and r′(m′) have the same local
state for i. A pointed IS is an IS with a designated finite history, e.g., I, r,n. ç

Each interpreted system can be viewed as an infinite Kripke model with the set of
labels I ∪ {τ} where for each i ∈ I : ∼i is an equivalence relation, and τ

→ represents
the temporal development of the system. In the setting of ETL [PR85], the temporal
transitions are labelled with explicit actions e in a set Σ. Various Epistemic Temporal
languages can be defined on such models, for example, the simplest language is:

φ ::= > | p | φ ∧ φ | ¬φ | Kiφ | 〈e〉φ

with the following semantics on IS:

I, r,n � p ⇔ p ∈ VI(r(n))
I, r,n � ¬φ ⇔ I, r,n 2 φ

I, r,n � φ ∧ ψ ⇔ I, r,n � φ and I, r,n � ψ
I, r,n � Kiφ ⇔ for all (r′,m) such that (r,n) ∼i (r′,m) : I, r′,m � φ
I, r,n � 〈e〉φ ⇔ (r,n) e

→ (r,n + 1) and I, r,n + 1 � φ

〈e〉 in the above simple language can be replaced by any temporal operator thus
obtaining more expressive epistemic temporal logics.

2.3.3 Dynamic Epistemic Logic

A different perspective on the dynamics of multi-agent system is provided by the
development of so-called Dynamic Epistemic Logic (DEL) [Pla89, GG97, BMS98].
The focus of DEL is not on the temporal structure of the system but rather on the
epistemic impact of the events as the agents perceive them. The following PDL-style
DEL language is based on the exposition in [vBvEK06]:

φ ::= > | p | ¬φ | φ1 ∧ φ2 | 〈A, e〉φ | 〈π〉φ

whereA is an event model defined below with e as its designated event.
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2.3.2. D. (Event Model) An event modelA is a tuple:

A = (E,Σ,�,Pre)

where:

• E is a finite non-empty set of events.
• Σ is a set of labels.
• � ⊆ E × Σ × E is the set of labelled transitions.
• Pre : E 7→ Form(DEL) where Form(DEL) is the set of DEL formulas. Intuitively, Pre

assigns to each action a precondition in the form of a DEL formula that can be
constructed in an earlier stage of the inductive definition of the language.

ç

Notation In the epistemic setting, the relations i
� in the action model are assumed

to be equivalence relations, thus we may use↔i to denote them. ↔i models agent i’s
observational power on events in E (e.g. e1 ↔i e2 means agent i can not distinguish
event e1 and e2).

The semantics for PDL formulas is as usual and for 〈A, e〉φ:

M, s � 〈A, e〉φ⇐⇒M, s � Pre(e) andM⊗A, (s, e) � φ

where ⊗ is defined as follows:

2.3.3. D. (Product Update ⊗) Given a Kripke modelM = (S,Σ,→,V) and
an event model A = (E,Σ,�,Pre), the product model (M⊗A) is a Kripke model
(M⊗A) = (S′,Σ,→′,V′) where:

S′ = {(s, e) | M, s � Pre(e)}
a
→
′ = {((s, e), (s′, e′)) | s a

→ s′ and e a
� e′}

V′((s, e)) = V(s)

ç

The simplest event model is perhaps the one modelling a public announcement of
φ (notation: !φ) depicted as the following event modelA!φ:

e : φ I

where φ is the precondition of this singleton model, and I
→ denotes the reflexive

relations for each i ∈ I. LetM|φ be the Kripke model (S,P, I,∼,V) where:

• S = {s ∈ SM | M, s � φ};
• ∼ = ∼M ∩ (S × Σ × S);
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• V = VM|S (i.e. the restriction of VM on the domain S).

It is easy to see that updatingA!φ on a static modelM amounts to restricting theM
by the states which satisfy φ: M⊗A!φ ↔M|φ.

As a simple yet important fragment ofDEL, the Public Announcement Logic (PAL) [Pla89,
GG97] is usually presented as follows:

φ ::= > | p | ¬φ | φ1 ∧ φ2 | Kiφ | [!ψ]φ

where Kiφ and [!ψ]φ are equivalent to [i]φ and [A!ψ]φ in DEL respectively.
As for the expressivity of DEL, [vBvEK06] showed that adding product updates

to PDL does not increase the expressive power of PDL:

2.3.4. F. ([vBvEK06]) For any DEL formula φ there is a PDL formula φ′ such that
for all pointed Kripke modelsM, s :M, s �DEL φ ⇐⇒ M, s �PDL φ′. ê
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Logics of Epistemic Protocols

19





Chapter 3

Meta-knowledge Matters

3.1 Introduction

Public announcements are the simplest and best studied communication methods
in epistemic logic [vDvdHK07]. In this chapter, we focus on the epistemic proto-
cols that use public announcements as the only communication methods. As we
mentioned in the introduction, existing work in the framework of DEL represents
epistemic protocols as explicit sets of (finite) sequences of epistemic events (see,
e.g., [HY09, vBGHP09, Hos09]). However, as remarked in [PR03], an explicit set
of sequences of events is an extensional notion of common sense protocols which are
usually specified by a few rules governing the communications. Therefore a high-
level, finitely representable and model-independent specification is preferable for
epistemic protocols. This motivates us to represent epistemic protocols as (syntactic)
programs and thus focus on a subclass of ”regular protocols” in this chapter. This
restriction allows us to define a dynamic epistemic logic where protocols and their
consequences are both expressible in the language. Thus the formal specification and
verification are unified in a logical framework.

As we motivated in Chapter 1, complications arise in the verification of epistemic
protocols compared to the verification of normal protocols. The correctness of the
epistemic protocols heavily relies on the assumptions of the agents’ meta-knowledge
about the protocol itself. In particular, if the intended goal of an epistemic protocol
is to establish or prevent knowledge, then knowing that the protocol would fulfil
the goal may affect the verification of the protocol. It is reasonable to assume that
the protocol, its goal, and the underlying initial assumptions are commonly known
by all the agents including possible adversaries. Based on the logic we propose, we
can formally address the above subtlety and verify epistemic protocols under the
assumption that the intended goal is common knowledge.

Moreover, the formal specification of epistemic protocols calls for a more careful
study of the classic problems. For example, recall the Russian Cards Problem (RCP)
in Example 1.1.1, where A and B want to safely inform each other of their own
cards by using public communications only, with the presence of an adversary E. A

21
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satisfactory protocol to realize this safe information exchange should specify what A
and B should do under any initial card deals. However, in the previous studies of the
Russian Cards Problem (e.g. [vD03, vDvdHvdMR06]), the focus was usually on a
particular deal of the cards1. As we shall see, the framework developed in this chapter
can help us design and verify protocols that work on arbitrary initial distributions.
The formal discussion also reveals some further subtleties. For example, in the case
of RCP3.3.1 we can show that correct deterministic protocols that are executable on
arbitrary initial distributions of cards do exist, but that they are necessarily biased
with respect to single card occurrence in the announcement..

Related work The closest work to ours is [vD02], where, instead of using action
models as in [BM04], the author specifies the epistemic events by programs involving
atomic epistemic actions such as learning and testing (see also [vDvdHK03c] and
[vDvdHK07, Chapter 5] for extensions). Compared to this approach, our focus is on
the verification of epistemic protocols, i.e. sequences of epistemic events, which sit
at a higher level than the events themselves. This difference is also reflected in the
design of the languages. For example, iteration over epistemic events is crucial in
our work, while it may not fit in a description of complex epistemic events.

Structure of the chapter An epistemic logic of protocol specification and verifi-
cation is introduced in Section 3.2, whose model checking problem is shown to be
decidable. Section 3.3 formally addresses the specification and verification of epis-
temic protocols. We show that if the meta-knowledge of the protocol is assumed,
then the verification problem should be formalized as model checking a fixed point
formula involving iterated announcements. We also define a notion of universal ver-
ification of epistemic protocols with respect to a model, in which case checking the
common knowledge of the correctness of the protocol suffices. To demonstrate the
use of our framework, we study the deterministic protocols for the Russian Cards
Problem in Section 3.4.

3.2 Preliminaries

In this section we define an Announcement Protocol Language LAP for specifying and
verifying epistemic protocols with announcements only. Our language is based on
test-free PDL but with public announcements as atomic programs. The choice of test-
free PDL is based on the observation that each announcement !φ has an intrinsic guard
?φ which is assumed to be common knowledge in this chapter. For announcements
with non-intrinsic tests, e.g, ?Ki(p∧ q)·!Kip, see discussions in Section 3.5 and the next

1For example, [vDvdHvdMR06] focuses on announcements for the specific situation of the card deal
(012.345.6). The authors mentioned that the model checking task of a protocol that provides an announce-
ment for an arbitrary initial state takes much more time, but the protocol itself is not discussed in the
paper.
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chapter. The formulas of LAP are defined as:

φ ::= > | p | ¬φ | φ1 ∧ φ2 | [π]φ | CGφ

π ::= !φ | π1 · π2 | π1 + π2 | π
∗

where p ranges over a set of basic propositions P and G is a subset of the set of agents
I.

We write Kiφ for C{i}φ and Cφ for CIφ. Intuitively, [π]φ expresses “after any
possible run of the protocol π, φ holds”. We write LπMφ for [π]φ ∧ 〈π〉φ. Thus LπMφ
says “protocol π is executable and after every possible run φ holds”. Moreover, we
use !iφ as the abbreviation for the announcement !Kiφ. Intuitively, !iφ is a public
announcement of φ by agent i while !φ models an external announcement from the
environment (e.g., the role of Father in the Muddy Children example). π is called an
n-step protocol if π = π1 ·π2 · · ·πn and for i ≤ n : πi does not contain operators ∗ and ·.

Given an S5 modelM = (S,P, I,∼,V), the truth value of a LAP formula φ at a state
s inM is defined as:

M, s � p ⇔ p ∈ V(s)
M, s � ¬φ ⇔ M, s 2 φ

M, s � φ ∧ ψ ⇔ M, s � φ andM, s � ψ
M, s � CGψ ⇔ ∀t : s ∼G t =⇒ M, t � ψ
M, s � [π]φ ⇔ for allM′, s : (M, s)~π�(M′, s) impliesM′, s � φ

where∼G= (
⋃

i∈G ∼i)? andπ are the epistemic programs functioning as model changers:

(M, s)~!ψ�(M′, s) ⇔ (M′, s) = (M|ψ, s)
(M, s)~π1 · π2�(M′, s) ⇔ (M, s)~π1� ◦ ~π2�(M′, s)

(M, s)~π1 + π2�(M′, s) ⇔ (M, s)~π1� ∪ ~π2�(M′, s)
(M, s)~π∗�(M′, s) ⇔ (M, s)~π�?(M′, s)

whereM|ψ is the restriction ofM to the states where ψ holds (see Section 2.3.3); ◦,∪
and ? express the usual composition, union and reflexive transitive closure on rela-
tions respectively. Viewing π as a regular expression over {!φ | φ is an LAP formula},
we have:

(M, s)~π�(M′, s) ⇐⇒ there is a sequence w ∈ L(π) such that (M, s)~w�(M′, s)

A run of π on a model (M, s) is a sequence w of announcements such that w ∈ L(π)
and (M, s)~w�(M′, s) for some (M′, s). For each run w on (M, s) there is a unique path
of pointed models (M, s), (M1, s), . . . , (Mn, s) such thatMn =M′, which realizes w.

Iteration is important in specifying epistemic protocols with while-do loops (see
for example, [vDvdHK07, pp.13] and [DW07]). We will also show, in the next section,
that having the Kleene star in the specification language is crucial for verifying epis-
temic protocols. However, [MM05] showed that the satisfiability problem of a logic
containing both iterated announcement ((!φ)∗) and common knowledge operators is
undecidable, even on finite models. Fortunately, the model checking problem of LAP
on finite models is decidable:
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3.2.1. P. Model checking LAP on finite Kripke models is decidable.

P The idea of the proof is based on the observation that the basic epistemic
programs !φ of LAP are eliminative in nature, which means that the transformed model
is only getting smaller after a run of an epistemic program. The aim is then to re-
duce model checking φ on (M, s) to the standard PDL-style model checking of φ on
a larger finite model N , where programs π in φ are taken as labels of relations in
N . The state space of N is the set of all the possible pointed sub-models (M′, s′) of
M. We define (M′, s′) ∼Ni (M′′, s′′) ⇐⇒ (M′ =M′′ and s′ ∼i s′′ inM′). We let the
valuation VN ((M′, s′)) = VM′ (s′). Now we are ready to compute all the correspond-
ing relations of π in N by usual treatments in PDL model checking algorithms for
operators ·,+ and ∗ and the following operation to deal with !φ′: M′, s′ →!φ′ M

′′, s′′

iffM′′ = M′|φ′ and s′ = s′′. To computeM′|φ′ we need to call the model checking
algorithm again but since φ′ (a subformula of φ) is strictly simpler than φ, we will fi-
nally arrive at a situation that can be handled by the PDLmodel checking algorithm. ë

3.3 Announcement Protocol and Verification

In this section, we specify the announcement protocols and address their verification
problem formally.

To verify an epistemic protocol, it is important to specify the assumptions about
the initial setting in which the protocol is to be executed. For example, a protocol
for RCP2.2.1 (see Example 1.1.1) is expected to be run in the situation where five
cards are given to three agents according to the distribution (2.2.1). It does not make
sense to run the protocol in a situation with less agents or more cards. As observed
in [FHMV97], it is crucial to make the distinction between the protocol (as the rules
governing the actions) and the setting in which it is to be executed. In this chapter,
we take epistemic programs as protocols and use a set of logical formulas to specify
the initial assumptions explicitly. The verification of a protocol w.r.t. the intended
goal should then be performed against initial models satisfying such assumptions.
Based on the above consideration, we let the protocol specification include not only
the protocol and its intended goal but also the initial assumptions:

3.3.1. D. (Protocol Specification) A protocol specification Prot is a triple
〈π,φ,T〉 where the protocol π is an epistemic program in LAP, φ is a program-free
epistemic formula of LAP serving as the intended goal of the protocol, and T is a set
of program-free epistemic formulas of LAP defining the initial assumptions of the
protocol. ç

A protocol specification Prot is deterministic if on any pointed model that satisfies
TProt, there is at most one run of πProt. It is called non-deterministic if it is not
deterministic. We also say πProt is a deterministic protocol if Prot is deterministic.
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Note that our definition of determinism is not based on the syntactic form of π:
we allow nondeterministic choices + in a deterministic specification. Let has jx be the
basic proposition meaning: agent j has card x. A simple example of a deterministic
protocol specification in a card game setting is:

〈(!AhasAc+!AhasAd),KBhasAc ∨ KBhasAd, {(hasAc ∧ ¬hasAd) ∨ (¬hasAc ∧ hasAd)}〉

where agent A is to announce his card according to the protocol, in order to let B
know his card, under the setting in which A can only have one of the two cards
c and d. Note that hasAc and hasAd are not logically exclusive, thus can be both
true on some model. However, such model is excluded by the initial assumption:
(hasAc∧¬hasAd)∨ (¬hasAc∧hasAd). Therefore the above specification is deterministic
according to our definition.

Intuitively, a (complete) verification of a protocol specification Prot should check
whether the goal φ holds after any execution of the protocol πProt on any model that
satisfies the initial assumptions TProt. Formally, we need to check:

TProt � [πProt]φProt

If TProt is a finite set then the above complete verification problem amounts to check-
ing the satisfiability of the LAP-formula

∧
TProt → [πProt]φProt. However, as we

mentioned in the previous section, the satisfiability problem for LAP is undecidable
even on finite models. On the other hand, whether complete verification is necessary
is actually in question. In practice, we often focus on particular initial models that
satisfy T, since T may not be a complete characterization of the intended informal
initial requirements we have in mind, namely, there can be unintended models that
also satisfy T. The ideal case is that the set T has a unique model, and this model can
be generated by a certain method. Such issues related to modelling will be addressed
in Part II.

In this chapter, we focus on the verification problem of a protocol specification
Prot against a given pointed model (M, s) that satisfies TProt. The verification prob-
lem then amounts to the following model checking problem:

M, s � [πProt]φProt

In some scenarios (e.g., Russian Cards), we are interested in verifying a protocol
universally in a certain modelM, where each state ofM represents a particular initial
distribution of information (e.g., a random card deal). In such cases, the protocol is
also required to be executable under arbitrary initial distribution of the information.
This universal verification of Prot againstM can be formalized as the model checking
problem:

M � LπProtMφProt
namely, for all s ∈ SM : model checkingM, s � 〈πProt〉φProt ∧ [πProt]φProt.
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As we motivated in Chapter 1, the verification of an epistemic protocol is more
subtle than it seems to be: the meta-knowledge of the protocol itself may affect the
verification of the protocol. We shall see that the above formalizations of the verifica-
tion problem are not appropriate any more, if we assume the protocol specification
is commonly known.

By commonly knowing a protocol specification Protwe mean the following:

1. The protocol itself (πProt) is commonly known;

2. The intended goal of the protocol (φProt) is commonly known.

3. The set of initial assumptions (TProt) is commonly known.

If an epistemic protocol is publicly available and is to be used repeatedly, then it
is natural to assume the above. Therefore a rigid verification of an epistemic proto-
col should be undertaken under these meta-knowledge assumptions. Note that the
third assumption can be fulfilled by letting the formulas in T be of the form Cψ. We
will address the issues about the second assumption in Chapter 4. In this chapter
we focus on the first assumption and address the verification problem under this
assumption.

Let us start from an observation made in [vD03] that checking M, s � [!π]φ is
sometimes not sufficient, even for a single step protocol π =!ψ aiming at establishing
φ. As we saw in Example 1.1.1, if the agents know the intended goal of the protocol
then they will assume that others do not perform actions which can not lead to the
goal. The knowledge assumption about the intended goal lets the agents be able to
reason more, which may destroy the correctness of the protocol established without
the assumption of agents’ knowing the goal.

To incorporate this knowledge assumption in the current framework, a straight-
forward idea is to just announce the intended goal of the protocol thus make it
commonly known. In [vD03], the author proposed that, in a Russian Cards setting,
the verification of a protocol with the intended goal φ should be undertaken while
an announcement !ψ is interpreted as more than just announcing ψ 2:

M,w � [!(ψ ∧ [!ψ]φ)]φ

The idea is that by announcing ψ as well as the intended effect of the announcement
ψ, we may verify the correctness of the protocol under the assumption that agents
know the goal. However, if the correctness of [!(ψ ∧ [!ψ]φ)]φ is now assumed and
known by agents, we still need to make sure that knowing this again does not affect
the correctness of the protocol. We can iterate such reasoning ad infinitum.

Now let us consider an arbitrary protocol π in LAP and a corresponding goal φ.
We define:

2In the original setting of [vD03], it is suggested that the announcement should be formalized by a
Gricean reading: the announcement of !ψ by agent a aiming at establishing ψ is formalized as !(Kaψ ∧
[!Kaψ]Kaφ) (the so-called “safe communication”). We omit the details in [vD03] that are relevant to the
context of Russian Cards problem.
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• η0 = [π]φ

• ηi+1 = [!(η0 ∧ · · · ∧ ηi)][π]φ

We can simplify ηi+1 by making use of the following valid formula

[!(ψ ∧ [!ψ]φ)]χ↔ [!ψ][!φ]χ (?)

3.3.2. P. ηi+1 = [!([π]φ)·!([π]φ) · · ·!([π]φ)︸                         ︷︷                         ︸
i

][π]φ

P Since

ηi+1 = [!(η0 ∧ · · · ∧ ηi)]φ = [!(η0 ∧ · · · ∧ ηi−1 ∧ [!(η0 ∧ · · · ∧ ηi−1)][π]φ)][π]φ.

By (?), it is not hard to see that

ηi+1 = [!(η0 ∧ · · · ∧ ηi−1)][![π]φ][π]φ.

Repeatedly applying the transformation, we have

ηi+1 = [![π]φ] · · · [![π]φ]︸               ︷︷               ︸
i

[π]φ = [!([π]φ) · · ·!([π]φ)︸               ︷︷               ︸
i

][π]φ.

ë

Intuitively, we need to check ηi for each i, since there are cases where all the ηi are
logically different. To see this, recall the Muddy Children scenario 1.1.2, where we
showed that if there are n muddy children and it is commonly known that at least
one of them is muddy, then the muddy children will only get to know that they are
muddy after announcing “we don’t know” for n−1 times. Now let πd be the dummy
announcement !> and let φn be the formula that expresses “all the n children do not
know whether they are muddy or not”. It is clear that [πd]φn ↔ φn is valid. The
above analysis of the Muddy Children scenario tells us that for any i > 0, there is
always a pointed model (Mi, s) such that:

Mi, s � [!([πd]φi+2) · · ·!([πd]φi+2)︸                        ︷︷                        ︸
i

][πd]φi+2,

but
Mi, s 2 [!([πd]φi+2) · · ·!([πd]φi+2︸                       ︷︷                       ︸

i+1

)][πd]φi+2

It is not hard to see that [(![π]φ)∗][π]φ expresses exactly the infinite conjunction
of all the ηi. Thus to verify the protocol π under the assumption of the common



28 Chapter 3. Meta-knowledge Matters

knowledge of the goal of the protocols we need to model check the fixed point
formula [(![π]φ)∗][π]φ instead of [π]φ.

For universal verification, we let η′0 = LπMφ and η′i+1 = [!(η0 ∧ · · · ∧ ηi)]LπMφ.
Similarly, we can show:

3.3.3. P. η′i+1 = [!(LπMφ) · · ·!(LπMφ)︸               ︷︷               ︸
i

]LπMφ

Therefore universal verification under the knowledge assumption of the intended
goal amounts to checkingM � [(!LπMφ)∗]LπMφ which can be simplified as follows:

3.3.4. P.

M � [(!LπMφ)∗]LπMφ ⇐⇒ M � LπMφ

P ⇒ is trivial. For ⇐: Suppose M � LπMφ, then announcing LπMφ does not
change modelM, thus the truth values of the formulas are preserved after any iter-
ation of the announcement LπMφ3. ThereforeM � [(!LπMφ)∗]LπMφ. ë

We may simplify the verification problem further when looking at connected mod-
els where every state is connected to all the other states by some path of relations:

3.3.5. P. IfM is a connected model then for any s inM,

M � [(!LπMφ)∗][π]φ ⇐⇒ M, s � CLπMφ

P Immediate from Proposition 3.3.3 and the connectivity. ë

This means that to verify a protocol is correct under any possible initial informa-
tion distribution is to check the common knowledge of the correctness of the protocol
at an arbitrary initial situation. Note that in most applications, the initial epistemic
model under consideration is indeed connected, assuming that the agents are perfect
reasoners who can imagine the possibilities others may think.

In summary, we define the verification of a protocol specification as follows:

3.3.6. D. (Verification under Common Knowledge) Given a protocol spec-
ification Prot and a pointed model (M, s) satisfying TProt, the verification of Prot
against (M, s) under the common knowledge of the intended goal φ is checking:

M, s � [(![πProt]φProt)∗]φProt
3cf. [vDK06] for a more general study on successful updates.
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The universal verification of Prot against modelM, s under the common knowledge
of the intended goal φ is checking:

M � LπMφProt

When the modelM is connected, the universal verification problem is equivalent to
checking the common knowledge of the correctness of the protocol:

M, s � CLπProtMφProt

ç

Note that since the universal verification problem reduces to simply checking
M � LπMφProt, then given a π without iteration the universal verification can also be
done in the standard framework of PAL (see page 17).

3.4 Deterministic Protocols for RCP3.3.1

In this section we take the Russian Cards Problem as an example to demonstrate the
use of our framework in designing and verifying epistemic protocols. In particular,
we study deterministic 2-step protocols for RCP3,3,1 that can be executed under an
arbitrary initial distribution of cards. We show that there is a correct, deterministic
protocol for RCP3.3.1, however with uneven occurrences of the cards in the announce-
ments (i.e. some cards occur more often than others in the announcements).

Recall that in the setting of RCPn.n.k, 2n + k cards are distributed among three
agents according to the distribution (n.n.k) and the agents can only see their own
cards (cf. Example 1.1.1). We first formalize the initial assumptions in this setting.

Let I = {A,B,E} be the set of agents, Dkn.n.k = {0, 1, . . . , 2n+k−1} be the set of 2n+k
cards, Hsh be the set of h-hands (e.g., Hs3 = {{x, y, z} | x, y, z ∈ Dkn.n.k are different }).
Let us consider a tailored set of basic propositions: Phas = {hasix | i ∈ I, x ∈ Dkn.n.k}

where hasix intuitively expresses that agent i has card x. We use hasiX as the ab-
breviation of

∧
x∈X hasix. The initial assumptions are formalized as Tn.n.k = {Cφ}

where:

φ = OneCardInOneP ∧ EkCards ∧ ABnCards ∧ KnowThyself ∧ DontKnowOthers

• EkCards:=
∨

X∈Hsk
hasEX;

• ABnCards:=
∧

i∈{A,B}
∨

X∈Hsn
hasiX;

• OneCardInOneP:=
∧

i, j(
∧

x∈Dkn.n.k
(hasix→ ¬has jx));

• KnowThyself:=
∧

i∈I
∧

x∈Dkn.n.k
(hasix→ Kihasix);

• DontKnowOthers:=
∧

i, j
∧

x∈Dkn.n.k
(hasix→ (K̂ jhasix ∧ K̂ j¬hasix)4.

4Recall that K̂φ denotes ¬Ki¬φ (i thinks that φ is possible).
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Intuitively, the formula in T says that it is commonly known that 2n + k cards are
distributed among three agents according to the distribution (n.n.k) and the agents
only know their own cards.

Now we build an initial model which satisfies the above initial assumptions. Let
Mn.n.k = {S,Phas, I,∼,V}where:

• S = {(X,Y,Z) | X,Y ∈ Hsn,Z ∈ Hsk,X ∪ Y ∪ Z = Dkn.n.k};
• s ∼i t ⇐⇒ si = ti where (X,Y,Z)A = X, (X,Y,Z)B = Y and (X,Y,Z)E = Z;
• V(s) = {hasix | i ∈ I, x ∈ Dkn.n.k and x appears in si}.

Note thatMn.n.k is clearly connected. It can be verified thatMn.n.k satisfies Tn.n.k.

A correct protocol for RCPn.n.k should let A and B eventually know each other’s
cards (thus also E’s cards) while keeping E ignorant about A’s and B’s cards. This
can be formalized as φn.n.k = φ1 ∧ φ2 ∧ φ3 where:

φ1 =
∧

x∈Dkn.n.k

(hasAx→ KBhasAx)

φ2 =
∧

x∈Dkn.n.k

(hasBx→ KAhasBx)

φ3 =
∧

x∈Dkn.n.k

((hasAx→ ¬KEhasAx) ∧ (hasBx→ ¬KEhasBx))

Recall that in Example 1.1.1 we argue that knowing the correctness of the protocol
may destroy the correctness of the protocol. Now we can make this claim formal: let
π =!(hasA01 ∨ hasA23 ∨ hasA24 ∨ hasA34), it is easy to check that

M2.2.1, (01, 23, 4) � [π](φ1 ∧ ¬KEhasA01)

but
M2.2.1, (01, 23, 4) � [![π]φ1]KEhasA01

In the rest of this section, we focus on finding a protocol π3.3.1 such that the
following conditions are met:

1. π3.3.1 is a two-step protocol in the form π1 · π2 where π1 =!Aψ1 + · · ·+!Aψm and
!Bψ′1 + · · ·+!Bψ′l for some ψi and ψ′i .

2. 〈π3.3.1, φ3.3.1,T3.3.1〉 is deterministic;
3. M3.3.1 � Lπ3.3.1M(φ1 ∧ φ2 ∧ φ3);

We say a deterministic, 2-step protocol is correct for RCP3.3.1 if condition (3) is met.
Note that a protocol satisfying (2) can have at most one run at each of the states in
M3.3.1. Therefore, assuming (2), checking (3) is then equivalent to checking:

M3.3.1 � 〈π3.3.1〉(φ1 ∧ φ2 ∧ φ3)
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The following proposition suggests that we can focus on the first step of the
protocol with an intermediate goal φ1 ∧ φ3.

3.4.1. P. If there is a one-step protocol π1 such thatMn.n.k � Lπ1M(φ1∧φ3), then
there is a π2 such thatMn.n.k � Lπ1 · π2M(φ1 ∧ φ2 ∧ φ3).

P Let π2 =
∑

X∈Hsk
!BhasEX, we show that ifMn.n.k � Lπ1M(φ1 ∧ φ3) thenMn.n.k �

Lπ1 · π2M(φ1 ∧ φ2 ∧ φ3). Let KiCards j be the abbreviation for
∧

x∈Dk(has jx → Kihas jx),
then φ1 = KBCardsA and φ2 = KACardsB. We can verify that if i, j, l ∈ I are different
then KiCards j → KiCardsl(φ2) is valid in any submodel ofMn.n.k. Therefore it is easy
to see that ifMn.n.k � Lπ1Mφ1 thenMn.n.k � Lπ1MKBCardsE. Thus π1 · π2 is executable
andMn.n.k � Lπ1 · π2MKACardsE. It follows thatMn.n.k � Lπ1 · π2Mφ2. Since φ1 is clearly
preserved after executing π2, we only need to showMn.n.k � Lπ1 · π2Mφ3. We claim
that

Mn.n.k � Lπ1MC(KBCardsE)

If the claim is true, then Mn.n.k � Lπ1MKE(KBCardsE) thus for any state s = (X,Y,Z) :
Mn.n.k, s � Lπ1MKE(KBhasEZ). Therefore truthfully announcing KBhasEZ for some Z ∈
Hsk does not change the distributions of hands that E considers possible. Therefore
φ3 should be preserved after π2.

Now we prove the claim. First note thatπ2 is clearly deterministic: it can have only
one run when executed. Now given an arbitrary s inMn.n.k, if s ∼I t in a modelM′

such that (M, s)~π2�(M′, s) then we know there is a unique run w such that w ∈ L(π2)
and (Mn.n.k, s)~w�(M′, s) and (Mn.n.k, t)~w�(M′, t). SinceMn.n.k � Lπ1MKBCardsE then
M
′, t � KBCardsE. ThereforeMn.n.k � Lπ1MC(KBCardsE) and this proves the claim. ë

To simplify the discussion, we can restrict the form of π1 further w.l.o.g by adapt-
ing a result from [vD03], which states that to announce only A’s alternative hands is
enough.

3.4.2. P. IfMn.n.k � Lπ1M(φ1∧φ3) then there is aπ′1 such thatMn.n.k � Lπ′1M(φ1∧

φ3) and
π′1 = !APa0+!APa1 + · · ·+!APam

where Pai is of the form: hasAX0 ∨ hasAX1 ∨ · · · ∨ hasAXl with {X0, . . . ,Xl} ⊆ Hsn.

P The crucial observation for the proof is that for any formula φ such that
Mn.n.k, s � KAφ at some s, {t | Mn.n.k, t � φ} must be the union of some i-equivalence
classes inMn.n.k and each equivalence class ofMn.n.k can be characterized by a formula
hasAX for some hand X ∈ Hsn. Therefore, for each φ such thatMn.n.k, s � KAφ at some
s there is a φ′ = hasAX0 ∨ hasAX1 ∨ · · · ∨ hasAXm for a set of hands {X0, . . . ,Xm} ⊆ Hsn
such that {t | Mn.n.k, t � φ} = {t | Mn.n.k, t � φ′}. ë

In the sequel, we sometimes abuse the notion of Pai by viewing it as a set of
3-hands with each hand represented by xyz for {x, y, z} ⊂ Dkn.n.k (the order does not
matter). We now prove a lemma for later use in this section.
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3.4.3. L. If there is a deterministic protocol π1 such thatMn.n.k � Lπ1M(φ1 ∧ φ3) and
π1 =!APa0+!APa1 + · · ·+!APam then

1. each possible hand appears only once in Pa0, !Pa1, . . . , !Pam: for each X ∈ Hsn : there
is a unique i ≤ m such that X ∈ Pam.

2. any two hands in one announcement Pa j can only share at most n − k − 1 cards.

P For (1): Since Mn.n.k � Lπ1M> and π1 =!APa0+!APa1 + · · ·+!APam we know
that every hand should appear at least once. From the assumption that protocol π is
deterministic, every hand can only appear once. In the following, given a hand X of
A, let Pa(X) be the set Pa j such that X ∈ Pa j.
For (2): To let B know A’s cards after A’s announcement, we should make sure
that given A’s hand X, for any B’s hand Z, the alternatives in Pa(X) will be ruled out.
Namely, for any different hands X,Y ∈ Pa(X), any hand Z ⊆ Dkn.n.k\X that B may have:
Z∩Y , ∅. This means that for every two hands X,Y in Pai, the number of cards differ-
ent from the cards in X∪Y must be less than n. Otherwise there is a possible hand Z
which does not intersect with both X and Y. Thus, we have |Dkn.n.k|−|Y∪X| < n. Since
|Dkn.n.k| = 2n+k, |Y∪X| > n+k. Note that |X| = |Y| = n, thus |X∩Y| < 2n−n−k = n−k. ë

In the following we will concentrate on the specific case RCP3.3.1. We first show
that there is a deterministic protocol:

3.4.4. T. There is a correct, 2-step deterministic protocol for RCP3.3.1
5.

P Let Pai be the following sets of 3-hands.

Pa0 : 012 036 045 134 156 235 246
Pa1 : 013 025 046 126 145 234 356
Pa2 : 014 026 035 136 245
Pa3 : 015 024 123 256 346
Pa4 : 016 034 124 135 236 456
Pa5 : 023 056 125 146 345

Let π1 =
∑

0≤i≤5(!APai). Note that π1 is clearly a deterministic protocol: if hasA025 is
true then A should announce Pa2

6:

hasA013 ∨ hasA025 ∨ hasA046 ∨ hasA126 ∨ hasA145 ∨ hasA234 ∨ hasA356

Moreover we can verify thatM3.3.1 � LπM(φ1 ∧φ3). Thus from Proposition 3.4.1, there
is a deterministic 2-step protocol for RCP3.3.1. ë

However, the above protocol is biased in the sense that not all the cards appear
evenly in each announcement Pai (e.g. in Pa2, 0 appears three times but others only

5The solution was found with the help of the Alloy Analyzer [Jac02] based on Lemma 3.4.3, see
Appendix A for the code.

6We omit the KA in front of each hasAX.
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appear twice). Thus E may learn that some card is more likely than other cards to be
held by A. The authors of [AvDR09] showed that we can resolve the harm of unbiased
protocols by making use of probabilistic selections of announcements. Here we are
interested in whether we can have an unbiased deterministic protocol with the same
number of occurrences of cards in the alternative announcements. Here are some
properties of the unbiased protocol for RCP3.3.1, if it exists:

3.4.5. L. The first step of an unbiased deterministic protocol for RCP3.3.1 must satisfy
the following:

1. each announcement Pa j must be a set of 7 alternative hands.

2. there are in total 5 alternative announcements in the protocol: Pa0, . . .Pa4.

3. every two hands in the same announcement Pai have exactly one card in common.

P For (1): Suppose all the cards appear evenly (suppose g times) in an an-
nouncement with h hands. Since each hand has three cards then 3h = 7g. So the
minimal h is 7, and each card appears 3 times. We claim that if h is greater than 7
then there must be two hands which share more than 1 card. Note that there are
only C2

7 = 21 different pairs of cards and the three cards in each hand can constitute
3 different pairs. From the second statement in Lemma 3.4.3 any two hands should
not have a pair of cards in common, thus 7 hands of three cards then “cover” all the
possible 21 pairs of cards without repetition. Therefore adding one more hand of
three cards must result in two hands sharing two cards in common.
For (2): From the first statement in Lemma 3.4.3, we know the C3

7 = 35 hands should
all appear in some Pai once. Thus from (1) the protocol should have 5 alternative
announcements with 7 hands each.
For (3): Suppose there are two hands X,Y in an announcement Pa j such that X∩Y = ∅.
Without loss of generality let X = 123 and y = 456. Since each of the possible 21
pairs should appear in some hand in the announcement Pai as argued in (1), then
the hands 14c and 24c′ must also appear in Pa j for some cards c, c′. Since every two
hands should not have two cards in common and 1, 2 ∈ X and 4 ∈ Y, c, c′ < X∪Y thus
c = c′ = 0. However then 14c and 24c′ have two cards in common, contradiction. ë

In the following, we show that there is no deterministic protocol which is unbi-
ased.

3.4.6. T. There is no correct deterministic 2-step protocol which is unbiased for
RCP3.3.1.

P We prove the theorem by proving the following stronger claim first:
There are no 3 sets with 7 hands, such that: (1) all the 21 hands that appear in these sets

are different; (2) every two hands in the same set have one and only one common card; (3) all
the cards appear evenly in every set.

Suppose towards a contradiction that there exist 3 sets Pa2,Pa3,Pa4 satisfying (1),
(2) and (3). Assume without loss of generality that 012 ∈ Pa2, 013 ∈ Pa3 and 014 ∈ Pa4.
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Since for any x ∈ {2, 3, 4}: 01x ∈ Pax, then from (2) and (3) we know that xab, xcd ∈ Pax,
0ac, 0bd ∈ Pax and 1ad, 1bc ∈ Pax such that a, b, c, d ∈ Dk3.3.1\{0, 1, x} are all different.
Now we can list all the hands in Pax (with px

i ∈ {0, 1, x} and px
i , px

j if i , j):

for Pa2 : 012 p2
134, p2

156 p2
235, p2

246 p2
336, p2

345
for Pa3 : 013 p3

124, p3
156 p3

225, p3
246 p3

326, p3
345

for Pa4 : 014 p4
123, p4

156 p4
225, p4

236 p4
326, p4

335

First, there exists an x ∈ {2, 3, 4} such that px
1 = x, otherwise there must be either two

056 or two 156 in Pa2,Pa3,Pa4, contradictory to (1). Suppose w.l.o.g. that p2
1 = 2. It

is easy to see that p3
1 , 3 and p4

1 , 4, otherwise 234 appears twice in Pa2,Pa3,Pa4.
Moreover, since p3

156 is in Pa3 and p4
156 is in Pa4, p3

1 , p4
1. Suppose w.l.g. that p3

2 = 3.
Then p4

2 , 4 since 346 ∈ Pa3, therefore p4
3 = 4. Now let us fill in the known px

i as
following:

for Pa2 : 012 234, 256 p2
235, p2

246 p2
336, p2

345
for Pa3 : 013 p3

124, p3
156 325, 346 p3

326, p3
345

for Pa4 : 014 p4
123, p4

156 p4
225, p4

236 426, 435

Now we have p2
2, p

2
3, p

3
1, p

3
3, p

4
1, p

4
2 ∈ {0, 1}. We showed that p3

1 , p4
1, thus p3

3 , p4
2

(remember that p3
3 , p3

1 and p4
1 , p4

2). Since p2
3, p

3
3, p

4
2 ∈ {0, 1} then from p3

3 , p4
2 we

have: p2
3 = p3

3 or p2
3 = p4

2, but in any case, there will be one hand that appears in two
announcements, contradiction.
The Theorem follows from the above claim and Lemma 3.4.5. ë

3.5 Conclusion and Discussion

The logical framework developed in this chapter made it possible to formally specify
and verify announcement protocols under the assumption that the intended goals
of the protocols are commonly known. More examples of the protocol verification
using this framework can be found in [WKvE09]. In this chapter, we have restricted
ourselves to protocols involving public announcement only. This restriction gives us
a straightforward model checking algorithm. As we mentioned before, the Kleene
star over announcements is the source of the undecidability, thus it is important
to understand the behaviour of the Kleene star better. It is shown in [GK03] that
the limit of an iterated announcement corresponds to a deflationary fixed point on a
non-monotonic function, thus can be expressed by a formula in the Modal Iteration
Calculus (MIC). However, it is not clear whether our logic can be translated back to MIC.
Moreover, how to fit the iteration of more general action models in a fixed point logic
is also open. Some moderate extensions of the language are subgroup announce-
ments and actions for factual change (cf. [vDK08, vBvEK06]). Another interesting
extension is to add concurrent actions for modelling simultaneous announcements
in a distributed setting which will be addressed in Chapter 5. The restriction to
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public announcements also gives some hope for the synthesis problem of epistemic
protocols (cf. the ideas mentioned [ABvDS09]).

Another important restriction in the current framework is that we exclude explicit
tests in the program language of LAP (we do have an intrinsic test ?φ implicitly for
each announcement !φ). Therefore we can not specify guarded announcements like
?Ki(p ∧ q)·!Kp, where the test is not the announcement itself. A straightforward idea
is to introduce the tests with its usual semantics as in PDL. However, as we shall see
in Chapter 4, explicit tests require more careful modifications of the semantics, due
to the fact that non-intrinsic tests are not publicly observable. As we remarked in the
introduction, the tests can explicitly model the preconditions of the actions which
make the actions carry more meaning than they seem to have. The link between the
precondition and the actions should be established by protocols known to the agents.
In Chapter 4, we will have an extensive discussion on how to know and change the
protocols.





Chapter 4

Logics of Knowledge and Protocol Change

4.1 Introduction

In Chapter 3 we have shown that knowing that an epistemic protocol would fulfil
a certain goal may affect the verification of the protocol. In this chapter, we draw
the attention to the knowledge and the dynamics of protocols. As we motivated
in Chapter 1, knowing a protocol means knowing what to do [HF89] and knowing
the meaning carried by actions according to the protocols [PR03]. In this chapter, we
will make these two observations more precise. More importantly, we address the
problem “how to know a protocol?” by modelling the dynamics of protocols.

Knowing what to do In the framework LAP of the previous chapter, a promising
candidate for expressing that an agent knows what to do according to an announce-
ment protocol π is the formula Ki〈π〉>. However, due to the semantics of LAP, Ki〈π〉>
only says that agent i knows thatπ can be executed at any world he considers possible
according to the inherent preconditions of the announcements in π. For example, in
the Muddy Children scenario (Example 1.1.2) the assumed protocol is to (repeatedly)
announce whether you yourself are muddy, and clearly you know you can announce
it. However, there are many other true propositions that could be announced by an
agent. For example, Ki〈!im j+!i¬m j)〉> is valid in the model for i , j, but !im j+!i¬m j is
not part of the intended protocol. Clearly, we need a constraint telling us which an-
nouncements are in accordance with the protocol, in other words, we need to model
the role of the father as in the original story of the Muddy Children .

The existing work on protocols in DEL enriches the epistemic models with explicit
protocols such that the possible behaviours of agents are not only restricted by the
inherent preconditions of epistemic events but also restricted by protocol informa-
tion [HY09, vBGHP09, Hos09, HP10b]. This is similar to the treatment of protocols
in ETL [HF89, PR03], where the temporal development of a system is generated from
an initial situation by a commonly known protocol1. In this chapter we take a dif-
ferent approach: we precisely model the role of the father as in the Muddy Children

1However, the framework in [vBGHP09] can also handle the protocols which are not common known.

37
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scenario by introducing protocol announcements [!π] in the language. For example,
we use [!(a · b)]¬〈b〉φ to express: after the announcement of the protocol a · b, b can
not be executed as the first event2. The semantics of the language with protocol an-
nouncements is defined on standard Kripke models. The extra protocol information
is only introduced by protocol announcements while evaluating a formula. Such an
approach makes it possible to not only model the “installation” of the initial protocol
explicitly but also to handle protocol changes during the execution of the current
protocol: we model a true father who may change his mind.

The dynamics of protocols often occur in social interactions. For example, imag-
ine that you were told to close the door and on your way to do it you are told again
not to close it. Also as we mentioned in Chapter 1, someone from France may need
to update his protocol on cheek kissing when living in Holland. As another example,
let consider the yes-no questions which can be viewed as protocols announced by the
questioner: answer “Yes!” or answer “No!”. In dialogues, a well-trained spokesman
may respond to a yes-no question by inserting yet another protocol: “before answer-
ing your question, tell me what you meant by φ.”

Knowing what the actions mean The dynamics of the protocols that carry mean-
ings for actions are even more interesting. Here is yet another example: the Chinese
are non-confrontational in the sense that they will not overtly say “no”, instead they
say “I will think about it” or “we will see”. For a western businessman, “we will
see”, according to the standard interpretation, means it is still possible. However,
if he is updated with the Chinese protocol: ?pno · awill-see then he should see this is
just another way of saying “No”. Note that in the standard DEL, the interpretations
of events are fixed and implicitly assumed to be common knowledge, e.g., in PAL an
announcement !φ is assumed to have an inherent meaning: φ is true. This is because
the semantic objects (event models) are explicitly included in the syntax as in the
general DEL framework. However, the same utterance !φ (syntax) may carry different
meanings (semantics) as we have seen in the we-will-see example. A closer look at
public announcements should separate the utterances and their meanings. In fact,
an utterance a only carries the meaning φ if the hearer knows that the protocol ?φ · a
is carried out (cf. [PR03] for a detailed rationale).

To handle the protocols that carry meanings for actions, it is inevitable to introduce
tests in the protocol programming language. Intuitively, the tests are not observable
by the agents, unless announced previously, e.g. [?pno · awill-see]Kipno should not be
valid while [!(?pno · awill-see)][?pno · awill-see]Kipno should be valid. We define the formal
semantics for this enriched language in this chapter.

2Here we assume that if the protocol is announced then it is followed by all the agents. See [PS10]
for an interesting discussion on “knowingly following the protocol” by agents in a setting of imperfect
information.
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Related work Besides the work on DEL protocols we mentioned earlier [HY09,
vBGHP09, Hos09], we list some more related work here. Process logic [Pra79, HKP82]
extends PDL in adding modalities to specify progressive behaviours like “during the
execution of program π, φ will be true at some point.” In this chapter, we not
only reason about properties in the middle of an execution of a protocol but also
handle the protocol changes during the execution. Moreover, the semantics of our
logics will be defined on the states in the models, instead of on paths as in [Pra79,
HKP82]. Aucher [Auc09] also proposed an extended DEL, however, the reasoning of
the ongoing events is facilitated, in a setting without protocols. Unlike the work of
switching strategies in the context of games [PRS09], the change of our protocols can
be made at any time without being planned and we also incorporate knowledge in
the discussions.

Our treatment for the events that carry meaning is inspired by [PR03], in which
the authors give a semantics for messages (events) according to the underlying pro-
tocol in the ETL framework. However, we can explicitly express the protocol in
the language and design a semantics for the dynamics of protocols. The later fea-
ture also distinguishes our work from the work using regular expressions as proto-
cols [BS08b, Mey87, WKvE09]. The semantics of our logics are defined on standard
Kripke models, but unlike PAL, we do not use a model-changing semantics for our
[!π] operator. This gives us the possibility to model radical protocol changes which
are not based on the previous ones.

Structure of the chapter In this chapter we develop three logics featuring protocol
changing operators, which can all be translated to PDL, but with certain conve-
nience for modelling purposes. As an appetizer, we start in Section 4.2 with the
first logic PDL!, a version of test-free PDL equipped with protocol announcements
[!π]. The semantics is given in a non-standard style by using modes of satisfaction
relations [Gab02, Wan06]. Section 4.3 extends the language PDL! with knowledge and
Boolean tests to handle the cases like the above we-will-see example where knowing
a protocol gives meanings to actions. Finally, Section 4.4 proposes a logic PDL� with
automata as update models, which is powerful for modelling more complicated pro-
tocols and various interactions among agents. PDL� can be viewed as an extension of
DEL [BM04, KvB04, vBvEK06] with more liberal updates.

4.2 Basic Logic PDL!

The formulas of PDL! are built from the set of basic proposition letters P and the set
of atomic actions Σ as follows:

φ ::= > | p | ¬φ | φ ∧ φ | [π]φ | [!π]φ
π ::= 1 | 0 | a | π · π | π + π | π∗

where p ∈ P and a ∈ Σ. The intended meaning of the formulas is mostly as in PDL,
but “in context” of the protocol constraints: [π]φ now says that “after any run of the
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program πwhich is allowed by the current protocol, φ holds”. The new formula [!π]φ
expresses “after the announcement of the new protocol π, φ holds.”

To give the semantics to PDL!, we first recall a useful notion of regular expressions.
The input derivative π\a of the regular expression π ∈ RegΣ is defined as L(π\a) =
{v | av ∈ L(π)}. With the output function o : RegΣ → {0, 1} we can axiomatize \a (cf.
[Brz64, Con71]):

π = o(π) +
∑

a∈Σ(a · π\a)
1\a = 0\a = b\a = 0 (a , b) a\a = 1
(π · π′)\a = (π\a) · π′ + o(π) · (π′\a) (π + π′)\a = π\a + π′\a
(π)∗\a = π\a · (π)∗ o(π · π) = o(π) · o(π′)
o(π∗) = 1 o(1) = 1
o(0) = o(a) = 0 o(π + π′) = o(π) + o(π′)

Given w = a0a1 · · · an ∈ Σ
∗, let π\w = (π\a0)\a1 · · · \an. It is clear that π\w = {v | wv ∈

L(π)}3. Together with the axioms of Kleene algebra [Koz91] we can syntactically
derive π\w which is intuitively the remaining protocol of π after executing a run w.
For example:

(a + (b · c))∗\b = (a\b + (b · c)\b) · (a + b · c)∗ = (0 + (1 · c)) · (a + b · c)∗ = c · (a + (b · c))∗

Note that in general we do not have w · (π\w) = π. We say w is compliant with π
(notation: w ∝ π ) if π\w , 0, namely, executing w is allowed by the protocol π.

Intuitively, to evaluate [π]φ we need to memorize the current protocol in some
way. Here we employ a trick similar to the ones used in the semantics developed in
[Gab02, Wan06, BE09]: we define the satisfaction relation w.r.t. a mode π (notation:
�π), which is used to record the current protocol. Given the current protocol π, the
allowed runs in a program π′ w.r.t π are those w ∈ Σ∗ such that w ∈ L(π′) and w ∝ π.
Note that if the current protocol is π, then after executing a run w we have to update
π by the remaining protocol π\w. Now we are ready to give the semantics as follows:

M, s � φ ⇔ M, s �Σ∗ φ
M, s �π p ⇔ p ∈ V(s)
M, s �π ¬φ ⇔ M, s 2π φ

M, s �π φ ∧ ψ ⇔ M, s �π φ andM, s �π ψ
M, s �π [π′]φ ⇔ ∀(w, s′) : w ∈ L(π′),w ∝ π, and s w

→ s′ =⇒ M, s′ �π\w φ
M, s �π [!π′]φ ⇔ M, s � 〈π′〉> =⇒ M, s �π′ φ

where Σ∗ stands for (a0 + a1 + · · · + an)∗ if Σ = {a0, a1, . . . , an}. The first clause says that
initially everything is allowed and the last says that the newly announced protocol
overrides the current one. [π′]φ is true w.r.t the current protocol π iff on each s′ that
is reachable from s by some run w of π′ which is allowed by the current protocol π:
φ holds w.r.t the remaining protocol π\w. Note that it is important to remember w
which denotes how you get to s′ as the following example shows:

3π\w is also a regular language cf. [Con71].
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4.2.1. E. Consider the following modelM:

s
a ''
•

c ((
d
66 •

It can be verified that:

M, s � [!(a · c + b · d)]〈a + b〉(¬〈d〉> ∧ 〈c〉> ∧ [!(c + d)]〈d〉>)

The intuition behind this example is as follows. After announcing the protocol
a · c + b · d, the program a + b can be executed but actually only a can be executed on
the model. Thus after executing a + b only c is possible according to the remaining
protocol (a · c + b · d)\a = c. However, if we now announce a new protocol (c + d) then
d becomes available again. æ

Recall the PDL semantics in Section 2.3.1. It is not hard to see:

4.2.2. P. For any test-free PDL formula φ and any pointed Kripke model (M, s):

M, s �PDL φ ⇐⇒ M, s � φ

A natural question to ask is whether PDL! is more expressive than test-free PDL. To
answer the question, we now take a closer look at the strings w in the semantics of
[π′]φ. Given π, let CL(π) be the set of all the pre-sequences of π: {w | w ∝ π}. We first
show that we can partition CL(π) into finitely many regular expressions.

4.2.3. L. For any regular expression π there is a minimal natural number k such that
CL(π) can be finitely partitioned into π0, . . . , πk and for any w, v ∈ L(πi) : π\w = π\v.

P By Kleene’s theorem 2.1.3 we can construct a deterministic finite automaton
recognizing the language of π. It is well known that DFA can be minimized, thus we
obtain a minimal automaton that recognizes L(π):

Aπ = ({q0, . . . , qk},Σ, q0,�,F)

where {q0, . . . , qk} is a set of states with q0 being the start state and a subset F being the
set of accept states. For each i ≤ k such that qi can reach a state in F: we let πi be the
regular expression corresponding to the automaton ({q0, . . . , qk},Σ, q0,�, {qi}). Since
Aπ is deterministic, it is not hard to see that theseπi form the partition that we want. ë

In the sequel, we call the above unique partition π0, . . . , πk the pre-derivatives of π.
For example, the minimal deterministic automaton4 of a∗ · d + b · (c + d) is:

4We omit the transitions to the “trash” state which can not reach any accept state.
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•

c
''

d

��

q0boo

d
��

a // •

a

��

d����

�����

•↓

thus the pre-derivatives of a∗ · d + b · (c + d) are 1, a · a∗, b, a∗ · d + b · (c + d)5.
Now we define the following translation from PDL! to PDL:

t(φ) = tΣ∗ (φ)
tπ(p) = p

tπ(¬φ) = ¬tπ(φ)
tπ(φ1 ∧ φ2) = tπ(φ1) ∧ tπ(φ2)
tπ([π′]φ) =

∧k
i=0([θi]tπ\πi (φ))

tπ([!π′]φ) = 〈π′〉> → tπ′ (φ)

where π0, . . . , πk are the pre-derivatives of π, θi is a regular expression corresponding
to L(π′) ∩ L(πi), and π\πi is defined as π\w for any w ∈ L(πi).

By this translation we can show that PDL and PDL! are equally expressive.

4.2.4. T. For any pointed Kripke modelM, s :

M, s � φ ⇐⇒ M, s �PDL t(φ).

P By induction on φ we can show: M, s �π φ ⇐⇒ M, s �PDL tπ(φ). The only
non-trival case is for [π′]φ:
M, s �π [π′]φ
⇐⇒ ∀(w, s′) : w ∈ L(π),w ∝ π′, and s w

→ s′ =⇒ M, s′ �π\w φ
⇐⇒ ∀(w, s′) : if there is a pre-derivative πi : w ∈ L(π),w ∈ L(πi), and s w

→ s′

thenM, s′ �π\w φ
⇐⇒ for all pre-derivatives πi : ∀s′ : s w

→ s′ and w ∈ L(π),w ∈ L(πi) thenM, s′ �π\w φ
⇐⇒M, s �

∧k
i=0[θi]tπ\πi (φ)

ë

Discussion In this section, we take a rather liberal view on the “default” protocol,
namely we assume that everything is allowed initially, and the announcements may
only restrict the possible actions. On the other hand, we can well start with a conser-
vative initialization where nothing is allowed unless announced later. It is not hard

5Note that a · a∗ · d + b · (c + d) + d = a∗ · d + b · (c + d).
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to see that we can also translate this conservative version of PDL! to PDL if we let
t(φ) = t1(φ) where 1 is the constant for the empty sequence i.e., the skip protocol. For
example, t1([a]⊥ ∧ [!a]〈a + b〉>) = [0]⊥ ∧ ta(〈a + b〉>) = 〈a〉>.

Moreover, [!π] is rather radical in the sense that it changes the protocol completely.
We may define a more general operation as follows: Let π(x) ∈ RegΣ∪{x}, namely, π(x)
is a regular expression with a variable x. Now we define:

M, s �π [!π′(x)]φ ⇔ M, s � 〈π′(π)〉> =⇒ M, s �π′(π) φ

We can then concatenate, add, insert and repeat protocols by announcing x ·π′, x+π′,
π′ + x, and x∗ respectively. It is easy to see that the announcement operator [!π]
introduced previously is a special case of [!π(x)]. We can still translate the logic
with the generalized protocol announcements to PDL with an easy revision of the
translation:

tπ([!π′(x)]φ) = 〈π′(π)〉> → tπ′(π)(φ)

4.3 Public Event Logic PDL!?b

In this section, we extend the language of PDL! with knowledge operator and Boolean
tests in programs. We shall see that by announcing a protocol with tests, we can let
actions carry propositional information as we motivated in Chapter 1. The language
of PDL!?b is defined as follows:

φ ::= > | p | ¬φ | φ ∧ φ | [π]φ | [!π]φ | Kiφ
π ::= ?φb | a | π · π | π + π | π∗

where i ∈ I and φb are Boolean formulas based on basic propositions in P. Note
that we do not include 1 and 0 as atomic actions since they can be expressed by the
Boolean tests ?> and ?⊥. We call the programs π in PDL!?b guarded regular expressions.

Now we can express the Häagen-Dazs slogan mentioned in Chapter 1 by the pro-
tocol: πH-D =?plove · abuy. A suitable semantics should let [!πH-D][abuy]Kiplove be valid.
However, without the announcement !πH-D, the “secret” love may not be known:
[?plove · abuy]Kiplove should not be valid. As we mentioned in the introduction, we
assume all the a ∈ Σ are public events which can be observed by all the agents, while
the tests, unless announced, are not observable to the agents.

To prepare ourselves for the definition of the semantics, we first interpret regular
expressions with Boolean tests as the languages of guarded strings [Koz01]. A
guarded string over P and Σ is a sequence ρ1a1ρ2a2ρ . . . ρnanρn+1 where ai ∈ Σ and
ρi ⊆ P represents the valuations of basic propositions in P (p ∈ ρ iff p is true according
to ρ). For any Boolean formula ψ, let Xψ ⊆ 2P be the corresponding set of valuations,
represented by subsets of P, that make ψ true. For any ρ ⊆ P, let φρ be the formula
φρ =

∧
p∈ρ p ∧

∧
p∈(P−ρ) ¬p.
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Now we can define the language of guarded strings associated with a guarded
regular expression over Σ and P:

Lg(a) = {ρaρ′ | ρ, ρ′ ⊆ P}
Lg(?ψ) = {ρ | ρ ∈ Xψ}

Lg(π · π′) = {w � v | w ∈ Lg(π), v ∈ Lg(π′)}
Lg(π + π′) = Lg(π) ∪ Lg(π′)
Lg(π∗) = {ε} ∪

⋃
n>0(Lg(πn))

where � is the fusion product: w � v = w′ρv′ when w = w′ρ and v = ρv′; πn = π · · ·π︸ ︷︷ ︸
n

.

We write π1 ≡g π2 if Lg(π1) = Lg(π2).

4.3.1. E. We have:

?p · ?q · a ≡g?(p ∧ q) · a ≡g?(p ∧ p) · ?q · a

?(p ∧ q) · a+?(p ∧ ¬q) · a ≡g ?p · a and ?p · a · a .g ?p · a

æ

We now define the language of input derivative π\w for a guarded string w as:

Lg(π\w) = {v | w � v ∈ Lg(π)}

and we say w ∝g π ifLg(π\w) , ∅. As in the previous section, we let Cg
π = {w | w ∝g π}.

LetL!(w) be the sequence of public events a0 . . . ak that occurs in w, e.g.,L!(?p·a·b) =
L!(?q · a · ?p · b) = a · b. Recall that we assume that only the public events can be
observed. Thus a guarded string w is indistinguishable from another guarded string
v if L!(w) = L!(v).

According to the standard semantics of PAL, the effect of announcing a formula
φ is to restrict the model to the φ-worlds (see Section 2.3.3). Our public events
are like announcements but with preconditions given by the previously announced
protocols. However, to model the public events we can also keep the model intact but
remember the information induced by the public events. When evaluating epistemic
formulas, we let agents only consider possible those worlds which are consistent with
the previously recorded information. Since the tests are Boolean, this restriction on
accessible worlds works the same as the restriction on models in standard PAL. This
motivates us to use �φπ in the semantics of PDL!?b where φ is to record the information
given by public events according to the protocols. We interpret PDL!?b on the S5 models
(S,P, I,∼i,V) as follows:
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M, s � φ ⇔ M, s �>
Σ∗
φ

M, s �ψπ p ⇔ p ∈ V(s)
M, s �ψπ ¬φ ⇔ M, s 2ψπ φ

M, s �ψπ φ ∧ φ′ ⇔ M, s �ψπ φ andM, s �ψπ φ′

M, s �ψπ Kiφ ⇔ for all v, if s ∼i t andM, t �ψπ ψ thenM, t �ψπ φ
M, s �ψπ [π′]φ ⇔ ∀w : w ∈ Lg(π′),w ∝g π, and s~w�s =⇒ M, s �ψ∧φ

w
π

π\w φ

M, s �ψπ [!π′]φ ⇔ M, s � 〈π′〉> =⇒ M, s �ψπ′ φ

where:

s~w�s ⇐⇒ w = ρa1ρa2ρ · · ·ρakρ and V(s) = ρ

and

φw
π =
∨
{φρ | v = ρa1ρa2ρ · · ·ρakρ,L!(w) = L!(v), v ∝g π}

Note that we do not include the transitions labelled by a ∈ Σ in the models since we
assume that each public event is executable at each state unless it is not compliant with
the current protocol (e.g., you can talk about anything in public unless constrained by
some law or conventions). Since the public events are intended to be announcement-
like events, we also assume that executing a protocol of such event does not result
in changing the real state from one to another. This explains the uniformity of ρ and
s in the definition of ~w�. Now we explain the ideas behind φw

π as follows. First
given a w = ρa1ρa2ρ · · ·ρakρ, we collect all the sequences v = ρ′a1ρ′a2ρ′ · · ·ρ′akρ′

such that v ∝g π. Intuitively ρ′ represents the information carried by v according to
the protocol π. Since each such v is indistinguishable from w for all the agents, the
disjunction φw

π is then the information which can be derived from the observation of
the public events in w according to the protocol π.

Consider the Häagen-Dazs example, let M be a two-world model representing
that a girl i does not know whether a boy loves her or not (she is not sure between a
plove-world s and a ¬plove world t). Let π =?plove · abuy, and w0 = {plove}abuy{plove}. It is
clear that w0 is the only guarded string in Lg(π) that have an uniform ρ. Note that
L!(w0) = L!(∅abuy∅), thus φw0

Σ∗
= p ∨ ¬p. We now showM, s 2 [π]Kiplove:

M, s � [π]Kiplove
⇐⇒ M, s �>

Σ∗
[π]Kiplove

⇐⇒ for all w ∈ Lg(π),w ∝g Σ
∗, and s~w�s =⇒ M, s �

φw
Σ∗

Σ∗\w Kiplove

⇐⇒ s~w0�s =⇒ M, s �
φ

w0
Σ∗

Σ∗\w0
Kiplove

⇐⇒ M, s �
φ

w0
Σ∗

?p·Σ∗ Kiplove

⇐⇒ M, s �p∨¬p
?p·Σ∗ Kiplove

Since s ∼i t andM, t � p ∨ ¬p thenM, s 2 [π]Kiplove. On the other hand:
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M, s � [!π][π]Kiplove
⇐⇒ M, s �>π [π]Kiplove

⇐⇒ M, s �φ
w0
π

π\w0
Kiplove

⇐⇒ M, s �p?> Kiplove

ThereforeM, s � [!π][π]Kiplove.

Similarly, for the we-will-see scenario mentioned in the introduction, if M is a
two-world model representing that a Westerner i does know whether pno (state s) or
¬pno (state t) then we can show that:

M, s � [!(?> · awill−see)]([?pno · awill−see]¬Kipno ∧ [!(?pno · awill−see)][?pno · awill−see]Kipno)

where ?> · awill−see is the default protocol a Westerner may have as the standard inter-
pretation for the sentence “we will see” which does not carry any useful information.

In the rest of this section we will show that PDL!?b can be translated back to PDL as
well. We will follow a similar strategy as in the previous section to finitely partition
Cg
π. This time we need to use automata on guarded strings. Given P let B(P) be the

set 22P
. Intuitively, X ∈ B(P) represent Boolean formulas over P.

4.3.2. D. (Automata on guarded strings [Koz01]) A finite automaton on
guarded strings (or simply guarded automaton) over a finite set of actions Σ and a finite
set of atomic tests P is a tuple A = (Q,Σ,P, q0,�,F) where the transitions are labelled
by atomic actions in Σ (action transitions) and sets X ∈ B(P) (test transitions). A
accepts a finite string w over Σ ∪ B(P) (notation: w ∈ LΣ∪B(P)(A)), if it accepts w as a
standard finite automaton over label set Σ∪B(P). The acceptance for guarded strings
is defined based on the acceptance of normal strings and the following transformation
function G which takes a string over Σ ∪ B(P) and outputs a set of guarded strings.

G(a) = {ρaρ′ | ρ, ρ′ ⊆ P}
G(X) = {ρ | ρ ∈ X}

G(ww′) = {vρv′ | vρ ∈ G(w) and ρv′ ∈ G(w′)}

We say A accepts a finite guarded string v : ρ0a0ρ1 . . . ak−1ρk over Σ and P, if v ∈ G(w)
for some string w ∈ LΣ∪B(P)(A). LetLg(A) be the language of guarded strings accepted
by A. ç

We say a guarded automaton is deterministic if the following hold (cf. [Koz01]):

• Each state is either a state that only has outgoing action transitions (action state)
or a state that only has outgoing test transitions (test state).

• The outgoing action transitions are deterministic: for each action state q and
each a ∈ Σ, q has one and only one a-successor.

• The outgoing test transitions are deterministic: they are labelled by {{ρ} | ρ ⊆ P}
and for each test state q and each ρ, q has one and only one {ρ}-successor.
Clearly these tests ρ at a test state are logically pairwise exclusive and altogether
exhaustive (viewing ρ as the Boolean formula φρ).
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• The start state is a test state and all accept states are action states.
• Each cycle contains at least one action transition.

The Kleene theorem between guarded automata and guarded regular expressions
is proved in [Koz01].

4.3.3. T. [Koz01, Theorem 3.1, 3.4] For each guarded regular expression π over P
andΣ there is a (deterministic) guarded automaton A over P andΣ such thatLg(π) = Lg(A),
and vice versa.

Let LU be the language of ρ-uniform guarded strings: {ρa1ρa2ρ · · ·ρakρ | ρ ⊆
P, ai ∈ Σ}.Clearly there is a regular expression for this language:

∑
ρ⊆P((?φρ · (a1 + · · ·+

am))∗·?φρ) if Σ = {a1, . . . , am}. Let Ug
π = Cg

π∩LU be the ρ-uniform part of Cg
π. Following

the idea in the previous section, we first need to prove the following lemma:

4.3.4. L. Given a guarded regular expression π over Σ and P, we can finitely partition
Ug
π into π0, . . . , πn such that for any i ≤ k : w, v ∈ Lg(πi) =⇒ πi\w = πi\v and φw

π = φv
π.

P (Sketch) The strategy for the proof is as follows: we first partition Ug
π into

π0, . . . , πn such that for any i ≤ n, for any w, v ∈ Lg(πi) : φw
π = φv

π, then we further
partition each πi according to the shared derivatives like in Lemma 4.2.3.

From Theorem 4.3.3, we can build deterministic guarded automata Aπ and AU
such that Lg(Aπ) = Lg(π) and Lg(AU) = LU. From the definition of deterministic
guarded automata, we can assume that in such deterministic automata test states can
only have action states as successors, for otherwise the successor test states can be
pruned6. Now set all the action states in Aπ that can reach some accept states as the
new accept states, we can obtain a guarded automaton AC such that Lg(AC) = Cg

π.
Finally we can build an automaton A such thatLg(A) = Cg

π∩L0 by the usual automata
product of AC and AU.

It is not hard to see that if you start with a ρ transition in A then you can never
go through a ρ′ transition which leads to an accept state such that ρ , ρ′. Thus the
automaton is in the following shape if all the states that are not leading to any accept
states are pruned:

s0 a //

b
????

��????

• {ρ0} // · · ·

q0

{ρ0}~~~

>>~~~

{ρ j}

��

{ρ1}

@@@

  @@@

• {ρ0} // · · ·

c

��

s1 a′ //

b′
@@@

��@@@

• {ρ1} // · · ·

• {ρ1} // · · ·

6Since all the test transitions are labelled by {ρ} for some ρ ⊆ P, two consecutive tests are either identical
or logically exclusive.
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We can then separate ρi “zones” from each other by taking each si as the start state for
zone ρi. Let Bsi be the standard finite automata over action set Σ : (Qact,Σ, si,�,F)
where Qact is the set of action states in Q, F is the set of accept states of A that are
also in Qact, and q a

� q′ ⇐⇒ q a
�

ρi
� q′ in A. Given Z ⊆ {ρ0, . . . , ρk} (intuitively a

Boolean formula), let DZ be the product automaton Πρi∈ZBsi × Πρi<ZBsi where Bsi is
the complement automaton of Bsi . We can show that DZ recognizes all the sequences
w ∈ Σ∗ such that {ρ | w = L!(v) for some v = ρa1ρ · · ·ρakρ ∈ Lg(A)} = Z. Then without
much effort, we can turn DZ into a finite guarded automaton which recognizes
guarded strings v in Cg

π, such that:

φv
π =
∨
{φρ | v′ = ρa1ρa2ρ · · ·ρakρ,L!(v) = L!(v′), v′ ∝g π} = φZ

Thus Cg
π can be partitioned into finitely many regular expressions πi such that for

any w, v ∈ Lg(πi) : φw
π = φv

π. By the similar techniques as in the previous section, we
can further partition each of these regular expressions πi into finitely many regular
expressions πi0 . . . πim such that for any w, v ∈ πi j: π\w = π\v. Thus we can partition
Cg
π into π00, . . . πkm w.r.t φ00, . . . , φkm and π′00 . . . π

′

km such that for any i ≤ k, j ≤ m :
w, v ∈ Lg(πi j) =⇒ π\w = π\v = π′′i j and φw

π = φv
π = φi j. ë

Now we define the following translation from PDL!?b to its fragment without [!π]
which is a PDLΣ∪I language with Boolean tests:

t(φ) = t>
Σ∗

(φ)
tψπ(p) = p

tψπ(¬φ) = ¬tψπ(φ)
tψπ(φ1 ∧ φ2) = tψπ(φ1) ∧ tψπ(φ2)

tψπ(Kiφ) = [i](tψπ(ψ)→ tψπ(φ))
tψπ([π′]φ) =

∧n
i=0([θi]t

ψ∧φi

π\πi
(φ))

tψπ([!π′]φ) = 〈π′〉> → tψπ′ (φ)

where π0, . . . , πk form a partition of Ug
π satisfying the requirements stated by the

above lemma. θi is a regular expression corresponding to Lg(π′) ∩ Lg(πi), and π\πi
is π\w for any w ∈ Lg(πi) and φi is φw

π for any w ∈ Lg(πi).7

Note that the translated formulas still have two kinds of modalities: [π] and [i]. We
now argue that we can further eliminate the program modalities. Since we assumed
that every event a ∈ Σ is executable at any state when we disregard the protocol
constraint, then we can actually replace each a ∈ Σwith ?> in the translated formula.
Now the program modalities appearing in the translated formula are action-free.
Without much effort, we can convert a regular expression of tests into a single test
e.g., (?φ+?ψ)∗·?χ is equivalent to ?(((φ ∨ ψ) ∨ >) ∧ χ). Finally we can eliminate such

7Note that if ψ is Boolean then tψπ(ψ) = ψ, e.g., in tψπ(Kiφ).
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test modalities by the validity: [?φ]ψ ↔ (φ → ψ). Let t′(φ) be the formula which
is obtained from t(φ) by further eliminating program modalities as described above,
then we can translate PDL!?b to basic epistemic logic (ELI) (thus also to PDLI).

4.3.5. T. For any pointed S5 Kripke modelM = (S,P, I,∼i,V, s) :

M, s �PDL!?b φ ⇐⇒ M, s �EL t′(φ).

As an example, consider the formula φ = [!((?p · a) + b)][a]Kip:

t(φ) = t>
Σ∗

(φ)
= 〈(?p · a) + b〉> → t>((?p·a)+b)([a]Kip)
= 〈(?p · a) + b〉> → [?p · a]tp

?p(Kip)
= 〈(?p · a) + b〉> → [?p · a][i](p→ p)

Therefore by replacing a and b with ?>we have:

〈(?p·?>)+?>〉> → ([?p·?>][i](p→ p))

It is easy to see that the above formula is logically equivalent to 〈?p〉> → ([?p][i]>)
which is equivalent to >. Indeed, [!((?p · a) + b][a]Kip is a valid formula.

4.4 Update Logic PDL�

PDL! and PDL!?b presented in the previous sections are limited in their convenience for
modelling epistemic protocols due to the following issues:

• The restriction to Boolean tests excludes the possibility of handling protocols
with more complicated pre-conditions, e.g., ?Kip · a: if you know p then do a.

• The protocols are interpreted as languages of strings, thus we cannot handle
branching structures which are useful when considering branching protocols
e.g., strategies in games.

• PDL!?b does not allow complicated epistemic actions as in DEL [BM04], but only
public events.

• The changes of protocols are assumed to be public and agents do not have
initial uncertainties about protocols.

As we have seen in the previous sections, operations on finite automata are crucial
in proving various results. A natural idea is to use automata directly as modalities
in the language. Inspired by [KvB04], in this section we generalize the notion of
event models in DEL and introduce a version of PDL with product modalities taking
automata as arguments such that the above issues can be handled.

To encode initial uncertainties of protocols we first need to enrich Kripke models
with protocol information. Following the notion in process algebra, we use Kripke
models with (successful) termination:
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4.4.1. D. (Kripke Model with Termination) A Kripke model with termi-
nation (KMT) is a tupleM = (S,P,Σ,→,V,F) where (S,P,Σ,→,V) is a standard Kripke
model and F ⊆ S is a set of terminating states. We also write s↓ for s ∈ F. A pointed
KMT is a KMT with a designated state in it. ç

Intuitively, the protocol encoded at a state in a KMT can be “read off” by viewing the
KMT as an automaton with the designated state as the start state and terminating
states as the accept states. A classic Kripke modelM = (S,P,Σ,→,V) can be viewed
as a KMT with the universal termination: M↓ = (S,P,Σ,→,V,S). The uncertainties
of the initial protocols can be modelled by epistemic relations among those states
where different protocols are encoded. Bisimulation on KMTs can be defined in a
straightforward way:

4.4.2. D. (Bisimulation on KMT (↔)) A binary relation R between the
domain of two KMTs (S,P,Σ,→,V,F) and (S′,P,Σ,→′,V′,F′) is called bisimulation
iff (s, s′) ∈ R implies that the following conditions hold:

• s ∈ F ⇐⇒ s′ ∈ F′;
• p ∈ V(s) ⇐⇒ p ∈ V(s′);

• if s a
→ t then there exist t′ such that s′ a

→ t′ and tRt′;
• if s′ a

→ t′ then there exist t such that s a
→ t and tRt′.

ç

In this section we build our PDL-style language by using finite automata in two
ways: first as program modalities which are alternative representations of modalities
with regular expressions with tests as in PDL (cf., e.g., [HKT00]); and second, as update
models, the generalized counterpart of the protocol announcements in PDL! and PDL!?b .
The formulas of our update logic PDL� are built from P and Σ as follows:

φ ::= > | ↓ | p | ¬φ | φ ∧ φ | [A]φ | [�A]φ

where p ∈ P, ↓ is a constant for successful termination, and each A = (Q,Φ,Σ,�
,G, q0) is an automaton over actions in Σ and tests in a finite setΦ of PDL� formulas8.
Intuitively, [A]φ says “after any execution of the program encoded by A, φ holds”.
[�A]φ expresses “after updating the current protocol with the one encoded by A, φ
holds”. To simplify the notation, we sometimes use [πA] to denote the automaton
modality corresponding to the regular expression with test π.

The semantics for the crucial formulas is given as follows9:

M, s � ↓ ⇔ s ∈ F
M, s � [A]φ ⇔ for all s′ : s~w�s′ and w ∈ L(A) =⇒ M, s′ � φ
M, s � [�A]φ ⇔ (M, s) � A � φ

8The formulas inΦ should be constructed at the earlier stages of the mutual induction on PDL� formulas
φ and automata A.

9According to the semantics, �A is an unconditional update, thus [�A]φ↔ 〈�A〉φ is valid.



4.4. Update Logic PDL� 51

where s~w�s is defined as on page 14 for the standard PDL, and the operation � is
defined as:

4.4.3. D. (Update Product �) Given a KMT M = (S,P,Σ,→,V,F) and a
guarded automaton A = (Q,Φ,Σ, q0,�,G), the product model is a KMT: (M � A) =
(S′,P,Σ,→′,V′,F′) where:

S′ = S ×Q
a
→
′ = {((s, q), (s′, q′)) | s a

→ s′, q
φ
�

a
� q′, andM, s �

∧
φ}

F′ = {(s, q) | s ∈ F,∃q′ ∈ G : q
φ
� q′ andM, s �

∧
φ}

V′((s, q)) = V(s)

where φ is a possibly empty sequence of tests in Φ. We let
∧
φ be the conjunction

of the formulas in φ and let it be > if φ is empty. For pointed models: (M, s0) � A is
defined asM � A, (s0, q0). ç

4.4.4. E. We only name a few important states e.g., s0 inMwhere p holds. In
the product modelM�A below, we only show the generated submodel w.r.t. (s0, q0) :

s0 : p a //

M:

s1 b //

c
��

•↓ q0

A:

p //

〈(a·b)A
〉↓

>>>

��>>>

• a // q1 b // •↓

•↓ • a // q2 c // • ↓

(s0,q0) : p

M�A:

a //

a
KKKKK

%%KKKKK

(s1, q1) b // •↓

(s1, q2) c // •↓

InM, after executing a we can have a choice of b and c (both can lead to the successful
termination). A encodes the protocol: if p then do a · b and if a · b is possible then do a · c.
Updating A onMwe obtainM�A where the choice of b and c after executing a is no
longer possible, instead we need to make the choice of a · b and a · c at the beginning.
According to the semantics: M, s0 � [aA](〈bA

〉↓ ∧ 〈cA
〉↓)∧ [�A][aA](¬(〈bA

〉↓ ∧ 〈cA
〉↓)) æ

As observed in [KvB04], we can view a classic event model of [BMS98] as a au-
tomaton where each state with outgoing transitions is guarded by a unique test (the
precondition of the state in the event model).

On the other hand, our guarded automata based updates give us more freedom in
modelling protocols compared to the event models. Consider the following simple
update model denoting the protocol “if p then you do a and if q then you do b”. It cannot
be mimicked by any single-pointed event model. Instead the update can be simu-
lated by a multi-pointed event model combining three single-pointed event models
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with mutually exclusive preconditions at the designated worlds (if we disregard the
termination information):

A : q0 ?p //

?q
>>>

��>>>>

• a // ↓

• b // ↓

e0 : p ∧ q a //

b
KKKK

%%KKKKK

• : > e1 : p ∧ ¬q a // • : > e2 : ¬p ∧ q

b
LLLLL

&&LLLLL

• : > • : >

where (e : φ) denotes that the precondition of e is φ.

In the sequel, given an automaton A, we let Aq be the automaton as A but with
start state q and let Aq be the automaton as A but with q as the only accept state.

[KvB04] shows that PDL with event model update is equally as expressive as PDL
itself by defining a translation pushing the product operators to the inner part of the
formulas in order to eliminate them in the end. We will show PDL� can be translated
back to PDL as well by following the same idea. In particular, for the formula in
the shape of [�A][B]φ, we need to translate it into some formula in the shape of
[A′][�B′]ψ. Namely we need to mimic the program B after the update �A by some
program before the update. For this purpose, we first define a new product between
automata A and A′ to handle the interaction between modalities [A] and [�A].

4.4.5. D. (Sequential Product o) Given two automata A = (Q,Φ,Σ,�
, q0,F) and A′ = (Q′,Φ′,Σ,�, q′0,F

′) the sequential product AoA′ is again an automa-
ton: (Qo,Φ ∪Φ′′,Σ,�o, (q0, q′0),Fo) where:

Φ′′ = {〈Aq〉ψ | ψ ∈ Φ′, q ∈ Q}
Qo = Q ×Q′
a
�o = {((q1, q′1), (q2, q′2)) | q1

a
� q2 and q′1

a
� q′2}

φ

�o = {((q1, q′1), (q2, q′2)) | (φ = 〈�Aq1〉ψ, q1 = q2 and q′1
ψ

�′ q′2)

or (q1
φ
� q2 andq′1 = q′2)}

Fo = {(q, q′) | q′ ∈ F′}

ç
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Here is an example of a sequential product:

A : q0 φ //

a

��

q1 b //

c
��

q3↓ A′ : q′0 ψ //

c
��

q′1 b // q′3↓

•↓ q2↓ q′2↓

A o A′ : (q0,q′0) 〈�Aq0 〉ψ
//

φ

��

(q0, q′1) φ // (q1, q′1) b // (q3, q′3)↓

(q1, q′0) c //

〈�Aq1 〉ψhhhhhhhhhh

33hhhhhhhhhh

(q2, q′2)↓

Let PDL↓ be the [�A]-free fragment of PDL�. We can then define a translation t from
the language of PDL� to the language of PDL↓ by pushing�A through other modalities
(cf. [KvB04]):

t(>) = >

t(↓) = ↓

t(p) = p
t(¬φ) = ¬t(φ)

t(φ1 ∧ φ2) = t(φ1) ∧ t(φ2)
t([A]φ) = [t(A)]t(φ)

t([�A]>) = >

t([�A]↓) = ↓ ∧ t(χA)
t([�A]p) = p

t([�A]¬φ) = ¬t([�A]φ)
t([�A](φ1 ∧ φ2)) = t([�A]φ1) ∧ t([�A]φ2)

t([�A][B]φ) =
∧

q∈Q t([Aq o B][�Aq]φ)
t([�A][�B]φ) = t([�A]t([�B]φ))

where t(A) is the automaton where each test label ψ in A is replaced by t(ψ), and
χA =

∨
{
∧
φ | φ ∈ L(A)}. Intuitively, χA is the “termination test” in A: the disjunction

of the combined tests which can lead to an accept state without going through any
action transitions. Note that χA can not be an infinite disjunction essentially since we
assume the set of test labels is finite and thus modulo logical equivalence there are
only finitely many

∧
φ. χA can be computed as follows: we revise A by only keeping

the accept states that are reachable from the start state in A via test transitions only;
then we can turn this new finite automaton into a regular expression of tests; finally
we turn this regular expression into a formula as we mentioned in the end of the
previous section. By proving the faithfulness of the translation we can show:

4.4.6. T. PDL� over KMT is equally expressive as PDL↓ over KMT.

P (sketch) The non-trivial case is to check that 〈�A〉〈B〉φ↔
∨

q∈Q〈AqoB〉〈�Aq〉φ
is valid.
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⇒: Suppose M, s0 � 〈�A〉〈B〉φ then (M, s0) � A � 〈B〉φ. Thus there is a path
v ∈ L(B) such that (s0, q0)~v�(s, q) for some (s, q) in (M, s0) � A andM � A, (s, q) � φ
(equivalentlyM, s � 〈�Aq〉φ). In order to showM, s0 � 〈Aq o B〉〈�Aq〉φ, we need to
find a w ∈ L(Aq o B) such that s0~w�s. The spirit of the proof is to match sequences
as follows:

positions: 0 · · · k k + 1 k + 2 . . . n

∃v :
ψ // a //

in B : q′0 q′k
ψ // q′k+1

a // q′k+2 q′n↓

inM � A : (s0, q0) (sk, qk)
ψ // (sk, qk) a // (sk+2, qk+2) (s, q) � φ

in Aq : q0 qk
ψ
′

// // qk+1
a // qk+2 q↓

let w be :
〈�Aqk 〉ψ // ψ

′

// // a //

in Aq o B : (q0, q′0) (qk, q′k)
〈�Aqk 〉ψ// (qk, q′k+1)

ψ
′

// // (qk+1, q′k+1) a // (qk+2, q′k+2) (q, q′n)↓

inM : s0 sk
〈�Aqk 〉ψ // sk

∧
ψ
′

// sk
a // sk+2 s � 〈�Aq〉φ

where
ψ
′

� represents a sequence of transitions labelled by the sequence ψ
′

.

⇐: Suppose there is a q in A such that M, s0 � 〈Aq o B〉〈�Aq〉φ. Then there is a
w ∈ L(Aq o B) such that there is an s inM : s0~w�s andM, s � 〈�Aq〉φ (equivalently
M � A, (s, q) � φ). To prove 〈�A〉〈B〉φ, we only need to find some v ∈ L(B) such that
(s0, q0)~v�(s, q) inM � A. We demonstrate the idea of the proof as follows:
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positions: 0 · · · k k + 1 k + 2 k + 3 . . . n

∃w :
〈�Aqk 〉ψ // ψ′ // a //

in Aq o B : (q0, q′0) (qk, q′k)
〈�Aqk 〉ψ// (qk, q′k+1)

ψ′// (qk+2, q′k+1) a // (qk+3, q′k+3) (q, q′n)↓

in Aq : q0 qk
ψ′ // qk+2

a // qk+3 q↓

inM : s0 sk
〈�Aqk 〉ψ // sk

ψ′ // sk
a // sk+3 s � 〈�Aq〉φ

let v be:
ψ // a //

in B : q′0 q′k
ψ // q′k+1

a // q′k+3 q′n↓

inM � A : (s0, q0) (sk, qk)
ψ // (sk, qk) a // (sk+3, qk+3) (s, q) � φ

ë

4.5 Conclusion and Future Work

Protocols are important components of social software [Par02] that govern the human
behaviour in social interactions. In this chapter we studied the dynamics of pro-
tocols. We proposed three PDL-style logics for reasoning about protocol changes:
PDL! handles protocol changes in the context without knowledge; PDL!?b extends PDL!

with knowledge operators and Boolean tests so it can deal with the situations where
events carry information according the protocols; PDL� extends the DEL framework
with more general product update operations taking guarded automata as update
models, which allows us to model branching protocols involving complicated tests.
We showed that these three logics can be translated to PDL. What we gain is the
explicitness of the language and convenience in modelling scenarios with protocol
changes as we demonstrated by various examples. For interested readers who want
to see more applications of the protocol changing operations, we refer to [WSvE10]
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where we integrated the protocol changing operator as in PDL! in a specific setting of
communications over channels. It is shown in [Lut06] that the public announcement
logic, though equally expressive as epistemic logic, is exponentially more succinct
than the pure epistemic logic in expressing certain properties on unrestricted mod-
els10. Here we conjecture that similar results apply to our logics as well. However,
we leave the succinctness and complexity analysis for future work.

One thing we did not cover in this chapter is the higher-order change of protocols.
For example, I am asking you to ask her to do something can be viewed as an announce-
ment of a protocol concerning another protocol announcement. In the logics we
presented in this chapter we did not consider protocol updates as basic events, thus
excluding protocol announcements such as !(!π · π′). The exact semantics for such
announcements can be complicated, and is left for future work11.

Last but not least, we may introduce more operations on automata other than
�, e.g., continuation or replacement similarly to the generalized protocol announce-
ments mentioned in the end of Section 4.2. It is interesting to see whether PDL is still
closed under such extra operations and how the new operator can help to define the
existing dynamic operators e.g., the various belief revision operators and preference
upgrades as in [BS08a, vBL07, Liu08].

10not on S5 models as desired though
11The propositional coding technique which deals with higher-order event models in [Auc09] may be

useful.
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Chapter 5

Composing Models

5.1 Introduction

In Part I, we proposed and studied several variants of PDL as logics for reasoning
about knowledge, protocol and change. As we have argued, to verify epistemic
protocols by model checking, it is important to have the right model. However, as
argued in [vB09], to build a model is an art. For real life applications, the initial
models and the action models can be huge (see, e.g., [DW07] for a case study in a
protocol verification setting). Thus some (semi-) automatic method is inevitable in
dynamic epistemic modelling. In this part, we make some modest contributions to
dynamic epistemic modelling.

Our first inspiration is from the ETL approaches where the temporal epistemic
models (interpreted systems) are generated in a distributed fashion with each agent
acting as a component (cf. Definition 2.3.1). This distributed feature made ETL
very handy in modelling various multi-agent scenarios [FHMV95], for example,
adding one extra agent is done by adding one more component. On the other hand,
DEL models are apparently not inherently distributed at the first glance: the static
models and action models contain information about all the agents. For example,
in DEMO [vE07], an implementation of DEL model checking, the initial models are
generated by first considering an universal ignorance model, where the agents do not
know any atomic proposition, and then restricting it by announcements. It is clear
that this method cannot generate all the desired initial models nor is it easy to handle
extra agents. To make the DEL approach more applicable for real-life applications, it is
crucial to build a static model (or an event model) from local components according
to each agent’s perspective. This clearly gives rise to the need for a formal way for
composing models.

In fact, a clue is hinted at in DEL itself: the product update is indeed a way of
composing models, though between two different types of models (static models
vs. event models). A straightforward idea is to extend this product operation to
compositions between two static models or two event models. However, there is a
difficulty in defining such a composition operation: the models we want to compose

59
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may have different vocabularies. Note that in practice, one agent may be able to
observe only part of the atomic facts (propositions) in the whole vocabulary, e.g., in
the Muddy Children scenario each child can see whether other children are muddy
but can make no observations about herself. Thus it is reasonable to divide the
whole vocabulary into parts (sets of observables) and build “partial models” for
agents according to their local vocabularies.

In this chapter, we define and demonstrate the use of merging composition between
static models and between action models with arbitrary vocabularies. For example,
we show how a 2n worlds Muddy Children model can be viewed as a composition
of n two-node models, each talking only about the muddiness of a single child.
Next, we extend standard event model update to an update operation which works
on static models and event models with different vocabularies, by incorporating
vocabulary expansion in the update process. We also look at the models generated in
the distributed fashion of ETL and claim that our merging composition with arbitrary
vocabularies can achieve the same goal in the DEL setting.

Related work Our merging composition of event models may be viewed as a notion
of parallel composition of events. The first concurrent operation in the framework
of DEL has been introduced in [vDvdHK03c, vDvdHK03b], where the authors follow
the treatment of concurrency as in concurrent PDL [Pel87]. The concurrent operator ∩
as in [vDvdHK03c] essentially splits the system into copies with each copy executing
a concurrent component (see also [vDvdHK07, Chapter 5] for details). In some sense,
composing actions in concurrent DELmay be viewed as merging agents who are act-
ing differently, while in this chapter we focus on merging propositional information
which is distributed among agents in both static and event models. Compared to
the large body of research about parallel compositions in various process algebra
frameworks (e.g., [Mil82, BK85, BHR84, GP94]), the distinct feature of our operator is
the merging of different vocabularies and preconditions. The restriction to epistemic
models (S5 models) also gives specific results meaningful in the epistemic setting.

Structure of the chapter In Section 5.2 we introduce the operator of merging compo-
sition on static models, under which the Kripke models form a commutative monoid.
We then structurally characterize the induced pre-order by this monoid. Based on
the merging composition, we study a natural operation which expands a model with
a larger vocabulary. Various logical preservation results between the components
and the composed model are proved. Section 5.3 addresses the problem of decom-
position by looking at a specific class of models which are useful in a multi-agent
setting. We demonstrate that we can decompose a model either by agents or by issues.
We introduce the composition of event models and the extended product update in
Section 5.4. We show that under certain conditions the action update distributes over
merging composition. We point out some future directions in the last section.
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5.2 Composing Static Models

5.2.1 Merging Composition

Recall that an S5 Kripke model M is a tuple (S,P, I,∼,V) where P is the (finite)
vocabulary, I is the (finite) set of agents, ∼i is an equivalence relation for each i ∈ I,
and the valuation function V : S 7→ 2P assigns a set of atomic propositions to each
state. Given a Kripke model M, we use SM, PM, IM,∼M and VM to denote the
corresponding elements in the definition of M. In this chapter we consider the
compositions of models with different vocabularies but the same set of agents. We
define the unit model E as the model ({s}, ∅, I,∼,V) where V(s) = ∅ and ∼i= {(s, s)} for
any i. In a picture:

∅ I

Now we define the merging composition of two S5 models with arbitrary vocabu-
laries.

5.2.1. D. (Merging Composition of Kripke Models) Given two models
with the same set of agents I :M = (S,P, I,∼,V) andN = (T,P′, I,∼′,V′), the merging
compositionM VN is given by (S′′,P ∪ P′, I,∼′′,V′′), where:

• S′′ = {(s, t) | s ∈ S, t ∈ T,V(s) ∩ P′ = V′(t) ∩ P},

• (s, s′) ∼′′i (t, t′) iff s ∼i t and s′ ∼′i t′,

• V′′(s, t) = V(s) ∪ V′(t).

ç

Intuitively, the accessibility relations in the composed model are defined by “syn-
chronizing” the corresponding relations in the components, in the usual way as in
product updates, restricted to the pairs of worlds where the old valuations agree on
the common vocabulary P∩ P′. It is clear that V(s, s′) agrees with V(s) on P and with
V′(s′) on P′, thus merging the two component valuations. We say a state s in M is
compatible with a state t in N if (s, t) is in the composition M V N . It is not hard to
verify that any merging composition of S5 models is again an S5 model.

As a first example, here is a “compositional version” of the 2-Muddy Children
scenario:

m1 m1
1

V

m2

m2

2 =

m1m2

m1m2

m1m2

m1m2

1

1

2 2
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where mi expresses “child i is muddy”, the set of agents is {1, 2}, the vocabulary of each

model mi
i
←→ mi is {mi}, and as usual we leave out reflexive arrows which are present

for all agents. Intuitively, each 2-world model represents the children’s observational

power on whether child i is muddy, e.g., mi
i
←→ mi captures the situation that child

i does not know whether she herself is muddy while all the others do know whether
child i is muddy.

In the same fashion, composing the above models with a third model does give
the 3-Muddy Children model1:

5.2.2. E. Composing Muddy Children

m1 m1
1

V
m2

m2

2
V

m3

m3
3

=

m1m2m3

m1m2m3

m1m2m3

m1m2m3

1

1

2

2

m1m2m3

m1m2m3

m1m2m3

m1m2m3

1

1

2

2

3 3

3 3

Multidimensional hypercubes with more and more children present can be composed
in the same way. æ

Here is an example of composing models with intersected vocabularies:

p1p3

1 V

p1p2

2 =

p1p2p3

1

p1p3 p1p2 p1p2p3

Note that according to our definition, self-composition M VM is not always
bisimilar toM. Consider the modelM:

M : p 1

2

p

p 3 p

1Note that the set of agents needs to be extended from {1, 2} to {1, 2, 3}.
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Let us call the upper and lower p worlds s and t respectively. It is clear that (s, t)
is in the composed model M VM and VMVM((s, t)) = {p}. However, according to
the definition of relations in the composed model, (s, t) cannot reach a ¬p world by
just one step in the composed model. Therefore (s, t) is not bisimilar to any world in
M. Nevertheless, Kripke models with different vocabularies do form a commutative
monoid:

5.2.3. T. Kripke models with the same set of agents form a commutative monoid
under theV operation, with total bisimilarity (see Definition 2.2.2) as the appropriate equality
notion. In particular, we have:

E VM ↔ M

M V E ↔ M

M V (N VK ) ↔ (M VN) VK
M VN ↔ N VM

P Commutativity and axioms about the unit are immediate. We only check
associativity here. Let A(l)y

x be the abbreviation of Vx(l) ∩ Py for l ∈ {s, t, k} and
x, y ∈ {M,N ,K}, e.g., A(s)N

M
represents VM(s) ∩ PN . Thus the condition

PC := (A(s)N
M

= A(t)M
N

and A(s)K
M

= A(k)M
K

and A(t)K
N

= A(k)N
K

)

expresses that s, t, k are pairwise compatible. A moment of reflection should assure
that:

(s, (t, k)) ∈ SMV(NVK ) ⇐⇒ PC ⇐⇒ ((s, t), k)) ∈ S(MVN)VK )

Then it is straightforward to see thatM V (N VK )↔ (M VN) VK . ë

Note that↔ is indeed a congruence of this monoid:

5.2.4. P. IfM1 ↔M2 andN1 ↔ N2 thenM1 VN1 ↔M2 VN2

P Let Z1 Z2 be the total bisimulations witnessing M1 ↔ M2 and N1 ↔ N2
respectively. Then the relation Z ⊆ SM1VN1 × SM2VN2 defined by:

(s1, t1)Z(s2, t2) ⇐⇒ s1Z1s2 and t1Z2t2

is clearly a total bisimulation betweenM1 VN1 andM2 VN2. ë

The commutative monoid yields the algebraic preordering≤ on the class of Kripke
models with different vocabularies:

M ≤ N iff there is aK withM VK ↔ N .

We proceed to give a structural characterization of this relation. For this, let a left-
simulation between two restricted static modelsM andN be a bisimulation with the
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invariance condition restricted to proposition letters in the vocabulary of M, and
without the Zig condition (see Definition 2.2.2). Formally, given two modelsM and
N such that PM ⊆ PN , a left-simulation betweenM andN is a relation R ⊆ SM × SN
such that sRt implies that the following hold:

Restricted Invariance VM(s) = VN (t) ∩ PM;

Zag If for some i ∈ I there is a t′ ∈ SN with t i
−→ t′ then there is a s′ ∈ SM with s i

−→ s′

and s′Rt′.

We will useM, s←−– N , t to indicate that there is a left-simulation that connects s and
t, andM←−– N to indicate that there is a total left-simulation betweenM andN : there
is a left-simulation R that links every world inN to some world inM.2

Ditmarsch and French [vDF09] prove that for finite static modelsM andN :

M is a simulation ofN ⇐⇒ there exists an event modelA st. N ↔M⊗A

Here we prove a similar result in our setting:

5.2.5. T. For any modelsM,N with arbitrary vocabularies:

M ≤ N =⇒ M←−– N

P ⇒: AssumeM ≤ N . Then there is a model K withM VK ↔ N . Let Z be
a total bisimulation between SMVK and SN . Define R as sRt iff there is some world
x ∈ SK with (s, x)Zt. R is easily seen to be a total left-simulation between M and
N . The restricted invariance property follows from the definition of the valuation on
MVK . The zag property follows from the definition of the accessibility relations on
M VK . Thus,M←−– N . ë

Note that the converse does not hold without restrictions on the models. For
example, letM andN be the following two S5 models:

M : p 1

2

p N : pq 1

2

pq

p pq

It is clear thatM←−– N . Now suppose towards a contradiction that there exists an
M
′ such thatM VM′ ↔ N . Since there is a pq world in N , there must be a world t

inM′ such that q ∈ VM′ (t) and t is compatible with any p world inM. Let us denote
the upper-right world inM as s. Then (s, t) must be in the composed modelMVM′

and V((s, t)) = {p, q}. However, according to the definition of V, (s, t) cannot reach a

2Note that the totality here is different from the totality of bisimulation which requires that any world
in any one of the two models is linked to some world in the other model.
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¬p world in one step, thus (s, t) is not bisimilar to any pq world in N . It follows that
(s, t) is not bisimilar to any world inN .

Now we look at a subclass of models. A model M is called propositionally dif-
ferentiated if for any s, t ∈ M: VM(s) , VM(t). For example, the models for Muddy
Children and Russian Cards Problem as in Chapter 3 are indeed propositionally dif-
ferentiated. Restricted to this simple but useful class of models we have the exact
correspondence of ←−– and ≤:

5.2.6. T. LetM be a propositionally differentiated model. Then

M ≤ N ⇐⇒ M←−– N

P ⇒ follows from Theorem 5.2.5.
For⇐: AssumeM←−– N . Let R be a left-simulation betweenM andN . Since R is

total, for each t ∈ SN there is at least one world s in SM such that sRt. Note that since
M is propositionally differentiated and PM ⊆ PN , for each t ∈ SN there is at most one
world s ∈ SM such that VM(s) = VN (t) ∩ PM. Therefore for each t ∈ N there is one
and only one world s such that sRt.

We will show that M V N ↔ N . Let the relation Z between M V N and N be
defined as:

(s, t)Zt′ iff t = t′

We claim Z is a total bisimulation. Totality is straightforward. Suppose (s, t)Zt. We
now check the three conditions for bisimulation.

By the construction ofMVN , VMVN ((s, t)) = VM(s)∪VN (t) = VN (t). This proves
the invariance property.

Suppose (s, t) ∼i (s′, t′). By the construction ofMVN this means s ∼i s′ and t ∼i t′.
By the definition of Z, (s′, t′)Zt′. This proves the Zig property.

Suppose t ∼i t′. Recall that sinceM←−– N andM is propositionally differentiated,
there must be a unique s inM such that sRt. Then since R is left-simulation, there
must be some s′ such that s ∼i s′ and s′Rt′. Since s′Rt′, VM(s′) = VN (t′) ∩ PM so
(s′, t′) ∈ M VN . Since s ∼i s′ and t ∼i t′ then (s, t) ∼i (s′, t′). By the definition of Z,
(s′, t′)Zt′. This proves the Zag property. ë

5.2.2 Expansion

Based on the merging composition operation, we can define the expansions of models
with new vocabularies. LetMI

P be the universal ignorance model for P, i.e. MI
P =

(S,P, I,∼,V) with S = P(P), ∼i= S × S, V = id. GivenM we define the expansion of
M w.r.t. vocabulary P′ as follows: M / P′ = M VMI

P′ . Note that PM/P′ = PM ∪ P′

and the states in the expansion are of the form (s,X) where s ∈ SM and X ⊆ P. In the
sequel, we will use variables X,Y to denote (possibly empty) subsets of the whole
vocabulary in the context of expansions.

Here is an example of expanding with a single new proposition letter m2. Note:
Here and henceforth, worlds are i-linked if there is an i-path in the picture.
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m1 m1
1

V

m2

m2

1, 2 =

m1m2

m1m2

m1m2

m1m2

1

1

1, 2 1, 2

Model expansions will be used in Section 5.4 to define the event model update on
models with arbitrary vocabularies. We now show that expansions w.r.t. different
vocabularies are bisimilar to each other, as long as the expanded vocabulary stays
the same:

5.2.7. P. For any modelM, and vocabularies X,Y of proposition letters, if X ∪
PM = Y ∪ PM thenM / X↔M / Y.

P Let relation Z ⊆ SM/X × SM/Y be given by:

(s,X′)Z(s′,Y′) ⇐⇒ s = s′ and VM(s) ∪ X′ = VM(s′) ∪ Y′

We claim that Z is a total bisimulation. Totality follows from the fact that X ∪ PM =
Y ∪ PM. Now we check the three conditions of bisimulation. Suppose (s,X′)Z(s,Y′)
then by definition of Z, VM(s) ∪ X′ = VM(s) ∪ Y′, namely the invariance condition
holds. Then based on totality, it is easy to show the Zig and Zag conditions also hold.
ë

Also the expansion is monotonic in the sense that the expansion with a larger
extra vocabulary is restricted bisimilar (see Definition 2.2.2) to the expansion with a
smaller extra vocabulary:

5.2.8. P. For any modelM, any vocabularies X,Y such that Y ⊆ X, if X∩PM = ∅
thenM / X↔PM∪Y M / Y.

P Let relation Z ⊆ SM/X × SM/Y be given by:

(s,X′)Z(s′,Y′) ⇐⇒ s = s′ and Y′ = X′ ∩ Y

It is not hard to verify that Z is a total bisimulation restricted to the vocabulary PM∪Y.
ë

IfM is left-similar to N then the expansion ofM with PN is also left-similar to
N .

5.2.9. P. IfM, s←−– N , t thenM / PN , (s,VN (t))←−– N , t
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P Let R be a left-simulation which witnessesM, s←−– N , t. Let

R′ = {((s,VN (t)), t) | (s, t) ∈ R}

Note that when (s, t) ∈ R, (s,VN (t)) is indeed in the modelM/PN due to the restricted
invariance condition of R. Thus R′ is well-defined. Totality follows from the totality
of R. We claim that R′ is a left-simulation betweenM/PN , (s,VN (t)) andN , t. The con-
dition of restricted invariance is obvious. For the Zag condition, suppose t i

→ t′ ∈ N

then there is an s′ such that s i
→ s′ inM and s′Rt′. SinceM / PN = M VMI

PN
, we

have (s,VN (t)) i
→ (s′,VN (t′)) inM / PN and (s′,VN (t′))R′t′. ë

5.2.3 Preservation

Now let us consider the PDL language over P, I (notation: PDLP,I):

φ ::= > | p | ¬φ | φ ∨ φ | 〈π〉φ
π ::= i | ?φ | π · π | π + π | π∗

The semantics for PDLP,I is defined as usual (see Section 2.3.1). Note that the truth
value of a PDLP,I formula may not be defined on a model with a different vocabulary
other than P. We will study a three valued semantics in chapter 7, while in this chapter,
we stick to the 2-valued semantics and make sure the formulas are evaluated on the
models where the semantics is defined.

Since PDL is bisimulation invariant, as a straightforward consequence of Proposi-
tion 5.2.8, we have:

5.2.10. P. For any model M, if X ∩ PM = ∅ and Y ⊆ X then for any φ ∈
PDLP∪Y,I :M / X, (s,X′) � φ ⇐⇒ M / Y, (s,X′ ∩ Y) � φ.

We will use this proposition to prove Theorem 5.4.5 in Section 5.4
The diamond fragment of PDLP,I is given by the following φ form of formulas:

ψ ::= > | p | ¬ψ | ψ ∨ ψ
π ::= i |?φ | π · π | π + π | π∗

φ ::= ψ | 〈π〉φ | φ ∨ φ | φ ∧ φ.

We can define the box fragment of LP,I i.e. the collection of formulas which are
logically equivalent to ¬φ for some φ in the diamond fragment.

It is well-known that diamond formulas are preserved under simulation. The
following theorem generalizes this to cases where the vocabularies of the two models
may be different.

5.2.11. T. IfM, s ≤ N , t then all formulas φ in the diamond fragment of PDLPM,I are
preserved from right to left under left simulation: if N , t � φ thenM, s � φ. Equivalently,
the box fragment of PDLPM,I is preserved from left to right under left simulation.
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P SupposeM, s ≤ N , t. From Theorem 5.2.5, we know thatM, s←−– N , t. Let R
be a left simulation with sRt. We prove the property by induction on the construction
of φ. The purely boolean cases are trivial according to the invariance property of R.
We only need to show the case of 〈π〉φ. Suppose N , t � 〈π〉φ, then there is a path
w starting from t in M such that w ∈ L(π) which leads to some φ world t′. By the
Zag property of R, it is not hard to see that there is a matching w path inM starting
from s to some world s′ such that s′Rt′. By the induction hypothesis,M, s′ |= φ, and
thereforeM, s � 〈π〉φ. ë

Based on Proposition 5.2.9 we can relax the restrictions of PM on the formulas:

5.2.12. C. IfM,w ≤ N , t then all formulas φ in the diamond fragment of PDLPN ,I
are preserved from right to left under left simulation: ifN , t � φ thenM /PN , (w,V(t)) � φ.

Theorem 5.2.11 suggests a way of checking the properties (in terms of formulas
in the box fragment) of a big model by looking at its components. The following
theorem shows that the components can carry more information about the composed
models, if we restrict ourselves to certain decomposition of the models. Formally we
say modelM is decomposable intoM0, . . . ,Mn ifM↔M0V. . .VMn. A pointed model
(M, s) is decomposable into (M0, s0), . . . , (Mn, sn) ifM, s↔M1V . . .VMn, (s0, . . . , sn).

5.2.13. T (P). If a pointed model (M, s) is decomposable into models
(M0, s0), . . . , (Mn, sn) with disjoint vocabularies P0,P1, . . . ,Pn, then for any i: Mi, si ↔Pi

M, s. Therefore for any φ in PDLPi,I :Mi, si � φ ⇐⇒ M, s � φ.

P Suppose without loss of generality that M, s = M0 V · · · VMn, (s0, . . . , sn)
where si ∈ Mi. Given a tuple ~t = (t0, t1, . . . , tn) ∈ M, we let ~t[i] be the ith element in
the tuple t. Let Zi be the relation on SM × SMi given by ~tZit iff ~t[i] = t. We show that
Zi is a Pi-restricted bisimulation. It is clear that sZisi. Assume ~tZit for some ~t ∈ M
and t ∈ Mi. Then VM(~t) ∩ Pi = VMi (t), by the definition of the merging composition.

Thus, Pi-restricted invariance holds. Next suppose ~t k
→ ~t′. Then by the definition of

the accessibility relations onM,~t[i] k
→ ~t′[i], whence, by definition of Zi, there is a t′′ in

the domain ofMi with ~t′Zit′′. It follows that the Zig condition holds. Finally, assume

t k
→ t′ inMi and ~tZit. Now consider the state ~t′ given by ~t′[i] = t′ and ~t′[ j] = ~t[ j] for

j , i. Since Pi is disjoint from any other vocabulary P j for j , i, ~t′ must be inM and
~t′Zit′. Then by the reflexivity of the S5 component models and the fact that t k

→ t′,

we have ~t k
→ ~t′. This proves the Zag condition. ë

As an example, consider the case of Muddy Children. From the above theorem,
we know that any epistemic statement that talks about the muddiness of a single child
in the big model can be checked in a two-world component, e.g., at the component

model m1
1
←→ m1, we can verify that agent 2 knows that agent 1 does not know

whether she herself is muddy.
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5.3 Decomposition

At this stage a natural question to ask is: what kind of model can be decomposed
into what kind of form? In this section we look at a particular class of models
which is useful in multi-agent systems. In the interpreted systems literature, a basic
proposition p ∈ P is i-local for i ∈ I in a modelM, if for any s, t in SM: s ∼i t implies
that (p ∈ VM(s) ⇐⇒ p ∈ VM(t)) (cf., e.g., [EvdMM98]). Intuitively, the i-local
propositions are the atomic observables of agent i and thus agent i also knows whether
they are true. Here we extend this idea by considering not only basic propositions
but also their boolean combinations. We sayM is locally generated if, for every agent
i, there is a non-empty set of boolean formulas Φi (the set of local observables) based
on PM such that:

for all s, s′ ∈ SM, s ∼i s′ iff for all ϕ ∈ Φi,M, s |= ϕ⇔M, s′ |= ϕ

Intuitively, a model is locally generated if those local observables determine the
epistemic relations in the model. The Muddy Children model is a typical example of
a locally generated model (the set of local observables for i is {m j | j , i, j ∈ I}). As
the following two propositions will show, locally generated models are essentially
propositionally differentiated models, which we considered in Theorem 5.2.6.

5.3.1. P. A locally generated model is bisimilar to a propositionally differentiated
model. More precisely, its bisimulation contraction (see Definition 2.2.3) is propositionally
differentiated.

P Given a locally generated modelM, suppose Φi is the set of local observables
for i. Let Z = {(s, t) | VM(s) = VM(t)}. We show Z is a bisimulation. Assume sZt. The
invariance condition is trivial. For Zig, suppose s i

∼ s′. SinceM is locally generated,
for any φ ∈ Φi : M, s � φ ⇐⇒ M, s′ � φ. Since Φi contains only boolean formulas
and VM(s) = VM(t), we have for any φ ∈ Φi : M, t � φ ⇐⇒ M, s′ � φ. Again
due to the definition of the relations in a locally generated model, we have t ∼i s′.
Obviously s′Zs′, thus it proves the Zig condition. The same argument works for the
Zag condition. Therefore it is easy to see that the bisimulation contraction ofM is
propositionally differentiated. ë

We also have:

5.3.2. P. Propositionally differentiated models are locally generated.

P SupposeM is propositionally differentiated. Let |SM|∼i be the partitioning of
SM according to the equivalence relation∼i. SinceM is propositionally differentiated,
we can characterize each world by a conjunction of literals. Then we can character-
ize each equivalence class in |SM|∼i by a disjunction of these characterizations. Let
Φi be the set of these disjunctions. Then clearlyM is locally generated from these Φi. ë

We can decompose a locally generated model into certain components in an
intuitive way.
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5.3.3. T (D  ). Given a set of agent I = {1, 2, . . .n}. If
M = (S,P, I,∼,V) is locally generated w.r.t. Φ1, . . . ,Φn, then there are modelsM1, . . . ,Mn
andM0 such that:

• M ↔ (M0 VM1 V · · · VMn);

• |SM j | ≤ |S| andMi is bisimulation contracted model;

• PM j = {p ∈ PM | p appears in Φ j} for j > 0;

P Let Pi = {p ∈ PM | p appears in Φi} and P0 = PM then we define Ni =
(SM,Pi, I,∼Ni ,Vi) where Vi is the restriction of VM to Pi and

s
j
∼Ni s′ ⇐⇒

{
s

j
∼M s′ if j = i

always if i , j

Intuitively, for each i ∈ I : Ni is a “local” model for agent i obtained by ignoring
the non-local information: atomic propositions not mentioned in the i-observables
and epistemic accessibility relations for agents other than i. Note that by ignoring
the epistemic relations for j we mean setting ∼ j to be universal. For example:

m1m2

m1m2

m1m2

m1m2

1

1

2 2 ⇒ ignore m1 and ∼2 ⇒

m2

m2

m2

m2

1, 2

1, 2

2 2 ↔

m2

m2

2

By our definition, the relations in N0 are universal. Intuitively, Ni captures all the
possible states of affairs inM. Let a relation Z ⊆ SM × SN0V···VNn be given as follows:

sZ(s0, s1, . . . , sn) ⇐⇒ s = s0

Now let us verify that Z is indeed a total bisimulation. Totality and invariance are
trivial by definition of Z.

For Zig: Suppose s i
∼M s′ and sZ(s0, s1, . . . , sn) then s = s0. Since (s, s1, . . . , sn)

exists, then VM(s) ∩ Pi = VNi (si). Therefore s and si satisfy the same set of boolean
formulas based on Pi. Since M is locally generated then we know that s′ and si
agree on the formulas in Φ. Therefore si and s′ must also agree on the truth values

of the formulas in Φ, thus si
i
∼Mi s′. Since

j
∼Ni is universal for j , i, it is clear that

(s, s1, . . . , sn) i
∼ (s′, s′, . . . , s′) inN0 V · · · VNn and s′Z(s′, s′, . . . , s′).

For Zag: Suppose (s0, s1, . . . , sn) i
∼Ni (s′0, s

′

1, . . . , s
′
n) and sZ(s0, s1, . . . , sn), we then

have s = s0 and si
i
∼Ni s′i . By the definition of Ni, we have si

i
∼M s′i . Thus si and s′i

agree on formulas in Φi. Since s0 in M is compatible with si in Ni and s′i in Ni is
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compatible with s′0 in M thus s′0 also agrees with s0 on formulas in Φi. Therefore

s i
∼M s′0 and s′0Z(s′0, s

′

1, . . . , s
′
n). This proves the Zag condition.

Now we have shownM↔N0 V · · ·VNn. LetMi be the bisimulation contraction
ofNi. From Proposition 5.2.4, we knowM↔ (M0 VM1 V · · · VMn). ë

In the above proof, M0 is used to rule out unnecessary worlds created by the
merging composition. It is not hard to see that if

⋃
i∈I Pi = PM and for any P ⊆ PM

there is an s ∈ SM such that VM(s) = P, then we can drop theM0 in the decomposition.
The above theorem gives another way to decompose the Muddy Children models

different from the one in Example 5.2.2. Recall that an n-Muddy Children model is
locally generated by sets of observables Φ1, . . . ,Φn where Φi = {m j | j , i, j ∈ I}. For
example, if n = 3 then the set of observables for agent 1 is {m2,m3}. We can then
decompose the 3-Muddy Children model M by M1, . . . ,M3, where e.g., M1 is as
follows:

m2m3
2,3

2,3

m2m3

2,3

m2m3
2,3

m2m3

Compared to the two-world model decomposition in Example 5.2.2, the above de-
composition requires bigger size components (2n−1 worlds for the n children case).
This is because we decompose the model in an agent-based fashion: each compo-
nent represents one agent’s observational power regardless of the others. Thus if
the vocabulary of the set of observables Φi is big then so is the component model.
In the Muddy Children example, if there are more children then the vocabulary of
the observables for each child also increases (e.g., new m j), therefore the component
model for this agent also grows bigger. However, in other applications the vocabu-
lary of observables may not increase even when the initial model grows bigger. For
example, in the Russian Cards scenario, the agents can only observe their own cards,
no matter how many other agents there are (cf. the locally generated initial model of
RCPn,n,k in Section 3.4). Therefore, the size of each component can be constant and
relatively small.

To decompose a Muddy Children model as in Example 5.2.2, we decompose
the model in an issue-based fashion (every proposition is an issue), as the following
theorem demonstrates:

5.3.4. T (D  ). Given a set of agent I = {1, 2, . . .n} and a
set of proposition letters P = {p1, . . . , pk}, if M = (S,P, I,∼,V) is locally generated by
Φ1, . . . ,Φn such that Φi only contains atomic propositions (i.e., Φi ⊆ P), then there are
modelsM1, . . . ,Mk andM0 such that:

• M ↔ (M0 VM1 V · · · VMk);

• PM j = {p j} for j > 0 and P0 = P;
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• |SM j | = 2 for j > 0

P Let M0 be the same as in the proof of Theorem 5.3.3. For j > 0, let M j =
(S j,P j, I,∼M j ,V j) where:

• S j = {p j, p j};

• P j = {p j};

• V j(p j) = {p j} and V j(p j) = ∅with the obvious interpretation;

• for j > 0 : s i
∼M j t ⇐⇒ s = t or (s , t and p j < Φi).

Let a relation Z ⊆ SM × SM0V···VMk be given as follows:

sZ(s0, s1, . . . , sk) ⇐⇒ s = s0

If sZ(s0, s1, . . . , sk) then for 0 < j ≤ k : s j intuitively represents the truth value of p j in
s. Now let us verify that Z is indeed a total bisimulation. Totality and invariance are
trivial.

For Zig: Suppose s i
∼M s′ and sZ(s0, s1, . . . , sk). Since (s0, s1, . . . , sk) exists, then

s0 = s and (s j = p j ⇐⇒ p j ∈ VM(s)). It is easy to see there is some world (s′, s′1, . . . , s
′

k)
in M0 V · · · VMk such that s′Z(s′, s′1, . . . , s

′

k). We need to show that for each j > 0 :

s j
i
∼M j s′j. If s j = s′j then s j

i
∼M j s′j by definition of i

∼M j . Now suppose s j , s′j. Since
M is locally generated by Φ1, . . . ,Φn, s and s′ agree on the truth values of the atomic

propositions in Φi. Therefore p j < Φi, thus s j
i
∼M j s′j.

For Zag: Suppose (s0, s1, . . . , sk) i
∼Mi (s′0, s

′

1, . . . , s
′

k) and sZ(s0, s1, . . . , sk), we have

s0 = s and for any j ≤ k : s j
i
∼M j s′j. By the definition of Mi, we have s j = s′j, or

s j , s′j and p j < Φi. Namely, for p j ∈ Φi : s j = s′j. Therefore s and s′ agree on the
truth values of the propositions in Φi. SinceM is locally generated by Φ1, . . . ,Φn then

s i
∼M s′.This proves the Zag condition. ë

According to the above theorem, a locally generated model by sets of atomic
propositions can be decomposed by components based on each atomic proposition.
This gives us the desired decomposition of the n-Muddy Children models as in
Example 5.2.2.

Theorems 5.3.3 and 5.3.4 show that we can decompose a locally generated model.
On the other hand, there are models which are not locally generated but decompos-
able in a non-trivial way. For example, consider the following model (to ease the
presentation, we use solid lines for agent 1 and dotted lines for agent 2):
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m2m1 m2m1 m2m1

m2m1 m2m1 m2m1

m2m1 m2m1 m2m1

This model is not bisimilar to any propositionally differentiated model. From
Proposition 5.3.1 follows that it is not bisimilar to any locally-generated model.
Nevertheless,M can be decomposed into two models as follows:

m1

m1

m1

V

m2 m2 m2

If we take the boldface states as the real worlds in these two models respectively,
then the two models capture the situations where agent 2 is not sure whether 1 knows
m1 and agent 1 is not sure whether 2 knows m2. If we interpret m1 and m2 as in Muddy
Children, then the composed model, when taking the top-left corner state as the real
world, captures the situation where the children can see each other’s faces but are
not sure whether the other has a mirror (actually they do have mirrors). Since the
vocabularies of the above two models are disjoint, from Proposition 5.2.13, we know
that any true claim about only m2 or m1 will be preserved at the components. For
example, agent 1 knows agent 2 does not know whether agent 1 knows m1 can be
verified in the left hand component model.

5.4 Composing Updates

Recall Definition 2.3.2 that an (S5) event modelA = (E, I,↔,Pre) is like a static model,
but with valuations replaced by precondition formulas taken from an appropriate
language. Let PA be the set of proposition letters appearing in the preconditions of
e ∈ E according to Pre.
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Note that the standard product update as in Definition 2.3.3 is defined on the
pairs of a static model and an event model where PA ⊆ PM. We will now generalize
the standard product update to an operation that works on Kripke models and event
models with arbitrary vocabularies.

Model expansion is used in the following definition of product update to ensure
that no matter what the vocabulary of the static model is, we can always check
the preconditions of the events model on the static model. The vocabulary of the
resulting updated model is the union of the vocabulary of the static model and the
vocabulary of the event model.

5.4.1. D. (Extended Product Update) Given a static modelM = (S,P, I,∼
,V) and an event model A = (E, I,↔,Pre) for the same set of agents I. Let X be the
differential vocabulary, i.e., X = PA − P. Then the extended product updateM }A
is the static model (S′,P ∪ PA, I,∼′,V′) given by (M / X) ⊗ A, where ⊗ denotes the
usual update product. ç

This definition boils down to the following:

1. S′ = {(s,X′, e) | s ∈ S, e ∈ E,X′ ⊆ X,M / X, (s,X′) � Pre(e)},

2. (s,X′, e) ∼′i (t,X′′, f ) iff s ∼i t and e↔i f ,

3. V′(s,X′, e) = V(s) ∪ X′.

Note that the definition of accessibility relations does not require X = X′ since all
the different values for the novel atomms are the same for i. From Proposition 5.2.8,
we can equivalently (modulo bisimulation) define the update as (M / PA) ⊗ A.
However, for the ease in proofs we will stick to the above definition where M is
expanded with PA−PM. Here is an example of an update with a public announcement
“at least one of you is muddy” (i.e., an event model with only one world whose
precondition is m1 ∨ m2). As usual, we denote this event model as !(m1 ∨ m2). Note
that the update involves model expansion:

m1
1 m1

/{m2}

m1m2
1

1,2

m1m2

1,2 !(m1∨m2)

m1m2
1

1,2

m1m2

m1m2
1 m1m2 m1m2

Here is an update of the other component of the 2-Muddy Children model:

m2

2

m1m2
1,2

2

m1m2

2 !(m1∨m2)

m1m2
1,2

2

m1m2

m2

/{m1}

m1m2
1,2

m1m2 m1m2

And here is the outcome of composing the two update results:
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m1m2

m1m2

m1m2
1

1, 2 V

m1m2

m1m2

m1m2
1, 2

2 ↔

m1m2

m1m2

m1m2
1

2

This is the same as the result of public announcement of m1 ∨m2 on the composi-

tion of m1
1
←→ m1 and m2

2
←→ m2. In the following, we will show that this outcome

is not accidental: updating a composed model yields the same result (modulo bisim-
ulation) as composing the updates of its components, provided the event model has
certain property. We call an event modelA propositionally differentiated if the precon-
ditions are purely boolean formulas and any two states inA have mutually exclusive
preconditions. For a boolean precondition Pre(e) of e inA, a vocabulary P such that
PA ⊆ P, and a set X ⊆ P, we write X �P Pre(e) if X (viewed as a valuation for P) makes
Pre(e) true. It is clear that X ∩ PA �P Pre(e) iff X �P Pre(e). In case P =

⋃
j∈J PM j we

write X �{M j | j∈J} Pre(e).

5.4.2. T. IfA is a propositionally differentiated event model then:

(M VN) }A↔ (M }A) V (N }A).

P Let M1 = (M V N) } A and M2 = (M } A) V (N } A). Let relation
Z ⊆ SM1 × SM2 be given by:

((s, t,X), e)Z((s′,X1, e′), (t′,X2, e′′)) iff s = s′, t = t′, e = e′ = e′′ and X = X1 ∩ X2

We need to show that Z is a total bisimulation betweenM1 andM2. The totality of
Z is proved in Lemma 5.4.3. Here we focus on the three conditions of bisimulation.
Suppose ((s, t,X), e) and ((s,X1, e′), (t,X2, e′′)) exist in M1 and M2 respectively and
((s, t,X), e)Z((s,X1, e′), (t,X2, e′′)).

For invariance we need to show

VM(s) ∪ VN (t) ∪ (X1 ∩ X2) = VM(s) ∪ X1 ∪ VN (t) ∪ X2

Since the only difference between the left hand side and right hand side is about
X,X1,X2 ⊆ PA, then showing the following suffices:

(VM(s) ∪ VN (t) ∪ (X2 ∩ X2)) ∩ PA = (VM(s) ∪ X1 ∪ VN (t) ∪ X2) ∩ PA (?)

Since (s,X1, e) inM }A and (t,X2, e) inN }A are compatible, we have:

(VM(s) ∪ X1) ∩ PA = (VN (t) ∪ X2) ∩ PA (??)
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Now let us massage the left hand side of (?) :

(VM(s) ∪ VN (t) ∪ (X1 ∩ X2)) ∩ PA
= ((VM(s) ∪ VN (t) ∪ X1) ∩ (VM(s) ∪ VN (t) ∪ X2)) ∩ PA
= ((VM(s) ∪ VN (t) ∪ X1) ∩ PA ∩ (VM(s) ∪ VN (t) ∪ X2)) ∩ PA
= (((VM(s) ∪ X1) ∩ PA) ∪ (VN (t) ∩ PA)) ∩ (((VN (t) ∪ X2) ∩ PA) ∪ (VM(s) ∩ PA))
= (((VM(s) ∪ X1) ∩ PA) ∪ (VN (t) ∩ PA)) ∩ ((VM(s) ∪ X1) ∩ PA) ∪ (VM(s) ∩ PA)) (by (??))
= ((VM(s) ∪ X1) ∩ PA) ∪ (VN (t) ∩ VM(s) ∩ PA)
= ((VM(s) ∪ X1) ∩ PA) ( since VN (t) ∩ VM(s) ⊆ VM(s))
= ((VM(s) ∪ X1) ∩ PA) ∪ ((VN (t) ∪ X2) ∩ PA) ( from (??))
= (VM(s) ∪ X1 ∪ VN (t) ∪ X2) ∩ PA

This proves the invariance requirement.

Now assume ((s, t,X), e)Z((s,X1, e1), (t,X2, e2)) and ((s, t,X), e) i
∼ ((s′, t′,X′), e′) in

M1, then e = e1 = e2, s i
∼ s′ in M, t i

∼ t′ in N and e i
∼ e′ in A. From totality

(Lemma 5.4.3), inM2 there exists ((s′,X′1, e
′), (t′,X′2, e

′)) for some X′1 and X′2 such that

((s′, t′,X′), e′)Z((s′,X′1, e
′), (t′,X′2, e

′)).

According to the definition of relations inM2, it is not hard to see that

((s,X1, e), (t,X2, e)) i
∼ ((s′,X′1, e

′), (t′,X′2, e
′))

This proves the Zig requirement.
Suppose ((s, t,X), e)Z((s,X1, e1), (t,X2, e2)) and

((s,X1, e), (t,X2, e)) i
∼ ((s′,X′1, e

′), (t′,X′2, e
′))

Therefore s i
∼M1 s′, t i

∼M2 t′, and e i
∼A e′. From Lemma 5.4.3, in M1 there exists

(s′,X′, e′) for some X′ such that:

((s′, t′,X′), e′)Z((s′,X′1, e
′), (t′,X′2, e

′))

It follows that ((s, t,X), e) i
∼ ((s′, t′,X′), e′). This proves the Zag condition.

ë

5.4.3. L. The relation Z defined above is total.

P We need to show for any state u that exists inM1 there is a state v exists in
M2 such that uZv, and for any v exists inM2 there is an u inM1 such that uZv.

Suppose ((s, t,X), e) exists inM1 then the following hold:

Fact 1 X ⊆ PA − (PM ∪ PN );

Fact 2 VM(s) ∩ PN = VN (t) ∩ PM;
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Fact 3 VM(s) ∪ VN (t) ∪ X �M,N ,A Pre(e).

Now we let:

X1 = X ∪ ((VN (t) − VM(s)) ∩ PA) and X2 = X ∪ ((VM(s) − VN (t)) ∩ PA).

Clearly X = X1 ∩ X2. To show ((s,X1, e), (t,X2, e)) exists inM2, we need to show:

1. X1 and X2 are well-defined: X1 ⊆ PA − PM and X2 ⊆ PA − PN .

2. e can be executed on both (s,X1) and (t,X2): VM(s)∪X1 �M,A Pre(e) and VN (t)∪
X2 �N ,A Pre(e).

3. (s,X1, e) and (t,X2, e) can be composed: (VM(s) ∪ X1) ∩ (PN ∪ PA) = (VN (t) ∪
X2) ∩ (PM ∪ PA).

For (1): Recall that VM(s)∩PN = VN (t)∩PM, thus we have VN (t)∩PM ⊆ VM(s) and
VM(s)∩PN ⊆ VN (t). Therefore, (VN (t)−VM(s))∩PM = ∅ and (VM(s)−VN (t))∩PN = ∅.
It means ((VN (t) − VM(s)) ∩ PA) ⊆ PA − PM and ((VM(s) − VN (t)) ∩ PA) ⊆ PA − PN .
Also note that X ⊆ PA − (PM ∪PN ) ⊆ PA −PM and similarly X ⊆ PA −PN . Therefore
by the definitions of X1 and X2 we have X1 ⊆ PA − PM and X2 ⊆ PA − PN .

For (2): By the definition of X1:

VM(s) ∪ X1 = VM(s) ∪ X ∪ ((VN (t) − VM(s)) ∩ PA)

Then we have:

(VM(s) ∪ X1) ∩ PA (#)
= (VM(s) ∪ X ∪ ((VN (t) − VM(s)) ∩ PA)) ∩ PA
= ((VM(s) ∪ X) ∩ PA) ∪ ((VN (t) − VM(s)) ∩ PA)
= (VM(s) ∪ VN (t) ∪ X) ∩ PA

Since VM(s) ∪ VN (t) ∪ X �M,N ,A Pre(e) we have

(VM(s) ∪ VN (t) ∪ X) ∩ PA �M,N ,A Pre(e)

Therefore from the derivation (#), (VM(s) ∪ X1) ∩ PA �M,N ,A Pre(e) and then VM(s) ∪
X1 �M,A Pre(e). Similarly we can prove VN (t) ∪ X2 �N ,A Pre(e).

For (3): By the definition of X1:

(VM(s) ∪ X1) ∩ (PN ∪ PA) = ((VM(s) ∪ X1) ∩ PA) ∪ ((VM(s) ∪ X1) ∩ PN )

From (#), we know that: (VM(s) ∪ X1) ∩ PA = (VM(s) ∪ VN (t) ∪ X) ∩ PA, thus

(VM(s)∪X1)∩ (PN ∪PA) = ((VM(s)∪VN (t)∪X)∩PA)∪ (VM(s)∩PN )∪ (X1∩PN ) (†)

Note that

X1 ∩ PN
= (X ∪ ((VN (t) − VM(s)) ∩ PA)) ∩ PN
= ((VN (t) − VM(s)) ∩ PA) ∩ PN ( since X ∩ PN = ∅)
= (VN (t) − VM(s)) ∩ PA ( since VN (t) ⊆ PN )



78 Chapter 5. Composing Models

Therefore go back to (†) we have:

(VM(s) ∪ X1) ∩ (PN ∪ PA)
= ((VM(s) ∪ VN (t) ∪ X) ∩ PA) ∪ (VM(s) ∩ PN ) ∪ ((VN (t) − VM(s)) ∩ PA)
= ((VM(s) ∪ VN (t) ∪ X) ∩ PA) ∪ (VM(s) ∩ PN ) (‡)

Similarly we can show

(VN (t) ∪ X2) ∩ (PM ∪ PA) = ((VM(s) ∪ VN (t) ∪ X) ∩ PA) ∪ (VN (t) ∩ PM) (§)

From the Fact 1 (VN (t) ∩ PM = VM(s) ∩ PN ), (‡) and (§) we have:

(VM(s) ∪ X1) ∩ (PN ∪ PA) = (VN (t) ∪ X2) ∩ (PM ∪ PA)

This proves (3).
Till now we have proved that for any state u that exists inM1 there is a state v

exists inM2 such that uZv. Now suppose ((s,X1, e), (t,X2, e′)) exists inM2 we need to
show that there is an u inM1 such that uZv. SinceA is propositionally differentiated,
no two actions can be executed under the same valuation over PA, thus events e = e′.
We now only need to show that ((s, t,X1 ∩ X2), e) exists inM1. Formally we need to
verify the following claims:

1. s and t are compatible.

2. X is well-defined: X1 ∩ X2 ⊆ PA − (PM ∪ PN ).

3. e can be executed on (s, t,X1 ∩ X2): VM(s) ∪ VN (t) ∪ (X1 ∩ X2) �M,N ,A Pre(e).

From the existence of ((s,X1, e), (t,X2, e)), clearly s and t can be composed. Since
X1 ⊆ PA − PM and X2 ⊆ PA − PN , (2) is also straightforward. Now we prove (3).
Since ((s,X1, e) and (t,X2, e′)) can be composed

VM(s) ∪ X1 ∪ VN (t) = VM(s) ∪ X2 ∪ VN (t)

Now we have:

VM(s) ∪ X1 ∪ VN (t)
= (VM(s) ∪ X1 ∪ VN (t)) ∩ (VM(s) ∪ X2 ∪ VN (t)) = (VM(s) ∪ VN (t) ∪ (X1 ∩ X2))

Since ((s,X1, e), (t,X2, e)) exists, it is not hard to see that (V(s)∪V(t)∪X1)∩PA �M,N ,A

Pre(e). ThusVM(s) ∪ VN (t) ∪ (X1 ∩ X2) �M,N ,A Pre(e). ë

Event models are very similar to static models, and it turns out that composition
on event models can be defined in a natural way.

5.4.4. D. (Merging Composition of Event Models) The compositionAV
B of two event modelsA andBwith the same set of agents I is given by (E, I,↔,Pre),
where:
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• E = {(e, f ) | e ∈ EA, f ∈ EB}

• (e, f )↔i (e′, f ′) iff e↔ie′inA and f↔i f ′in B

• Pre((e, e′)) = PreA(e) ∧ PreB(e′).

ç

Note that in the composed event model, some e may have an unsatisfiable precon-
dition. We do not delete such non-executable actions in the composed model. The
simplest example is composing two announcements !φ and !ψ, which results in an
announcement of φ ∧ ψ. The composition operator presented here can be viewed as
a kind of parallel compositions of events. Consider the following example (where
I = {1, 2} and the propositions are preconditions):

p

2 V

q 1 p

=

pq 1 pp

2 pruned

pq

q qq

2

1 pq pq

The first model captures the event that agent 1 is being told that either p or q is true,
while agent 2 can only see it without hearing the exact message. Similarly, the second
model reflects the event that 2 is being told either p or q is false without 1 hearing the
message. The composition of the two captures that both events are happening at the
same time. As we can see, the effect of updating this composed event is the same as
updating an announcement p ∧ ¬q or ¬p ∧ q. Intuitively, if agent 1 is told p and he
knows that 2 is (truthfully) told either ¬q or ¬p then he actually knows that ¬p.

Updating with a composite event model should yield the same outcome as first
updating with its components and then composing the results. The following theo-
rem says that it does, notably, without any restriction to certain class of models.

5.4.5. T. M } (A VB)↔ (M }A) V (M }B).

P Let M1 = M } (A V B) and M2 = (M } A) V (M } B). Let the relation
Z ⊆ SM1 × SM2 be given by:

(s,X, (e, f ))Z((s′,X1, e′), (s′′,X2, f ′)) iff s = s′ = s′′, e = e′, f = f ′ and X = X1 ∪ X2

We first show Z is total.
⇒: Suppose that (s,X, (e, f )) is in SM1 , we need to show that there are X1 and X2

with X = X1 ∪ X2 such that ((s,X1, e), (s,X2, f )) exists in SM2 . Notice that:

(s,X, (e, f )) ∈ SM}(AVB)
⇐⇒ M / ((PA ∪ PB) − PM), (s,X) |= PreA(e) ∧ PreB( f )
⇐⇒ M / (PA − PM), (s,X ∩ (PA − PM)) |= PreA(e)
andM / (PB − PM), (s,X ∩ (PB − PM)) |= PreB( f ) ( From Proposition 5.2.10)
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Now let X1 = X ∩ (PA − PM) and X2 = X ∩ (PB − PM). Since X ⊆ (PA ∪ PB) −
PM, X1 ∪ X2 = X ∩ ((PA − PM) ∪ (PB − PM)) = X. From the above derivation,
(s,X1, e) ∈ SM}A and (s,X2, f ) ∈ SM}B exist and they are compatible. Therefore
((s,X1, e), (s,X2, f )) ∈ SM2 .
⇐: Suppose ((s,X1, e), (s,X2, f )) exists in SM2 . Let X = X1 ∪ X2, clearly X ⊆

(PA ∪ PB) − PM. It is then easy to show that (s,X, (e, f )) ∈ SM1 .
The invariance is straightforward since X = X1 ∪ X2. Based on totality, Zig and

Zag properties of Z are immediate. ë

5.5 Discussion and Future Work

In this chapter, we presented a preliminary report on composing static models and
event models with different vocabularies. We studied the algebraic properties of
the newly introduced composition operator with the presence of the product up-
date. We gave some results on the decomposition of locally generated models3.
Definitely more questions about decomposability of models should be asked. For
example, in [CLDQ09] a symmetry reduction technique is proposed in the setting
of multi-agent systems, while it is not very clear whether every symmetric model
can be decomposed in a non-trivial way by merging compositions. Note that non-
symmetric models can also be decomposed: there are locally-generated models which
do not have non-trivial symmetric structures4. More ambitious agenda is to logically
characterize some decomposable classes of models. To systematically answer such
decomposition questions, we may need to find help in both graph theory and modal
logic.

Ditmarsch and French [vDF09] studied ←−– between models with the same vo-
cabulary in the context of product updates. They prove that when restricted to finite
models:
M, e ←−– N , t iff there exists an event model (A, e) such that N , t ↔ M } A, (s, e).
Compared to this result, our Theorem 5.2.6 requires a much stronger condition. The
reason is that essentially we only have very weak propositional “preconditions”
when composing the model: matching the values of the basic propositions in the
common vocabulary. This motivates the future extension with more complicated
matching conditions when composing the models.

In Theorem 5.3.3 we decompose a locally-generated model w.r.t. the merging
composition only. However, we can also decompose the model by composing
M1, . . . ,Mn and then, instead of composing M0, restrict the resulting model by a
public announcement of the possible states of affairs. Here a more general question
arises naturally: what are the natural basic operations to construct a model besides

3We gave a characterization of models that can be decomposed into two-world building blocks
in [vEWS10]. However, the criteria are not very intuitive, thus we have chosen to omit it here.

4When the sets of observables are not symmetric, the locally-generated model may be asymmetric.
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composition? Is there a normal form of any model M by composition, relativiza-
tion (public announcement) and perhaps general product updates? Again some
clues were hinted at in [vDF09]: the author showed that a simulation can be seen
as a bisimulation transformation followed by a model restriction. We leave further
studies on this topic to future work.

The combination of communicative actions and vocabulary expansion deserves
further study. There is an obvious connection to the dynamics of awareness, as
studied in [vBVQ09, dJ09], while our expansion operation can be seen as an action
for (publicly) extending the awareness set. In this chapter we fix the set of agent in
our discussion, while in other applications (e.g., about awareness) expansions with
extra agents may be also relevant.

Finally our investigation is encouraging for epistemic model checking with dy-
namic epistemic logic, for it suggests ways to check relevant epistemic properties on
small components of large models. We will pursue this line of research further in
Chapter 7 of this thesis.





Chapter 6

Counting Models

6.1 Introduction

In Chapter 3, we argued that a formal definition of a protocol should come with a
finite set of formulas which specify the initial setting in which the protocol is to be
executed. The verification of the protocol should be performed against the models
which satisfy these initial requirements. By making the initial requirements explicit
in terms of logical formulas, we may narrow down the gap between the informal
scenario and the formal initial model, which is supposed to be a mathematical ab-
straction of the former. This may help us to gain more grip on the “model hacking”
which precedes model checking. A natural question to ask at this point is whether
the initial assumptions induce a unique model? Moreover, if not, how many different
models are there? The precise meaning of the above questions depends on the log-
ical language we use and the notion of equivalence between models. Since we are
interested in modal logics which are bisimulation invariant, we fix bisimulation as
the equivalence notion.

First note there are formulas that have unique models modulo bisimulation. We
say a formula characterizes a pointed model (M, s) if any model of it is bisimilar to
(M, s). It is shown in [BM96, vB98] that a modal logic equipped with iteration or
fixed point operators can characterize arbitrary finite models up to bisimulation1. For
example, given P = {p} and I = {1, 2}, interested readers can verify that the following
formula has a unique S5 model modulo bisimulation2:

C1,2((p→ (K̂1p ∧ K̂1¬p ∧ K2p ∧ K̂2p) ∧ (¬p→ (K̂1p ∧ K̂1¬p ∧ K2¬p ∧ K̂2¬p)))

Similar results in computer science with respect to branching time temporal log-
ics can be found, e.g., in [BCG87]. In the context of dynamic epistemic modelling,

1It is not hard to see that a logic that enjoys the finite model property can only characterize finite models
up to bisimulation.

2The model should represent a scenario where 1 does not know whether p but 2 knows, and this is
common knowledge.

83
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[vDvdHK03a, vD02] demonstrate that there are intuitive epistemic formulas (descrip-
tions) that characterize the initial models in the case of the card games. However,
in general, a set of formulas translated from an informal description of the scenario
may not have a unique model.

In this chapter, we make the initial steps towards an answer for the question:
how many non-bisimilar models are there for a given formula? To make our results
general enough, we take the Propositional Modalµ-Calculus (Mu) as the logical language
for specifying the initial requirements.

Since its invention by Kozen [Koz83], Mu has received great interest in computer
science due to its neat syntax, strong expressive power and nice model-theoretical
properties (see, e.g., [BS06] for an introduction). The language of Mu includes general
least (greatest) fixed-point formulas in the shape of µX.φ (νX.φ), thus superseding the
usual temporal logics in expressive power. For example, a PDL formula [a∗]p can be
translated as νX.(p ∧ [a]X) in Mu. It is shown in [vBI08] that adding product updates
to Mu does not increase its expressive power. Therefore, Mu can actually be considered
as a very powerful logic of communication, bearing in mind the potential dynamic
epistemic applications. This is the rationale behind the choice of this very powerful
logic as the logic in focus in this chapter.

Many theoretical issues of Mu have been studied extensively during the past
three decades (cf., e.g., [Wal00, JW95, BS06]). In particular, this chapter is inspired
by [Niw91], in which Niwiński tackled the cardinality question of the tree languages
recognized by Rabin tree automata. It is also suggested in [Niw91] that the results
induce a method to evaluate the number of models of a given formula, due to the
fact that formulas of temporal logics can be reduced to Rabin automata. However,
in the original paper, the author focused on automata on binary trees and counted
models modulo isomorphism, which limited the use of the results in the setting of
modal logics which are invariant under bisimulation on Kripke models.

In this chapter, we want to pursue this line of research further by counting models
modulo bisimulation. Note that we will not work with the Mu formulas directly, but
consider the corresponding alternating tree automata (ATA) ([JW95] shows the equiv-
alence of formulas of Mu and ATA). Like [Niw91], but with non-trivial complication
of the proof, we show that an ATA recognizable set of image-finite models modulo
bisimulation is uncountable iff it is of the cardinality continuum iff it contains a non-
regular tree. We also give a normal form of the countable languages recognized by
an ATA. These results constitute the first steps towards an algorithm to output the
number of models modulo bisimulation.

Related Work In the field of epistemic logic, an important question to ask is: how
many different states of knowledge of a given fact are there? This question has
been addressed by [Aum89, Har96] and [PK92, Par03] in different settings. It is
interesting to see that these discussions in the literature can be unified from a per-
spective of counting models. For example, though presented in the setting of the
information structures of [Aum76], the set-theoretical counterpart of epistemic logic
for economists, [Har96] essentially shows that there are continuum many S5 Kripke
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models such that any two models are separated by an epistemic formula based on
a basic proposition p. If we only consider image-finite models, then bisimulation
on S5 models coincides with the logical equivalence of epistemic logic, therefore the
above result can be equally rephrased as: there are continuum many non-bisimilar
S5 models of p.

On the other hand, the main result in [PK92, Par03] says that there are countably
many different realizable “levels” of knowledge, where a level of knowledge realized
by a certain pointed S5 Kripke model (M, s) is a set:

{(i1, i2, . . . , in) ∈ I∗ | M, s � Ki1 Ki2 . . .Kin p}

In our setting, this amounts to counting models of p modulo an equivalence notion
which is much weaker than bisimulation: it is not hard to see that two models
have the same level of knowledge iff they have the same set of labelled paths to ¬p
worlds3. Therefore, it is expected that there are less levels of knowledge than states
of knowledge in the sense of [Har96].

A generalization of the results in [Niw91] is presented in [BKR09], where the focus
is on the elimination of the uncountability quantifiers in the setting of the monadic
second-order logic of order over image-finite trees.

The structure of the chapter In the next section, we will recall some standard
definitions and results on alternating tree automata. Section 6.3 presents our main
result on the cardinality of ATA recognizable languages. In Section 6.4 we give a
normal form of the countable languages recognized by an ATA. In the last section,
we discuss some interesting implications and further extensions of our result in an
epistemic setting.

6.2 Preliminaries

We first define trees. For a non-empty set ∆, a ∆ labelled-tree is a tuple:

T = (W,∆,Σ,→,L, r)

where W is a set of vertices with designated node r ∈ W as the root, L : W → ∆ is a
labelling function for the nodes and {→a}a∈Σ ⊂ W ×W is a set of edges such that the
root has no incoming edges, and there is a unique directed finite path from the root
to every node. We also write WT for the domain of T , similarly for LT ,→T and rT .
We call two nodes w and w′ siblings if they are two successors of the same node. By
abusing the notation, we sometimes write v ∈ T for v ∈WT .

Notation The reader should not be confused when seeing w, v as the vertices in a
tree while they are reserved to denote sequences in other parts of the thesis. In fact,

3The case for common knowledge in [Par03], can be viewed in the same light with little adaptation.
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a tree is sometimes represented as a prefix closed subset ofN∗ and thus every vertex
in a tree is essentially a prefix of a branch (a sequence).

Let dep(T , v) be the depth of v in T , namely the length of the path from rT to v. We
say v→∗ w if w = v or w is reachable from v by following the edges, and v→n w if it
is reachable in n steps. Intuitively, the nodes that are of the same depth form a level of
the tree. IfT is a tree thenT v denotes its subtree rooted at v. Let Sub↔ (T ) be the set of
subtrees of T modulo bisimulation: {[T v]/↔ |v ∈ T }. We say T is bisimulation-regular
(B-regular for short) if |Sub↔ (T )| is finite. For any u, s in T , let T [u\s] be the tree
constructed from T by replacing the subtree T u with T s.

It is clear that every tree can be viewed as a pointed Kripke model with labelling
function instead of valuations. On the other hand, for an arbitrary Kripke model
M, s0 we can associate its tree unravelling, the tree TM = (W, 2P,Σ,→,L, r) where
W is the set of all possible finite paths s0a0s1a1 . . . ansn starting with s0 in M, and

w′ b
→ w ⇐⇒ w = w′bs inM. It is not hard to see that each Kripke model is bisimilar

to its tree unravelling.
Recall that given a Kripke modelM = (S,Σ,→,V), the bisimulation contraction

of M is the quotient model M/≡b (see Definition 2.2.3). It follows that if a tree is
B-regular, then its bisimulation contraction is a finite Kripke model.

In [JW95], general alternating tree automata (ATA) on Kripke models are defined.
For technical convenience, we work with the µ-automata as in [DN05], which can be
viewed as an equivalent but intuitive exposition of ATA. These µ-automata run on
2P
−labelled (infinite) trees, where P is the set of basic propositions.

6.2.1. D. (µ-automata [JW95, DN05]) A µ-automaton A on set of basic
propositions P and set of basic actions Σ is a tuple:

A = (Q,B, q0,→OR,→BR,L,Ω)

where:

• Q is a non-empty, finite set of OR (choice) states,

• B is a finite set of BR (branching) states such that B ∩Q = ∅,

• q0 ∈ Q is an start state,

• →OR⊆ Q × B is an unlabelled choice relation from Q to B,

• →BR⊆ B × Σ ×Q is a labelled branching relation from B to Q,

• L : B→ 2P is a labelling function mapping each branching state to a set of basic
propositions,

• Ω : Q→N is an indexing function.

ç
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Let BR(b, a) = {q | (b, a, q) ∈→BR} and OR(q) = {b | (q, b) ∈→OR}. A q-run R of A =
(Q,B, q0,→OR,→BR,L,Ω) on a (2P)-labelled tree T = (WT , 2P,Σ,→T ,LT , r) is a (WT ×
(Q∪B))−labelled treeR = (WR,WT ×(Q∪B),Σ∪{τ},→R,LR, r′) such that the following
conditions are satisfied:

• LR(r′) = (r, q0).

• (OR) If LR(w) = (v, q), where q ∈ Q then w has exactly one τ−child w′ such that
LR(w′) = (v, b) for some b ∈ OR(q).

• (BR) If LR(w) = (v, b) where b ∈ B then:

– LT (v) = L(b).

– For every a−child v′ of v in T , there is an a−child w′ of w in R such that
LR(w′) = (v′, q′) for some q′ ∈ BR(b, a).

– For every q′ ∈ BR(b, a) there is an a−child w′ of w in R such that LR(w′) =
(v′, q′) for some a−child v′ of v in T .

For a path P of T , we define QR(P) = {q | LR(w) = (v, q) for some w ∈ R and v on P}.
Note that QR(v) is not always a singleton since one node in T may correspond to
more than one state in the automaton. For an infinite path P = v0, v1, ... we define:

In f (R,P) = {q | q ∈ QR(vi) for infinitely many vi}

The acceptance of runs is defined by the parity condition: A q-run R of A on T is
accepting iff for every infinite path P inR: the greatest value of ΩR(q), for q ∈ In f (R,P),
is even. We denote such greatest value as ΩR(P). A tree T is accepted by A if there
is a q0−accepting run on T . Let L(A) be the set of trees which are accepted by A. A
pointed Kripke modelM, s is accepted by A iff its tree unravelling is accepted by A.

Given a run R of A on T and a state v ∈ T , we let WR(v) = {w | LR(w) =
(v, q) for some q ∈ QA}. By the definition of the run, we can verify that any two nodes
in R labelled by the same node in T are at the same level in R: for any w,w′ ∈WR(v):
dep(R,w) = dep(R,w′).

The following fundamental theorem relates the Mu formulas with µ−automata.

6.2.2. T. [JW95] For each µ−automaton there is an equivalent Mu−formula. For
each Mu−formula there is an equivalent µ−automaton .

Since Mu is invariant under bisimulation then we have:

6.2.3. C. If M, s ↔ N, t, then M, s is accepted by a µ− automaton A iff N , t is
accepted by A.

We end this section with an example to illustrate how the µ-automata work:
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6.2.4. E.

T : (r : p)

�����������������

��

A : (q : 1)
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���������

��9999999

%%LLLLLLLLLL R : (r, q)

τ

��
(b0 : {p}) (b1 : {p})

HH

(b2 : ∅) (b3 : ∅)

ii

(r, b1)

�����������

(w1 : p) (w′1 : ¬p)

��

(w1, q)

τ

��

(w′1, q)

τ

��
(w1, b0) (w′1, b3)

��
(w′2 : p)

��

(w′2, q)

��

where we fix P = {p}. In the tree T , (x : y) indicates that y holds at state x; In A, (q : 1)
indicates that Ω(q) = 1 and (bi : Z) means LA(bi) = Z; In the run R, (x, y) are the labels
associated to the nodes. It is not hard to see that R is a run of A on T , however,
it is not accepting. Actually A is the µ-automaton corresponding to the Mu formula
µX.2X which expresses well-foundedness: there is no infinite descending chain (cf.,
e.g., [GO06]). æ

6.3 Cardinality of the Tree Languages

The collection of the models recognized by an arbitrary µ−automaton is not always
a set, even up to bisimulation. For instance, take the µ−automaton A in Exam-
ple 6.2.4 which is equivalent to the µ−calculus formula µX.2X that expresses well-
foundedness. Now for any ordinal α, consider the Kripke structureMα = {{β | β ≤
α},→,V} where β → β′ ⇐⇒ β′ < β ≤ α (the inverse of the order relation). It is
clear that for all α, Mα is well-founded thus recognized by the automaton A. By
induction, one can prove thatMα is not bisimilar toMβ if α , β. Therefore there are
µ−automata which recognize class-size tree languages.

In this chapter, we concentrate on image-finite models in which each state has only
finitely many successors w.r.t the same label in Σ. It is clear that the tree unravelling
of an image-finite model is again an image-finite model. Note that the class of image-
finite models has the Hennessy-Milner property for Mu: for any image-finite models
M, s0 andN , t0: M, s0 ↔ N , t0 ⇐⇒ M, s0 andN , t0 satisfy the same Mu formulas (cf.,
e.g, [BdRV02]). Therefore, if a Mu-formula φ has n non-bisimilar image-finite models,
then all these different models can be told apart by Mu−formulas.
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The rest of this section is devoted to our main result (Theorem 6.3.5): aµ−automata
recognizable set of image-finite models modulo bisimulation is uncountable iff it has
the cardinality of the continuum iff it contains a non-B-regular tree. This can be seen
as an analogy of the main result in [Niw91], with Rabin tree automata on ranked
infinite-trees replaced by µ-automata on Kripke models, and isomorphism4 replaced
by bisimulation. The new setting significantly complicates the proof of the main
theorem by two reasons:

1. A path in a tree that is accepted by a µ−automaton, may correspond to a tree in
the accepting run, not always a path as in the case of Rabin automata on ranked
trees.

2. Bisimulation requires much more care than isomorphism, as we will see in the
proof of Theorem 6.3.5, where we need infinitely many non-bisimular trees
with complicated construction, while two non-isomorphic trees are enough for
the corresponding proof in [Niw91].

To simplify the discussion, we focus on trees without action labels. Therefore
we omit Σ in the definition of Kripke models and trees. To generalize the result to
the case with finitely many action labels is a standard exercise. In the context of
unlabelled trees, it is conventional to say a tree is image-finite if it is finitely branching.
We also fix a label set 2P for the trees and omit the label set WT × (QA ∪ BA) in runs
of A on a tree T when the context is clear.

The following two propositions and the later lemma intend to deal with the first
complication we mentioned earlier. First, we show that for image-finite trees the
accepting runs (if they exist) can also be image-finite.

6.3.1. P. If an image-finite tree T is accepted by A then there is an image-finite
accepting runR′ of A onT , such that there are no two sibling nodes w and w′ inR′ satisfying
LR′ (w) = LR′ (w′).

P Suppose there is an accepting run R of A on T and there is a node w in
R which has infinitely many successors. It is clear that w must be labelled by a BR
state in A, thus LR(w) = (v, b) for some v in T and b ∈ BA. We define an equivalence
relation ∼ among the successors of w such that w′ ∼ w′′ ⇐⇒ LR(w) = LR(w′). With
the presence of the Axiom of Choice, we pick one w′ as a representative in each of
the equivalence classes w.r.t ∼. Since T is image-finite and QA is finite, there are only
finitely many such equivalence classes. A moment’s reflection should confirm that
we can then prune the successors other than the representatives safely, such that the
resulting run R′ is still an accepting run of A on T . ë

Given a µ−automaton A, we call a run R of A on T non-parallel if for any v ∈ T :
QR(v) is a singleton. We sometimes write QR(v) = q instead of QR(v) = {q}.

4more precisely, some notion of tree identity.
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6.3.2. P. If a µ-automaton A accepts an image-finite tree T , then A accepts an
image-finite tree T ′ such that there is a non-parallel accepting run of A on T ′ and T ↔ T ′.

P Suppose R = {WR,→R,LR, rR} is a successful run of T = {WT ,→T ,LT , rT }
on A. Let T ′ = {WT ′ ,→T ′ ,LT ′ , rT ′ }where:

• WT ′ = {w ∈WR | LR(w) = (v, q) for some v ∈ T , q ∈ QA}.

• v→T ′ v′ ⇐⇒ v τ
→R w→R v′ for some w ∈ R.

• LT ′ (w) = LT (v) for v ∈ T such that LR(w) = (v, q).

• rT ′ = rR.

It is not hard to see that T ′ is accepted by A through a successful run

R
′ = {WR,→R,L′, rR}

where:

L′(w) =

{
(w, q) i f LR(w) = (v, q) for some v ∈ T

(w′, b) i f LR(w) = (v, b) for some v ∈ T and w′ τ
→ w in R

Given u ∈ T ′, suppose L′(w) = (u, q) and L′(w′) = (u, q′) for some w,w′ ∈ R′. By the
definition of L′, we have w = u = w′ thus q = q′. Therefore, for all u ∈ T ′ : QR′ (u) is a
singleton.

We now define binary relations ∼ on WT ×WT ′ as follows:

v ∼ u ⇐⇒ LR(u) = (v, q) for some q ∈ QA.

We claim ∼ is a bisimulation between T and T ′. For every pair (v,u) ∈∼ with
LR(u) = (v, q) the three conditions of bisimulation hold:

1. LT (v) = LT ′ (u): by definition.

2. Suppose v →T v′. Then by the definition of the run R, there must be a node
u′ ∈ R such that LR(u′) = (v′, q′) for some q′ and u τ

→R→R u′. It is clear that
u→T ′ u′ in T ′ and v′ ∼ u′.

3. Suppose u→T ′ u′ in T ′. Then by the definition of T ′, u τ
→R→R u′ in R. By the

definition of R, there is some v′ ∈ T such that LR(u′) = (v′, q′) and v→T v′.

ë

We call a run R of A on a tree T simple if R is image-finite and WR(v) is a singleton
for any v ∈ T.Now based on Propositions 6.3.1 and 6.3.2, we can prove the following
lemma:
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6.3.3. L. If a µ-automaton A accepts an image-finite tree T , then A accepts an image-
finite treeT ′ such thatT ↔ T ′ and there is an accepting simple runR of A onT ′. Therefore,
a path in T ′ has a unique corresponding path in R.

P Given T , we first build an image-finite accepting run as in the proof of
Proposition 6.3.1. Then we can convert this run into a tree T ′ which is bisimilar
to T according to Proposition 6.3.2, with a non-parallel run R. Now we show that
WR(v) is a singleton for any v ∈ T′. Suppose not, then there is a node v ∈ T ′ such
that there are w and w′ ∈ R such that LR(w) = (v, q) and LR(w′) = (v, q). By the
definition of the run, it is clear that w and w′ are at the same level of R. According to
Proposition 6.3.1, w and w′ can not be siblings. Therefore there must be a departure
node w0 with LR(w0) = (v′, b) for some v′ ∈ T ′ and b ∈ BA, such that w0 → w1 →

n w
and w0 → w2 →

n w′ for some w1 , w2 and a natural number n > 0. Suppose
L(w1) = (v1, q1) and L(w1) = (v2, q2), then it is not hard to see that v1 , v2, since w1
and w2 are siblings. It s clear that v1 and v2 are also siblings in T ′. However, it is
impossible to reach the same point v from two sibling nodes in T ′, according to the
definition of the trees. Contradiction.

For any v ∈ T ′, since WR(v) is a singleton, we let R(v) be the unique element in
WR(v).Now given an infinite path P : v0, v1, v2 . . . inT ′we can find the corresponding
unique path in R : R(v0) τ

→ w0 → R(v1) τ
→ w1 → R(v1) τ

→ . . . , where wi are unique
successors of R(vi) in R.

ë

Before we go to the main theorem, we need the following lemma which helps to
provide a source tree to be pumped in the later proof.

6.3.4. L. If an image-finite tree T is not B-regular then there is an infinite path
P = v0, v1, . . . such that:

for any k ∈N, any v such that dep(T , v) < dep(T , vk): T vk ↔/ T v.

Namely, for each vk, T vk is a “new” subtree which does not appear up to bisimulation at
earlier levels of the tree.

P Let V = {v ∈ T | ∀w ∈ T : T v ↔ T
w =⇒ dep(T , v) ≤ dep(T ,w)}.

Intuitively, V is the set of nodes where a “new” tree appears, in top-bottom order.
Let V′ = {v : v →∗ w in T , for some w ∈ V}, then T ′ = {V′,→ |V′×V′ ,L|V′ , r} is a tree.
Due to the fact that T is image-finite and non-B-regular, T′ is an image-finite infinite
tree. With the presence of Axiom of Choice, we recall König’s Lemma on unordered
trees:

An image-finite infinite tree has an infinite path.

Thus there is an infinite path P = v0, v1, v2, . . . in T′. Clearly P is also an infinite path
in T . Now suppose towards contradiction that there are vk ∈ P and v ∈ T such that
dep(T , v) < dep(T , vk) and T vk ↔ T

v. By the definition of V′, there is a w such that
vk →

n w and w ∈ V for some n. Since T v ↔ T vk then there is a w′ : v →n w′ in T
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such that T w ↔ T w′ . However, it is clear that dep(T ,w′) < dep(T ,w), thus w < V,
contradiction. ë

Now we come to our main theorem. Note that we only consider image-finite
models in the sequel.

6.3.5. T. Let A be a µ-automaton. Then the following are equivalent:

1. |L(A)|/↔ = 2ℵ0 ,

2. |L(A)|/↔ > ℵ0,

3. L(A) contains a non-B-regular tree.

P (1) =⇒ (2) is straightforward.
(2) =⇒ (3) : Suppose L(A) only contains B-regular trees. Then by the definition

of B-regular trees, each tree inL(A) is bisimilar to its bisimulation contraction, which
is finite. However, there are only countably many such finite Kripke models, given a
finite set P of basic propositions.

(3) =⇒ (1) : Observe that each ω−branching tree5 can be viewed as a downward
closed subset of N∗. Since |N∗| = ℵ0, clearly |L(A)|/↔ ≤ 2ℵ0 . We will prove (3) =⇒

|L(A)|/↔ ≥ 2ℵ0 . The idea of the proof is to pump 2ℵ0 many non-bisimilar acceptable
trees out of a non-B-regular tree.

Suppose L(A) contains an image-finite non-B-regular tree T o. By Lemma 6.3.3,
L(A) contains an image-finite tree T = (W,→,L, r) bisimilar to T o, such that there is
an accepting run R of A on T and WR(v) is a singleton for each v ∈ T . Clearly, T is
also non-B-regular.

By Lemma 6.3.4, there is an infinite path P : v0 = r, v1, v2, . . . such that for any
k ∈ N and any v ∈ T : dep(T , v) < dep(T , vk) =⇒ T

vk ↔/ T v. It is obvious that for
any j , i : T vi ↔/ T v j . Since R is non-parallel, QR(vi) is a singleton for any vi ∈ P.

We now pick a distant node vm ∈ P such that QR(vm) = {q} ⊆ In f (R,P) for some
q ∈ QA and QR(Pvm ) = In f (R,P), where Pvm is the suffix of P starting at vm. Intuitively,
we pick vm in such a way that all the points in P after vm are only matched with the
states in the automaton that appear infinitely often according to the labelling of P in
R. We then find an infinite subsequence P′ : v′0, v

′

1, v
′

2 . . . of P such that v′0 = vm and

for each k: QR(v′k+1) = {q} and QR(P
v′k
v′k+1

) = In f (R,P), where P
v′k
v′k+1

is the segment of P
between v′k and v′k+1. Note that such P′ exists since q ∈ In f (R,P).

Now we are ready to pump the tree T into 2ℵ0 many non-bisimilar trees. For
each infinite sequence α of 0s and 1s, we construct a tree Tα which is accepted by A.
We do this by building the sequence of triples (Tαn ,uαn , sαn ) where αn is a prefix of α
of the length n and uαn ,sαn ∈ P′. Intuitively uαn is the“replacing point” and T sαn is the
“substitution”.

5ω−branching trees are the trees that have at most ℵ0 many successors at each node.
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Before defining the pumped trees formally, recall Fact 2.2.5: if two pointed models
(M, s0) and (N , t0) are not bisimilar then Spoiler has a winning strategy in some n-
round bisimulation game Gn((M, s), (N , t)). We let g ↔/ ((M, s), (N , t)) be the minimal
number n0 such that the spoiler has a winning strategy for the n0-round bisimulation
game Gn0 ((M, s), (N , t)).

We start from Tε = T ,uε = v′0, sε = v′1. For any finite binary sequence β, Tβ·0 and
Tβ·1 are constructed as follows:

• Tβ·1 = Tβ[uβ\sβ], uβ·1 = next(sβ,D(Tβ,uβ, sβ)) and sβ·1 = next(uβ·1, 0).

• Tβ·0 = Tβ, uβ·0 = uβ·1 and sβ·0 = sβ·1.

where

• for u, s in P′ such that dep(T ,u) < dep(T , s), D(T ,u, s) is the depth of the zone
where the non-bisimilarity between T s and any other subtree at the same level
of T u can be detected (by bisimulation games). Formally:

D(T ,u, s) = max{g ↔/ (T u′ ,T s) | dep(T ,u′) = dep(T ,u)}.

• for s in P′, n ∈N: next(s,n) is defined as v′k in P′ such that k is the minimal index
satisfying dep(T , v′k) − dep(T , s) > n. Intuitively, next(s,n) is the next point in P′

after s, such that the zone with depth n can be preserved.

Note that g ↔/ (T u′ ,T s) is well-defined since for any s on P′, dep(T ,u) < dep(T , s)
impliesT u

↔/ T s. Moreover {g ↔/ (T u′ ,T s) | dep(T ,u′) = dep(T ,u)} is a finite set since
T is image-finite, thus the maximal element of this set exists.

Let d = D(Tβ,uβ, sβ), the intuition behind the above construction is illustrated as
follows:
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We build Tβ·1 by placing the substitution T sβ at the replacing point uβ. Then we let
the next replacing point uβ·1 be far away enough from the previous substitution point
sβ, such that the non-bisimilarity of T sβ and its new neighbour subtrees at the same
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level in Tβ[uβ\sβ] can be detected by a bisimulation game before reaching the new
replacing point. Finally we let the new substitution be the“next” suitable point after
sβ·1 in P′. For Tβ·0 we simply do not execute the substitution but change the sβ·0 and
uβ·0 as in the case of Tβ·1.

Given an infinite binary sequence α, we can now build Tαn for each n. To build
Tα, we define the stable part of Tαn as follows:

• stable domain: sdom(Tαn ) = WTαn
− {v | uαn →

∗ v in Tαn }

• stable edges: sedge(Tαn ) =→Tαn
|sdom(Tαn )×sdom(Tαn ).

• stable label: slabel(Tαn ) = LTαn
|sdom(Tαn ).

It is not hard to see that the above defined stable part of Tαn does not get altered in
Tαm for m > n. Due to such monotonicity, we can now build the limit tree:

Tα = (
⋃
n<ω

sdom(Tαn ),
⋃
n<ω

sedge(Tαn ),
⋃
n<ω

slabel(Tαn ))

Since R is an accepting run of A on T such that WR(v) is a singleton for each
v ∈ T , every node in T corresponds to a two-node path w τ

→ w′ in R such that
LR(w) = (v, q) and LR(w′) = (v, b) for some b ∈ BA and {q} = QR(w). Then it is easy to
see that we can build each Rαn based on Rαn−1 , by the corresponding substitution as
in the construction for Tαn . Such Rαn is indeed a run of Tαn since the replacing point
and the substitution point in Tαn−1 are all labelled with the same q ∈ QA. Similarly, we
can define the stable parts of each Rαn and let:

Rα = (
⋃
n<ω

sdom(Rαn ),
⋃
n<ω

sedge(Rαn ),
⋃
n<ω

slabel(Rαn ))

To see the limit run Rα is also an accepting run of A on Tα, we need to check the
parity condition for every infinite path in Rα.

Note that if an infinite path P1 in Rα is contained in a stable part of Rαn for some
n, then we can find a path P′1 in R such that P1 and P′1 share an infinite suffix. Then
it is clear that P1 and P′1 only differ in their finite prefixes, thus ΩRα (P1) = ΩRαn (P1) =

ΩR(P′1) which is even. The non-trivial case is the limit path Pα which is not contained
in the stable part of any Tαn , thus goes through infinitely many substitution points
r,uα0 ,uα1 ,uα2 · · · . Since QR(Pv0 ) = In f (R,P) and QR(P

v′k
v′k+1

) = In f (R,P) for any k < ω,
then the construction of the limit run can neither make any q′ < In f (R,P) occur
infinitely often nor make any q′ ∈ In f (R,P) occur only finitely often. Therefore
ΩRα (Pα) = ΩR(P). In sum, Rα is indeed an accepting run of A on Tα.

To complete the above proof, we need to show that for any α , α′ ∈ 2∗, Tα↔/ Tα′ ,
which is proved by the following lemma. ë

6.3.6. L. If α , α′ ∈ 2ω, then Spoiler can win the bisimulation game Gn(Tα,Tα′ ) for
some n < ω.



6.4. Normal Form of the Countable Languages 95

P Since α , α′, there is a sequence β ∈ 2∗ such that αm = β · 0 and α′m = β · 1 for
some m. We recall the construction of Tβ·1 and Tβ·0 as follows:
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where u = uβ·0 = uβ·1. Note that in both trees, the parts which are not reachable from
u will be preserved in Tα and Tα′ , according to the construction of the limit tree.
We claim that there is a winning strategy for spoiler in the game Gn(Tα,Tα′ ) where
n = dep(Tβ·1,u) = dep(Tβ,uβ) + d.

It is clear that Spoiler has a strategy to reach the node sβ in T ′α by following a
path in Tα′ from r. To match Spoiler’s moves, the verifier, if it has not lost already,
will reach another point u′ in Tα with the same depth. Since d > max{g ↔/ (T v,T sβ ) |
dep(T , v) = dep(T ,uβ)} as in the construction of Tβ·1, Spoiler can win the bisimulation
game Gd(T u′ ,T sβ ). Therefore Spoiler has a strategy to show the difference between
T

u′ and T sβ in d steps, namely within the stable parts of Tβ·1 and Tβ·0. Thus Spoiler
can win the bisimulation game Gd(T u′

α ,T
sβ
α′ ). In sum, Spoiler has a winning strategy

for the game Gn(Tα,Tα′ ). ë

6.4 Normal Form of the Countable Languages

Following [Niw91], we call a tree T alive if T/↔ ∈ Sub↔ (T ), namely T can regenerate
itself up to bisimulation. Given a µ−automaton A, let alive(L(A)) be the collection of
all the alive subtrees of the trees accepted by A:

alive(L(A)) = {T | T is an alive subtree of some T ′ ∈ L(A)}.

It is easy to see that a tree is alive if and only if there is a cycle in its bisimulation
contraction starting from [r]/↔ . An infinite path P is called a regenerating path of
an alive tree T , if P goes through infinitely many nodes: v0, v1 . . . such that each
T

vi ↔ T . We call those vi regenerating points of P. It is clear that every alive tree has
at least one regenerating path starting at the root. We say an alive tree T is q-lively-
accepted by A, if there is an accepting simple q−run R of A on T , such that there are
infinitely many regenerating points v0, v1 . . . in a regenerating path st. QR(vi) = {q}
for each i ∈N.
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6.4.1. P. For every tree T0 ∈ alive(L(A)), there is a tree T1 ↔ T0 such that T1
is q-lively-accepted by A for some state q ∈ QA which is reachable from the start state q0 of A.

P Given a tree T0 ∈ alive(L(A)), let T ∈ L(A) be a tree such that T0 is a subtree
of T . By Lemma 6.3.3, there is a tree T ′ ↔ T such that there is a q0-run R′ which is
accepting and WR

′

(v) is a singleton for each v ∈ T ′. It is clear that T ′ has an alive
subtree T ′0 which is bisimilar to T0. Then there is an infinite regenerating path P
starting at the root of T ′0 . Consider the corresponding path P′ in R′, it is easy to see
that there are infinitely many nodes corresponding to the regenerating points in P
which are labelled with the same state q ∈ QA.

ë

We now show a countable language only involves finitely many alive trees up to
bisimulation. Differing from the case of Rabin Automata on ranked tress in [Niw91],
our µ−automata work on unranked trees, thus we can now construct new acceptable
trees by inserting branches to an existing acceptable tree, as shown in the proof of the
following lemma.

6.4.2. L. Given a µ−automaton A, if L(A) is countable up to bisimulation then
|alive(L(A))|/↔ is finite.

P Suppose towards contradiction that L(A) is countable but |alive(L(A))|/↔
is infinite. By Proposition 6.4.1 and the pigeon hole argument, there are infinitely
many non-bisimilar alive treesT0,T1,T2, . . . that are q−lively accepted by A for some
q ∈ QA which is reachable from the start state of A.

By Proposition 6.4.1 let R be a legal simple run of A on a tree T with some node
v ∈ T such that QR(v) = {q}. ThenT [v\T0] is accepted by the simple runR[WR(v)\R0],
where R0 is the q-alive-accepting run ofA on T0.

Since T0 is alive, we can find an infinite path in T [v\T0] containing an infinite
subsequence of regenerating points P : v1, v2 . . . where T vi ↔ T0 for each i ∈ N.
Based on T0, we now build a non-B-regular tree T ′ by “inserting” Ti as a child of the
parent node of vi for each i > 0:

T
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where vp
i is the parent node of vi. Take the simple run R[WR(v)\R0] of A on T [v\T0].

SinceTi are all q-accepted, we can build a runR′ forT ′ by inserting the corresponding
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q−run Ri of Ti as a child of the unique wi in R′ such that LR(wi) = (vp
i , b) for some b in

BA.
It is not hard to see that R′ is legal run and all the infinite paths satisfy the parity

condition thus R′ is accepting. Thus L(A) contains a non-B-regular tree. But then by
Theorem 6.3.5, L(A) is uncountable. Contradiction. ë

Let Fn be the set of finite trees with some leaves possibly labelled by variables
x1, x2, . . . , xn. Given a T f ∈ Fn, let T f [x1\T1, . . . , x1\Tn] be the tree obtained by
replacing each xi-labelled node in T f by the tree Ti. We can show that each regular
tree can be turned into a normal form:

6.4.3. L. If T is an image-finite B-regular tree, then there exist alive trees T1, . . . ,Tn
and a T f ∈ Fn for some n ∈N such that: T ↔ T f [x1\T1, . . . , x1\Tn].

P Given a B-regular tree T , suppose there are n different subtrees modulo
bisimulation (call themT1, . . .Tn). We now turnT into the normal form by “rewriting”
the first n levels of T , in the top-bottom fashion starting from the root: if we reach a
node v such thatT v is bisimilar to some aliveTi, then we turn v into xi and discard all
the nodes reachable from v. Since T is image-finite, we only need to rewrite finitely
many nodes. We claim that if we reach some node at level n which has not been
discarded in an earlier state of the rewriting, then this node is a leaf in the tree T .
Suppose not, then there is a child w of this node. Since dep(T ,w) > n, along the path
from the root to n there must be a w′ such that T w ↔ T w′ , due to the fact that there
are only n different subtrees modulo bisimulation. However, thenT w′ is an alive tree
and thus the nodes reachable from w′ should be discarded. Contradiction.

Let T f be the resulting tree. It is clear that T ↔ T f [x1\T1, . . . , x1\Tn].
ë

Given Fn ⊆ Fn, we let Fn[x1\T1, . . . , x1\Tn] = {T [x1\T1, . . . , x1\Tn] | T ∈ Fn}. We
can now show the normal form theorem as follows:

6.4.4. T. Given a µ−automaton A, if L(A) is countable up to bisimulation, then it
can be represented by

Fn[x1\T1, . . . , x1\Tn]

for some n < ω, {T1, . . . ,Tn} ⊆ alive(L(A)), and some Fn ⊆ Fn which is recognizable by an
finite automaton B on finite trees in Fn.

P (Sketch) From Lemma 6.4.2, we can list the finitely many different rep-
resentatives of the alive trees in L(A) as T1, . . . ,Tn for some n. We now build
the finite automaton B on finite unranked trees based on A. Let B = (QA,BA ∪

{x1, . . . , xn}, q0,→ORA∪ →′OR,→BR
A,L′) where:

q→′OR xi iff there is an accepting q−run of A on Ti

and

L′(b) =

{
LA(b) if b ∈ BA

xi if b = xi
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We say a finite tree T f with variables is accepted by B, if there is a legal run of B as a
µ-automaton on T f . LetL f (B) be the set of trees in Fn that are accepted by B. It is not
hard to verify that L(A) is equivalent (up to bisimulation) to L(B)[x1\T1, . . . , x1\Tn].

ë

6.5 Discussion and Future Work

This chapter extends a result by Niwiński [Niw91] on the cardinality of tree languages
recognized by automata. We showed that a µ−automata recognizable set of image-
finite models modulo bisimulation is uncountable iff it is of the cardinality continuum
iff it contains a non-B-regular tree. As in [Niw91], we give a normal form of the
countable languages modulo bisimulation.

A straightforward consequence of Theorem 6.3.5 is that a Mu-formula has count-
ably many image-finite bisimulation contracted models iff all these models are finite.
Another interesting consequence in the case of countable languages is implied by
Lemma 6.4.2: there are only finitely many non-bisimilar S5 or KD45 models of a Mu
formula, if it has only finite bisimulation contracted models. To see this, first note
that the S5 models are reflexive, thus their unravellings are alive trees themselves,
therefore there are only finitely many of them due to Lemma 6.4.2. For the case of
KD45 models, observe that the only state that is not reflexive for any labelled rela-
tions in a connected KD45 pointed model can only be the designated state. Therefore,
any KD45 model of the given formula can be generated (modulo bisimulation) by
linking an start state to some of the alive trees. If the set of labels and the set of basic
propositions are finite, then we only have finitely many such KD45 models.

However, it should be noted that our main theorem does not imply the following:
a µ−automata recognizable set of image-finite S5 models modulo bisimulation is un-
countable iff it is of the cardinality continuum iff it contains a non-B-regular tree. Our
pumping construction in the proof of Theorem 6.3.5 does not preserve S5 conditions,
i.e., we may pump a tree which is not bisimilar to any S5 models from an unravelling
of a S5 model. Interested readers may try to verify that transitivity is not preserved
by our pumping construction in this sense. This calls for a closer look at finer classes
of models which may require more sophisticated pumping constructions. In fact, the
proof of Lemma 6.4.2 already suggests that a pumping construction which adds trees
instead of substituting trees may also work to prove the main theorem in a way that
may preserve the properties. We leave this for future work.

On the other hand, we may also look at finer classes of automata (or, say, classes
of modal µ-calculus formulas) to see whether we can have a better understanding
for specific fragments of Mu. An interesting question is to characterize the maximal
fragment of Mu in which each formula has a unique model up to bisimulation.

Note that in the proof of our Lemma 6.4.2, we did not give a bound on the number
of alive trees as in [Niw91]. It is not yet clear how we can tighten the proof in order
to obtain a finite bound. The difficulty actually lies in the proof of our main theorem,



6.5. Discussion and Future Work 99

where using infinitely many non-bisimilar trees is essential, while in [Niw91] two
“different” trees are enough. This may be an obstacle to an algorithm, as an analogy
to the algorithm given in [Niw91], to output the number of non-bisimilar models of
a given modal µ-calculus formula. We also leave this for future work.
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Model Checking
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Chapter 7

Making Models Smaller

7.1 Introduction

In this chapter, we import the 3-valued abstraction-refinement techniques developed
for temporal logics to DEL model checking (see, e.g., [BG99, GHJ01]), with new
features particularly relevant for a multi-agent epistemic setting. The abstraction-
refinement method intuitively relates a detailed model (refined model) with a coarser
one (abstract model) in which some information may be lost, but the information kept
is faithful to the detailed model. In the Kripke models of the epistemic setting, there
are often transitions with different labels that might be similar to each other, for
instance, if they express uncertainties of agents playing similar roles in a multi-
agent system. Another specific characteristic of epistemic Kripke models is that in
modelling practical situations numerous different basic propositions might be used
as we have seen in the Russian Cards or Muddy Children examples in the previous
chapters. We may expect to lump together some of those transitions with different
labels or combine states with different propositional valuations to obtain a more
compact abstraction. However, the traditional abstraction techniques do not perform
these types of reductions, therefore an adaptation is needed. Moreover, to apply the
abstraction on DEL, it is a challenge to design a reasonable 3-valued semantics of DEL
which facilitates faithful reasoning on abstract models.

Specifically, in this chapter, we extend the abstraction-refinement theory for Kripke
Modal Labelled Transition Systems (KMLTSs) [HJS01], incorporating not only state
mapping but also label and proposition lumping, in order to obtain compact but
informative abstractions. We develop a 3-valued Public Announcement Logic (PAL)
and prove that the abstraction relation on static models can assure us to safely verify
any dynamic properties in terms of PAL-formulas on the abstractions of a KMLTS.
Thus the theory can be used to abstract Kripke models, since Kripke models can be
regarded as a special case of KMLTSs. This theory is in particular applicable for
an epistemic setting as the example of the Muddy Children shows. We shall also
see that under certain conditions, the components as in Chapter 5 can be viewed as
abstractions of the composed model.

103
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Related work In the flourishing field of abstraction techniques, to the best of our
knowledge, no work on the abstraction of Kripke models exists yet with reducing
both the number of labels and of basic propositions. The literature related most
closely to the current chapter is the work on abstraction of LTSs [vdPE04] in which the
labels could be grouped. In the related field of Epistemic Temporal Logic, although
the computational complexity of ETL model checking has been well-addressed in
the literature (see e.g., [vdMS99, SG02, vdMS04] and the survey on page 157 of
this thesis), the state space reduction techniques, such as symmetry reductions and
abstractions, have not been used until recently [CDLR09, CLDQ09]. The multi-valued
semantics of model logic has been discussed in [Fit91, Fit92] in a very general setting
while we focus on the 3-valued semantics of PAL based on KMLTSs.

Structure of the chapter Section 7.2 introduces Kripke Modal Labelled Transition
Systems, together with a 3-valued interpretation of PAL. In Section 7.3, the notions of
refinement and abstraction are introduced and the preservation results are proven.
Section 7.4 contains two examples of applying abstraction to some real epistemic
models. We conclude in Section 7.5.

7.2 Preliminaries

In this section we introduce the 3-valued Public Announcement Logic interpreted on
3-valued Kripke Modal Labelled Transition Systems.

7.2.1 Kripke Modal Labelled Transition System

In order to define abstractions of Kripke models the standard definition is extended
in the following sense:

• To incorporate the approximation of propositional information in the abstract
model, we use 3-valued valuations instead of 2-valued ones. Besides true and
false, atomic propositions can now have a third truth value ↑which is intended
to mean unknown.

• To incorporate the approximation of relations, two types of relations must and
may are introduced as in Modal Transition Systems [LT88]1, where must-relations
are under-approximations (the relations are necessarily there in the concrete
model) and may-relations are over-approximations (there are possibly such
relations). Since necessarily existing relations should be at least possible, we
require that the must-relations are included in the may-relations. Essentially,
may- and must-relations together also assign “truth values” to the relations in the
model: a relation from s to s′ is “true” if there is a must-relation between s and
s′, it is “false” if there is no may-relation between the states, and it is “unknown”

1See also [AHL+08] for a survey on such systems.
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when there is a may-relation between s and s′ without a corresponding must-
relation.

Formally, similar to the definition of Kripke Modal Transition Systems in [HJS01,
GJ02], we have:

7.2.1. D. (Kripke Modal Labelled Transition System) A Kripke Modal La-
belled Transition System (KMLTS) is a tupleM = (S,P,Σ,d,→,V) where:

• S,P,Σ are as usual;

• d is a set of transitions of the form s i
d s′ where i ∈ Σ;

• → is a set of transitions of the form s i
→ s′ where i ∈ Σ;

• V is a valuation function: V : S→ {true, false, ↑}P.

We require that→⊆d . We call (P,Σ) the signature ofM. A pointed KMLTS (M, s) is
a pair of a KMLTSM and a distinguished state s in it. ç

We include the signature (P,Σ) in the specification of the models as, in general, the
signatures of a model and its abstractions will be different.

A standard Kripke model can be regarded as a special kind of KMLTS, where
must and may coincide and the valuation is essentially 2-valued:

7.2.2. D. (Concrete model) A KMLTSM = (S,P,Σ,d,→,V) is a concrete
model if:

• d=→;

• for all s ∈ S, all p ∈ P : V(s)(p) ,↑ .

ç

7.2.2 Three-valued Public Announcement Logic

Public Announcement Logic (PAL), initiated in [Pla89, GG97], is a convenient lan-
guage for describing announcements and their informational consequences for (a
group of) agents. Based on the standard language of epistemic logic (logic of knowl-
edge), a new modality [!φ] is introduced into the language, with [!φ]ψ intended to
express “if φ is true then after the announcement of φ, ψ is true.” (see page 16 of this
thesis). Various case studies show this logic to be powerful in helping to understand
complicated higher order reasoning about knowledge and announcements such as
in the cases of Muddy Children, Sum and Product and the protocol of Dining Cryp-
tographers.2

2we refer interested readers to [vDvdHK07] for detailed explanations
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Formally, given a signature (P,Σ), the formulas of the Public Announcement Logic
PALΣ,P are defined by

φ ::= p | φ ∧ ψ | ¬φ | 2iφ | [!φ]φ

where p ∈ P, i ∈ Σ. As usual, we define φ ∨ ψ, φ → ψ and 3iφ as abbreviations of
¬(¬φ ∧ ¬ψ), ¬φ ∨ ψ and ¬2i¬φ respectively.

As we will see in the next section, our overall approach is not constrained to
be used only in epistemic settings, as it does not require the model to be S5.3 Not
constrained within S5 models, we have more freedom to find suitable abstractions,
as we will see in the Muddy Children example.

The semantics for 2-valued public announcement logic is the extension of standard
modal logic with relativization operators [!φ]: M, s � [!φ]ψ ⇐⇒ [M, s � φ implies
M|φ, s � ψ], where the relativized model M|φ is the restriction of M to the states
where φ holds. We extend such relativization, which we call “update” in the context
of PAL, to the 3-valued case and take the usual semantics for 2 as in the logics on
Modal Transition Systems:

7.2.3. D. (3-valued Semantics of PAL) The truth value of a PALΣ,P formula
φ in a state s of a KMLTSM = (S,P,Σ,d,→,V), written ~φ�M,s, is defined by:

~p�M,s = V(s)(p)
~¬φ�M,s = ¬3~φ�M,s

~φ ∧ ψ�M,s = ~φ�M,s
∧3 ~ψ�M,s

~2iφ�M,s =


true if ∀s′ : s i

d s′ =⇒ ~φ�M,s′ = true

false if ∃s′ : s i
→ s′ and ~φ�M,s′ = false

↑ otherwise

~[!φ]ψ�M,s =


true if ~φ�M,s = false or ~ψ�M|φ,s = true
false if ~φ�M,s = true and ~ψ�M|φ,s = false
↑ otherwise

where:

• ¬3(true) = false,¬3(false) = true and ¬3(↑) =↑, and for any x, y ∈ {true, false, ↑}:
x ∧3 y = min(x, y) w.r.t. ≤v: false ≤v↑≤v true.

• M|φ = (Σ,P,S′ d′,→′,V′) is defined as follows:

– S′ = {s ∈ S | ~φ�M,s , false};

– d′=d ∩(S′ × Σ × S′);

– →′=→ ∩(S′ × Σ × {s ∈ S′ | ~φ�M,s = true});

– V′(s) = V(s) for s ∈ S′.

3S5 is a set of formulas axiomatizing the reading of 2 as knowledge. S5 characterizes models in which
the relations are equivalence relations.
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ç

Note that the above 3-valued semantics for the propositional fragment of PAL
is essentially Kleene’s strong 3-valued logic [Kle50] which is the strongest 3-valued
propositional logic satisfying the following property:
[monotonicity] the behaviour of ↑ is compatible with any increase in information,
i.e. if the truth value of a basic proposition appearing in φ is changed from ↑ to true
or false then the truth value of φ should not be inherently changed from false to true
or from true to false.

From the perspective of abstraction, monotonicity guarantees that if we have
a definite truth value (true or false) of a formula in the 3-valued valuation (abstract
model) then this truth value should be the same w.r.t any 2-valued valuation (concrete
model) obtained by turning ↑ values into either true or false. Thus we can correctly
reason about the concrete model by looking at the abstract model4.

The semantics of 2iφ is given as in [HJS01]5. The intuitive idea behind the
semantics of 2i is that 2iφ is true if all the possible (may) i-relations lead to φ-true
states, and is false if there exists a necessary (must) i-relation leading to a φ-false
state. A moment of reflection should confirm that this semantics for modal formulas
also complies with the above monotonicity in spirit: turning the 3rd truth value of
propositions and transitions into definite truth values in a model will not change the
definite truth value of any modal formula.

The semantics of [!φ]ψ is given with the similar concern of monotonicity. The
updated modelM|φ defined above keeps all the φ-not-false states and all the relations
among them, except for the must-relations that lead to φ-unknown states in M.
Recall that the must-relations signify necessary relations. However, a φ-unknown
state s is not necessarily there in the updated model, as ↑ leaves the possibility open
that φ could ‘actually’ be false. A relation directed at a possibly but not necessarily
existent state, cannot be a necessary relation, so must-relations to φ-unknown states
are removed.

Note thatM|φ is still a KMLTS since→′⊆d′ by definition. It is not hard to check
that this 3-valued semantics “coincides” with the standard 2-valued semantics on
concrete models. Formally, for any PALΣ,P formula φ, any concrete modelM :

~φ�M,s = true ⇐⇒ M
′, s � φ ~φ�M,s = false ⇐⇒ M

′, s 2 φ

where M′ is the standard Kripke model converted from M by lumping may and
must relations together and � is the satisfaction relation for the standard 2-valued
semantics of PAL.

4 Although Kleene’s strong 3-valued logic is the strongest one satisfying monotonicity, it does not mean
we can get all the possible definite truth values w.r.t. the concrete model by looking at the abstract ones,
e.g., the truth value of p ∨ ¬p is ↑ if the truth value of p is ↑, although p ∨ ¬p is valid under 2-valued
valuation.

5[HJS01] presented the 3-valued semantics in an equivalent form by assigning each formula a pair of
sets of states: ~φ�nec (the states where φ is necessarily true) and ~φ�pos (the states where φ is possibly true).
See [GJ03] for discussions on these two forms.
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For 2-valued PAL the following reduction axioms hold:

(At) [!φ]p ↔ φ→ p
(PF) [!φ]¬ψ ↔ φ→ ¬[!φ]ψ
(Dist) [!φ](ψ1 ∧ ψ2) ↔ [!φ]ψ1 ∧ [!φ]ψ2
(Seq) [!φ][!ψ]χ ↔ [!φ ∧ [!φ]ψ]χ
(KA) [!φ]2iψ ↔ φ→ 2i[!φ]ψ

A natural question to ask is, in the above axioms, whether the formula at the left
hand side of↔ always has the same truth value as the right hand side formula given
an arbitrary KMLTS? The answer is “No.” For example, consider the axiom PF and
an KMLTSM1 with a single state s where p is ↑ and q is false, then ~[!p]¬q�M1,s = true
but ~p→ ¬[!p]q�M1,s =↑.

Moreover, we can show that any other reasonable 3-valued semantics of PAL can
not reduce the left hand side of↔ to the right hand side. First note that an informa-
tive 3-valued semantics should indeed make ~[!p]¬q�M1,s = true, since changing the
valuation of p in M1 to true or false will only make [!p]¬q true. We call a 3-valued
semantics of PAL on KMLTSs reasonable if:

1. it coincides with strong Kleene 3-valued logic on its propositional fragment;

2. it coincides with the standard 2-valued semantics of PAL on concrete KMLTSs;

3. it is monotonic with respect to basic propositions.

Now we can show:

7.2.4. P. There is no reasonable 3-valued semantics for PAL such that ~p →
¬[p]q�M1,s = true.

P Suppose towards a contradiction that ~p→ ¬[!p]q�M1,s = true w.r.t to a rea-
sonable 3-valued semantics of PAL. Note that ~p�M1,s =↑, then according to the strong
Kleene semantics, we have ~¬[!p]q�M1,s = true, thus ~[!p]q�M1,s = false. However if
we change the valuation of p inM1 to false then [!p]q would be true according to the
standard 2-valued semantics of PAL, which contradicts monotonicity. ë

The above result also shows that we can not translate the 3-valued PAL back to its
modal logic fragment by just applying the reduction axioms of the 2-valued PAL.

Although our concern in this chapter is primarily to develop the theory of epis-
temic abstractions, the ultimate goal is to enable automatic verification of large epis-
temic models. Designing efficient algorithms for checking the satisfaction of 3-valued
PAL formulae on KMLTSs, based on the definition above, is an interesting topic in
itself and we leave it as further work. We now only note that, looking at similar
results in the literature [BG04], we expect that such a model checking algorithm will
not be more complex than the ones for checking (2-valued) PAL on Kripke models.
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7.3 Abstraction and Logical Characterization

In this section we extend the classic definition of abstraction with label and proposi-
tion mappings in order to reduce the number of labels and possibly achieve smaller
abstraction models. We show that we can reason about properties of the more refined
model by model checking the more abstract model.

7.3.1 Abstraction

As observed in [vdPE04], to do model checking on infinitely-labelled systems, one
needs abstraction to obtain a model with a reduced finite number of labels. We
aim for an abstraction method that reduces the labels also in the finite case, by
lumping similar transitions with different labels together into a unified one. This is
often applicable in the epistemic case, as several agents may play a similar role and
therefore have similar uncertainties. On the other hand, different propositions may
also have a similar role on different states, in which case abstractions may combine
propositions together as well. In the following, we use two mappings between
signatures to capture the above intuitions of lumping labels and propositions. It is
important to note that these abstractions produce models with a different signature
than the original one.

Notation For a function h and x in its range, we use h−1[x] to denote the pre-image
of x.

7.3.1. D. (Abstraction and Refinement) Let M = (S,Σ,P,d,→,V) and
N = (T,Σ′,P′,d′,→′,V′) be two KMLTSs. Given two surjective functions f : Σ′ → Σ
and g : P′ → P, a binary relation R ⊆ T × S is called an f , g-abstraction relation
betweenN andM, if for all t ∈ T, s ∈ S with (t, s) ∈ R the following hold:

• for any p ∈ P : V(s)(p) ,↑ implies ∀p′ ∈ g−1[p] : V′(t)(p′) = V(s)(p);

• t
i′

d′ t′ implies ∃s′ ∈ S: s
f (i′)
d s′ and R(t′, s′);

• s i
→ s′ implies ∀i′ ∈ f−1[i] : ∃t′ ∈ T such that t

i′

→
′ t′ and R(t′, s′).

We say M is an f , g-abstraction of N (notation: N b f ,g M) if there exists an f , g-
abstraction relation R betweenN andM. We say (M, s) is an f , g-abstraction of (N , t)
(notation: (N , t) b f ,g (M, s)) if there exists an f , g-abstraction relation R between N
andM such that (t, s) ∈ R.

Correspondingly, (N , t) is called an f , g− refinement of (M, s) iff (M, s) is an f , g-
abstraction of (N , t). ç

The first condition says that the valuation in the more abstract model can be less
informative by making some propositions unknown (↑), but never unfaithful. The
second condition requires that if an i′-may-transition in the more refined model then
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Figure 7.1: A pointed KMLTS and three possible abstractions of it. Dotted lines are for
may-relations and solid lines for must. May-relations that coincide with corresponding
must ones are omitted. If there is no arrow on a relation then it is bidirectional.

there is a matching transition in the more abstract model w.r.t the label mapping. The
last condition says if there is an i-must-transition in the more abstract model then
there is a corresponding i′-must-transition in the more refined model for each i′ such
that f (i′) = i.

Note that for two 2-valued Kripke models with the same signature (P,Σ), N is a
refinement ofM in the classical sense of [Lar90] iff N is an (IdΣ, IdP)−refinement of
Mwhere IdX is identity function on the domain X.

Fig. 7.1 shows an example of a KMLTSM and several abstractions of it. In the
picture, �p is to mean the value of p is unknown (↑) at the current state while the
absence of a proposition at a state means it is false there. For clarity, the states ofM
are numbered and the numbers on the states of the abstracted models indicate which
original states they represent. In (2), the mappings are the identity functions, and
the valuation of proposition q is mapped to ↑ for all worlds. In (3), the abstraction is
given by the identity functions as well, but collapsing different worlds. In (4), there
is an abstraction obtained by lumping both agents and both propositions.

Since→⊆d, we can make a concrete refinement of any KMLTS by dropping may
relations that do not have a must counterpart (i.e.d′,→′:=→) and by adapting the
valuation to become two-valued (e.g., by defining V′(s)(p) = false whenever V(s)(p) =↑
and V′(s)(p) = V(s)(p) otherwise). Therefore:

7.3.2. P. A KMLTSM always has a concrete refinement.

7.3.2 Logical Characterization

We will prove a preservation result of satisfaction of formulas between a pointed
model (N , t) and its abstraction (M, s). Intuitively we want a formula to be true/false
at N if it is true/false at M respectively, such that we can safely model check the
more abstract model to get the information of the more refined one. However, as
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these models may have different signatures due to the f , g mappings attached to the
abstraction relation, we need to check different formulas on these two models. Given
two pointed models (M, s), (N , t), and two formulas φ,ψ, we say ~ψ�M,s

≤ ~φ�N ,t if
the following hold:

1. ~ψ�M,s = true =⇒ ~φ�N ,t = true;

2. ~ψ�M,s = false =⇒ ~φ�N ,t = false.

Then our goal is to check whether (N , t) b f ,g (M, s) implies for all φ: ~pφq�M,s
≤

~φ�N ,t where pφq is a formula in the signature ofM corresponding to φ. To pinpoint
the right formulas to check, we introduce the following translation:

7.3.3. D. (Translation of formulas) Given signatures (P′,Σ′), (P,Σ), and
surjective functions f : Σ′ → Σ, g : P′ → P, we define the translation of an PALP′,Σ′ -
formula φ into an PALP,Σ-formula pφq f ,g inductively as follows:

pp′q f ,g = g(p′)
p¬ψq f ,g = ¬pψq f ,g
pψ1 ∧ ψ2q f ,g = pψ1q f ,g ∧ pψ2q f ,g
p2i′ψq f ,g = 2 f (i′)pψq f ,g
p[!χ]ψq f ,g = [!pχq f ,g]pψq f ,g

ç

Before proving the main result of this chapter, we first prove a result establishing
the abstraction relation between the updated models (N|χ, t) and (M|pχq f ,g , s) for some
LP,Σ-formula χ, given that (N , t) b f ,g (M, s)

7.3.4. L. Suppose (N , t), (M, s) are pointed KMLTSs with signatures (P′,Σ′) and
(P,Σ) and sets of states T and S respectively, such that (N , t) b f ,g (M, s). Then for any
PALΣ′,P′ formula χ such that t is inN|χ and s is inM|pχq f ,g , the following (1) implies (2):

1. for each t′ ∈ T, s′ ∈ S : (N , t′) b f ,g (M, s′) =⇒ ~pχq f ,g�
M,s′
≤ ~χ�N ,t

′

(?)

2. (N|χ, t) b f ,g (M|pχq f ,g , s)

P Suppose (N , t) b f ,g (M, s) then there is a relation R which constitutes an
f , g-refinement between N and M with (t, s) ∈ R. Now given a PALΣ′,P′ formula χ
such that t is in N|χ and s is in M|pχq f ,g , let T|χ and S|pχq f ,g be the sets of states of
N|χ andM|pχq f ,g . We claim that R′ = R ∩ (T|χ × S|pχq f ,g ) is an f , g-abstraction relation
betweenN|χ andM|pχq f ,g . Note that (t, s) ∈ R′ since t ∈ N|χ and s ∈ M|pχq f ,g . Now we
check the three conditions of the abstraction relation:

• for the condition on p: follows from the first item in the definition of R and the
fact that the valuation of an updated model is just the restriction of the original
valuation to the remaining states.
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• suppose t i′
d t′ in N|χ, then t i′

d t′ in N according to the definition of the
update. Since (t, s) ∈ R and R is an abstraction relation, there exists s′ ∈ M:

s
f (i′)
d s′ and (t′, s′) ∈ R. We must still show that s′ ∈ M|pχq f ,g . Suppose not,

then ~pχq f ,g�
M,s′ = false. Because (t′, s′) ∈ R ensures (N , t′) b f ,g (M, s′), it then

follows from (?) that ~χ�N ,t
′

= false. But then t′ < N|χ, contradiction.

• suppose s i
→ s′ inM|pχq f ,g , then ~pχq f ,g�

M,s′ = true and s i′
→ s′ inM. Because R

is an f , g-abstraction relation and (t, s) ∈ R, for any i′ ∈ f−1[i] there exists t′ ∈ N

such that t i′
→ t′ and (t′, s′) ∈ R. To show that (t′, s′) ∈ R′ for such t′, it remains

to show that t′ ∈ N|χ. Since ~pχq f ,g�
M,s′ = true and (t′, s′) ∈ R, it then follows

from condition (?) that ~χ�N ,t
′

= true. Hence, t′ ∈ N|χ.

ë

Now come our main results (Theorem 7.3.5 and Theorem 7.3.7) based on the above
lemma.

7.3.5. T. Suppose N ,M are two KMLTSs w.r.t. I′,P′ and I,P respectively. s and t
are two states inM andN respectively. Then:

(N , t) b f ,g (M, s) implies that for all φ ∈ PALΣ′,P′ : ~pφq f ,g�
M,s
≤ ~φ�N ,t.

P We prove the theorem by induction on the structure of φ :

• φ = p′ : trivial, follows from the first condition of the definition of b f ,g.

• φ = ¬ψ : suppose ~pφq f ,g�
M,s = true then according to the semantics ~pψq f ,g�

M,s =

false. Thus by induction hypothesis ~ψ�N ,t = false. Therefore ~φ�N ,t = true. For
the case ~pφq f ,g�

M,s = false, similar.

• φ = ψ1 ∧ ψ2 :

– suppose ~pφq f ,g�
M,s = true then by the semantics: ~pψ1q f ,g�

M,s = true and
~pψ2q f ,g�

M,s = true. Thus by induction hypothesis ~ψ1�N ,t = true and
~ψ2�N ,t = true. Therefore ~φ�N ,t = true.

– suppose ~pφq f ,g�
M,s = false then by the semantics either ~pψ1q f ,g�

M,s =

false or ~pψ2q f ,g�
M,s = false. Without loss of generality, suppose the latter.

Thus by induction hypothesis ~ψ2�N ,t = false. Therefore ~φ�N ,t = false.

• φ = 2i′ψ : then pφq f ,g = 2 f (i′)pψq f ,g.

– suppose ~pφq f ,g�
M,s = true then according to the semantics for all s′ with

s
f (i′)
d s′ we have ~pψq f ,g�

M,s′ = true. Suppose inN there is a world t′ such
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that t i′
d t′ then according to the definition of refinement, there is a s′′ ∈ M

such that s
f (i′)
d s′′ and (N , t′) b f ,g (M, s′′). Thus ~pψq f ,g�

M,s′′ = true. By
induction hypothesis, ~ψ�N ,t

′

= true. Therefore ~2i′ψ�N ,t = true.

– suppose ~pφq f ,g�
M,s = false then according to the semantics, there is s′

with s
f (i′)
→ s′ such that ~pψq f ,g�

M,s = false. By definition of refinement, for

any i′′ ∈ f−1[ f (i′)] there is a t′ ∈ N such that t i′′
→ t′ and (N , t′) b f ,g (M, s′).

By induction hypothesis, for all such t′ : ~ψ�N ,t
′

= false. Thus for all
i′′ ∈ f−1[ f (i′)] : ~2i′′ψ�N ,t = false. In particular: ~2i′ψ�N ,t = false.

• φ = [!χ]ψ

– if ~pφq f ,g�
M,s = true then ~pχq f ,g�

M,s = false or ~pψq f ,g�
M|pχq f ,g ,s = true.

If ~pχq f ,g�
M,s = false then ~χ�N ,t = false by induction hypothesis, hence

~φ�N ,t = true. Otherwise, ~pψq f ,g�
M|pχq f ,g ,s = true and ~pχq f ,g�

M,s , false,
then s ∈ M|pχq f ,g . Now suppose ~χ�N ,t , false, so: t ∈ N|χ. We need to
show that ~ψ�N|χ,t = true. By induction hypothesis (N , t′) b f ,g (M, s′) =⇒

~pχq f ,g�
M,s′
≤ ~χ�N ,t

′

for each s′ ∈ S, t′ ∈ T. Therefore from Lemma 7.3.4
we have (N|χ, t) b f ,g (M|pχq f ,g , s). By induction hypothesis, ~ψ�N|χ,t = true.
Thus ~φ�N ,t = true.

– if ~pφq f ,g�
M,s = false then ~pχq f ,g�

M,s = true and ~pψq f ,g�
M|pχq f ,g ,s = false.

Since ~pχq f ,g�
M,s = true then ~χ�N ,t = true by induction hypothesis. We

only need to show ~ψ�N|χ,s = false. It is clear that t ∈ N|χ and s ∈ M|pχq f ,g ,
then by induction hypothesis the condition of Lemma 7.3.4 holds, and it
follows that (N|χ, t) b f ,g (M|pχq f ,g , s). Thus by the induction hypothesis we
have ~ψ�N|χ,t = false. Therefore: ~φ�N ,t = false.

ë

7.3.6. C. Suppose (N , t), (M, s) are two pointed KMLTSs w.r.t. (I′,P′) and (I,P)
respectively. If (N , t) b f ,g (M, s) andN is a Kripke model converted from a concrete KMLTS
then for any formula φ ∈ PALΣ′,P′ :

• ~pφq f ,g�
M,s = true =⇒ N , t � φ

• ~pφq f ,g�
M,s = false =⇒ N , t � ¬φ

By the above corollary, to know whether φ is satisified at a pointed Kripke model,
we can instead model check pφq f ,g on its f , g−abstraction.

To justify the logical characterization, we prove the converse of Theorem 7.3.5.
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7.3.7. T. Suppose (N , t) and (M, s) are pointed KMLTSs with signatures (P′,Σ′)
and (P,Σ), and suppose they enjoy image finiteness (see page 11). Then:

If for every φ ∈ PALP′,Σ′ : ~pφq f ,g�
M,s
≤ ~φ�N ,t then (N , t) b f ,g (M, s).

P Assume that for every formula φ ∈ PALΣ′,P′ : ~pφq f ,g�
M,s
≤ ~φ�N ,t, and let

R = {(t′, s′) | for every φ : ~pφq f ,g�
M,s′
≤ ~φ�N ,t

′

}. Then (t, s) ∈ R, and we check the
three conditions of definition 7.3.1 for R. Suppose (t′, s′) ∈ R, then:

• The first condition follows from ~pp′q f ,g�
M,s′
≤ ~p′�N ,t′ for p′ ∈ P′.

• Suppose towards contradiction that ∃t′′ : t′ i′
d t′′ in N but for any s′′ ∈ S:

s′
f (i′)
d s′′ implies (t′′, s′′) < R. According to image finiteness, we have only

finitely many such s′′ (call them s′′0 . . . s
′′
n ). For each s′′k , since (t′′, s′′k ) < R, there

must be a formulaψs′′k such that ~pψs′′k q f ,g�
M,s′′k = true but ~ψs′′k �

N ,t′′ , true.6 Now
2 f (i′)(

∨n
k=0pψs′′k q f ,g) is true at s′ but 2i′ (

∨n
k=0 ψs′′k ) is not true at t′, contradicting

the assumption that (t′, s′) ∈ R.

• Suppose towards contradiction that s′
f (i′)
→ s′′ inM, but there exists i′′ ∈ f−1[ f (i′)]

such that ∀t′′ ∈ T: t′ i′′
→ t′′ implies (t′′, s′′) < R. According to image finiteness,

there are only finitely many such t′′(call them t′′0 . . . t
′′
n ). For each t′′k , since

(t′′k , s
′′) < R, there must be a formula ψt′′k such that ~pψt′′i q f ,g�

M,s′′ = false but
~ψt′′i �

N ,t′′i , false. Note that 2 f (i′)(
∨n

k=0pψt′′i q f ,g) is false at s′ but 2i′′ (
∨n

k=0 ψt′i ) is
not false at t′, contradicting the assumption that (t′, s′) ∈ R.

ë

7.4 The Muddy Children and Abstraction

Recall the discussions we had in Section 5.2 of Chapter 5: we can decompose the
model for n-Muddy Children (see Example 1.1.2) into n two-world models (with
disjoint vocabularies)M1,M2, . . . ,Mn where eachMi represents the children’s ob-
servation about whether child i is dirty:

mi i mi

It is clear that we can view eachMi as a KMLTS with signatures P = {m1,m2, . . . ,mn}

and Σ = {1, 2, . . . ,n}, where may- and must-relations coincide but propositions in
P − {mi} are assigned the third truth value ↑. It is not hard to see that each Mi is
an (id, id)-abstraction of the composed modelM. Thus we can verify the properties

6If ~pψs′′k
q f ,g�

M,s′′ = false but ~ψs′′k
�N ,t

′′

, false then ~p¬ψs′′k
q f ,g�

M,s′′ = true but ~¬ψs′′k
�N ,t

′′

, true.
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about the composed model by looking at its components. For example, let φ be the
common knowledge formula C(¬Kimi ∧ ¬Ki¬mi), universally verifying φ againstM
(checkingM � φ) is then reduced to checkingMi � φ, which is obviously true.

More generally, we can prove Theorem 5.2.13 in Chapter 5 as an easy application
of our Theorem 7.3.5:

7.4.1. T. If a pointed S5 model (M, s) is decomposable (w.r.t V) into S5 models
(M0, s0), (M1, s1), . . . , (Mn, sn) with disjoint vocabularies P0,P1, . . . ,Pn, then for any epis-
temic formula φ based on Pi :Mi, si � φ ⇐⇒ M, s � φ.

P Again we consider the models Mi and M as KMLTSs where may- and
must-relations coincide as above. We let R be the relation linking a world s in M
with a world t inMi iff s is composed by t and other worlds from other models. We
need to show that R is indeed an (id, id)-abstraction relation. The first and second
conditions of Definition 7.3.1 are trivial, according to the definition ofV in Section 5.2.

Now suppose t i
→ t′ inMi and sRt. Since sRt then we can assume that s is a tuple

〈t0, . . . , ti, . . . , tn〉 where ti = t and each t j is from the modelM j. Since Pi are disjoint
from each other, then there must be a state s′ = 〈t0, . . . , t′, . . . , tn〉 inM differing from

s only in the ith place in the tuple. Since all the Mi are S5 models, t j
i
→ t j in M j

for j , i. Because ti
i
→ t′ then by the definition of the composed model, s i

→ s′ inM. ë

Note that the above abstraction of the model of n-Muddy Children by decom-
position with two-world models is somehow too coarse, since it does not reflect
the dynamics of the story. For example, on a two-world abstraction of n-Muddy
Children, the announcement of m1 ∨m2 ∨m3 (one of you is muddy) simply does not
change anything since the truth value of m1∨m2∨m3 on these two-world abstractions
is either true or ↑. In the sequel, let us consider more sophisticated abstractions of the
model of Muddy Children which reflect the dynamics of announcements. We will
focus on the 3-children case from now on.

The left column of Fig. 7.2 shows the standard epistemic model and its dynamics
for 3-Muddy Children. The middle and right columns of Fig. 7.2 show abstracted
versions of the concrete model on the left. The abstraction relation underlying both
abstractions relates three pairs of worlds in the concrete model to three single worlds
in the abstraction, while the world with all propositions false and the world with
only m3 true are kept (for example, the world with m2 true and the world with m2,m3
true in the concrete model are related to the one world in the abstracted model
where m2 is true and m3 unknown). In the middle column, the parameters f , g for
the refinement are identities, in the right column f maps both 1 and 2 to abstract
label A. Let φm be the abbreviation of the first announcement (m1 ∨ m2 ∨ m3) and
φK be the abbreviation of the next ones (¬21m1 ∧ ¬22m2 ∧ ¬23m3). Notice the
following significant properties can be verified to be true in the two abstractions:
(1) In both abstractions, p[!φm][!φK][!φK](21m1 ∧ 22m2)q f ,g is true at the worlds that
correspond to the world which makes m1, m2 and m3 true in the original model.
Thus by Theorem 7.3.5, [!φm][!φK][!φK](21m1 ∧ 22m2) is true in that world in the
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Figure 7.2: Abstractions of the Muddy Children for n = 3 children. Each world has
reflexive may-relations for each i ∈ Σ = {1, 2, 3}, some have reflexive must-relations,
but for simplicity of presentation, all reflexive relations are omitted as usual.
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original model. Namely, in the case all three children are muddy, children 1 and
2 will know they are muddy after three announcements. (2) In both abstractions,
p[!φm][!φK]21m1q f ,g is true at the worlds that correspond to the original world where
only m1 and m3 are true. Namely in the case children 1 and 3 are muddy, child 1 will
know he is muddy after 2 updates. (3) p[!φm]23m3q f ,g is true at the worlds with only
m3 true. Namely when child 3 is the only muddy child, he will know after the first
announcement. For the generalization to the n children case, similar abstractions can
be made.

Note that whereas all relations in the concrete model are equivalence relations
(S5), this is no longer the case for the abstractions: in the middle abstraction, the must
relations can be seen to be non-symmetric, and in the right abstraction, the relation
labelled A is no longer transitive (in general the union of two equivalence relations
is not necessarily transitive)7.

7.5 Conclusion and Future work

We have developed an abstraction framework for KMLTSs, which allows us to verify
properties that involves public announcements on smaller abstract models instead of
on big concrete models. We demonstrate the use of our framework by looking at the
example of Muddy Children. Another example of abstracting a model for encoded
broadcast can be found in [DOW08].

The theoretical novelty of this chapter is the extension of traditional abstraction
techniques to both the label and proposition mappings and to a logic containing
dynamic modalities (public announcements) which change the models. Both features
are of fundamental importance in (epistemic) modelling and verification, which is
the main motivation of our work. In order to incorporate the full power of dynamic
epistemic modelling, more research is needed on integrating general update con-
structions as formalized by action models [BM04]. The abstraction of action models
is also useful, as it is shown in [DW07] that the action models can be quite large when
modelling protocols. Another goal is to adapt this framework to Interpreted Systems
[FHMV95], which combines both epistemic and temporal characteristics.

On a practical side, our framework opens a way to dynamic epistemic verification
of large or even infinite models. Future research should be dedicated to practical
problems like generating abstract models automatically from formal, but compact,
model specifications [CGJ+03].

7From Theorem 7.3.5, the truth values of some S5 axioms are ↑ rather than true in the non-S5 abstractions
of this example.





Chapter 8

Accelerating the Transitions

8.1 Introduction

In this chapter we look at a particular technique of PDLΣ abstraction. Since DEL can
be translated back to PDL, the technique we will develop here can be adapted to
DEL model checking. As demonstrated in the previous chapter, we can use three-
valued logic to reason about properties using abstract models with may- and must-
transitions. According to the 3-valued semantics of modal logic, universal (safety)
properties 2φ are checked w.r.t the over-approximation (may-transitions), while
existential (liveness) properties 3φ are checked w.r.t the under-approximation (must-
transitions). This works fine for safety properties, but the verification of liveness
properties is problematic. The problem comes from the lack of guaranteed (“must”)
behaviours, due to the non-determinism introduced by abstraction. Consider the
following example:

8.1.1. E. (Guessing the other number) Agents a and b have the natural num-
bers n and n + 1 respectively. They only know their own numbers. They are told that
what they have are two consecutive natural numbers, but they do not know who has
the bigger one. æ

We can build the following model (suppose n is an even number):

s0 : (n,n + 1)
tt a **

CC

b
��

(n,n − 1)
tt b **

(n − 2,n − 1)
vv a

&&
· · ·
{{ b &&

(0, 1)

(n + 2,n + 1)
tt a **

(n + 2,n + 3)
tt b **

(n + 4,n + 3)
vv a

&&
· · · · · ·

If we want to abstract away all the intermediate states except the terminal one (0, 1)
then we have the following model:

t0a,b
%% xx

a ))
ff

b
55 (0, 1)

a,b
��

119
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where t0 is the abstraction of all the states in the original model except (0, 1). It is
not hard to see that there cannot be any must relations in such an abstract model
except the reflexive ones at (0, 1). Therefore we cannot get a definite answer to the
model checking problem of the formula Ĉa,bhasa0 (in PDL: 〈a+b〉∗hasa0 ) on the abstract
model.

To deal with this problem, Espada and van de Pol proposed accelerated modal
LTS (accModal-LTS), a new formalism to represent abstractions [EvdP06]. They
enhance KMLTSs by labelling must-transitions with regular expressions over basic
actions. These so-called accelerated transitions capture the idea that a state must be
reached from another state by some finite computation contained in the language of
the corresponding regular expression. This extension of the abstraction enables us
to capture the concrete models more accurately and infer more liveness properties.
Consider example 8.1.1 again. One could introduce an accelerated must-transition
from t0 to (0, 1) in the abstract model as follows:

t0a,b
%% xx

(a·b)∗ ))
ff

a,b
55 (0, 1)

a,b
��

Intuitively, this must-transition means, in any state abstracted by t0 there is a finite
a
→

b
→

a
→

b
→ . . . path to the state (0, 1). According to the 3-valued PDLΣ semantics defined

in [EvdP06], 〈π〉φ is true at a point s if there is a must-path s
π1
−→ s1

π2
−→ · · ·

πn
−→ sn

to a state where φ is true, such that L(π1 · · ·πn) ⊆ L(π). Thus we can verify that
〈(a + b)∗〉hasa0 is indeed true on the above abstract model. Based on a suitable
abstraction relation, [EvdP06] shows that we can safely reason about the properties
of the concrete models by model checking the same properties on their abstractions.

In [EvdP06], the authors also gave a non-trivial model checking algorithm for 3-
valued PDLΣ on accModal-LTSs, showing decidability of the model checking problem.
The most intricate part of the algorithm deals with finding must-paths that comply
with the regular expression π in a diamond formula 〈π〉φ which is quite different
from the usual PDLΣ model checking algorithm (see, e.g., [Lan06]). A hard problem
left open in [EvdP06] is the precise complexity and optimality of the algorithm.

To understand the behaviour of the accelerated transitions better, in this chapter,
we consider PDLΣ defined on 2-valued models with accelerated transitions only,
which we call Accelerated Kripke Models (AKM). Note that in our AKM, we have only
one type of relation as in the standard Kripke models. Thus an AKM can be viewed
as the must part of an accModal-LTS with 2-valued valuations on each state. The
model checking algorithm of PDLΣ on AKM can be easily adapted to the original
three-valued setting as in [EvdP06].

Main contributions. As we will see, PDLΣ interpreted over an AKM behaves quite
differently from standard PDL. Developing a model checking algorithm is of utmost
importance. Moreover, for an in-depth understanding of the logic, axiomatization
and satisfiability checking are two central questions. We address all of these prob-
lems.
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In Section 3, we first reduce model checking PDLΣ on AKM to model checking PDL
on standard Kripke models, by exploiting the notion of regular expression rewriting
studied extensively in [CDGLV02]. We then provide an automata theoretical model
checking algorithm whose complexity can be easily analyzed, namely, in E.
Furthermore, we prove an E lower bound for the model checking problem.
These results solve the open problem on model checking left in [EvdP06] and estab-
lish a strong link between model checking PDLΣ over AKM and regular expression
rewriting. In Section 4, we provide an axiomatization of PDLΣ on AKM, which em-
ploys Kleene Algebra [Koz91] as an oracle. The soundness and completeness of this
system are shown. This result shows very clearly the differences with standard PDLΣ
on Kripke models. Furthermore, in Section 5, we study the decision problem of
satisfiability. For satisfiability, again, by resorting to the notion of regular expression
rewriting, we reduce this problem to the satisfiability of PDLΣ in the standard seman-
tics over Kripke models. We show that the satisfiability of a PDLΣ formula over AKM
can be checked in 3-E.

Related work. Finite-state automata that allow more complex transition labels re-
cently received a resurgence of attention. These include generalized automata [GM99]
(a.k.a. string or lazy automata) with strings (or blocks) as transition labels rather
than merely characters or the null string and expression automata [HW05], finite-state
automata whose transition labels are regular expressions over the input alphabet.
However, these have been studied from the automata and language perspectives. In
particular, the determinism and minimization problems are explored there. In logic,
[Mat03] studies µ-calculus with regular expressions in the modalities. It is shown
that in this case, regular expressions in formulae can be easily eliminated by the
fixpoint construction. [LS07] introduces the notion of regular linear temporal logic,
which is a logic that generalizes linear temporal logic with the ability to use regular
expressions arbitrarily as sub-expressions. The expressiveness and satisfiability of
this logic are investigated there. These works are orthogonal to the use of regular
expressions in LTSs, which is the main focus of this chapter. Another work which
extends the transitions in LTS is [Lod95], in which the authors study PDLΣ on dis-
tributed transition systems where the transition relations are labelled with a finite set
of actions, representing the fact that the actions occur as a concurrent step. However,
the semantics of PDLΣ in [Lod95] is quite different from ours, due to the different
interpretation of the non-standard transitions.

8.2 Preliminaries

8.2.1 PDL on AKM

8.2.1. D. (Accelerated Kripke model) An Accelerated Kripke model (AKM)
is a tupleM = (S,P,Σ,→,V) where:

• S,P,Σ,V are as usual;
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• → is a possibly infinite set of accelerated transitions of the form s π
→ s′ with

s, s′ ∈ S, and π ∈ RegΣ where recall that RegΣ is the set of (test-free) regular
expressions over alphabet Σ (with a ∈ Σ):

π ::= 0 | 1 | a | π + π | π · π | π∗

Following the tradition in modal logic, we shall call F = (S,P,Σ,→) an AKM frame.
As usual, a pointed AKM is an AKM with a designated state s0 ∈ S: (S,P,Σ,→,V, s0).
ç

In this chapter, we fix a vocabulary P, thus we refer to an AKM as (S,Σ,→,V).
Recall the test-free PDL language:

φ ::= > | p | φ ∧ φ | ¬φ | 〈π〉φ

where π is a regular expression over some alphabet Σ. When Σ is not fixed, we use
PDLΣ to denote the test-free PDL language w.r.t the action set Σ.

〈π〉φ is intended to express that there must be an execution of π which entails φ.
Recall that an accelerated transition s π

→ t intuitively means that there must be an
execution of π from s to t, however, we do not know which execution can do the job.
Therefore, assuming s π

→ t, we can only be sure that there must be an execution of π′

to a t world if L(π) ⊆ L(π′). The following semantics fleshes out this intention:

M, s � p ⇔ p ∈ V(s)
M, s � ¬φ ⇔ s 2 φ

M, s � φ ∧ ψ ⇔ M, s � φ andM, s � ψ
M, s � 〈π〉φ ⇔ there exists a path s = s0

π1
−→ s1

π2
−→ · · ·

πn
−→ sn

inM such thatM, sn � φ and L(π0 · π1 · · ·πn) ⊆ L(π)

To illustrate the semantics, we present two simple examples:

8.2.2. E.

s a+b ''
•

M, s � 〈a + b + c〉>
M, s 2 〈a〉>

t
a ''
b
77 •

M, t � 〈a + b + c〉>
M, t � 〈a〉> ∧ 〈b〉>

æ

It is clear that on Kripke models (AKM with only atomic actions as labels), the above
semantics coincides with the standard PDLΣ semantics.
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8.2.2 Regular Expression Rewriting

The notion of regular expression rewriting is introduced in [CDGLV02], and turns out to
play an essential role in solving model checking and satisfiability checking problems
in this chapter.

Given a regular expressionπ over an alphabetΣ and a finite setE = {π0, π1, . . . , πn}

of regular expressions over the same alphabet Σ, the goal of regular expression
rewriting of π over E is to re-express π, if possible, by a suitable combination of
π0, . . . , πn using operations ·,+, and ∗. Given E, let ΣE be an alphabet containing
exactly one unique symbol eπ for each π in E. We shall use expΣ(e) to denote the
regular expression associated with the symbol e ∈ ΣE. We can lift expΣ to any
regular expression α over alphabetΣE in a straightforward way: expΣ(α) is the regular
expression overΣ obtained by replacing each occurrence of e ∈ ΣEwith expΣ(e).We let
LE(α) be the language of α over ΣE (see Definition 2.1.2). Given a regular expression
α over ΣE, expΣ(α) is called the expansion of α. It is clear that expΣ(eπ1 · eπ2 · · · eπn ) =
L(π1 · π2 · · ·πn) for {π1, . . . , πn} ⊆ E.

Now we define the concept of regular expression rewriting formally:

8.2.3. D. (Regular Expression Rewriting) Given a regular expression π
over Σ, a set of regular expressions over Σ: E = {π0, π1, . . . πn}, and another regular
expression α over the alphabet ΣE, we say α is an E-rewriting of π if expΣ(α) ⊆ L(π).
α is called a maximal E-rewriting (notation: π̂E) if for any other E-rewriting β of π:
LE(β) ⊆ LE(α) (thus expΣ(β) ⊆ expΣ(α)). We say that a rewritingα is empty ifLE(π) = ∅.
ç

Note that given E and π, there is a unique maximal E-rewriting of π (modulo lan-
guage equivalence over ΣE), for otherwise suppose there are two different maximal
rewritings α, β. Then α + β is also an E-rewriting of π, which contradicts the maxi-
mality of α and β. Moreover, we have the following straightforward result:

8.2.4. P. If L(π1 · π2 · · ·πn) ⊆ L(π) and {π1, π2, . . . , πn} ⊆ E then eπ1 · · · eπn ∈

LE(π̂E),

P Towards a contradiction suppose L(π1 · · ·πn) ⊆ L(π) and {π1, . . . , πn} ⊆ E,
but eπ1 · · · eπn < LE(π̂E).Letα = π̂E+(eπ1 · · · eπn ). It is clear thatα is anotherE−rewriting
of π such that LE(π̂E) ⊂ LE(α), which contradicts the maximality of π̂E. ë

The following two theorems are from [CDGLV02]:

8.2.5. T. ([CDGLV02]) The problem of verifying the existence of a non-empty rewrit-
ing of a regular expression π′ w.r.t. a set E of regular expressions is E-complete.

8.2.6. T. ([CDGLV02]) There is an essentially optimal algorithm to compute the
maximal E-rewriting of a given π w.r.t a given set E in 2-E.
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8.3 Model Checking

In this section, we tackle the model checking problem. At first sight, one might think
this is a simple problem: an immediate idea might be to first transform an AKM
into a Kripke model by replacing every accelerated transition labelled by π with the
corresponding (deterministic) automaton of π, then run a traditional model checking
algorithm. However, this does not work, at least not in a naive way. Let us look
at the left figure in Example 8.2.2. Suppose one wants to check 〈a〉>, which is false
at s, following the above idea, one can obtain a Kripke model in the right figure.
However, the result will be true. This example suggests that the model checking
cannot be performed in a very simple way.

8.3.1 A Reduction to Standard PDLΣ Model Checking

We now present a non-trivial method to reduce the model checking problem of PDLΣ
over AKM to the one over Kripke models. Here, as said, the notion of regular
expression rewriting is crucially exploited.

Given an AKMM = (S,Σ,→,V), let :

〈〉M = {π | π ∈ RegΣ and π appears as a label for some transition inM}

We define pMq as (S, {eπ | π ∈ 〈〉M},→′,V) where s
eπ
→
′ s′ iff s π

→ s′. If 〈〉M is finite then
we can compute the maximal 〈〉M-rewriting of any regular expressions π ∈ RegΣ in
2-E, according to Theorem 8.2.6. Then we can rewrite a PDLΣ-formula w.r.t to
a model as follows:

8.3.1. D. (Rewriting w.r.t an AKM) Given an AKMM and a PDLΣ formula
φ, RM(φ) is the rewriting of φ in the language PDLΣ〈〉

M

defined by :

• RM(p) = p for p ∈ P;

• RM(¬ψ) = ¬RM(ψ);

• RM(ψ1 ∧ ψ2) = RM(ψ1) ∧RM(ψ2);

• RM(〈π〉ψ) = 〈π̂〈〉M〉RM(ψ).

ç

Let  denote the standard PDLΣ semantics on Kripke models (cf. Section 2.3.1),
the we have:

8.3.2. T. For any pointed AKMM, s and any PDLΣ formula φ,

M, s � φ ⇐⇒ pMq, s  RM(φ).
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s
ac∗b

$$
a ''

t : p

c
��

ac∗b

ee

Figure 8.1: Accelerated LTS

P By induction on the structure of φ. The only interesting case is φ = 〈π〉ψ.

(⇒:) Suppose M, s � 〈π〉ψ then there exists some t in M such that s
π1
→ · · ·

πn
→ t in

M, L(π1 · · ·πn) ⊆ L(π), and M, t � ψ. From proposition 8.2.4, it is not hard to see
that eπ1 · · · eπn ∈ L〈〉M (π̂〈〉M ). By the induction hypothesis, pMq, t  RM(ψ) and thus
pMq, s  〈π̂〈〉M〉RM(ψ). Namely pMq, s  RM(φ).

(⇐:) Suppose pMq, s  〈π̂〈〉M〉RM(ψ), then there exits a path s
eπ1
→ · · ·

eπn
→ t in

pMq such that eπ1 · · · eπn ∈ L〈〉M (π̂〈〉M ) with {π1, . . . , πn} ⊆ 〈〉M. It follows that
expΣ(eπ1 · · · eπn ) ⊆ expΣ(π̂〈〉M ). Since π̂〈〉M is a 〈〉M-rewriting, L(π1 · · ·πn) ⊆ L(π). By
the definition of pMq, s

π1
→ · · ·

πn
→ t inM. By the induction hypothesis,M, t � ψ, and

thusM, s � 〈π〉ψ. ë

Theorem 8.3.2 allows us to use the standard PDLΣ model checking algorithm (e.g.
[Lan06]) to solve the problem over AKM in a straightforward manner. We present
an example here. Let us consider the AKMM depicted in Fig. 8.1. Suppose we need
to check whether the formula φ = 〈a · (b · a + c)∗〉p holds at state s. We first collect the
set 〈〉M = {a, a · c∗ · b, c}; then we compute the maximal rewriting of a · (b · a + c)∗ w.r.t
〈〉M, following the algorithm of generating the maximal rewriting in [CDGLV02]. It
follows that RM(φ) = 〈(ea·c∗·b)∗ · ea · (ec)∗〉p1. According to Theorem 8.3.2, we only need
to check whether pMq, s  RM(φ), where pMq is the same graph as in Fig.8.1 except
that the labels become ea·c∗·b, ea and ec respectively. A standard PDLΣ model checking
algorithm will return  and thus we can conclude thatM, s � φ.

8.3.2 A Direct Algorithm

Due to Theorem 8.2.6, the above translation RM is quite expensive (2-E). To
avoid generating the maximal rewriting explicitly, we may process the rewriting
and the model checking at the same time and check non-emptiness of the rewriting
when needed. Based on this idea, we now present a more efficient direct algorithm,
which shares the same basic structure as those proposed in literature for branching-
time temporal logic (typically CTL, see e.g. [CGP99] for a clear exposition). In a
nutshell, given a formula φ, the algorithm recursively evaluates the truth-values of
the subformulas ψ of φ at all states, starting from the propositional formulas of φ
and following the recursive definitions of each modality. The whole process will be
gathered up in a global labelling algorithm. It turns out that the central part of the
algorithm is to solve the following question:

1Actually e∗a·c∗ ·b · ea · e∗c is a exact 〈〉M-rewriting of a · (b · a + c)∗ (cf. [CDGLV02]).
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Exists(M, s,T, π0): Given a pointed AKM M = (S,Σ,→,V, s0), a set of states T ⊆ S
and a regular expression π0, check whether there exists a sequence of transitions
s
π1
→ s1 · · ·

πn
→ t such thatL(π1 · · ·πn) ⊆ L(π0) and t ∈ T. Exists(M, s,T, π0) returns > if

the answer is yes and returns ⊥ otherwise.

In the sequel, we deal with this problem by an automata-theoretic approach. A
sketch is as follows:

1. Construct a deterministic automaton (DFA) Aπ0 such that L(Aπ) = L(π0);

2. Define a suitable productM⊗ Aπ0 ofM and Aπ0 ;

3. Run the emptiness check onM⊗ Aπ0 .

Now, we present the detailed construction step by step. Step 1 is standard (cf.,
e.g., [Con71]). We start from Step 2.

8.3.3. D. (Product ⊗T) Given a pointed AKM M = (S,Act,→, s0) and
T ⊆ S, a DFA A = (Q,Σ, δ, q0,F) (cf., Definition. 2.1.1), defineM⊗T A as the nondeter-
ministic automaton (G,Σ′, ρ, q′0,F

′) where:

• G = S × P(Q);

• Σ′ = {eπ | π appears in the transition ofM};

• (〈s,U〉, eπ, 〈t,R〉) ∈ ρ ⇐⇒ s π
−→ t and R =

⋃
u∈U
⋃

w∈L(π){δ
∗(u,w)};

• q′0 = 〈s0, {q0}〉; and

• F′ = {〈s,U〉 | s ∈ T and U ⊆ F}.

δ∗ is the extended transition function in a deterministic automaton such that given
u ∈ Q and word w ∈ Σ∗, δ∗(q,w) gives the unique state that can be reached from q by
a w path. ç

In the above construction, although L(π) may be infinite, we can still compute⋃
w∈L(π){δ

∗(u,w)}. Given an u ∈ QA and a regular expression π, let Au be the DFA
just as A but with the new start state u, and let A′ be a nondeterministic automaton
such that L(A′) = L(π). It is not hard to see that we can compute

⋃
w∈L(π) δ

∗(u,w) by
collecting the u′ ∈ QA in the reachable final states of the standard product of Au and
A′ (cf. e.g., [Con71]).

Step 3, the emptiness checking for a nondeterministic automaton can be done in
a standard and efficient way. We are in a position to present the correctness of the
whole procedure.
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8.3.4. P. Given a pointed AKM M = (S,Σ,→,V, s0) and T ⊆ S, if T = {t |
M, t � φ}, then we have:

M, s0 |= 〈π0〉φ ⇐⇒ L(M⊗T Aπ0 ) , ∅

where Aπ0 denotes the deterministic automaton corresponding to π0.

P Let Aπ0 = (Q,Σ, δ, q0,F) be the deterministic automaton of π0.

(⇒:) Since M, s0 |= 〈π0〉φ, there is a path s0
π1
−→ s1

π2
−→ · · ·

πn
−→ sn in M such that

sn ∈ T and L(π1 · · ·πn) ⊆ L(π0). It follows that for any w1 · · ·wn ∈ L(π1 · · ·πn) where
wi ∈ L(πi), w1 · · ·wn ∈ L(Aπ0 ).

We define U0 = {q0} and Ui+1 =
⋃

u∈Ui

⋃
w∈L(πi){δ

∗(u,w)}. Now consider the trace:

〈s0,U0〉
eπ1
−→ 〈s1,U1〉

eπ2
−→ · · ·

eπn
−→ 〈sn,Un〉 (#)

Clearly, this is a path inM⊗T Aπ0 . Moreover, for each state q ∈ Un, there must exist
q0, q1, · · · , qn = q with w1,w2, · · · ,wn such that for each i, qi ∈ Ui and qi+1 = δ∗(qi,wi)
and wi ∈ L(πi). Therefore w1 ·w2 · · ·wn ∈ L(π0). and then w1 ·w2 · · ·wn ∈ L(π0). Thus
w1 ·w2 · · ·wn is accepted by Aπ0 . Since Aπ0 is deterministic, q must be an accept state,
namely, q ∈ F. It follows that Un ⊆ F. Since sn ∈ Tn, (sn,Un) is an accept state in
M⊗T Aπ0 . Therefore the above path (#) is an accepting path, i.e. L(M ⊗T Aπ0 ) , ∅.

(⇐:) Suppose L(M⊗T Aπ0 ) , ∅, then there exists some path:

〈s0,U0〉
eπ1
−→ 〈s1,U1〉

eπ2
−→ · · ·

eπn
−→ 〈sn,Un〉

such that (sn,Un) is an accept state, namely, sn ∈ T and Un ⊆ F. It follows from
the definition that s0

π1
−→ s1

π2
−→ · · ·

πn
−→ sn in M, and for each wi ∈ L(πi), each

ui ∈ Ui, δ∗(ui,wi) ∈ Ui+1. Hence for any w1 · · ·wn ∈ L(π1 · · ·πn), we can construct a
sequence of states q0, q1, · · · , qn such that δ∗(qi,wi) = qi+1 and qi ∈ Ui. Since Un ⊆ F,
qn ∈ F. Namely, w1 · · ·wn is accepted by Aπ0 and thus w1 · · ·wn ∈ L(π0). Therefore
L(π1 · · ·πn) ⊆ L(π0), namelyM, s0 |= 〈π0〉φ. ë

Note that in the above correctness proof, we rely on the property of determinism.
It is crucial that the transition function assigns to each state and each label one and
only one successor.

Algorithm. We have presented how to construct the function Exists(M, s,T, π) and
now we are in the position to give the full algorithm, as defined in Algorithm 1. The
termination of the algorithm is clear and thus the correctness can be ensured by the
following theorem:

8.3.5. T. Given a pointed AKMM = (S,Act,→, s0), and a PDL formula φ.

s0 ∈ eval(φ) ⇐⇒ s0 � φ
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Algorithm 1 Model Checking Algorithm

Input: A pointed AKMM = (S,Act,→, s0), and a PDLΣ formula φ.
return s0 ∈ eval(φ);
where
Function eval(φ)

If φ = >, then return S;
If φ = p, then return {s ∈ S | p ∈ V(s)};
If φ = ¬φ′, then return S \ eval(φ′);
If φ = φ′ ∧ φ′′, then return eval(φ′) ∩ eval(φ′′);
If φ = 〈π〉φ′, then return

{s ∈ S | Exists(M, s, eval(φ′), π) = >};

We end this section by presenting an example, originally appearing in [EvdP06].
Let us consider the AKM M below (the valuation function is not essential for this
example and we name the states as r, s, t, etc.):

M : ua·b 99 a
yy

b·b∗

		

Aπ : k

a,b,c
��

r a·b )) s
c (( t

b·c∗
hh q0

b,c

88

a )) h

b

XX

a

II

c ** j↓

a,b,c

XX

We demonstrate how to compute Exists(M, r,T, π), where π = a · b∗ · c and T = {t}.
The first step is to transform π into a complete deterministic automaton Aπ (the right
graph above, where q0 is the start state and j is the accept state). Then we can compute
the product, which is simply:

(r, {q0}) ea·b // (s, {h}) ec // (t, { j}) eb·c∗ // (s, {k}) ec // (t, {k})
eb·c∗

ll

with (t, { j}) the accept state (note that by an on-the-fly construction, the unreachable
parts are omitted). At last, the emptiness checking yields YES. It is clear that our
algorithm is much simpler than the one presented in [EvdP06].

8.3.3 Complexity Analysis

Upper Bounds. Let us analyse the complexity of the algorithm presented above for
model checking PDLΣ over AKMs. As we mentioned before, the essential part of the
algorithm is the oracle Exists(M, s,T, π). We observe that

(1) for a regular expression π, the deterministic automaton Aπ is of exponential
size O(2|π|);
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(2) the productM⊗T Aπ is of the size O(|M| · 22|π| );

(3) Checking emptiness can be done in nondeterministic logarithmic space.

To glue them together, we obtain a nondeterministic E bound, and using
Savitch’s theorem, we get a deterministic E bound for the oracle2. Moreover,
as in the traditional algorithm for CTL, the main algorithm presented in Algorithm 1
can be done in  time with an E-bounded oracle. So the complexity is E,
which is E.

One might think the complexity is a bit too high in practice. However, Licht-
enstein and Pnueli argued that when analyzing the complexity of model checking,
a distinction should be made between complexity in the size of the input structure
and complexity in the size of the input formula. And it is often the complexity in
the size of the structure that is typically the computational bottleneck [LP85]. In a
nutshell, program complexity refers to the complexity of the problem in terms of the
size of the input module, assuming the formula is fixed. Clearly, in our case, the
program complexity turns out to be L. This is important in practice since
people might argue that the complexity of our algorithm is too high to be practical.
However, in practice, usually the logic formula is small and in this case the algorithm
still performs very well.

Lower Bound. We show that the upper bound established above is essentially
optimal. We shall exploit the regular expression rewriting problem (see Section 8.2.2)
to prove the E lower bound of the problem of model checking AKM w.r.t. a
PDLΣ formula.

We present a reduction as follows:

8.3.6. L. Given a set of non-empty regular expressions E = {π1, · · · , πk} and another
regular expression π over Σ, there exists a pointed AKM model (ME, s) and a PDLΣ formula
φ such that:

ME, s � 〈π〉φ ⇐⇒ there is a non-empty rewriting of π w.r.t. E.

P Given E = {π1, · · · , πk} and π, we define the AKMME as

({s},E,→,V)

where→= {(s, πi, s) | πi ∈ E}, V is an arbitrary valuation. Let φ = 〈π〉>.

(⇒:) SupposeME, s � 〈π〉>. According to the semantics, there is a path inME with

s
π′1
−→ s · · ·

π′m
−→ s where {π′1, · · · , π

′
m} ⊆ E and L(π′1 · · ·π

′
m) ⊆ L(π). It follows that

eπ′1 · · · eπ′m is a non-empty rewriting of π w.r.t. E.

2Note that some care is needed to get the claimed space bound. We cannot simply construct Aπ since
it is of doubly exponential size. Instead, we construct Aπ on the fly.
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(⇐:) Suppose there is a non-empty rewriting α of π w.r.t. E. Since α is non-empty,
there is a possibly empty word eπ′1 · · · eπ′m ∈ L(α) where for each 1 ≤ i ≤ m, π′i ∈ E. It
is easy to see that expΣ(eπ′1 · · · eπ′m ) ⊆ expΣ(α). Furthermore, according to the definition
of the rewriting, expΣ(α) ⊆ L(π) and thus L(π′1 · · ·π

′
m) ⊆ L(π). Clearly there exists a

path inME with s
π′1
−→ s · · ·

π′m
−→ s thusME, s � 〈π〉>. This completes the proof. ë

Based on the E upper bound, Theorem 8.2.5 and Lemma 8.3.6 yield the
main result of the current section, as follows:

8.3.7. T. The problem of model checking a PDLΣ formula w.r.t. an AKM is E-
complete.

8.4 Axiomatization

In this section, we give a complete axiomatization of PDLΣ over AKM. Although
the syntax of PDLΣ does not change, the interpretation over AKM results in a new
semantics which differs from standard PDLΣ considerably. For instance, the following
axioms are valid in standard PDLΣ. However, most of them are not valid any more (if
a← appears in the right column, this indicates that↔ should be replaced by← to
keep the formula valid).

Axioms In our semantics
[π](φ→ ψ)→ ([π]φ→ [π]ψ) valid
〈π1 · π2〉φ↔ 〈π1〉〈π2〉φ ←

〈π1 + π2〉φ↔ 〈π1〉φ ∨ 〈π2〉φ ←

〈π∗〉φ↔ (φ ∨ 〈π〉〈π∗〉φ) ←

[π∗](φ→ [π]φ)→ (φ→ [π∗]φ) invalid

In view of this, instead of the standard PDLΣ axioms we propose the following
new conditional axiomatization.

8.4.1. D. A deductive system AS

TAUTOLOGY all the tautologies
K [π](φ→ φ′)→ ([π]φ→ [π]φ′)
SEQ [π1 · π2]φ→ [π1][π2]φ
STAR [π∗]φ→ φ
Rules

2
φ

[π]φ

MP
φ,φ→ ψ

ψ

INCL
`KA π + π′ = π′

[π′]φ→ [π]φ



8.4. Axiomatization 131

where KA is a complete Kleene algebra, for example as in [Koz91], acting as an oracle.

The rest of this section is devoted to showing that AS is sound and complete w.r.t
the class of all AKM frames. First let us consider a special class of AKM frames
on which we can use an equivalent simple semantics for technical convenience. An
AKM frame is called normal if it satisfies the following properties:

• sequentiality: For any π, π′ ∈ RegΣ : π→ ◦ π′
→⊆

π·π′
−→ where ◦ is concatenation of

binary relations;

• *-reflexivity: For any π ∈ RegΣ : if {1} ∈ L(π) then s π
−→ s for any s ∈ S;

• regularity: For any π, π′ ∈ RegΣ: L(π) ⊆ L(π′) implies that π
→⊆

π′
→.

Models based on the normal AKM frames are called normal AKM models. Now we
can define an equivalent semantics �0 on the normal AKM models as follows:

• For boolean cases: as before;
• For modal case:
M, s �0 〈π〉φ ⇐⇒ ∃t : s π

−→ t and t �0 φ.

We can saturate an arbitrary AKM frame of PDLπ: F = (S,Σ,→) into a normal frame
R(F ) = (S,Σ,→r) by adding transitions3:

s π
−→r t ⇐⇒ ∃s

π1
−→ s1

π1
−→ · · ·

πn
−→ sn and

L(π1π2 . . . πn) ⊆ L(π)

R(M) is the saturated model which keeps the valuation the same but saturates the
frame ofM. It is easy to see that �0 coincides with � on normal models:

8.4.2. P. Given an AKMM = (S,Σ,→,V), for any PDLΣ formula φ:

M, s � φ ⇐⇒ R(M), s �0 φ ⇐⇒ R(M), s � φ

Since all the normal AKM frames are AKM frames and all the AKM frames can
be saturated into normal AKM frames, it follows from the above proposition that
∆ � φ ⇐⇒ ∆ �0 φ, where ∆ is a set of PDLΣ formulas.

It is easy to check the following lemmata:

8.4.3. L. For any normal AKM frame F and any two regular expressions π and π′, if
`KA π + π′ = π′ then F �0 [π′]p→ [π]p.

Here F �0 φ iff for any modelM based on F : M �0 φ.

8.4.4. L. For any normal AKM frame F : F satisfies sequentiality ⇐⇒ F �0 SEQ.

8.4.5. L. For any normal AKM frame F : F satisfies *-reflexivity implies F �0 STAR.

3Note that 1 denotes for the empty sequence, and for any s: s 1
→ s.
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From the above lemmata, and the completeness of Kleene Algebra [Koz91], it is
straightforward to establish:

8.4.6. T (S). AS is sound for normal AKM frames.

Note that the STAR axiom does not correspond to ∗-reflexivity by itself, but in the
presence of the other two properties4:

8.4.7. L. If an AKM frame F satisfies regularity, sequentiality and F �STAR then F
is normal.

P Suppose F satisfies regularity and sequentiality, we only need to show that
F satisfies *-reflexivity: for any regular expression π ∈ RegΣ, if 1 ∈ L(π) then π

−→ is
reflexive. We prove this by induction on the structure of π.

• If π = π′∗ then it is straightforward to check that π
−→ is reflexive sinceF � STAR.

• If π = π1 + π2 then 1 ∈ L(π1) or 1 ∈ L(π2). By the induction hypothesis
π1
−→ is

reflexive or
π2
−→ is reflexive. From regularity,

π1
−→⊆

π
−→ and

π2
−→⊆

π
−→ . So π

−→ is
reflexive.

• If π = π1 · π2 then 1 ∈ L(π1) and 1 ∈ L(π2). By the induction hypothesis
π1
−→

and
π2
−→ are reflexive. From sequentiality,

π1
−→ ◦

π2
−→⊆

π
−→. So π

−→ is reflexive.

ë

Completeness follows from the standard canonical model construction.

8.4.8. T (C). For any set of PDLΣ formulas ∆ ∪ {φ}: ∆ �0 φ =⇒
∆ `AS φ. Namely AS is strongly complete for normal AKM frames w.r.t �0. Thus AS is
strongly complete for all AKM frames.

P Recall that a logic theory is a normal modal logic if it contains all the instances
of tautologies, the K axiom and is closed under MP and 2.Therefore AS induces a
normal modal logic. Thus it is strongly complete with respect to its canonical model
M

c = (Sc,RegΣ,−→c,Vc) according to the canonical model theorem(see e.g., [BdRV02,
Theorem 4.22]), where Sc is the set of all AS−maximal consistent sets, s π

−→ t if for
all ψ, ψ ∈ s ⇒ 〈π〉ψ ∈ t, Vc(s) = {p | p ∈ s}. We only need to show that the canonical
modelMc is indeed a model based on a normal AKM frame. Since Sc is the set of
AS-maximal consistent sets,Mc �0 STAR ∧SEQ. From Lemma 8.4.4 and 8.4.7, we only
need to show the canonical model satisfies regularity:

For any π, π′ ∈ π∗,L(π) ⊆ L(π′) implies
π
−→

c
⊆

π′

−→
c .

4That is why we don’t include a rule like:
[π]φ
φ

if ε ∈ L(π).
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Suppose there are regular expressions π, π′ such thatL(π) ⊆ L(π′) and ∃s, t : s
π
−→

c t

in the canonical model. From the definition of
π
−→

c, we have for all ψ : ψ ∈ t ⇒
〈π〉ψ ∈ s. Since L(π) ⊆ L(π′) and KA is complete, we have `KA π + π′ = π′. Since s
is a maximal consistent set, then from INCL we have for all ψ : 〈π〉ψ → 〈π′〉ψ ∈ s.
Therefore by applying MP we have for all ψ ∈ t : 〈π′〉ψ ∈ s. It follows, by definition,

that s
π′

−→
c t. ë

Strong completeness implies compactness:

8.4.9. C (C). PDLΣ w.r.t AKM is model compact. Namely if all the
finite subsets of Γ are satisfiable then Γ is satisfiable.

8.4.10. R. Recall that the standard PDLΣ is not model compact: considering the
set Γ = {〈a∗〉p,¬p,¬〈a〉p,¬〈a〉〈a〉p, · · · }, any finite subset of Γ is satisfiable, yet not the
whole Γ. However, Γ is satisfiable in the following AKM model:

¬p a∗ (( p

8.5 Satisfiability

In this section, we turn to the satisfiability checking problem. The basic idea is to
reduce this problem to traditional PDLΣ satisfiability checking. However, clearly this
can not be done in a straightforward way, since their semantics do not coincide, as
observed in the previous section.

For technical convenience, let us consider the equivalent positive PDL+
Σ

language

φ ::= > | ⊥ | p | p | φ ∧ φ | φ ∨ φ | [π]φ | 〈π〉φ

where p and p (negation of p) are in a set lit of literals of basic propositions and
π ∈ RegΣ. It is a standard exercise to transform a PDLΣ formula to an equivalent PDL+

Σ
formula and vice versa.

Given a PDL+
Σ

formula φ, let 〈〉φ be the set {π | 〈π〉 appears in φ}. We now prove
that if a formula is satisfiable then it is satisfiable in a certain class of models.

8.5.1. P. Given a PDL+
Σ

formula φ, φ is satisfiable on an AKM ⇐⇒ φ is
satisfiable in an AKM that only contains π-transitions for π ∈ 〈〉φ.

P ⇐ is straightforward. We now prove⇒:
Suppose there is an AKMM = (S,Σ,→,V) such thatM, s � φ for some s ∈ S. From
proposition 8.4.2, R(M), s � φ. Based on R(M) we build the modelM′ = {S,Σ′,→′,V}
where:

Σ′ = 〈〉φ and s
π
−→

′ t inM′ ⇐⇒ s π
−→r t in R(M).

Namely we eliminate all the transitions in R(M) except the ones labelled by some
π ∈ 〈〉φ. We claim: M′, s � φ. We prove it by induction on the structure of φ :
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• For atomic and boolean cases, trivial.

• φ = 〈π〉ψ : since R(M), s � φ then ∃t ∈ S such that R(M), t � ψ and s π
−→r t.

By the definition of →′, s
π
−→

′ t. Now by the induction hypothesis we have
M
′, t � ψ, thusM′, s � φ.

• φ = [π]ψ : since R(M), s � φ then for all t such that s π
−→r t, R(M), t � ψ.

By the induction hypothesis, M′, t � ψ. Note that if there exists t such that

s
π1

−→
′
· · ·

πn

−→
′ t in M′, and L(π1 · · · · · πn) ⊆ L(π) then s π

−→r t in R(M).
Therefore for all π−reachable states t in S,M′, t � ψ. It follows thatM′, s � φ.

ë

Given a PDL+
Σ

formula φ, we define a rewriting of φ, obtained by replacing every
instance of π in [π]ψ with its maximal 〈〉φ-rewriting π̂〈〉φ . Recall that π̂〈〉φ is a regular
expression over the alphabet Σ〈〉φ = {eπ | π ∈ 〈〉φ}where each eπ is a new symbol.

8.5.2. D. (Rewriting of a PDL+
Σ

formula) Given a PDL+
Σ

formula φ, R(φ) is
the rewriting of φ in the language PDL+

Σ〈〉φ
defined by:

• R(p) = p where p ∈ lit ∪ {>,⊥}.

• R(ψ1 ∧ ψ2) = R(ψ1) ∧R(ψ2).

• R(ψ1 ∨ ψ2) = R(ψ1) ∨R(ψ2).

• R(〈π〉(ψ)) = 〈eπ〉R(ψ).

• R([π]ψ) = [π̂〈〉φ ]R(ψ).

ç

8.5.3. T. Given a PDL+
Σ

formula φ, φ is satisfiable on an AKM ⇐⇒ R(φ) is
satisfiable on a Kripke model w.r.t. the standard PDLΣ semantics.

P
(⇒:) Supposeφ is satisfiable, then from proposition 8.5.1, we know thatφ is satisfiable
in an AKM modelM that only containsπ-transitions forπ ∈ 〈〉φ. Note that we can also
treatM as a Kripke model over the action set Σ〈〉φ , which we denote byG. Namely,G
is the same asM except that the transition is renamed. AssumingM, s � φ, we now
show G, s  R(φ) by induction on the structures of R(φ):

• For atomic and boolean cases, trivial.

• Suppose φ = 〈π〉ψ thus R(φ) = 〈eπ〉R(ψ), where π ∈ 〈〉φ. SinceM, s � φ, there
exists some s π

→ s′ withM, s′ |= ψ. According to our construction, in G, s
eπ
→ s′.

By the induction hypothesis, G, s′  R(ψ) in G. It follows from the standard
semantics of PDLΣ that G, s  R(φ).
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• Suppose φ = [π]ψ thus R(φ) = [π̂〈〉φ ]R(ψ). Since M, s |= φ, for any sequence

of transitions s
π1
→ · · ·

πn
→ s′ with n ≥ 0, L(π1 · · ·πn) ⊆ L(π) impliesM, s′ |= ψ.

Now let us consider any sequence of transitions s
eπ′1
→ · · ·

eπ′m
→ sm with eπ′1 · · · eπ′m ∈

L〈〉φ (π̂〈〉φ ) in G. It is clear that expΣ(eπ′1 · · · eπ′m ) ⊆ expΣ(π̂〈〉φ ). Since π̂〈〉φ is a
〈〉φ-rewriting of π, we have:

L(π′1 · · ·π
′

m) = expΣ(eπ′1 · · · eπ′m ) ⊆ L(π)

ThereforeM, sm |= ψ. By the induction hypothesis, G, sm  R(ψ). It follows that
G, s  φ.

(⇐:) Suppose R(φ) is satisfiable at a pointed Kripke model (G, s) over action set Σ〈〉φ
such that G, s  R(φ). Clearly, we can construct a corresponding AKMM which is
the same as G except that for any transition eπ ∈ Σ〈〉φ in G, we rename the label eπ by
π. We now showM, s � φ by the induction on the structure of φ:

• For atomic and boolean cases, trivial.
• Suppose φ = 〈π〉ψ, where π ∈ 〈〉φ. Since G, s  R(φ), namely G, s  〈eπ〉R(ψ),

there exists some s
eπ
→ s′ in G with s′  R(ψ). According to our construction,

s π
→ s′ inM. By induction hypothesis,M, s′ |= ψ. It follows from our semantics

thatM, s � φ.
• Suppose φ = [π]ψ : Since G, s  R(φ), namely G, s  [π̂〈〉φ ]R(ψ), we have

s
eπ1
−→ · · ·

eπm
−→ s′ and eπ1 · · · eπm ∈ L〈〉φ (π̂〈〉φ ) implies G, s′ � R(ψ). Take an arbitrary

t such that s
π′1
−→ · · ·

π′n
−→ t inM andL(π′1 · · ·π

′
n) ⊆ L(π). Since π̂〈〉φ is the maximal

〈〉φ−rewriting of π, from Proposition 8.2.4 we have eπ′1 · · · eπ′n ∈ L〈〉φ (π̂〈〉φ ).Hence
G, t  R(ψ). By the induction hypothesis,M, t � ψ. ThereforeM, s � φ.

ë

8.5.4. R. This result is somewhat surprising. Note that our semantics and
traditional PDLΣ semantics differs as shown in the previous section. However, they
coincide after the rewriting. For example, φ = 〈a · b〉p ∧ [a][b]¬p is satisfiable w.r.t
our semantics, but not in standard PDL, whileR(φ) = 〈ea·b〉p∧ [0][0]¬p is satisfiable in
traditional PDL semantics, where constant 0 denotes the empty language.

From Theorem 8.5.3, we can reduce satisfiability checking of PDLΣ over AKM
to standard PDLΣ satisfiability checking, which has been extensively studied in the
literature (see, e.g., [HKT00]) and is known to be E-complete. Note that the
regular expression rewriting can be done in 2-E as in Theorem 8.2.6. These
entail that the satisfiability checking of PDLΣ over AKM can be done in 3-E5.

5The length of the output of a 2-E algorithm is essentially at most doubly exponential of the size
of the input. A moment of reflection should confirm the desired complexity.
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8.6 Conclusion and Future Work

We have performed a thorough study of PDLΣ over accelerated labelled transition
systems. We investigated three problems: model checking, axiomatization and
satisfiability checking. We showed that the model checking problem of this logic
is E-complete while the program complexity turns out to be N-
complete. This answers an open question in [EvdP06]. We also provided a sound
and complete axiomatization for PDLΣ which involves Kleene Algebra as an Oracle.
Furthermore, we show the satisfiability problem is decidable in 3-E by giving
a reduction to the satisfiability of PDLΣ w.r.t. the standard PDLΣ semantics on Kripke
models.

There are many avenues for future study. First, although we conjecture that our
reduction method is optimal, the exact complexity of the satisfiability problem is
left open. In [CvdPW08], we claimed the satisfiability problem is E-complete.
However, the argument was, in retrospect, based on a misunderstanding of Theo-
rem 8.2.6. There are a number of extensions of PDLΣ (e.g. the test operator) and
we are interested in what will happen if the accelerated transitions are labelled by
expressions containing extra operators. Furthermore, some open problems remain
in applying AKM to abstract model checking of liveness properties, as sketched
in [EvdP06]. For instance, how can an abstraction with accelerated transitions be
computed automatically? [EvdP06] hints at the relation to automated termination
provers. Our study shows that the model checking problem with accelerated transi-
tions is hard. So another interesting question is how to add the minimal number of
accelerated transitions, in order to prove a certain liveness property.
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Modelling Security Protocols
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Chapter 9

Epistemic Approaches to Security Protocol
Verification

9.1 Knowledge in Security Protocols

Security protocols are rules (often based on cryptography) that govern communica-
tions in hostile environments in order to guarantee certain security goals. Many such
goals are naturally expressed in terms of knowledge: only the right agents should get
to know the right things. This has to do with the fact that many security properties
are about hiding information from the bad guys or making sure the good guys get their
information. For example, here are some intuitive epistemic readings of the security
properties mentioned in [RS01]:

• Sender authentication: the receiver knows the sender of a message;

• Mutual authentication: both parties (commonly) know they are talking to each
other;

• Anonymity: the sender is unknown (to an eavesdropper);

• Secrecy: an intruder does not know certain information.

More specifically, in the area of voting protocols, which recently drew much attention,
more involved properties are considered, for example (cf. [DKR07]):

• Vote-privacy: nobody other than the voter herself knows that a particular voter
voted in a particular way;

• Receipt-freeness: a voter does not gain any information (a receipt) which can be
used to let another know for sure that she voted in a certain way.

• Coercion-resistance: a voter cannot cooperate with a coercer to let him know that
she voted in a certain way.

139
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The above list is only indicative, and by no means exhaustive to cover the security
properties that have epistemic readings. Although the precise formal meaning of the
security properties as above is debatable, the relevance of epistemics in such settings
is undeniable (cf. also [Kra07] (Slogan 8): “The purpose of a cryptographic protocol is
to interactively compute, via message passing, knowledge of the truth of desired and,
dually, knowledge of the falsehood of undesired cryptographic states of affairs”).

However, security protocols are deceptively simple-looking objects with very
subtle behaviours, which require extremely precise formal analysis. Designing a
correct protocol can be thought of as programming Satan’s computer as [AN95] put it.
Consider the 3-line Needham-Schroeder authentication protocol [NS78]:1

1. A→ B : {nA, A}PKB
2. B→ A : {nA, nB}PKA
3. A→ B : {nB}PKB

which prescribes a set of action patterns with roles of agents to authenticate two agents
with each other. BAN logic provided a correctness proof of the above protocol, which
was later proven flawed due to a man-in-the-middle attack [Low96]:

1 A→ I : {nA,A}PKI

1′ I(A)→ B : {nA,A}PKB

2′ B→ I(A) : {nA,nB}PKA

2 I→ A : {nA,nB}PKA

3 A→ I : {nB}PKI

3′ I(A)→ B : {nB}PKB

where A,B, I are concrete agents playing different roles according to the specification
of the protocol. After A contacts I, the intruder I can pretend to be A towards B by
forwarding A’s special number to B. After B’s reply, I can use A to obtain B’s number
and confirm B according to the protocol. Thus B may believe he is talking to A while
in fact he is talking to I.

The lack of a proper semantics for its epistemic language and its high level
reasoning limit the value of correctness proofs in BAN-logic. This proves the need
for a closer look at the meaning of knowledge and the cryptographic operations used
in security protocols.

9.1.1 Different Aspects of Knowledge

As an appetizer, consider the property of Secrecy:

“an intruder does not know certain information”.

1A generates a random number (a nonce), and then sends it to B in a “locked box” that only B can open
with his private key. B then sends A’s number back with a random number of his own, in a box that only
A can open. A then confirms by sending B his number back. The intended goal is that both A and B know
that they are talking to each other.
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If the information concerned is a bit string s (a piece of information), then to know it
amounts to possessing this piece of bit string, while s itself does not have any truth
value. On the other hand, if the information concerned has the form “it was B who
sent the message” (call it φ), then to know φ means knowing the fact that it was B who
sent the message, or in other words knowing that the proposition φ is true. Clearly, the
same word knowledge can be used for different aspects of what there is to learn. We
will, following [RS05b], refer to the first type of knowledge (in the sense of possession
of bit strings) as knowledge of explicit data,2 and to the second type of knowledge as
propositional knowledge.

More subtleties regarding knowledge in a security context, are related to the
cryptographic operations used in the security protocols. First of all, based on the bit
strings that agents possess and the cryptographic operations available, they can know
more bit strings by constructing complex message terms from what they possess, or
decomposing a composed one into simpler ones. Such knowledge, in terms of
possession of bit strings obtained by cryptographic operations, can be classified as
algorithmic knowledge [HP03]. More intricately, if an agent A does not possess the
symmetric key k, then the encrypted message of m by k (denoted by {m}k) should
mean no more than a random bit string to A, even though she possesses it. Thus we
need a notion of knowledge to denote that an agent can see the inherent structure of
bit strings. We call the last type “certain knowledge” following [BRS07].

These different ways of using the term “knowledge” (and the verb ‘to know’)
suggest different structures and treatments in the formal models, which we will
discuss in Section 9.2.2.

9.1.2 Tension Between Epistemic and Temporal Structure

Despite the epistemic flavour in expressing security goals, the interchange of mes-
sages, which constitutes protocols, occurs over time. Thus a rigourous epistemic
approach to security protocol verification needs to harmonise the epistemic and
temporal aspects. However, the intuition about the expressivity of epistemic log-
ics does not quite coincide with the practice of security protocol verification so far:
most of the successful approaches usually model the protocols formally with purely
temporal structures, and try to capture the properties in a temporal formalism (cf.
e.g.,[RS01, AF01, FGM04]). The tension between the natural temporal essence of the
formal model of protocols, and the natural epistemic formalisation of the security
requirements has proven to be a challenge. This raises two natural questions:

1. Does introducing epistemics into the language indeed boost the expressive
power in formalising security properties?

2. What is the computational cost of combining epistemic and temporal aspects
in security protocol verifications?

2[Kra07] uses the term “individual knowledge” for this.
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Fortunately, recent years have seen a growing interest in epistemic approaches
connected to the study of certain security properties that are not easily expressed
in terms of events which did or did not happen along a single run of the protocol.
A list of such properties includes, for example, anonymity [SS99, HO05], receipt-
freeness [JdV06, JP06, BRS07], and coercion-resistance [DKR06, DKR07]. The verifi-
cation of such properties depends on whether agents are able to distinguish between
different courses of events, which is exactly the idea behind the standard Kripke se-
mantics of knowledge. Formally, this involves the addition of equivalence relations
to the temporal model, where it is useful, natural or even necessary as we will argue
in Section 9.4.

Moreover, despite the apparent disguises of the formalisations, the epistemic log-
ical approaches proposed by different research communities do have some important
common features, where careful comparisons are needed to pinpoint the differences.
Our goal of this chapter is two-fold. First, we give a brief overview of several epis-
temic proposals in Section 9.2 and compare the essential techniques they employ in
Section 9.3. The survey in these sections is intended to be an introduction to this de-
veloping field of epistemic verification. Second, in Section 9.4, we try to give partial
answers to the questions we proposed above. The survey will be presented mostly
in a high level fashion and will only get to some technical details in Sections 9.3 and
9.4 when truly necessary.

While we intend this chapter to give a brief overview of approaches to modelling
knowledge in the analysis of security protocols, we cannot cover all different aspects.
The focus in this chapter will be on model checking approaches to verification,
based on modal logics of knowledge rather than belief, that are possibilistic rather
than probabilistic. For those interested in the other aspects, our introductory text in
Subsection 9.2.1 contains pointers to some work in the areas outside of our focus.

9.2 Epistemic Approaches: A Brief Survey

9.2.1 BAN logic

The starting point of formal verification of security protocols is often attributed to
the development of BAN-logic [BAN89], named after its inventors Burrows, Abadi
and Needham. The syntax of this logic includes predicates of belief 3 and actions, thus
it is able to express message passing actions and security goals. In fact, BAN-logic
presents a calculus (proof system) by giving a number of inference rules to derive
statements. For example, here is a rule for “if A believes he shares a secret key k with
B, and A has received a message X encrypted with k, then A believes that it was B
who sent the message”:

A believes (A k
↔ B), A sees {X}k

A believes (B said X)
.

3However, it is essentially knowledge, following the intuition given by the authors.
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To handle protocols in this framework, the protocol first needs to be idealised, then
the initial assumptions are spelled out in the BAN-language, after which each step in
the protocol is annotated with a BAN-formula asserting the state of affairs after that
step. The statement after the final step describes the outcome of the protocol. The
goal of the analysis is to derive a final assertion that implies the protocol is correct.

However, the soundness of the inference rules in the BAN-approach was ques-
tionable due to the lack of a formal semantics and clear underlying assumptions of
the “idealisation” which led BAN-logic to an abstraction level too high to capture
the consequences of all the possible intruder behaviours4. These drawbacks made
the BAN-logic analysis of the Needham-Schroeder authentication protocol overlook
the possibility of the man-in-the-middle attack exposed by Lowe [Low96], who used
a process theoretic analysis in the process algebra CSP [BHR84]. At the same time,
model checking approaches [CGP99] began to flourish and later became promi-
nent.To do model checking on security protocols with epistemic logic, it is necessary
to have a suitable formal semantics for knowledge in the security setting.

Despite the efforts made in the literature [GNY90, Bie90, Syv92], the main hurdle
to a reasonable semantics of BAN-like logics was the so-called logical omniscience
problem, an inherent issue of the standard possible-world semantics of epistemic
logics [VW51, Hin62]: agents know all the valid propositions and all logical conse-
quences of what they know. According to the Kripke semantics, if a message m is
indeed of the form {m′}k (thus m = {m′}k is true everywhere in the model), then an
agent knows it, even when she does not possess the key k. This sounds contradictory
to our intuition in security analysis.

Many approaches have been suggested to avoid the logical omniscience problem
(see [FHMV95] [Ch.9] and [HP10a] for surveys). In the context of security analysis,
the most relevant one is the approach of algorithmic knowledge [HMV94], which
is prominent in our later introduction of various epistemic approaches. The idea
is that an agent knows a message term only if it is derivable by some algorithm
with respect to a deductive system capturing idealised cryptographic operations
[HP03, Puc06]. For propositional knowledge, a more sophisticated way of avoiding
the logical omniscience problem can be obtained by deviating from the standard
Kripke semantics in the definition of reachable possible worlds, as demonstrated
in [CD05b, CD07]. Essentially, such an approach introduces extra possible worlds
which may not be in the model when evaluating epistemic formulas. Awareness can
also be used to deal with logical omniscience in the security setting (for instance,
see [ABV03]), but we will not elaborate on this here.

Before moving on from BAN to the modern model checking epistemic approaches,
we should mention that several authors have proposed analyses for security proto-
cols involving belief rather than knowledge, e.g. [HD07, vdMW07, BS08a]. Also, the
epistemic approaches that we survey are possibilistic in the sense that an agent knows
a fact if he does not consider it possible to be false, while in certain security contexts
this may be inappropriate. For example, can we rightfully say that A anonymously

4See [Tee06] for a more elaborate discussion on the soundness of BAN-logic.
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sent a message, if A is the sender of the message in 99 out of 100 runs considered
possible? This suggests a probabilistic approach to knowledge or belief to analyse
certain security properties, as in [RR98, SS99, HO02, HO05, Shm04, BP05]. These
doxastic and probabilistic approaches are not covered in our survey.

9.2.2 Basics of Epistemic Approaches

In this section, we will list the commonly used components of most epistemic ap-
proaches in the post-BAN era. We first need a logical languageLI to specify properties
of models, where I is a (finite) set of agents. Due to the fact that we are talking about
message passing in a protocol setting, we need to mention messages in our language.
This is often done by introducing the message terms as follows:

m ::= c | k | {m}k | (m,m′)

where c stands for some basic plain terms which may in general have many sorts (e.g.,
names, integers, etc.), {m}k is the encryption of m with key k, and (m,m′) intuitively
represents pairing of m and m′. In general, arbitrary cryptographic operations f can
be introduced in this way.

Associated with the message terms there is a derivation system to capture the
cryptographic functions in the message terms [Pau97, Pau98, CJM98]. For example
the following derivation rules capture the symmetric encryption and pairing of the
messages:

synth :
m m′

(m,m′)
m k
{m}k

analz :
(m,m′)

m
(m,m′)

m′
{m}k k

m

where synth rules govern the application of cryptographic operations to form new
terms from the old, while analz rules intuitively extract information from complex
terms. We can alternatively represent analz rules by an equational theory E, e.g.,
dec(enc(x, y), y) = x for the last rule above, if dec, enc are introduced as cryptographic
operations with the obvious meaning in the language of message terms. Given a set
of messages M, we say M ` m if either m ∈ M or m is derivable from M by applying
the rules. We write m =E m′, if m = m′ is an instantiation of an equation induced by
E. [HP03] argues that a derivation system may not be convenient to model certain
powerful adversary operations, and proposes to use arbitrary algorithms instead of
derivation systems. For simplicity, we will not cover this more general case here.

We build formulas based on message terms which are not formulas themselves.
Following the observations in Section 9.1.1, we need different knowledge operators
in the language to cope with various types of knowledge:

1. Knowledge of explicit data (possession of bit strings): We build basic propositions
in the shape of hasim, where m is a message term, meaning that agent i possesses
m. For such knowledge we have the de dicto reading: hasi{m}k means that the bit
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string of {m}k is possessed by i. However, i may be unsure about the structure
of the message.

2. Algorithmic knowledge (possession of derivable bit strings): In the literature, the
knowledge of explicit data can be viewed as a special case of algorithmic knowl-
edge. We can use hasim to express that m as a bit string can be derived from
the information agent i possesses, by applying corresponding cryptographic
operations modelled by synth and analz rules (see [HP03] and [RS05b] for the
detailed rationale)5.

3. Propositional knowledge (what facts are known to the agents): As in the standard
epistemic logic, we use Kiφ to express that “agent i knows that φ is true.” Thus
the logical language LI may look like:

hasim | hasim | φ ∧ ψ | ¬φ | Kiφ | Oφ

where m ∈ M, and O can be any modal operator other than Ki, depending
on what properties we want to specify. On the other hand, given an existing
modal logic language, we can turn it into a language about message passing by
adding epistemic operators and taking hasim as the basic propositions6.

4. Certain knowledge (the understanding of the bit strings). This kind of knowledge
sits in between algorithmic knowledge and propositional knowledge, since it
is not only about message terms itself but also about the observational power
of agents [BRS07]. We may use Kihasim to express that agent i knows that m is
of certain structure, e.g., Kihasi{c}k means i knows that he has a bit string which
stands for {c}k.7 Thus knowledge operator Ki induces somehow a de re reading
of hasim.

To evaluate the basic formulae in the shape of hasim on Kripke models, we need to
associate a set of message terms for each i at each state. Then hasim is true at a state
s if m is in the set of messages associated with i on s. The semantics of hasim is also
straightforward by considering the derivable messages at a state.

According to the standard Kripke semantics, Kiφ is true at a state if φ is true
anywhere reachable from the current state. The equivalence relations naturally
model the epistemic uncertainties of agents. Thus the actual formal meaning of
propositional knowledge and certain knowledge depends on the definition of the
equivalence relation in the model and the message terms possessed by agents at
various states. We will compare different equivalence relations in Section 9.3.1.

Given an epistemic language in the above style, an epistemic verification frame-
work should give a general way to build up models from a protocol description in

5Here the “overline” in hasim shows that m is in the closure of derivation.
6In addition to hasim, it is also common to introduce special propositions to denote the actions happened

in the past, e.g., sendi
j(m) (see, for instance [HP03]).

7Different semantics for Ki operator may cause subtly different readings for such statements. We will
see different semantics in Section 9.3.1.
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order to do model checking. Two approaches are discussed in the next subsections
following the traditions of Epistemic Temporal Logic and Dynamic Epistemic Logic.

9.2.3 Epistemic Temporal Approaches

To ease the exposition we now equip the interpreted systems defined in Defini-
tion 2.3.1 with explicit events. As usual, given a set of agents I with ε for the
environment and the sets of local states L1, . . . ,Ln,Lε, a set S of global states is a
subset of Lε × L1 × · · · × Ln. Given a set of events E and a set of global states S, we
associate with each e ∈ E a transition relation e

→⊆ S × S. An infinite run r on S is a
function r : N 7→ S × E. Let rS(u) and rE(u) be the corresponding global state and
event (to happen) at the uth point of the run r respectively. We say a run r is admissible

if ∀u ≥ 0 : rS(u)
rE(u)
→ rS(u + 1). An interpreted system I is then defined as a pair (R,V)

where R is a set of admissible runs, and V : S 7→ 2P is a valuation function assigning
to each proposition atom in P a truth value. We denote by (I, r,u) the point r(u) in
interpreted system I.

To verify a protocol in the presence of an adversary, 8 we need to formalise the
protocols and the adversary model, describing the possible actions of an adversary.
Here we show an example of a formalisation of the Needham-Schroeder authentica-
tion protocol mentioned in Section 9.1, with the Dolev-Yao adversary model [DY83]
where all the messages are delivered via the intruder role (E) acting as a buffer (see,
e.g., [Cre06] for rationale):9

for A : 1. A send E : {nA, A}PKB for B : 1. B rec E : {nA, A}PKB
2. A rec E : {nA, nB}PKA 2. B send E : {nA, nB}PKA
3. A send E : {nB}PKB 3. B rec E : {nB}PKB

Here the action patterns in a protocol are broken down and grouped into local protocols
by roles. Note that, in the above formalisation, the intruder implicitly eavesdrops on all
the messages and the agents will accept any message that the intruder may possess, as
long as it is in the forms specified (thus modelling the intruder’s ability to manipulate
messages).

Despite differences in details in each specific framework, e.g. [HP03, vdMS04,
RS05b, BCL09], we can summarise the merit of the general ETL approach for mod-
elling protocols under an adversary model, as the following steps.

Step 1. Suppose the set of agents is I = {1, 2, . . . ,n, ε}, where ε indicates the
intruder. We start from a set S0 (usually a singleton) of initial states which are tuples
of local states 〈l1, . . . ln, lε〉. An initial local state for agent i should, among other
things, encode a set of message terms representing the messages that agent i initially

8Sometimes one intruder is enough, and we can give a small finite bound on the number of other
agents, see, for instance, [LC03].

9For simplicity, we do not go into the details of the various specification languages and adversary
models proposed in the literature. For example, [HP03] provide the possibility of modelling different
adversaries in the IS-framework.
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possesses (i.e. the information states of agents [RS05b]). In such a setting, we can
retrieve the information state of i at global state s by infoi(s). We can then define the
semantics of hasim and hasim at (I, r,u) by infoi(rS(u)) in a straightforward way.

Step 2. We can generate a temporal structure, based on the initial states, by
collecting all the admissible sequences of global states according to the protocol
under the adversary model. The protocol specification and the adversary model
define a set of events (instantiated action patterns). To give the transition relation

e
→ for the events on the global states, we can give each event e a precondition and
a postcondition. The first specifies when the event can happen and the latter one
changes the local states of agents to model information updates by the events. In the
above example, an instantiated action: ( j send ε : {n j, j}PKi ) has the precondition that
{n j, j}PKi is in the current information set of j and the postcondition that {n j, j}PKi is
added to the information state of the intruder. In general, agents can send a message
only if they possess it, and the effect of a send action is that the message is delivered
to the intruder (under the Dolev-Yao model). The order of the actions according
to the protocol can be encoded also by preconditions requiring that a certain action
happened in the earlier stage of the run. We call the resulting set of runs the generated
temporal structure T(S0).

We choose to let each e be observable to an agent i iff i herself is involved, e.g.,
( j send ε : m) is only observable by ε and j. Similarly, the i-observable subse-
quence of ( j send ε : m)(i rec ε : m′) is (i rec ε : m′). In the Dolev-Yao setting
we presented above, the intruder can observe all the events. In a more sophisticated
analysis, the events are composed by synchronising local events with respect to each
agent according to their local protocols, cf. e.g., [BCL09].

Step 3. From T(S0), we build up the epistemic temporal model E(T(S0)) by defining
epistemic relations ∼i between points (T(S0), r, k). The standard way of defining ∼i in
IS is by matching local states of i, or local views of i of the histories of events. However,
the information sets and local histories in the protocol setting do not capture how
the messages are understood by the agents (recall what we called certain knowledge,
Section 9.2.2). It is possible that two message terms are different, but still regarded as
the same by an agent e.g., events rec : {m}k and rec : {m′}k are not distinguishable to
an agent who does not have the key k. Moreover, if an agent later obtains the key k,
then she can tell {m}k and {m′}k apart by “looking back with a fresh eye”. Thus we need to
build∼i on some sophisticated equivalence relation on messages (≈). In Section 9.3.1,
we will discuss different existing definitions for ≈ on lists of message terms, since
we usually assume that the agents can remember the order of the messages passing
actions that she can observe.

It is not hard to see that we can lift ≈ to equivalence between points in an IS.
Suppose each information set is represented by a list of messages. Let Mi(e0, . . . , eu)
be the list of messages occurring in i’s observable subsequence of events in e0, . . . , eu.
Two obvious possibilities are:

• Asynchronous: (s0
e0
→ s1 . . . su−1

eu−1
→ su) ∼i (s′0

e′0
→ s′1 . . . s

′

u′−1

e′u′−1
→ s′u′ ) iff infoi(su) ≈



148 Chapter 9. Epistemic Approaches to Security Protocol Verification

infoi(s
′

u′ ).
10

• Synchronous:(s0
e0
→ s1 . . . su−1

eu−1
→ su) ∼i (s′0

e′0
→ s′1 . . . s

′

u′−1

e′u′−1
→ s′u′ ) iff u′ = u and

〈infoi(s0),Mi(e0, . . . , eu−1)〉 ≈ 〈infoi(s
′

0),Mi(e′0, . . . , e
′

u−1)〉.

The above procedure can be summarised with the slogan:

First temporal then epistemic.

Notably, [BCL09] presents a fully automated method to generate interpreted
systems from formal specification of protocols taking many small details into con-
sideration. Other methods to generate IS-like models include process algebra with
epistemic annotations, e.g., [DMO07], which makes use of an operational semantics
to generate the model from the protocol specified in process algebra terms.

9.2.4 Dynamic Epistemic Logic Approaches

As we have demonstrated in the previous chapters, DEL can be applied in modelling
what agents learn through different communication acts according to epistemic rea-
soning, for example in the Russian Cards scenario discussed in Chapter 3. Thus it
looks promising to analyse security protocols by modelling protocols in terms of ac-
tion models. In [HMV05], [VO07], and [DW07] the first attempts were made towards
the security protocol verification by DEL. Note that, security protocols are much more
complicated than the epistemic protocols discussed in Chapter 3 and Chapter 4, thus
to model such protocols, more general event models of DEL are needed rather than
atomic actions or public announcements only. We summarize the modelling steps as
follows based on the above attempts:

Step 1. We start with a finite initial static model M with epistemic relations ∼i
ready. Similar as in the interpreted system approach, a state is associated with a
tuple of information sets modelling the messages that agents possess. The epistemic
relations can be given similarly according to the equivalence ≈ on lists of messages.

Step 2. We need to build an event modelAwhich captures all the protocol actions
with suitable pre- and postconditions similar to what we described at step 2 for ETL
approaches. For example, to model the Needham-Schroeder authentication protocol
mentioned above, we can build action model A = (E, {�i}i∈I,Pre,Pos) such that E
includes all instantiated actions of the protocol, for example: event e = ( j send ε :
{n j, j}PKi ) with Pre(e) = has j({n j, j}PKi ) and Pos(e)(hasε({n j, j}PKi )) = >. The epistemic
relations �i between events can be generated by lifting ≈ on lists of messages to
events, under the constraint that an agent can always distinguish the events that she
is involved in from other actions.

Step 3. The update execution computes the result of performing A onM itera-
tively, thereby it essentially builds up all the possible runs of the protocol11.

10This is an example of asynchronous and forgetful agents [SG02], other memory conditions can be
applied here.

11In [DW07], we introduced the iteration operation on event models in a DEL language which is similar
to the one we presented in Chapter 3, but with public announcements replaced by event models.
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The above procedure can be summarised as the slogan:

First epistemic then temporal.

Although it seems that DEL modelling is very similar to ETL modelling, we will
pinpoint the tricky differences between the two approaches in details in Section 9.3.2.

9.2.5 Tools

In the last decade, many tools have been developed to handle formal verification
in the setting of ETL or DEL, with potential application in security analysis. For ETL
model checking, we have MCK: Model Checking Knowledge [GvdM04, vdMS04]
and MCMAS: Model Checker for Multi-Agents Systems [LR06b, LQR09]. [BCL09]
recently presented a fully automatic translation from protocol descriptions given in
CAPSL (Common Authentication Protocol Specification Language) into the input
language for MCMAS, enabling the automated checking of the security protocols
from the Clark-Jacobs security protocol library by means of epistemic temporal logic.
For DELmodel checking, we have DEMO: Dynamic Epistemic MOdelling [vE07] and
LYS: a knowledge anaLYSis toolset [Orz05]. Other relevant tool sets include the ETL-
model checker MCTK [Su04], the ATL-model checker [AHM+98], and the real-time
system model checker [KNN+08].12

In the literature, various tools are presented with some case studies demonstrating
how the framework can be applied. For these demonstrations, often well-known
situations or protocols are chosen which require relatively small models. The classic
examples in the epistemic verification demonstrations are the Dining Cryptographers
protocol for anonymous broadcast [Cha88], the Muddy Children (see, e.g., [FHMV95])
for demonstrating the effect of (repetition of) public announcements, and Russian
Cards Problem (see [vD03]) for secure public announcements. Such common examples
facilitate comparisons of the modelling and efficiency among different tools based on
different frameworks, see, for example [vDvdHvdMR06], which takes the Russian
Cards problem as a test case for MCK, MCMAS and DEMO.

9.3 Comparisons

In this section we will compare more technical aspects of the approaches mentioned in
the previous section. In the first part, we discuss the different versions of equivalence.
In the second part, we compare the epistemic temporal approach with the dynamic
epistemic one in the security setting.

9.3.1 On Equivalences

Some well known formal methods have been adapted or designed to include (trace)
equivalences to deal with multi-trace security properties (e.g., applied pi-calculus

12This is definitely not a complete list, see [LP07] for a survey of symbolic model checking for ETL.
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[AF01]). In this part, we focus on how the equivalence relations of agents are de-
fined, based on the lists 〈m1, · · ·mn〉 that record the messages that an agent received in
order. The rest of this subsection will be devoted to the comparison of the following
equivalence relations:

• simple deduction equivalence ≈d

• pattern matching equivalence ≈pat (in [AT91, AR02] and [BRS07]);

• static equivalence ≈s (defined in [AF01, AC04], and later used in [CDK09b,
CDK09a]);

• permutation equivalence ≈per (in [CD05a, GHPvR05], and later used in [CD07,
JP06]).

We assume there is a fixed equational theory E corresponding to the derivation system
on terms of messages. Let M = 〈m1, . . . ,mn〉 and M′ = 〈m′1, . . . ,m

′
n〉

13 then:

• M ≈d M′ iff for all message terms m: M ` m ⇐⇒ M′ ` m.

• M ≈pat M′ iff M and M′ induce the same recognisable message patterns, i.e. for
all j: pat(m j,M) = pat(m′j,M

′), where pat(m j,M) is roughly the message term in
which the unconstructable parts are replaced by an uninterpreted symbol 2.
For example:

pat({m}k,M) =

{
{pat(m,M)}k if M ` k
2 otherwise

For formal details on various cryptographic operations we refer to [AR02,
BRS07].

• M ≈s M′ iff M and M′ satisfy the same equality tests. Formally, defining σM, σM′

to be the substitutions replacing x j with m j and m′j respectively, then M ≈s M′

iff for any message terms with variables t(x1, . . . , xn) and t′(x1, . . . , xn):

σM(t) =E σM(t′) ⇐⇒ σM′ (t) =E σM′ (t′).14

• M ≈per M′ iff there is a permutation π : M→ M′ such that for all j: π(m j) = m′j
and π(t(m̄)) = t(π(m)) for any message term with variables t and any suitable
list m from {m | M ` m}. [CD05a] shows that ≈per is indeed an equivalence
relation.

The relation ≈d is very fine (despite the fact it does not require a one-one correspon-
dence of messages) and thereby assigns strong observational power to the agents:

13Note that the equivalences we consider here all respect the number of messages.
14Here we leave out the details about protected names in the original frame (our σ) in applied-pi calculus.
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e.g. M1 = 〈{c}k〉 0d M2 = 〈{c′}k〉. It may only make sense to employ such an equiva-
lence relation for the intruder if we need to guarantee extreme security. On the other
hand ≈pat is rather coarse as it treats all the unreadable parts as the same: e.g. M3 =
〈{c}k, {c′}k〉 ≈pat M4 = 〈{c}k, {c}k〉 since pat({c}k,M3) = pat({c′}k,M3) = pat({c}k,M4) = 2.

Static equivalence is somewhere in between e.g., M1 ≈s M2 but M3 0s M4 since
{c}k ,E {c′}k but {c}k =E {c}k. To relate ≈s and ≈per, Cohen and Dam show that:

9.3.1. T ([CD07]). For any lists of messages M and M′ satisfying |{m | M 0 m}| =
|{m |M′ 0 m}| = ω:

M ≈s M′ ⇐⇒ M ≈per M′

where the cardinality condition allows us to permute all the non-derivable messages
in M to the non-derivable messages in M′.

[PP07] pleads for a principled approach to model indistinguishability relations
that is worth elaborating upon. They define two states to be indistinguishable for
an agent if the agent can compute the same observations from both states. There
observations can be considered as tests in the spirit of static equivalence. They
generate relations on the basis of the computational power of the agents: taking Θ to
be a set of observations θ (tests), and A an algorithm returning for each θ ∈ Θ and M
the answer “yes”, “no” or “unknown” to the question whether θ holds at M, they let
M ≈Θ,A M′ iff for all θ ∈ Θ A(θ,M) = A(θ,M′). For example ≈pat can be reformulated
as ≈Θ,A where θ is built as follows:

t ::= x | c | k | {t}k | (t, t)
θ ::= has(t) | ∃x.θ where the only free variable in θ is x.

It is easy to see that θ expresses the pattern of a message. The corresponding algo-
rithm A then takes a pattern and then try to match it in M. On the other hand, to
have Θ define ≈s, we at least need to introduce equality into the language of Θ. In
fact, if we take Θ as a logical language then this proposal is actually asking for log-
ical characterisations of different equivalence relations with corresponding “model
checking” algorithms for Θ on M. As another example, a logical characterisation of
≈per is given in [CD07, Theorem 3].

Regarding the complexity of checking such equivalence, we should first note that
the decidability of M ` m can be encoded by the decidability of ≈s or ≈pat. However,
checking ` can be undecidable [AC04] depending on the underlying derivation sys-
tem. [BRS07] shows that when M is finite, a derivation system containing encryption
and blind signature can be decided in PTIME . This implies the decidability of ≈pat ac-
cording to the definition of ≈pat in [BRS07]. More general results in [AC04] show that
when E is a convergent subterm theory that can cover many important cryptographic
operations, both ≈s and ` are decidable in PTIME .

9.3.2 ETL vs. DEL in Modelling

We now compare the epistemic temporal approach with the dynamic epistemic ap-
proach in modelling.
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Limitations of DEL

As epistemic temporal logic and dynamic epistemic logic are two important methods
of describing epistemic interaction over time, technical comparisons have been done
to pinpoint the differences between the two. From an abstract point of view, ignoring
the structure of the local states, an ETL-model is a tree-like Kripke structure with
relations labelled by events and agent names. We get a similar structure, if we start
from a static initial Kripke model, performing sequences of DEL-updates, and link
each state and its update by the corresponding event (s e

→ 〈s, e〉).
Van Benthem et al. ([vBGHP09]) characterise the class of ETL tree-like structures

that are DEL constructable by a uniform protocol in the above sense, by the notions of
Synchronicity (agents are always aware if something has happened), Perfect Recall (the
local history is remembered), No Miracles, and Epistemic Bisimulation Invariance (see
below). This means that standard DEL can only deal with idealised agents who satisfy
those properties. If we model intruders with enough observation power for better
security, then Synchronicity and Perfect Recall can be intuitively assumed. However,
No Miracles and Epistemic Bisimulation Invariance may lead to some drawbacks of
DEL approaches in security verification:

No Miracles: An ETL-modelM, considered as a Kripke model with temporal action
transitions e

→ and epistemic relations∼i, has the property No Miracles if the following

holds: for all states s, s′ and events e, e′ such that s e
→ t and s′ e′

→ t′, for some t, t′: if s ∼i s′

and there are s′′, s′′′ with s′′ e
→ t′′, s′′′ e′

→ t′′′ for some t′′ ∼i t′′′, then t ∼i t′. (If two actions
lead to indistinguishable states somewhere in the model, then it cannot be the case
that performing these actions on indistinguishable states will lead to distinguishable
states.)
However consider the following (partial) model where ∼i denotes an equivalence
relation based on ≈pat:

i : {{c}k} oo i //

(i rec ε:k)

��

i : {{c′}k} oo i //

(i rec ε:k)

��

i : {{c}k′ } oo i //

(i rec ε:k)

��

i : {{c′}k′ }

(i rec ε:k)

��
i : {{c}k , k} i : {{c′}k, k} i : {{c}k′ , k} oo i // i : {{c′}k′ , k}

where k′ , k and c′ , c. Clearly, this model violates No Miracle, so it is impossi-
ble for it to be generated by the standard DEL approach. The problem is rooted in
the definition of epistemic relations in the action models. Recall that the epistemic
relations in the updated model are defined by the synchronisation of the epistemic
relations in the static model and those in the action model. However, in the secu-
rity protocol setting, the same receive action on indistinguishable states may cause
the resulting states to be distinguishable, as the example shows. One way to go
around this is to “split” each action into multiple copies with different preconditions
such that different copies of the same action may be distinguished under different
preconditions. For example, in the action model, the action (i rec ε : k) with the
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precondition hasi{c}k should be i-distinguishable from the same action with the pre-
condition hasi{c′}k, if c , c′. However, this ad-hoc method may introduce infinitely
many copies of actions in the action model, which is not allowed by the standard DEL.

Epistemic Bisimulation Invariance requires the same event to happen at the states
that are epistemically bisimilar (i.e. bisimulation disregarding the temporal rela-
tions). This is because the pre-conditions in the action model are formalised in the
dynamic epistemic language. This may cause problems if we want to model protocol
actions with temporal preconditions in terms of the past (for example, if i sends k
only if j sent k′). The usual solution is to encode the history of actions by new basic
propositions.

Limitations of ETL

According to the modelling procedure we described in Section 9.2.3, the epistemic
relations are built after the temporal structures. This may prevent us from handling
knowledge-based protocols, which have preconditions in terms of knowledge, e.g., i
sends m only if i knows that j has k. As shown in [HF89, FHMV97], it is possible
to construct the unique temporal structure and epistemic relations simultaneously
according to a knowledge-based protocol, if the system is synchronous and the epis-
temic preconditions are not about the future.15 On the other hand, DEL by definition
can handle conditions about what may happen in the future, since in action models
we can have preconditions like Ki〈A, e〉φ (i knows that e may happen and in that case
φ will be true).

In the ETLmodelling of security protocols, the initial (global) states represent the
initial distribution of names, keys, and other messages. If we focus on a particular
distribution, then we can start with a unique initial state. By doing so, we implicitly
assume that the distribution of the information, e.g, who has what key, is commonly
known [BRS07]. However, what if one agent is uncertain about whether another
agent knows that she has a public key? Such higher order uncertainties are not well-
handled if we generate epistemic relations between initial states based on matching
local states. For example, suppose the only message term is a public key k and agent i
has it while agent j does not. To make the formula φ = Ki(hasik∧¬has jk)∧ K̂iK jhasik∧
K̂i¬K jhasik true in an initial model, we need at least two states which represent the
same initial distribution of messages, as the following model shows:

i : {k}; j : {} oo i //
OO
j
��

i : {k}; j : {}

i : {}; j : {}

15As argued in [HF89], if a protocol has “forward-looking” conditions (like KiFφ: “i knows that φ will
hold eventually”), it is circular to define the admissible runs uniquely. Therefore there may be none or
several solutions to the fix-point-like definition of the admissible runs.
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It is clear that φ holds at the upper two states. However, if the epistemic relations are
generated by matching local states or other local information, then there should be a
j relation linking all the states. But then formula Ki¬K jhasik will be true at the upper
worlds, contradictory to our initial intention. In fact, if we want to handle higher
order uncertainties by the generated epistemic relations, we need to introduce some
extra tokens in the local states of j to distinguish the two upper states. Intuitively, a
local state of one agent, though called local, should also contain information about
one’s opinion of others, in order to handle higher order uncertainties. However, it
is rather ad-hoc to introduce those auxiliary tokens. On the other hand, DEL is more
flexible in modelling how agents reason about each other, because the equivalences
can be defined by choice. More flexibility is also offered by the possibility of mod-
elling higher order uncertainties in the action models.

To summarize, the distinct features in either the DEL or ETL approaches are usually
double-edged swords:

Features ETL DEL

Equivalence
relations

generated by matching
local information

generated by product update
or by hand (for initial models)

Pros
flexible and automatic;
generated in a
distributed fashion

easy to handle higher order
uncertainties;
update mechanism is
formally defined

Cons
inconvenient for
higher order uncertainties
at initial states

inconvenient in
a cryptographic setting

Events
represented by transitions
on global states modelled in action models

Pros flexible

pre- and postconditions are
encoded in the DEL language
thus easy to handle epistemic
conditions in protocols

Cons
detailed modelling (e.g.
pre- and postconditions)
is outside the framework

equivalence relations between
events are designed by hand

Based on the above observation, we may want to combine the two frameworks, as
already attempted in [HY09, vBGHP09, Hos10, WSvE10]. Chapter 5 of this thesis
also presents an effort to bring the distributed features of ETL to DELmodelling.

Compared to the ETL approach, the standard DEL approach has limitations in
generating suitable equivalence relations in the security setting. On the other hand,
as we demonstrated in Part I, DEL seems convenient for epistemic protocols where:

• preconditions are in terms of the knowledge of the agents;

• higher order uncertainties are crucial (e.g., higher order uncertainty about initial
distribution of information or observation of actions);
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• protocol goals are in terms of the nested knowledge form.

Epistemic protocols use epistemic reasoning rather than cryptography to obtain se-
curity. Examples of such protocols include e.g., Dining Cryptographers [CCD88] and
Card Cryptography [FW96, vD03, vD08]. As we have shown in Chapter 3, to ver-
ify such protocols, meta-knowledge of the protocols themselves matters and creates
some complications. It is not yet clear whether intruder’s knowledge about the goal
of a security protocol will also affect the verification result.

9.4 To Know or Not, Towards a Technical Answer

As emphasised in the previous sections, many epistemic approaches are motivated
by a common conviction that epistemic logic can express security properties “more
naturally”. However, in practice, in most of the formal frameworks, security prop-
erties are formalised as temporal formulae rather than in terms of knowledge. To
really justify the use of epistemics, it is crucial to understand better whether adding
epistemics can indeed help to express more security properties, and if so, what the
cost is for the improved expressivity.

9.4.1 On Expressivity of ETL

Aiming at a technical basis to answer the above questions, we formally compare the
expressivity of epistemic temporal logic (ETL) versus pure temporal logic (TL) in the
rest of this section. Here we regard ETL and TL as classes of logics: we do not fix
the exact logic unless necessary. The comparison will always be between a temporal
logic L and an epistemic temporal logic that extends Lwith epistemic operators.

A logic L1 is strictly more expressive than L2, if (1) for every formula in L2 there is
a formula in L1 defining the same class of models (i.e. they have exactly the same
models.); but (2) there is a formula in L1 which does not have a corresponding formula
in L2. Note that the comparison of the expressivity of different logics is usually
studied given the condition that the logics concerned are defined on the same type of
models. However, in the case of ETL and TL, this condition does not hold: the models
of ETL involve epistemic relations, while these are absent in the TL-models. This
complicates formal comparisons of the two logics in terms of expressivity. To make
the comparison of ETL and TL possible, we need to provide the common playground
for these two logics.

A rather straightforward observation is that if we consider the epistemic relations
of agent i to be just another kind of transitions, labelled ‘i’, then ETL can be “reduced”
to TL. Let CTL∗I and MuI be CTL∗ and modal µ−calculus with extra actions labelled by
the names of agents in I respectively. Let CETL and CTL be the classes of all ETL- and
TL-models respectively. Then:

9.4.1. T. There exists a language translation tL : LETL → LTL and a model transfor-
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mation tM : CETL → CTL where TL ∈ {CTL∗I, PDL, MuI} such that:

∀ϕ ∈ ETL∀M ∈ CETL(M |=ETL ϕ⇔ tM(M) |=TL tL(ψ)).

P We only discuss the CTL∗ case. Let tL be the translation that, for each for-
mula, 1) replaces each occurrence of Ki by AXi, 2) recursively replaces each common
knowledge operator CI′ (with I′ ⊆ I) by A(¬((

∨
i∈I′ Xi>)UtL(¬φ))). Let tM be the trans-

formation which unravels the epistemic relations into labelled temporal relations. ë

This observation suggests a way to reduce ETL model checking to TL model
checking, with the help of some small model property. However, the unravelling
of epistemic relations may introduce an exponential blow-up of the models, see, for
instance [AvC07].

On the other hand, the above result is somehow misleading in understanding
the expressivity of ETL and TL, since we reinterpret epistemic relations as temporal
operators by introducing new operators in the temporal language. To address the
comparison of expressivity without manipulating the language we can consider the
following case:

Suppose that the epistemic relations of the ETL-models are generated by the temporal
structures as explained in Section 9.2.3. We can turn the ETL-models into TL-models by
ignoring the generated epistemic relations. A straightforward question is to ask whether
explicit epistemics helps to define more classes of such temporal models, or if the epistemic
information can be retrieved from the temporal structure. Formally we need to prove or
disprove the following:

∃φ ∈ LETL,∀ψ ∈ LTL : t−
M

(Cφ) , Cψ.

where Cφ (Cψ) is the class of ETL (TL) models which satisfy φ (ψ); t−
M

transforms the ETL
models in Cφ into corresponding TL models by ignoring the generated epistemic relations.

In case that the epistemic relations are generated respecting synchronicity (i.e.
epistemic relations only appear in the same level of the tree unravelling of the temporal
model), then we have a clear answer to the above question. We can reformulate
Theorem 1 of [AvZ06] in spirit as follows:

9.4.2. T. If we only consider the ETLmodels satisfying synchronicity, then the secrecy
flavoured ETL formula AXAG(¬K¬p∧¬Kp) (never be sure about p in the future) is not t−

M
-

translatable into Lµ.

The proof is essentially hidden in [Eme87], which shows that the class of the trees
that have a level where p is true everywhere, is not recognisable by non-deterministic
Muller tree automata. We can employ the pumping-lemma-like argument of [Eme87]
to obtain this result.

More generally, it is known that Monadic Second Order Logic (MSO) cannot express
“x and y are at the same level” on trees [LS87]. Thus, the merit of the above un-
translatability result may actually be rooted in the property of synchronicity. Hence,
although synchronicity is a commonly accepted idealisation of the agents, we still
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want to know whether we can ignore it or replace it by other properties but get a
similar untranslatability result. This is still open.

9.4.2 Model Checking ETL

The previous sections gave both the intuitive and technical arguments on the usability
and expressivity of the epistemic approaches in protocol verification. However, do
we pay any cost in the complexity of model checking? In this section we summarize
the important model checking results of the literature. For complexity results regard-
ing the satisfiability problems of the corresponding logics, we refer to [HV86, SG02].

[SG02] shows that on explicit Kripke models the model checking problem of CTL
with common knowledge operators (CTL + C) can be done in PTIME and [vdHW02]
proved that for Alternating Time Logic (ATL) with knowledge, it is PTIME -complete.
This looks similar to the logics without knowledge operators. However, due to the
construction of epistemic models in the protocol verification setting, we are more
interested in the model checking problem on finitely generated infinite epistemic
temporal models. Results in [SG02] indicate that on asynchronous generated models
with forgetful agents, the complexity of model checking complies to the general case
on Kripke structures. However, we are more interested in the finitely generated
synchronous system with perfect recall agents as intruders. Here are some results
for this situation:

Reference Logic Fragment Complexity
[vdMS99] LTL + K full non-elementary
[vdMS99] LTL + C full undecidable
[vdMS99] LTL + C UNTIL-free PSPACE-complete
[EGvdM07] LTL + C single agent PSPACE-complete
[SG02] CTL + K full non-elementary
[SG02] CTL + C full undecidable
[AvC07] CTL + K nesting-free PSPACE-complete
[SG02] PDL + C full PSPACE-complete
[SG02] MU + K full undecidable
[AvC07] MU + K nesting-free EXPTIME-complete

Putting together the decidability of ≈ on messages terms (cf. Section 9.3.1) and
the model checking results above, we can obtain decidability results for security
verification (e.g. [BRS07]).16

The above results suggest that we may need to restrict ourselves to single agent
cases or nesting-free ETL formulas due to the computational complexity. This some-
how coincides with the disadvantages of ETLmodelling we mentioned in Section 9.3:
ETLmodelling is not very suitable for multi-agent cases with higher order uncertainty.

16Important security properties are generally undecidable if there are no restrictions on the number of
messages and nonces, for example, cf. [DLMS99] for the undecidability for secrecy. A solution is to focus
on decidable subclasses as in e.g. [RS05a].
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On the other hand, although multi-agent cases are often undecidable in general, we
can still have some hope by restricting ourselves to certain classes where equivalence
relations of agents have certain patterns (e.g. [EVDMS02]). Moreover, some model
checking techniques such as abstraction and symmetry reduction that are specific to
ETL or DEL can be found in [DOW08, CDLR09, CLDQ09].

As a final note, in practice, the performance of an ETL model checking tool kit
relies on the particular class of models to be checked and their representations, for
example, model checking CTL+K against “compact models” is in PSPACE [LR06a].

9.5 Conclusion

In this chapter, we surveyed the epistemic approaches to security protocol verification
with the questions: are security protocols essentially about knowledge (what is there
to know?), how to model the different kinds of knowledge involved (how to know?),
and does an epistemic approach bring benefits (why to know?). We first made the
distinctions between different types of knowledge relevant in the security setting and
then gave an overview of commonly used techniques in the epistemic approaches.
In particular, we compared various equivalence relations defined in the literature
that correspond to the semantics of propositional knowledge. We also compared
two major epistemic logical approaches proposed to model interaction in multi-agent
systems. It turns out that, in a setting of security protocol verification, ETL approaches
are more suitable to model message passing over time, based on which appropriate
equivalence relations can be generated. On the other hand, the DEL approach offers
more freedom to model higher order information and uncertainties in terms of agents’
knowledge about each other as we demonstrated in Part I of this thesis. The model
checking results of ETL also confirm that it is better to focus on a single agent case:
in the security setting, this would be the intruder. Finally, we collected clues for
the comparison of the expressivity of ETL and TL, in order to see when an epistemic
approach is inevitable. We showed under the assumption of synchronicity, that ETL
can define more (security) properties of the temporal structures.
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Alloy Code for Russian Cards Problem (3.3.1)

module RCP

//Alloy program for finding a deterministic protocol solution

//to Russian Cards Problem (3.3.1)

//y.wang@cwi.nl

sig Cards {

}

sig Hands {

content: set Cards

}

sig Pa {

member: set Hands

}

fact {all h: Hands | #h.content = 3 }

//every hand contains 3 cards

fact {all p: Pa | #p.member > 1 }

//Any announcement contains at least 2 hands

fact {all h: Hands | some p:Pa | h in p.member }

//Every hand appears at some announcement (executability)

fact {no h: Hands, g: Hands | h != g && h.content = g.content }

//No two hands are the same

fact {no p: Pa, q: Pa |p != q && # p.member & q.member > 0 }

//No two annoucnements share a hand (for determinism)
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fact {no p: Pa |some h: p.member, g: p.member |

h != g && # h.content & g.content > 1 }

//In order to let B know:

//any two hands in one announcement share at most 1 card

fact {no p: Pa| some c: Cards, d: Cards | all h: p.member|

(not c in h.content) => d in h.content }

//In order to let C stay ignorant: if we fix one card in an announcement

//then the hands that do not contain this card don’t have a card in common

pred RCP { }

run RCP for exactly 7 Cards , exactly 35 Hands, 7 Pa

//Given 7 cards there are 35 3-hand. At most 7 announcements.
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Abstract

This dissertation presents a logical investigation of epistemic protocols, focussing on
protocol-dynamics, epistemic modelling, and epistemic model checking.

In Part I, we introduce logics for specifying epistemic protocols including their
goals and their dynamics. Chapter 3 departures from the existing discussions about
protocols in the field of Dynamic Epistemic Logic by introducing a logic which can
specify both the epistemic protocols and their goals within the language. We formalize
the verification problem of epistemic protocols under the assumption of meta knowl-
edge about the intended goal. The subtlety of this verification problem is discussed
in theory and examples. In Chapter 4, we address the question: “How can people get
to know a protocol?” For this, we develop logics which are convenient for reasoning
about knowledge change and protocol change. With various protocol-changing op-
erators we can handle the dynamics of protocols and formalize how actions acquire
new meanings as a result of protocol change. We show that all the three logics we
introduced can be translated back to Propositional Dynamic Logic (PDL) on standard
Kripke models, thus the techniques of modelling and model checking we develop in
the other parts of the dissertation can be applied to these logics.

In Part II we address the issue of epistemic modelling, in order to study model
checking for the logics introduced in Part I. In Chapter 5 we propose new compo-
sition operations on static and event models with arbitrary vocabularies, aiming at
a compositional method for generating initial epistemic models. We prove decom-
position theorems w.r.t. our new operator and demonstrate the use of our methods
by various examples. Chapter 6 reports results on counting the number of different
models given a finite set of initial assumptions. Restricted to image-finite models, we
show that if a modal µ-calculus formula has an infinite model modulo bisimulation
then it has 2ℵ0 (cardinality of the continuum) different models modulo bisimulation.
On the other hand, if it does not have any infinite models modulo bisimulation then
all its models can be represented in a normal form.

Part III introduces abstraction techniques that are particularly useful on making
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the model checking more efficient. A 3-valued semantics for Public Announcement
Logic is defined and studied in Chapter 7 to facilitate abstractions of models. We
define a relation with vocabulary and agent mappings between concrete models and
their abstractions, thus making it possible to also abstract the signatures of models.
We then give a logical characterization of this abstraction relation thus showing it is
safe to check properties on the abstract model instead of the original concrete model.
Chapter 8 studies the PDL on so-called accelerated Kripke models where the transitions
in the models are labelled by regular expressions in order to obtain informative ab-
stractions. By making use of a technique of regular expression rewriting, we analyse
the complexity of the model checking and satisfiability problems of this logic and
give a complete axiomatization.

In Part IV (Chapter 9) we survey the epistemic approaches to security protocol
verification. We summarize the most important techniques in the Epistemic Tempo-
ral Logic and Dynamic Epistemic Logic approaches to security protocol verification,
and compare these two approaches in term of convenience. We argue that some se-
curity properties can only be faithfully formalized by temporal logic with knowledge
operators, but are not expressible by standard temporal logic. However, we need to
pay some cost in model checking complexity, in exchange to the expressiveness we
gain.



Samenvatting

Dit proefschrift behelst een logisch onderzoek van kennisgerelateerde protocollen,
met aandacht voor protocol-dynamiek, voor epistemisch modelleren en voor het
bevragen van epistemische modellen (‘model checking’).

In Deel I presenteren we logische systemen voor het specificeren van epistemische
protocollen, met inbegrip van protocol-doel en protocol-verandering. Hoofdstuk 3
verruimt het perspectief ten opzichte van bestaande behandeling van protocollen
in Dynamische Epistemische Logica, door een logica te introduceren die zowel het
protocol als het doel van het protocol kan specificeren in de logische taal zelf. We
formaliseren het verificatieprobleem voor epistemische protocollen onder de aan-
name van meta-kennis over het beoogde doel van het protocol. De subtiliteit van
dit verificatieprobleem wordt geı̈llustreerd met theorievorming en in praktijkvoor-
beelden. In Hoofdstuk 4 snijden we de vraag aan hoe mensen een protocol kunnen
leren. Hiervoor worden logische systemen geı̈ntroduceerd die geschikt zijn voor
het redeneren over kennisverandering en over protocolverandering. Door gebruik
te maken van verschillende operatoren om protocollen te veranderen kunnen we
dynamiek van protocollen behandelen en kunnen we formaliseren hoe handelingen
nieuwe betekenis krijgen als gevolg van verandering in een protocol. We laten zien
dat elk van de drie logische systemen die we introduceren terugvertaald kan worden
naar Propositionele Dynamische Logica (PDL) op standaard Kripke modellen. Hier-
mee is aangetoond dat de technieken die we in andere delen van het proefschrift
ontwikkelen van toepassing zijn op de drie nieuwe logische systemen.

In Deel II richten we ons op epistemisch modelleren, met als doel het bestu-
deren van ‘model checking’ voor de logische systemen die we in Deel I hebben
geı̈ntroduceerd. In Hoofdstuk 5 stellen we nieuwe compositie-operatoren voor op
statische modellen en op gebeurtenismodellen met willekeurig vocabulair, met als
doel een compositionele methode te ontwikkelen voor het genereren van initiële
kennismodellen. We bewijzen een aantal decompositie-stellingen voor de nieuwe
operatoren, en we laten aan de hand van voorbeelden zien hoe onze methoden kun-
nen worden gebruikt. Hoofdstuk 6 rapporteert over resultaten met betrekking tot
het aantal verschillende modellen dat kan worden verkregen, gegeven een eindige
omschrijving van een begintoestand. Voor ‘image-finite models’ laten we zien dat als
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een formule uit de modale µ-calculus een oneindig model heeft modulo bisimulatie,
die formule 2ℵ0 verschillende modellen heeft modulo bisimulatie (de cardinaliteit
van het continuum). Aan de andere kant is het zo dat als een formule waarmee we
beginnen geen oneindige modellen heeft modulo bisimulatie, dat wil zeggen als alle
bisimulatie-minimale modellen van de formule eindig zijn, alle modellen voor die
formule kunnen worden gerepresenteerd in een standaardvorm.

Deel III introduceert abstractie-technieken die van belang zijn om ‘model chec-
king’ efficiënter te maken. In Hoofdstuk 7 wordt een driewaardige semantiek voor
de logica van openbare aankondigingen (‘public announcement logic’) gedefiniëerd
en bestudeerd. Het doel hiervan is om abstractie over modellen te vergemakkelij-
ken. Met behulp van propositionele en agent afbeeldingen definiëren we een relatie
tussen concrete modellen en hun abstracties. We laten daarmee zien dat het mogelijk
is om te abstraheren van de signatuur van een model. We geven vervolgens een
logische karakterisering van de abstractie relatie, en we tonen daarmee aan dat het
veilig is om eigenschappen op het abstracte model te checken in plaats van op het
originele concrete model. Hoofdstuk 8 bestudeert de PDL op zogenaamde versnelde
Kripke modellen (‘accelerated Kripke models’), waar de toestandsovergangen in de
modellen geëtiketteerd zijn met reguliere uitdrukkingen die meer informatie geven
dan de enkelvoudige etiketten uit gewone Kripke modellen. Met behulp van een
herschrijf-techniek voor reguliere uitdrukkingen analyseren we de complexiteit van
het ‘model checking’ probleem en het vervulbaarheidsprobleem voor deze logica, en
geven we een volledige axiomatisering.

In Deel IV (Hoofdstuk 9) geven we een overzicht van de epistemische invals-
hoeken op het verificatieprobleem voor beveiligingsprotocollen. We vatten de be-
langrijkste technieken hiervoor uit epistemische temporele logica en uit dynamische
epistemische logica samen, en we vergelijken de twee soorten van technieken. We
beargumenteren waarom sommige veiligheidseigenschappen betrouwbaar kunnen
worden geformaliseerd met temporele logica plus kennisoperatoren, maar niet met
standaard temporele logica. De extra expressiviteit heeft echter een prijs: ‘model
checking’ met epistemische temporele logica is complexer dan met standaard tem-
porele logica.
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